| /* |
| * Copyright (C) 2005-2019 Apple Inc. All rights reserved. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Library General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Library General Public License for more details. |
| * |
| * You should have received a copy of the GNU Library General Public License |
| * along with this library; see the file COPYING.LIB. If not, write to |
| * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, |
| * Boston, MA 02110-1301, USA. |
| * |
| */ |
| |
| #pragma once |
| |
| #include <limits> |
| #include <utility> |
| #include <wtf/Forward.h> |
| #include <wtf/HashFunctions.h> |
| #include <wtf/KeyValuePair.h> |
| #include <wtf/Optional.h> |
| #include <wtf/StdLibExtras.h> |
| |
| #ifdef __OBJC__ |
| #include <CoreFoundation/CoreFoundation.h> |
| #endif |
| |
| namespace WTF { |
| |
| template<bool isInteger, typename T> struct GenericHashTraitsBase; |
| |
| template<typename T> struct GenericHashTraitsBase<false, T> { |
| // The emptyValueIsZero flag is used to optimize allocation of empty hash tables with zeroed memory. |
| static constexpr bool emptyValueIsZero = false; |
| |
| // The hasIsEmptyValueFunction flag allows the hash table to automatically generate code to check |
| // for the empty value when it can be done with the equality operator, but allows custom functions |
| // for cases like String that need them. |
| static constexpr bool hasIsEmptyValueFunction = false; |
| |
| // Used by WeakPtr to indicate that the value may become deleted without being explicitly removed. |
| static constexpr bool hasIsReleasedWeakValueFunction = false; |
| |
| // The starting table size. Can be overridden when we know beforehand that |
| // a hash table will have at least N entries. |
| static constexpr unsigned minimumTableSize = 8; |
| }; |
| |
| // Default integer traits disallow both 0 and -1 as keys (max value instead of -1 for unsigned). |
| template<typename T> struct GenericHashTraitsBase<true, T> : GenericHashTraitsBase<false, T> { |
| static constexpr bool emptyValueIsZero = true; |
| static void constructDeletedValue(T& slot) { slot = static_cast<T>(-1); } |
| static bool isDeletedValue(T value) { return value == static_cast<T>(-1); } |
| }; |
| |
| template<typename T> struct GenericHashTraits : GenericHashTraitsBase<std::is_integral<T>::value, T> { |
| typedef T TraitType; |
| typedef T EmptyValueType; |
| |
| static T emptyValue() { return T(); } |
| |
| template<typename U, typename V> |
| static void assignToEmpty(U& emptyValue, V&& value) |
| { |
| emptyValue = std::forward<V>(value); |
| } |
| |
| template <typename Traits> |
| static void constructEmptyValue(T& slot) |
| { |
| new (NotNull, std::addressof(slot)) T(Traits::emptyValue()); |
| } |
| |
| // Type for return value of functions that do not transfer ownership, such as get. |
| typedef T PeekType; |
| template<typename U> static U&& peek(U&& value) { return std::forward<U>(value); } |
| |
| typedef T TakeType; |
| template<typename U> static TakeType take(U&& value) { return std::forward<U>(value); } |
| }; |
| |
| template<typename T> struct HashTraits : GenericHashTraits<T> { }; |
| |
| template<typename T> struct FloatHashTraits : GenericHashTraits<T> { |
| static T emptyValue() { return std::numeric_limits<T>::infinity(); } |
| static void constructDeletedValue(T& slot) { slot = -std::numeric_limits<T>::infinity(); } |
| static bool isDeletedValue(T value) { return value == -std::numeric_limits<T>::infinity(); } |
| }; |
| |
| template<> struct HashTraits<float> : FloatHashTraits<float> { }; |
| template<> struct HashTraits<double> : FloatHashTraits<double> { }; |
| |
| // Default unsigned traits disallow both 0 and max as keys -- use these traits to allow zero and disallow max - 1. |
| template<typename T> struct UnsignedWithZeroKeyHashTraits : GenericHashTraits<T> { |
| static constexpr bool emptyValueIsZero = false; |
| static T emptyValue() { return std::numeric_limits<T>::max(); } |
| static void constructDeletedValue(T& slot) { slot = std::numeric_limits<T>::max() - 1; } |
| static bool isDeletedValue(T value) { return value == std::numeric_limits<T>::max() - 1; } |
| }; |
| |
| template<typename T> struct SignedWithZeroKeyHashTraits : GenericHashTraits<T> { |
| static constexpr bool emptyValueIsZero = false; |
| static T emptyValue() { return std::numeric_limits<T>::min(); } |
| static void constructDeletedValue(T& slot) { slot = std::numeric_limits<T>::max(); } |
| static bool isDeletedValue(T value) { return value == std::numeric_limits<T>::max(); } |
| }; |
| |
| // Can be used with strong enums, allows zero as key. |
| template<typename T> struct StrongEnumHashTraits : GenericHashTraits<T> { |
| using UnderlyingType = typename std::underlying_type<T>::type; |
| static constexpr bool emptyValueIsZero = false; |
| static T emptyValue() { return static_cast<T>(std::numeric_limits<UnderlyingType>::max()); } |
| static void constructDeletedValue(T& slot) { slot = static_cast<T>(std::numeric_limits<UnderlyingType>::max() - 1); } |
| static bool isDeletedValue(T value) { return value == static_cast<T>(std::numeric_limits<UnderlyingType>::max() - 1); } |
| }; |
| |
| template<typename P> struct HashTraits<P*> : GenericHashTraits<P*> { |
| static constexpr bool emptyValueIsZero = true; |
| static void constructDeletedValue(P*& slot) { slot = reinterpret_cast<P*>(-1); } |
| static bool isDeletedValue(P* value) { return value == reinterpret_cast<P*>(-1); } |
| }; |
| |
| #ifdef __OBJC__ |
| |
| template<> struct HashTraits<__unsafe_unretained id> : GenericHashTraits<__unsafe_unretained id> { |
| static constexpr bool emptyValueIsZero = true; |
| static void constructDeletedValue(__unsafe_unretained id& slot) { slot = (__bridge __unsafe_unretained id)reinterpret_cast<CFTypeRef>(-1); } |
| static bool isDeletedValue(__unsafe_unretained id value) { return (__bridge CFTypeRef)value == reinterpret_cast<CFTypeRef>(-1); } |
| }; |
| |
| #endif |
| |
| template<typename T> struct SimpleClassHashTraits : GenericHashTraits<T> { |
| static constexpr bool emptyValueIsZero = true; |
| static void constructDeletedValue(T& slot) { new (NotNull, std::addressof(slot)) T(HashTableDeletedValue); } |
| static bool isDeletedValue(const T& value) { return value.isHashTableDeletedValue(); } |
| }; |
| |
| template<typename T, typename Deleter> struct HashTraits<std::unique_ptr<T, Deleter>> : SimpleClassHashTraits<std::unique_ptr<T, Deleter>> { |
| typedef std::nullptr_t EmptyValueType; |
| static EmptyValueType emptyValue() { return nullptr; } |
| |
| static void constructDeletedValue(std::unique_ptr<T, Deleter>& slot) { new (NotNull, std::addressof(slot)) std::unique_ptr<T, Deleter> { reinterpret_cast<T*>(-1) }; } |
| static bool isDeletedValue(const std::unique_ptr<T, Deleter>& value) { return value.get() == reinterpret_cast<T*>(-1); } |
| |
| typedef T* PeekType; |
| static T* peek(const std::unique_ptr<T, Deleter>& value) { return value.get(); } |
| static T* peek(std::nullptr_t) { return nullptr; } |
| |
| static void customDeleteBucket(std::unique_ptr<T, Deleter>& value) |
| { |
| // The custom delete function exists to avoid a dead store before the value is destructed. |
| // The normal destruction sequence of a bucket would be: |
| // 1) Call the destructor of unique_ptr. |
| // 2) unique_ptr store a zero for its internal pointer. |
| // 3) unique_ptr destroys its value. |
| // 4) Call constructDeletedValue() to set the bucket as destructed. |
| // |
| // The problem is the call in (3) prevents the compile from eliminating the dead store in (2) |
| // becase a side effect of free() could be observing the value. |
| // |
| // This version of deleteBucket() ensures the dead 2 stores changing "value" |
| // are on the same side of the function call. |
| ASSERT(!isDeletedValue(value)); |
| T* pointer = value.release(); |
| constructDeletedValue(value); |
| |
| // The null case happens if a caller uses std::move() to remove the pointer before calling remove() |
| // with an iterator. This is very uncommon. |
| if (LIKELY(pointer)) |
| Deleter()(pointer); |
| } |
| }; |
| |
| template<typename P> struct HashTraits<RefPtr<P>> : SimpleClassHashTraits<RefPtr<P>> { |
| static P* emptyValue() { return nullptr; } |
| |
| typedef P* PeekType; |
| static PeekType peek(const RefPtr<P>& value) { return value.get(); } |
| static PeekType peek(P* value) { return value; } |
| |
| static void customDeleteBucket(RefPtr<P>& value) |
| { |
| // See unique_ptr's customDeleteBucket() for an explanation. |
| ASSERT(!SimpleClassHashTraits<RefPtr<P>>::isDeletedValue(value)); |
| auto valueToBeDestroyed = WTFMove(value); |
| SimpleClassHashTraits<RefPtr<P>>::constructDeletedValue(value); |
| } |
| }; |
| |
| template<typename P> struct RefHashTraits : SimpleClassHashTraits<Ref<P>> { |
| static constexpr bool emptyValueIsZero = true; |
| static Ref<P> emptyValue() { return HashTableEmptyValue; } |
| |
| template <typename> |
| static void constructEmptyValue(Ref<P>& slot) |
| { |
| new (NotNull, std::addressof(slot)) Ref<P>(HashTableEmptyValue); |
| } |
| |
| static constexpr bool hasIsEmptyValueFunction = true; |
| static bool isEmptyValue(const Ref<P>& value) { return value.isHashTableEmptyValue(); } |
| |
| static void assignToEmpty(Ref<P>& emptyValue, Ref<P>&& newValue) { ASSERT(isEmptyValue(emptyValue)); emptyValue.assignToHashTableEmptyValue(WTFMove(newValue)); } |
| |
| typedef P* PeekType; |
| static PeekType peek(const Ref<P>& value) { return const_cast<PeekType>(value.ptrAllowingHashTableEmptyValue()); } |
| static PeekType peek(P* value) { return value; } |
| |
| typedef Optional<Ref<P>> TakeType; |
| static TakeType take(Ref<P>&& value) { return isEmptyValue(value) ? WTF::nullopt : Optional<Ref<P>>(WTFMove(value)); } |
| }; |
| |
| template<typename P> struct HashTraits<Ref<P>> : RefHashTraits<P> { }; |
| |
| template<typename P> struct HashTraits<Packed<P*>> : SimpleClassHashTraits<Packed<P*>> { |
| static constexpr bool hasIsEmptyValueFunction = true; |
| using TargetType = Packed<P*>; |
| static_assert(TargetType::alignment < 4 * KB, "The first page is always unmapped since it includes nullptr."); |
| |
| static Packed<P*> emptyValue() { return nullptr; } |
| static bool isEmptyValue(const TargetType& value) { return value.get() == nullptr; } |
| |
| using PeekType = P*; |
| static PeekType peek(const TargetType& value) { return value.get(); } |
| static PeekType peek(P* value) { return value; } |
| }; |
| |
| template<> struct HashTraits<String> : SimpleClassHashTraits<String> { |
| static constexpr bool hasIsEmptyValueFunction = true; |
| static bool isEmptyValue(const String&); |
| |
| static void customDeleteBucket(String&); |
| }; |
| |
| // This struct template is an implementation detail of the isHashTraitsEmptyValue function, |
| // which selects either the emptyValue function or the isEmptyValue function to check for empty values. |
| template<typename Traits, bool hasEmptyValueFunction> struct HashTraitsEmptyValueChecker; |
| template<typename Traits> struct HashTraitsEmptyValueChecker<Traits, true> { |
| template<typename T> static bool isEmptyValue(const T& value) { return Traits::isEmptyValue(value); } |
| }; |
| template<typename Traits> struct HashTraitsEmptyValueChecker<Traits, false> { |
| template<typename T> static bool isEmptyValue(const T& value) { return value == Traits::emptyValue(); } |
| }; |
| template<typename Traits, typename T> inline bool isHashTraitsEmptyValue(const T& value) |
| { |
| return HashTraitsEmptyValueChecker<Traits, Traits::hasIsEmptyValueFunction>::isEmptyValue(value); |
| } |
| |
| template<typename Traits, bool hasIsReleasedWeakValueFunction> struct HashTraitsReleasedWeakValueChecker; |
| template<typename Traits> struct HashTraitsReleasedWeakValueChecker<Traits, true> { |
| template<typename T> static bool isReleasedWeakValue(const T& value) { return Traits::isReleasedWeakValue(value); } |
| }; |
| template<typename Traits> struct HashTraitsReleasedWeakValueChecker<Traits, false> { |
| template<typename T> static bool isReleasedWeakValue(const T&) { return false; } |
| }; |
| template<typename Traits, typename T> inline bool isHashTraitsReleasedWeakValue(const T& value) |
| { |
| return HashTraitsReleasedWeakValueChecker<Traits, Traits::hasIsReleasedWeakValueFunction>::isReleasedWeakValue(value); |
| } |
| |
| template<typename Traits, typename T> |
| struct HashTraitHasCustomDelete { |
| static T& bucketArg; |
| template<typename X> static std::true_type TestHasCustomDelete(X*, decltype(X::customDeleteBucket(bucketArg))* = nullptr); |
| static std::false_type TestHasCustomDelete(...); |
| typedef decltype(TestHasCustomDelete(static_cast<Traits*>(nullptr))) ResultType; |
| static constexpr bool value = ResultType::value; |
| }; |
| |
| template<typename Traits, typename T> |
| typename std::enable_if<HashTraitHasCustomDelete<Traits, T>::value>::type |
| hashTraitsDeleteBucket(T& value) |
| { |
| Traits::customDeleteBucket(value); |
| } |
| |
| template<typename Traits, typename T> |
| typename std::enable_if<!HashTraitHasCustomDelete<Traits, T>::value>::type |
| hashTraitsDeleteBucket(T& value) |
| { |
| value.~T(); |
| Traits::constructDeletedValue(value); |
| } |
| |
| template<typename FirstTraitsArg, typename SecondTraitsArg> |
| struct PairHashTraits : GenericHashTraits<std::pair<typename FirstTraitsArg::TraitType, typename SecondTraitsArg::TraitType>> { |
| typedef FirstTraitsArg FirstTraits; |
| typedef SecondTraitsArg SecondTraits; |
| typedef std::pair<typename FirstTraits::TraitType, typename SecondTraits::TraitType> TraitType; |
| typedef std::pair<typename FirstTraits::EmptyValueType, typename SecondTraits::EmptyValueType> EmptyValueType; |
| |
| static constexpr bool emptyValueIsZero = FirstTraits::emptyValueIsZero && SecondTraits::emptyValueIsZero; |
| static EmptyValueType emptyValue() { return std::make_pair(FirstTraits::emptyValue(), SecondTraits::emptyValue()); } |
| |
| static constexpr unsigned minimumTableSize = FirstTraits::minimumTableSize; |
| |
| static void constructDeletedValue(TraitType& slot) { FirstTraits::constructDeletedValue(slot.first); } |
| static bool isDeletedValue(const TraitType& value) { return FirstTraits::isDeletedValue(value.first); } |
| }; |
| |
| template<typename First, typename Second> |
| struct HashTraits<std::pair<First, Second>> : public PairHashTraits<HashTraits<First>, HashTraits<Second>> { }; |
| |
| template<typename FirstTrait, typename... Traits> |
| struct TupleHashTraits : GenericHashTraits<std::tuple<typename FirstTrait::TraitType, typename Traits::TraitType...>> { |
| typedef std::tuple<typename FirstTrait::TraitType, typename Traits::TraitType...> TraitType; |
| typedef std::tuple<typename FirstTrait::EmptyValueType, typename Traits::EmptyValueType...> EmptyValueType; |
| |
| // We should use emptyValueIsZero = Traits::emptyValueIsZero &&... whenever we switch to C++17. We can't do anything |
| // better here right now because GCC can't do C++. |
| template<typename BoolType> |
| static constexpr bool allTrue(BoolType value) { return value; } |
| template<typename BoolType, typename... BoolTypes> |
| static constexpr bool allTrue(BoolType value, BoolTypes... values) { return value && allTrue(values...); } |
| static constexpr bool emptyValueIsZero = allTrue(FirstTrait::emptyValueIsZero, Traits::emptyValueIsZero...); |
| static EmptyValueType emptyValue() { return std::make_tuple(FirstTrait::emptyValue(), Traits::emptyValue()...); } |
| |
| static constexpr unsigned minimumTableSize = FirstTrait::minimumTableSize; |
| |
| static void constructDeletedValue(TraitType& slot) { FirstTrait::constructDeletedValue(std::get<0>(slot)); } |
| static bool isDeletedValue(const TraitType& value) { return FirstTrait::isDeletedValue(std::get<0>(value)); } |
| }; |
| |
| template<typename... Traits> |
| struct HashTraits<std::tuple<Traits...>> : public TupleHashTraits<HashTraits<Traits>...> { }; |
| |
| template<typename KeyTraitsArg, typename ValueTraitsArg> |
| struct KeyValuePairHashTraits : GenericHashTraits<KeyValuePair<typename KeyTraitsArg::TraitType, typename ValueTraitsArg::TraitType>> { |
| typedef KeyTraitsArg KeyTraits; |
| typedef ValueTraitsArg ValueTraits; |
| typedef KeyValuePair<typename KeyTraits::TraitType, typename ValueTraits::TraitType> TraitType; |
| typedef KeyValuePair<typename KeyTraits::EmptyValueType, typename ValueTraits::EmptyValueType> EmptyValueType; |
| typedef typename ValueTraitsArg::TraitType ValueType; |
| |
| static constexpr bool emptyValueIsZero = KeyTraits::emptyValueIsZero && ValueTraits::emptyValueIsZero; |
| static EmptyValueType emptyValue() { return KeyValuePair<typename KeyTraits::EmptyValueType, typename ValueTraits::EmptyValueType>(KeyTraits::emptyValue(), ValueTraits::emptyValue()); } |
| |
| template <typename> |
| static void constructEmptyValue(TraitType& slot) |
| { |
| KeyTraits::template constructEmptyValue<KeyTraits>(slot.key); |
| ValueTraits::template constructEmptyValue<ValueTraits>(slot.value); |
| } |
| |
| static constexpr unsigned minimumTableSize = KeyTraits::minimumTableSize; |
| |
| static void constructDeletedValue(TraitType& slot) { KeyTraits::constructDeletedValue(slot.key); } |
| static bool isDeletedValue(const TraitType& value) { return KeyTraits::isDeletedValue(value.key); } |
| |
| static void customDeleteBucket(TraitType& value) |
| { |
| static_assert(std::is_trivially_destructible<KeyValuePair<int, int>>::value, |
| "The wrapper itself has to be trivially destructible for customDeleteBucket() to make sense, since we do not destruct the wrapper itself."); |
| |
| hashTraitsDeleteBucket<KeyTraits>(value.key); |
| value.value.~ValueType(); |
| } |
| }; |
| |
| template<typename Key, typename Value> |
| struct HashTraits<KeyValuePair<Key, Value>> : public KeyValuePairHashTraits<HashTraits<Key>, HashTraits<Value>> { }; |
| |
| template<typename T> |
| struct NullableHashTraits : public HashTraits<T> { |
| static constexpr bool emptyValueIsZero = false; |
| static T emptyValue() { return reinterpret_cast<T>(1); } |
| }; |
| |
| template<typename T, size_t inlineCapacity> |
| struct HashTraits<Vector<T, inlineCapacity>> : GenericHashTraits<Vector<T, inlineCapacity>> { |
| static constexpr bool emptyValueIsZero = !inlineCapacity; |
| |
| static void constructDeletedValue(Vector<T, inlineCapacity>& slot) { new (NotNull, std::addressof(slot)) Vector<T, inlineCapacity>(WTF::HashTableDeletedValue); } |
| static bool isDeletedValue(const Vector<T, inlineCapacity>& value) { return value.isHashTableDeletedValue(); } |
| }; |
| |
| // Useful for classes that want complete control over what is empty and what is deleted, |
| // and how to construct both. |
| template<typename T> |
| struct CustomHashTraits : public GenericHashTraits<T> { |
| static constexpr bool emptyValueIsZero = false; |
| static constexpr bool hasIsEmptyValueFunction = true; |
| |
| static void constructDeletedValue(T& slot) |
| { |
| new (NotNull, std::addressof(slot)) T(T::DeletedValue); |
| } |
| |
| static bool isDeletedValue(const T& value) |
| { |
| return value.isDeletedValue(); |
| } |
| |
| static T emptyValue() |
| { |
| return T(T::EmptyValue); |
| } |
| |
| static bool isEmptyValue(const T& value) |
| { |
| return value.isEmptyValue(); |
| } |
| }; |
| |
| } // namespace WTF |
| |
| using WTF::HashTraits; |
| using WTF::KeyValuePair; |
| using WTF::PairHashTraits; |
| using WTF::NullableHashTraits; |
| using WTF::SimpleClassHashTraits; |