| /* |
| * Copyright (C) 2010 Google Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. Neither the name of Apple Inc. ("Apple") nor the names of |
| * its contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| |
| #if ENABLE(WEB_AUDIO) |
| |
| #include "Biquad.h" |
| |
| #include "DenormalDisabler.h" |
| #include <algorithm> |
| #include <stdio.h> |
| #include <wtf/MathExtras.h> |
| |
| #if USE(ACCELERATE) |
| // Work around a bug where VForce.h forward declares std::complex in a way that's incompatible with libc++ complex. |
| #define __VFORCE_H |
| #include <Accelerate/Accelerate.h> |
| #endif |
| |
| namespace WebCore { |
| |
| #if USE(ACCELERATE) |
| const int kBufferSize = 1024; |
| #endif |
| |
| Biquad::Biquad() |
| { |
| #if USE(ACCELERATE) |
| // Allocate two samples more for filter history |
| m_inputBuffer.allocate(kBufferSize + 2); |
| m_outputBuffer.allocate(kBufferSize + 2); |
| #endif |
| |
| // Initialize as pass-thru (straight-wire, no filter effect) |
| setNormalizedCoefficients(1, 0, 0, 1, 0, 0); |
| |
| reset(); // clear filter memory |
| } |
| |
| Biquad::~Biquad() = default; |
| |
| void Biquad::process(const float* sourceP, float* destP, size_t framesToProcess) |
| { |
| #if USE(ACCELERATE) |
| // Use vecLib if available |
| processFast(sourceP, destP, framesToProcess); |
| |
| #else |
| |
| int n = framesToProcess; |
| |
| // Create local copies of member variables |
| double x1 = m_x1; |
| double x2 = m_x2; |
| double y1 = m_y1; |
| double y2 = m_y2; |
| |
| double b0 = m_b0; |
| double b1 = m_b1; |
| double b2 = m_b2; |
| double a1 = m_a1; |
| double a2 = m_a2; |
| |
| while (n--) { |
| // FIXME: this can be optimized by pipelining the multiply adds... |
| float x = *sourceP++; |
| float y = b0*x + b1*x1 + b2*x2 - a1*y1 - a2*y2; |
| |
| *destP++ = y; |
| |
| // Update state variables |
| x2 = x1; |
| x1 = x; |
| y2 = y1; |
| y1 = y; |
| } |
| |
| // Local variables back to member. Flush denormals here so we |
| // don't slow down the inner loop above. |
| m_x1 = DenormalDisabler::flushDenormalFloatToZero(x1); |
| m_x2 = DenormalDisabler::flushDenormalFloatToZero(x2); |
| m_y1 = DenormalDisabler::flushDenormalFloatToZero(y1); |
| m_y2 = DenormalDisabler::flushDenormalFloatToZero(y2); |
| |
| m_b0 = b0; |
| m_b1 = b1; |
| m_b2 = b2; |
| m_a1 = a1; |
| m_a2 = a2; |
| #endif |
| } |
| |
| #if USE(ACCELERATE) |
| |
| // Here we have optimized version using Accelerate.framework |
| |
| void Biquad::processFast(const float* sourceP, float* destP, size_t framesToProcess) |
| { |
| double filterCoefficients[5]; |
| filterCoefficients[0] = m_b0; |
| filterCoefficients[1] = m_b1; |
| filterCoefficients[2] = m_b2; |
| filterCoefficients[3] = m_a1; |
| filterCoefficients[4] = m_a2; |
| |
| double* inputP = m_inputBuffer.data(); |
| double* outputP = m_outputBuffer.data(); |
| |
| double* input2P = inputP + 2; |
| double* output2P = outputP + 2; |
| |
| // Break up processing into smaller slices (kBufferSize) if necessary. |
| |
| int n = framesToProcess; |
| |
| while (n > 0) { |
| int framesThisTime = n < kBufferSize ? n : kBufferSize; |
| |
| // Copy input to input buffer |
| for (int i = 0; i < framesThisTime; ++i) |
| input2P[i] = *sourceP++; |
| |
| processSliceFast(inputP, outputP, filterCoefficients, framesThisTime); |
| |
| // Copy output buffer to output (converts float -> double). |
| for (int i = 0; i < framesThisTime; ++i) |
| *destP++ = static_cast<float>(output2P[i]); |
| |
| n -= framesThisTime; |
| } |
| } |
| |
| void Biquad::processSliceFast(double* sourceP, double* destP, double* coefficientsP, size_t framesToProcess) |
| { |
| // Use double-precision for filter stability |
| vDSP_deq22D(sourceP, 1, coefficientsP, destP, 1, framesToProcess); |
| |
| // Save history. Note that sourceP and destP reference m_inputBuffer and m_outputBuffer respectively. |
| // These buffers are allocated (in the constructor) with space for two extra samples so it's OK to access |
| // array values two beyond framesToProcess. |
| sourceP[0] = sourceP[framesToProcess - 2 + 2]; |
| sourceP[1] = sourceP[framesToProcess - 1 + 2]; |
| destP[0] = destP[framesToProcess - 2 + 2]; |
| destP[1] = destP[framesToProcess - 1 + 2]; |
| } |
| |
| #endif // USE(ACCELERATE) |
| |
| |
| void Biquad::reset() |
| { |
| #if USE(ACCELERATE) |
| // Two extra samples for filter history |
| double* inputP = m_inputBuffer.data(); |
| inputP[0] = 0; |
| inputP[1] = 0; |
| |
| double* outputP = m_outputBuffer.data(); |
| outputP[0] = 0; |
| outputP[1] = 0; |
| |
| #else |
| m_x1 = m_x2 = m_y1 = m_y2 = 0; |
| #endif |
| } |
| |
| void Biquad::setLowpassParams(double cutoff, double resonance) |
| { |
| // Limit cutoff to 0 to 1. |
| cutoff = std::max(0.0, std::min(cutoff, 1.0)); |
| |
| if (cutoff == 1) { |
| // When cutoff is 1, the z-transform is 1. |
| setNormalizedCoefficients(1, 0, 0, |
| 1, 0, 0); |
| } else if (cutoff > 0) { |
| // Compute biquad coefficients for lowpass filter |
| resonance = std::max(0.0, resonance); // can't go negative |
| double g = pow(10.0, 0.05 * resonance); |
| double d = sqrt((4 - sqrt(16 - 16 / (g * g))) / 2); |
| |
| double theta = piDouble * cutoff; |
| double sn = 0.5 * d * sin(theta); |
| double beta = 0.5 * (1 - sn) / (1 + sn); |
| double gamma = (0.5 + beta) * cos(theta); |
| double alpha = 0.25 * (0.5 + beta - gamma); |
| |
| double b0 = 2 * alpha; |
| double b1 = 2 * 2 * alpha; |
| double b2 = 2 * alpha; |
| double a1 = 2 * -gamma; |
| double a2 = 2 * beta; |
| |
| setNormalizedCoefficients(b0, b1, b2, 1, a1, a2); |
| } else { |
| // When cutoff is zero, nothing gets through the filter, so set |
| // coefficients up correctly. |
| setNormalizedCoefficients(0, 0, 0, |
| 1, 0, 0); |
| } |
| } |
| |
| void Biquad::setHighpassParams(double cutoff, double resonance) |
| { |
| // Limit cutoff to 0 to 1. |
| cutoff = std::max(0.0, std::min(cutoff, 1.0)); |
| |
| if (cutoff == 1) { |
| // The z-transform is 0. |
| setNormalizedCoefficients(0, 0, 0, |
| 1, 0, 0); |
| } else if (cutoff > 0) { |
| // Compute biquad coefficients for highpass filter |
| resonance = std::max(0.0, resonance); // can't go negative |
| double g = pow(10.0, 0.05 * resonance); |
| double d = sqrt((4 - sqrt(16 - 16 / (g * g))) / 2); |
| |
| double theta = piDouble * cutoff; |
| double sn = 0.5 * d * sin(theta); |
| double beta = 0.5 * (1 - sn) / (1 + sn); |
| double gamma = (0.5 + beta) * cos(theta); |
| double alpha = 0.25 * (0.5 + beta + gamma); |
| |
| double b0 = 2 * alpha; |
| double b1 = 2 * -2 * alpha; |
| double b2 = 2 * alpha; |
| double a1 = 2 * -gamma; |
| double a2 = 2 * beta; |
| |
| setNormalizedCoefficients(b0, b1, b2, 1, a1, a2); |
| } else { |
| // When cutoff is zero, we need to be careful because the above |
| // gives a quadratic divided by the same quadratic, with poles |
| // and zeros on the unit circle in the same place. When cutoff |
| // is zero, the z-transform is 1. |
| setNormalizedCoefficients(1, 0, 0, |
| 1, 0, 0); |
| } |
| } |
| |
| void Biquad::setNormalizedCoefficients(double b0, double b1, double b2, double a0, double a1, double a2) |
| { |
| double a0Inverse = 1 / a0; |
| |
| m_b0 = b0 * a0Inverse; |
| m_b1 = b1 * a0Inverse; |
| m_b2 = b2 * a0Inverse; |
| m_a1 = a1 * a0Inverse; |
| m_a2 = a2 * a0Inverse; |
| } |
| |
| void Biquad::setLowShelfParams(double frequency, double dbGain) |
| { |
| // Clip frequencies to between 0 and 1, inclusive. |
| frequency = std::max(0.0, std::min(frequency, 1.0)); |
| |
| double A = pow(10.0, dbGain / 40); |
| |
| if (frequency == 1) { |
| // The z-transform is a constant gain. |
| setNormalizedCoefficients(A * A, 0, 0, |
| 1, 0, 0); |
| } else if (frequency > 0) { |
| double w0 = piDouble * frequency; |
| double S = 1; // filter slope (1 is max value) |
| double alpha = 0.5 * sin(w0) * sqrt((A + 1 / A) * (1 / S - 1) + 2); |
| double k = cos(w0); |
| double k2 = 2 * sqrt(A) * alpha; |
| double aPlusOne = A + 1; |
| double aMinusOne = A - 1; |
| |
| double b0 = A * (aPlusOne - aMinusOne * k + k2); |
| double b1 = 2 * A * (aMinusOne - aPlusOne * k); |
| double b2 = A * (aPlusOne - aMinusOne * k - k2); |
| double a0 = aPlusOne + aMinusOne * k + k2; |
| double a1 = -2 * (aMinusOne + aPlusOne * k); |
| double a2 = aPlusOne + aMinusOne * k - k2; |
| |
| setNormalizedCoefficients(b0, b1, b2, a0, a1, a2); |
| } else { |
| // When frequency is 0, the z-transform is 1. |
| setNormalizedCoefficients(1, 0, 0, |
| 1, 0, 0); |
| } |
| } |
| |
| void Biquad::setHighShelfParams(double frequency, double dbGain) |
| { |
| // Clip frequencies to between 0 and 1, inclusive. |
| frequency = std::max(0.0, std::min(frequency, 1.0)); |
| |
| double A = pow(10.0, dbGain / 40); |
| |
| if (frequency == 1) { |
| // The z-transform is 1. |
| setNormalizedCoefficients(1, 0, 0, |
| 1, 0, 0); |
| } else if (frequency > 0) { |
| double w0 = piDouble * frequency; |
| double S = 1; // filter slope (1 is max value) |
| double alpha = 0.5 * sin(w0) * sqrt((A + 1 / A) * (1 / S - 1) + 2); |
| double k = cos(w0); |
| double k2 = 2 * sqrt(A) * alpha; |
| double aPlusOne = A + 1; |
| double aMinusOne = A - 1; |
| |
| double b0 = A * (aPlusOne + aMinusOne * k + k2); |
| double b1 = -2 * A * (aMinusOne + aPlusOne * k); |
| double b2 = A * (aPlusOne + aMinusOne * k - k2); |
| double a0 = aPlusOne - aMinusOne * k + k2; |
| double a1 = 2 * (aMinusOne - aPlusOne * k); |
| double a2 = aPlusOne - aMinusOne * k - k2; |
| |
| setNormalizedCoefficients(b0, b1, b2, a0, a1, a2); |
| } else { |
| // When frequency = 0, the filter is just a gain, A^2. |
| setNormalizedCoefficients(A * A, 0, 0, |
| 1, 0, 0); |
| } |
| } |
| |
| void Biquad::setPeakingParams(double frequency, double Q, double dbGain) |
| { |
| // Clip frequencies to between 0 and 1, inclusive. |
| frequency = std::max(0.0, std::min(frequency, 1.0)); |
| |
| // Don't let Q go negative, which causes an unstable filter. |
| Q = std::max(0.0, Q); |
| |
| double A = pow(10.0, dbGain / 40); |
| |
| if (frequency > 0 && frequency < 1) { |
| if (Q > 0) { |
| double w0 = piDouble * frequency; |
| double alpha = sin(w0) / (2 * Q); |
| double k = cos(w0); |
| |
| double b0 = 1 + alpha * A; |
| double b1 = -2 * k; |
| double b2 = 1 - alpha * A; |
| double a0 = 1 + alpha / A; |
| double a1 = -2 * k; |
| double a2 = 1 - alpha / A; |
| |
| setNormalizedCoefficients(b0, b1, b2, a0, a1, a2); |
| } else { |
| // When Q = 0, the above formulas have problems. If we look at |
| // the z-transform, we can see that the limit as Q->0 is A^2, so |
| // set the filter that way. |
| setNormalizedCoefficients(A * A, 0, 0, |
| 1, 0, 0); |
| } |
| } else { |
| // When frequency is 0 or 1, the z-transform is 1. |
| setNormalizedCoefficients(1, 0, 0, |
| 1, 0, 0); |
| } |
| } |
| |
| void Biquad::setAllpassParams(double frequency, double Q) |
| { |
| // Clip frequencies to between 0 and 1, inclusive. |
| frequency = std::max(0.0, std::min(frequency, 1.0)); |
| |
| // Don't let Q go negative, which causes an unstable filter. |
| Q = std::max(0.0, Q); |
| |
| if (frequency > 0 && frequency < 1) { |
| if (Q > 0) { |
| double w0 = piDouble * frequency; |
| double alpha = sin(w0) / (2 * Q); |
| double k = cos(w0); |
| |
| double b0 = 1 - alpha; |
| double b1 = -2 * k; |
| double b2 = 1 + alpha; |
| double a0 = 1 + alpha; |
| double a1 = -2 * k; |
| double a2 = 1 - alpha; |
| |
| setNormalizedCoefficients(b0, b1, b2, a0, a1, a2); |
| } else { |
| // When Q = 0, the above formulas have problems. If we look at |
| // the z-transform, we can see that the limit as Q->0 is -1, so |
| // set the filter that way. |
| setNormalizedCoefficients(-1, 0, 0, |
| 1, 0, 0); |
| } |
| } else { |
| // When frequency is 0 or 1, the z-transform is 1. |
| setNormalizedCoefficients(1, 0, 0, |
| 1, 0, 0); |
| } |
| } |
| |
| void Biquad::setNotchParams(double frequency, double Q) |
| { |
| // Clip frequencies to between 0 and 1, inclusive. |
| frequency = std::max(0.0, std::min(frequency, 1.0)); |
| |
| // Don't let Q go negative, which causes an unstable filter. |
| Q = std::max(0.0, Q); |
| |
| if (frequency > 0 && frequency < 1) { |
| if (Q > 0) { |
| double w0 = piDouble * frequency; |
| double alpha = sin(w0) / (2 * Q); |
| double k = cos(w0); |
| |
| double b0 = 1; |
| double b1 = -2 * k; |
| double b2 = 1; |
| double a0 = 1 + alpha; |
| double a1 = -2 * k; |
| double a2 = 1 - alpha; |
| |
| setNormalizedCoefficients(b0, b1, b2, a0, a1, a2); |
| } else { |
| // When Q = 0, the above formulas have problems. If we look at |
| // the z-transform, we can see that the limit as Q->0 is 0, so |
| // set the filter that way. |
| setNormalizedCoefficients(0, 0, 0, |
| 1, 0, 0); |
| } |
| } else { |
| // When frequency is 0 or 1, the z-transform is 1. |
| setNormalizedCoefficients(1, 0, 0, |
| 1, 0, 0); |
| } |
| } |
| |
| void Biquad::setBandpassParams(double frequency, double Q) |
| { |
| // No negative frequencies allowed. |
| frequency = std::max(0.0, frequency); |
| |
| // Don't let Q go negative, which causes an unstable filter. |
| Q = std::max(0.0, Q); |
| |
| if (frequency > 0 && frequency < 1) { |
| double w0 = piDouble * frequency; |
| if (Q > 0) { |
| double alpha = sin(w0) / (2 * Q); |
| double k = cos(w0); |
| |
| double b0 = alpha; |
| double b1 = 0; |
| double b2 = -alpha; |
| double a0 = 1 + alpha; |
| double a1 = -2 * k; |
| double a2 = 1 - alpha; |
| |
| setNormalizedCoefficients(b0, b1, b2, a0, a1, a2); |
| } else { |
| // When Q = 0, the above formulas have problems. If we look at |
| // the z-transform, we can see that the limit as Q->0 is 1, so |
| // set the filter that way. |
| setNormalizedCoefficients(1, 0, 0, |
| 1, 0, 0); |
| } |
| } else { |
| // When the cutoff is zero, the z-transform approaches 0, if Q |
| // > 0. When both Q and cutoff are zero, the z-transform is |
| // pretty much undefined. What should we do in this case? |
| // For now, just make the filter 0. When the cutoff is 1, the |
| // z-transform also approaches 0. |
| setNormalizedCoefficients(0, 0, 0, |
| 1, 0, 0); |
| } |
| } |
| |
| void Biquad::setZeroPolePairs(std::complex<double> zero, std::complex<double> pole) |
| { |
| double b0 = 1; |
| double b1 = -2 * zero.real(); |
| |
| double zeroMag = abs(zero); |
| double b2 = zeroMag * zeroMag; |
| |
| double a1 = -2 * pole.real(); |
| |
| double poleMag = abs(pole); |
| double a2 = poleMag * poleMag; |
| setNormalizedCoefficients(b0, b1, b2, 1, a1, a2); |
| } |
| |
| void Biquad::setAllpassPole(std::complex<double> pole) |
| { |
| std::complex<double> zero = std::complex<double>(1, 0) / pole; |
| setZeroPolePairs(zero, pole); |
| } |
| |
| void Biquad::getFrequencyResponse(int nFrequencies, |
| const float* frequency, |
| float* magResponse, |
| float* phaseResponse) |
| { |
| // Evaluate the Z-transform of the filter at given normalized |
| // frequency from 0 to 1. (1 corresponds to the Nyquist |
| // frequency.) |
| // |
| // The z-transform of the filter is |
| // |
| // H(z) = (b0 + b1*z^(-1) + b2*z^(-2))/(1 + a1*z^(-1) + a2*z^(-2)) |
| // |
| // Evaluate as |
| // |
| // b0 + (b1 + b2*z1)*z1 |
| // -------------------- |
| // 1 + (a1 + a2*z1)*z1 |
| // |
| // with z1 = 1/z and z = exp(j*pi*frequency). Hence z1 = exp(-j*pi*frequency) |
| |
| // Make local copies of the coefficients as a micro-optimization. |
| double b0 = m_b0; |
| double b1 = m_b1; |
| double b2 = m_b2; |
| double a1 = m_a1; |
| double a2 = m_a2; |
| |
| for (int k = 0; k < nFrequencies; ++k) { |
| double omega = -piDouble * frequency[k]; |
| std::complex<double> z = std::complex<double>(cos(omega), sin(omega)); |
| std::complex<double> numerator = b0 + (b1 + b2 * z) * z; |
| std::complex<double> denominator = std::complex<double>(1, 0) + (a1 + a2 * z) * z; |
| std::complex<double> response = numerator / denominator; |
| magResponse[k] = static_cast<float>(abs(response)); |
| phaseResponse[k] = static_cast<float>(atan2(imag(response), real(response))); |
| } |
| } |
| |
| } // namespace WebCore |
| |
| #endif // ENABLE(WEB_AUDIO) |