blob: 5f6d66d6fef73565aa733e2c7c841223239dea3d [file] [log] [blame]
/*
* Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "config.h"
#include "InlineFlowBox.h"
#include "CSSPropertyNames.h"
#include "Document.h"
#include "EllipsisBox.h"
#include "FontCascade.h"
#include "GraphicsContext.h"
#include "InlineTextBox.h"
#include "HitTestResult.h"
#include "RenderBlock.h"
#include "RenderInline.h"
#include "RenderLayer.h"
#include "RenderLineBreak.h"
#include "RenderListMarker.h"
#include "RenderRubyBase.h"
#include "RenderRubyRun.h"
#include "RenderRubyText.h"
#include "RenderTableCell.h"
#include "RenderView.h"
#include "RootInlineBox.h"
#include "Text.h"
#include <math.h>
#include <wtf/IsoMallocInlines.h>
namespace WebCore {
WTF_MAKE_ISO_ALLOCATED_IMPL(InlineFlowBox);
struct SameSizeAsInlineFlowBox : public InlineBox {
void* pointers[5];
uint32_t bitfields : 23;
};
COMPILE_ASSERT(sizeof(InlineFlowBox) == sizeof(SameSizeAsInlineFlowBox), InlineFlowBox_should_stay_small);
#if !ASSERT_WITH_SECURITY_IMPLICATION_DISABLED
InlineFlowBox::~InlineFlowBox()
{
setHasBadChildList();
}
void InlineFlowBox::setHasBadChildList()
{
assertNotDeleted();
if (m_hasBadChildList)
return;
for (InlineBox* child = firstChild(); child; child = child->nextOnLine())
child->setHasBadParent();
m_hasBadChildList = true;
}
#endif
LayoutUnit InlineFlowBox::getFlowSpacingLogicalWidth()
{
LayoutUnit totalWidth = marginBorderPaddingLogicalLeft() + marginBorderPaddingLogicalRight();
for (InlineBox* child = firstChild(); child; child = child->nextOnLine()) {
if (is<InlineFlowBox>(*child))
totalWidth += downcast<InlineFlowBox>(*child).getFlowSpacingLogicalWidth();
}
return totalWidth;
}
static void setHasTextDescendantsOnAncestors(InlineFlowBox* box)
{
while (box && !box->hasTextDescendants()) {
box->setHasTextDescendants();
box = box->parent();
}
}
void InlineFlowBox::addToLine(InlineBox* child)
{
ASSERT(!child->parent());
ASSERT(!child->nextOnLine());
ASSERT(!child->prevOnLine());
checkConsistency();
child->setParent(this);
if (!m_firstChild) {
m_firstChild = child;
m_lastChild = child;
} else {
m_lastChild->setNextOnLine(child);
child->setPrevOnLine(m_lastChild);
m_lastChild = child;
}
child->setIsFirstLine(isFirstLine());
child->setIsHorizontal(isHorizontal());
if (child->behavesLikeText()) {
if (child->renderer().parent() == &renderer())
m_hasTextChildren = true;
setHasTextDescendantsOnAncestors(this);
} else if (is<InlineFlowBox>(*child)) {
if (downcast<InlineFlowBox>(*child).hasTextDescendants())
setHasTextDescendantsOnAncestors(this);
}
if (descendantsHaveSameLineHeightAndBaseline() && !child->renderer().isOutOfFlowPositioned()) {
const RenderStyle& parentStyle = lineStyle();
const RenderStyle& childStyle = child->lineStyle();
bool shouldClearDescendantsHaveSameLineHeightAndBaseline = false;
if (child->renderer().isReplaced())
shouldClearDescendantsHaveSameLineHeightAndBaseline = true;
else if (child->behavesLikeText()) {
if (child->renderer().isLineBreak() || child->renderer().parent() != &renderer()) {
if (!parentStyle.fontCascade().fontMetrics().hasIdenticalAscentDescentAndLineGap(childStyle.fontCascade().fontMetrics())
|| parentStyle.lineHeight() != childStyle.lineHeight()
|| (parentStyle.verticalAlign() != BASELINE && !isRootInlineBox()) || childStyle.verticalAlign() != BASELINE)
shouldClearDescendantsHaveSameLineHeightAndBaseline = true;
}
if (childStyle.hasTextCombine() || childStyle.textEmphasisMark() != TextEmphasisMarkNone)
shouldClearDescendantsHaveSameLineHeightAndBaseline = true;
} else {
if (child->renderer().isLineBreak()) {
// FIXME: This is dumb. We only turn off because current layout test results expect the <br> to be 0-height on the baseline.
// Other than making a zillion tests have to regenerate results, there's no reason to ditch the optimization here.
shouldClearDescendantsHaveSameLineHeightAndBaseline = child->renderer().isBR();
} else {
auto& childFlowBox = downcast<InlineFlowBox>(*child);
// Check the child's bit, and then also check for differences in font, line-height, vertical-align
if (!childFlowBox.descendantsHaveSameLineHeightAndBaseline()
|| !parentStyle.fontCascade().fontMetrics().hasIdenticalAscentDescentAndLineGap(childStyle.fontCascade().fontMetrics())
|| parentStyle.lineHeight() != childStyle.lineHeight()
|| (parentStyle.verticalAlign() != BASELINE && !isRootInlineBox()) || childStyle.verticalAlign() != BASELINE
|| childStyle.hasBorder() || childStyle.hasPadding() || childStyle.hasTextCombine())
shouldClearDescendantsHaveSameLineHeightAndBaseline = true;
}
}
if (shouldClearDescendantsHaveSameLineHeightAndBaseline)
clearDescendantsHaveSameLineHeightAndBaseline();
}
if (!child->renderer().isOutOfFlowPositioned()) {
const RenderStyle& childStyle = child->lineStyle();
if (child->behavesLikeText()) {
const RenderStyle* childStyle = &child->lineStyle();
if (childStyle->letterSpacing() < 0 || childStyle->textShadow() || childStyle->textEmphasisMark() != TextEmphasisMarkNone || childStyle->hasPositiveStrokeWidth())
child->clearKnownToHaveNoOverflow();
} else if (child->renderer().isReplaced()) {
const RenderBox& box = downcast<RenderBox>(child->renderer());
if (box.hasRenderOverflow() || box.hasSelfPaintingLayer())
child->clearKnownToHaveNoOverflow();
} else if (!child->renderer().isLineBreak() && (childStyle.boxShadow() || child->boxModelObject()->hasSelfPaintingLayer()
|| (is<RenderListMarker>(child->renderer()) && !downcast<RenderListMarker>(child->renderer()).isInside())
|| childStyle.hasBorderImageOutsets()))
child->clearKnownToHaveNoOverflow();
else if (childStyle.hasOutlineInVisualOverflow())
child->clearKnownToHaveNoOverflow();
if (knownToHaveNoOverflow() && is<InlineFlowBox>(*child) && !downcast<InlineFlowBox>(*child).knownToHaveNoOverflow())
clearKnownToHaveNoOverflow();
}
checkConsistency();
}
void InlineFlowBox::removeChild(InlineBox* child)
{
checkConsistency();
if (!isDirty())
dirtyLineBoxes();
root().childRemoved(child);
if (child == m_firstChild)
m_firstChild = child->nextOnLine();
if (child == m_lastChild)
m_lastChild = child->prevOnLine();
if (child->nextOnLine())
child->nextOnLine()->setPrevOnLine(child->prevOnLine());
if (child->prevOnLine())
child->prevOnLine()->setNextOnLine(child->nextOnLine());
child->setParent(nullptr);
checkConsistency();
}
void InlineFlowBox::deleteLine()
{
InlineBox* child = firstChild();
InlineBox* next = nullptr;
while (child) {
ASSERT(this == child->parent());
next = child->nextOnLine();
#ifndef NDEBUG
child->setParent(nullptr);
#endif
child->deleteLine();
child = next;
}
#ifndef NDEBUG
m_firstChild = nullptr;
m_lastChild = nullptr;
#endif
removeLineBoxFromRenderObject();
delete this;
}
void InlineFlowBox::removeLineBoxFromRenderObject()
{
downcast<RenderInline>(renderer()).lineBoxes().removeLineBox(this);
}
void InlineFlowBox::extractLine()
{
if (!extracted())
extractLineBoxFromRenderObject();
for (InlineBox* child = firstChild(); child; child = child->nextOnLine())
child->extractLine();
}
void InlineFlowBox::extractLineBoxFromRenderObject()
{
downcast<RenderInline>(renderer()).lineBoxes().extractLineBox(this);
}
void InlineFlowBox::attachLine()
{
if (extracted())
attachLineBoxToRenderObject();
for (InlineBox* child = firstChild(); child; child = child->nextOnLine())
child->attachLine();
}
void InlineFlowBox::attachLineBoxToRenderObject()
{
downcast<RenderInline>(renderer()).lineBoxes().attachLineBox(this);
}
void InlineFlowBox::adjustPosition(float dx, float dy)
{
InlineBox::adjustPosition(dx, dy);
for (InlineBox* child = firstChild(); child; child = child->nextOnLine())
child->adjustPosition(dx, dy);
if (m_overflow)
m_overflow->move(dx, dy); // FIXME: Rounding error here since overflow was pixel snapped, but nobody other than list markers passes non-integral values here.
}
static inline bool isLastChildForRenderer(const RenderElement& ancestor, const RenderObject* child)
{
if (!child)
return false;
if (child == &ancestor)
return true;
const RenderObject* curr = child;
const RenderElement* parent = curr->parent();
while (parent && (!parent->isRenderBlock() || parent->isInline())) {
if (parent->lastChild() != curr)
return false;
if (parent == &ancestor)
return true;
curr = parent;
parent = curr->parent();
}
return true;
}
static bool isAncestorAndWithinBlock(const RenderInline& ancestor, const RenderObject* child)
{
const RenderObject* object = child;
while (object && (!object->isRenderBlock() || object->isInline())) {
if (object == &ancestor)
return true;
object = object->parent();
}
return false;
}
void InlineFlowBox::determineSpacingForFlowBoxes(bool lastLine, bool isLogicallyLastRunWrapped, RenderObject* logicallyLastRunRenderer)
{
// All boxes start off open. They will not apply any margins/border/padding on
// any side.
bool includeLeftEdge = false;
bool includeRightEdge = false;
// The root inline box never has borders/margins/padding.
if (parent()) {
const auto& inlineFlow = downcast<RenderInline>(renderer());
bool ltr = renderer().style().isLeftToRightDirection();
// Check to see if all initial lines are unconstructed. If so, then
// we know the inline began on this line (unless we are a continuation).
const auto& lineBoxList = inlineFlow.lineBoxes();
if (!lineBoxList.firstLineBox()->isConstructed() && !inlineFlow.isContinuation()) {
#if ENABLE(CSS_BOX_DECORATION_BREAK)
if (renderer().style().boxDecorationBreak() == DCLONE)
includeLeftEdge = includeRightEdge = true;
else
#endif
if (ltr && lineBoxList.firstLineBox() == this)
includeLeftEdge = true;
else if (!ltr && lineBoxList.lastLineBox() == this)
includeRightEdge = true;
}
if (!lineBoxList.lastLineBox()->isConstructed()) {
bool isLastObjectOnLine = !isAncestorAndWithinBlock(inlineFlow, logicallyLastRunRenderer) || (isLastChildForRenderer(renderer(), logicallyLastRunRenderer) && !isLogicallyLastRunWrapped);
// We include the border under these conditions:
// (1) The next line was not created, or it is constructed. We check the previous line for rtl.
// (2) The logicallyLastRun is not a descendant of this renderer.
// (3) The logicallyLastRun is a descendant of this renderer, but it is the last child of this renderer and it does not wrap to the next line.
#if ENABLE(CSS_BOX_DECORATION_BREAK)
// (4) The decoration break is set to clone therefore there will be borders on every sides.
if (renderer().style().boxDecorationBreak() == DCLONE)
includeLeftEdge = includeRightEdge = true;
else
#endif
if (ltr) {
if (!nextLineBox()
&& ((lastLine || isLastObjectOnLine) && !inlineFlow.continuation()))
includeRightEdge = true;
} else {
if ((!prevLineBox() || prevLineBox()->isConstructed())
&& ((lastLine || isLastObjectOnLine) && !inlineFlow.continuation()))
includeLeftEdge = true;
}
}
}
setEdges(includeLeftEdge, includeRightEdge);
// Recur into our children.
for (InlineBox* child = firstChild(); child; child = child->nextOnLine()) {
if (is<InlineFlowBox>(*child))
downcast<InlineFlowBox>(*child).determineSpacingForFlowBoxes(lastLine, isLogicallyLastRunWrapped, logicallyLastRunRenderer);
}
}
float InlineFlowBox::placeBoxesInInlineDirection(float logicalLeft, bool& needsWordSpacing)
{
// Set our x position.
beginPlacingBoxRangesInInlineDirection(logicalLeft);
float startLogicalLeft = logicalLeft;
logicalLeft += borderLogicalLeft() + paddingLogicalLeft();
float minLogicalLeft = startLogicalLeft;
float maxLogicalRight = logicalLeft;
placeBoxRangeInInlineDirection(firstChild(), nullptr, logicalLeft, minLogicalLeft, maxLogicalRight, needsWordSpacing);
logicalLeft += borderLogicalRight() + paddingLogicalRight();
endPlacingBoxRangesInInlineDirection(startLogicalLeft, logicalLeft, minLogicalLeft, maxLogicalRight);
return logicalLeft;
}
float InlineFlowBox::placeBoxRangeInInlineDirection(InlineBox* firstChild, InlineBox* lastChild, float& logicalLeft, float& minLogicalLeft, float& maxLogicalRight, bool& needsWordSpacing)
{
float totalExpansion = 0;
for (InlineBox* child = firstChild; child && child != lastChild; child = child->nextOnLine()) {
if (is<RenderText>(child->renderer())) {
auto& textBox = downcast<InlineTextBox>(*child);
RenderText& renderText = textBox.renderer();
if (renderText.text().length()) {
if (needsWordSpacing && isSpaceOrNewline(renderText.characterAt(textBox.start())))
logicalLeft += textBox.lineStyle().fontCascade().wordSpacing();
needsWordSpacing = !isSpaceOrNewline(renderText.characterAt(textBox.end()));
}
textBox.setLogicalLeft(logicalLeft);
if (knownToHaveNoOverflow())
minLogicalLeft = std::min(logicalLeft, minLogicalLeft);
logicalLeft += textBox.logicalWidth();
totalExpansion += textBox.expansion();
if (knownToHaveNoOverflow())
maxLogicalRight = std::max(logicalLeft, maxLogicalRight);
} else {
if (child->renderer().isOutOfFlowPositioned()) {
if (child->renderer().parent()->style().isLeftToRightDirection())
child->setLogicalLeft(logicalLeft);
else
// Our offset that we cache needs to be from the edge of the right border box and
// not the left border box. We have to subtract |x| from the width of the block
// (which can be obtained from the root line box).
child->setLogicalLeft(root().blockFlow().logicalWidth() - logicalLeft);
continue; // The positioned object has no effect on the width.
}
if (is<RenderInline>(child->renderer())) {
auto& flow = downcast<InlineFlowBox>(*child);
logicalLeft += flow.marginLogicalLeft();
if (knownToHaveNoOverflow())
minLogicalLeft = std::min(logicalLeft, minLogicalLeft);
logicalLeft = flow.placeBoxesInInlineDirection(logicalLeft, needsWordSpacing);
totalExpansion += flow.expansion();
if (knownToHaveNoOverflow())
maxLogicalRight = std::max(logicalLeft, maxLogicalRight);
logicalLeft += flow.marginLogicalRight();
} else if (!is<RenderListMarker>(child->renderer()) || downcast<RenderListMarker>(child->renderer()).isInside()) {
// The box can have a different writing-mode than the overall line, so this is a bit complicated.
// Just get all the physical margin and overflow values by hand based off |isVertical|.
LayoutUnit logicalLeftMargin = isHorizontal() ? child->boxModelObject()->marginLeft() : child->boxModelObject()->marginTop();
LayoutUnit logicalRightMargin = isHorizontal() ? child->boxModelObject()->marginRight() : child->boxModelObject()->marginBottom();
logicalLeft += logicalLeftMargin;
child->setLogicalLeft(logicalLeft);
if (knownToHaveNoOverflow())
minLogicalLeft = std::min(logicalLeft, minLogicalLeft);
logicalLeft += child->logicalWidth();
if (knownToHaveNoOverflow())
maxLogicalRight = std::max(logicalLeft, maxLogicalRight);
logicalLeft += logicalRightMargin;
// If we encounter any space after this inline block then ensure it is treated as the space between two words.
needsWordSpacing = true;
}
}
}
setExpansionWithoutGrowing(totalExpansion);
return logicalLeft;
}
bool InlineFlowBox::requiresIdeographicBaseline(const GlyphOverflowAndFallbackFontsMap& textBoxDataMap) const
{
if (isHorizontal())
return false;
const RenderStyle& lineStyle = this->lineStyle();
if (lineStyle.fontDescription().nonCJKGlyphOrientation() == NonCJKGlyphOrientation::Upright
|| lineStyle.fontCascade().primaryFont().hasVerticalGlyphs())
return true;
for (InlineBox* child = firstChild(); child; child = child->nextOnLine()) {
if (child->renderer().isOutOfFlowPositioned())
continue; // Positioned placeholders don't affect calculations.
if (is<InlineFlowBox>(*child)) {
if (downcast<InlineFlowBox>(*child).requiresIdeographicBaseline(textBoxDataMap))
return true;
} else {
if (child->lineStyle().fontCascade().primaryFont().hasVerticalGlyphs())
return true;
const Vector<const Font*>* usedFonts = nullptr;
if (is<InlineTextBox>(*child)) {
GlyphOverflowAndFallbackFontsMap::const_iterator it = textBoxDataMap.find(downcast<InlineTextBox>(child));
usedFonts = it == textBoxDataMap.end() ? nullptr : &it->value.first;
}
if (usedFonts) {
for (const Font* font : *usedFonts) {
if (font->hasVerticalGlyphs())
return true;
}
}
}
}
return false;
}
static bool verticalAlignApplies(const RenderObject& renderer)
{
// http://www.w3.org/TR/CSS2/visudet.html#propdef-vertical-align - vertical-align
// only applies to inline level and table-cell elements
return !renderer.isText() || renderer.parent()->isInline() || renderer.parent()->isTableCell();
}
void InlineFlowBox::adjustMaxAscentAndDescent(int& maxAscent, int& maxDescent, int maxPositionTop, int maxPositionBottom)
{
for (InlineBox* child = firstChild(); child; child = child->nextOnLine()) {
// The computed lineheight needs to be extended for the
// positioned elements
if (child->renderer().isOutOfFlowPositioned())
continue; // Positioned placeholders don't affect calculations.
if ((child->verticalAlign() == TOP || child->verticalAlign() == BOTTOM) && verticalAlignApplies(child->renderer())) {
int lineHeight = child->lineHeight();
if (child->verticalAlign() == TOP) {
if (maxAscent + maxDescent < lineHeight)
maxDescent = lineHeight - maxAscent;
}
else {
if (maxAscent + maxDescent < lineHeight)
maxAscent = lineHeight - maxDescent;
}
if (maxAscent + maxDescent >= std::max(maxPositionTop, maxPositionBottom))
break;
}
if (is<InlineFlowBox>(*child))
downcast<InlineFlowBox>(*child).adjustMaxAscentAndDescent(maxAscent, maxDescent, maxPositionTop, maxPositionBottom);
}
}
void InlineFlowBox::computeLogicalBoxHeights(RootInlineBox& rootBox, LayoutUnit& maxPositionTop, LayoutUnit& maxPositionBottom,
int& maxAscent, int& maxDescent, bool& setMaxAscent, bool& setMaxDescent,
bool strictMode, GlyphOverflowAndFallbackFontsMap& textBoxDataMap,
FontBaseline baselineType, VerticalPositionCache& verticalPositionCache)
{
// The primary purpose of this function is to compute the maximal ascent and descent values for
// a line. These values are computed based off the block's line-box-contain property, which indicates
// what parts of descendant boxes have to fit within the line.
//
// The maxAscent value represents the distance of the highest point of any box (typically including line-height) from
// the root box's baseline. The maxDescent value represents the distance of the lowest point of any box
// (also typically including line-height) from the root box baseline. These values can be negative.
//
// A secondary purpose of this function is to store the offset of every box's baseline from the root box's
// baseline. This information is cached in the logicalTop() of every box. We're effectively just using
// the logicalTop() as scratch space.
//
// Because a box can be positioned such that it ends up fully above or fully below the
// root line box, we only consider it to affect the maxAscent and maxDescent values if some
// part of the box (EXCLUDING leading) is above (for ascent) or below (for descent) the root box's baseline.
bool affectsAscent = false;
bool affectsDescent = false;
bool checkChildren = !descendantsHaveSameLineHeightAndBaseline();
if (isRootInlineBox()) {
// Examine our root box.
int ascent = 0;
int descent = 0;
rootBox.ascentAndDescentForBox(rootBox, textBoxDataMap, ascent, descent, affectsAscent, affectsDescent);
if (strictMode || hasTextChildren() || (!checkChildren && hasTextDescendants())) {
if (maxAscent < ascent || !setMaxAscent) {
maxAscent = ascent;
setMaxAscent = true;
}
if (maxDescent < descent || !setMaxDescent) {
maxDescent = descent;
setMaxDescent = true;
}
}
}
if (!checkChildren)
return;
for (InlineBox* child = firstChild(); child; child = child->nextOnLine()) {
if (child->renderer().isOutOfFlowPositioned())
continue; // Positioned placeholders don't affect calculations.
InlineFlowBox* inlineFlowBox = is<InlineFlowBox>(*child) ? downcast<InlineFlowBox>(child) : nullptr;
bool affectsAscent = false;
bool affectsDescent = false;
// The verticalPositionForBox function returns the distance between the child box's baseline
// and the root box's baseline. The value is negative if the child box's baseline is above the
// root box's baseline, and it is positive if the child box's baseline is below the root box's baseline.
child->setLogicalTop(rootBox.verticalPositionForBox(child, verticalPositionCache));
int ascent = 0;
int descent = 0;
rootBox.ascentAndDescentForBox(*child, textBoxDataMap, ascent, descent, affectsAscent, affectsDescent);
LayoutUnit boxHeight = ascent + descent;
if (child->verticalAlign() == TOP && verticalAlignApplies(child->renderer())) {
if (maxPositionTop < boxHeight)
maxPositionTop = boxHeight;
} else if (child->verticalAlign() == BOTTOM && verticalAlignApplies(child->renderer())) {
if (maxPositionBottom < boxHeight)
maxPositionBottom = boxHeight;
} else if (!inlineFlowBox || strictMode || inlineFlowBox->hasTextChildren() || (inlineFlowBox->descendantsHaveSameLineHeightAndBaseline() && inlineFlowBox->hasTextDescendants())
|| inlineFlowBox->renderer().hasInlineDirectionBordersOrPadding()) {
// Note that these values can be negative. Even though we only affect the maxAscent and maxDescent values
// if our box (excluding line-height) was above (for ascent) or below (for descent) the root baseline, once you factor in line-height
// the final box can end up being fully above or fully below the root box's baseline! This is ok, but what it
// means is that ascent and descent (including leading), can end up being negative. The setMaxAscent and
// setMaxDescent booleans are used to ensure that we're willing to initially set maxAscent/Descent to negative
// values.
ascent -= child->logicalTop();
descent += child->logicalTop();
if (affectsAscent && (maxAscent < ascent || !setMaxAscent)) {
maxAscent = ascent;
setMaxAscent = true;
}
if (affectsDescent && (maxDescent < descent || !setMaxDescent)) {
maxDescent = descent;
setMaxDescent = true;
}
}
if (inlineFlowBox)
inlineFlowBox->computeLogicalBoxHeights(rootBox, maxPositionTop, maxPositionBottom, maxAscent, maxDescent,
setMaxAscent, setMaxDescent, strictMode, textBoxDataMap,
baselineType, verticalPositionCache);
}
}
void InlineFlowBox::placeBoxesInBlockDirection(LayoutUnit top, LayoutUnit maxHeight, int maxAscent, bool strictMode, LayoutUnit& lineTop, LayoutUnit& lineBottom, bool& setLineTop,
LayoutUnit& lineTopIncludingMargins, LayoutUnit& lineBottomIncludingMargins, bool& hasAnnotationsBefore, bool& hasAnnotationsAfter, FontBaseline baselineType)
{
bool isRootBox = isRootInlineBox();
if (isRootBox) {
const FontMetrics& fontMetrics = lineStyle().fontMetrics();
// RootInlineBoxes are always placed on at pixel boundaries in their logical y direction. Not doing
// so results in incorrect rendering of text decorations, most notably underlines.
setLogicalTop(roundToInt(top + maxAscent - fontMetrics.ascent(baselineType)));
}
LayoutUnit adjustmentForChildrenWithSameLineHeightAndBaseline = 0;
if (descendantsHaveSameLineHeightAndBaseline()) {
adjustmentForChildrenWithSameLineHeightAndBaseline = logicalTop();
if (parent())
adjustmentForChildrenWithSameLineHeightAndBaseline += renderer().borderAndPaddingBefore();
}
for (InlineBox* child = firstChild(); child; child = child->nextOnLine()) {
if (child->renderer().isOutOfFlowPositioned())
continue; // Positioned placeholders don't affect calculations.
if (descendantsHaveSameLineHeightAndBaseline()) {
child->adjustBlockDirectionPosition(adjustmentForChildrenWithSameLineHeightAndBaseline);
continue;
}
InlineFlowBox* inlineFlowBox = is<InlineFlowBox>(*child) ? downcast<InlineFlowBox>(child) : nullptr;
bool childAffectsTopBottomPos = true;
if (child->verticalAlign() == TOP && verticalAlignApplies(child->renderer()))
child->setLogicalTop(top);
else if (child->verticalAlign() == BOTTOM && verticalAlignApplies(child->renderer()))
child->setLogicalTop(top + maxHeight - child->lineHeight());
else {
if (!strictMode && inlineFlowBox && !inlineFlowBox->hasTextChildren() && !inlineFlowBox->renderer().hasInlineDirectionBordersOrPadding()
&& !(inlineFlowBox->descendantsHaveSameLineHeightAndBaseline() && inlineFlowBox->hasTextDescendants()))
childAffectsTopBottomPos = false;
LayoutUnit posAdjust = maxAscent - child->baselinePosition(baselineType);
child->setLogicalTop(child->logicalTop() + top + posAdjust);
}
LayoutUnit newLogicalTop = child->logicalTop();
LayoutUnit newLogicalTopIncludingMargins = newLogicalTop;
LayoutUnit boxHeight = child->logicalHeight();
LayoutUnit boxHeightIncludingMargins = boxHeight;
const RenderStyle& childLineStyle = child->lineStyle();
if (child->behavesLikeText() || is<InlineFlowBox>(*child)) {
const FontMetrics& fontMetrics = childLineStyle.fontMetrics();
newLogicalTop += child->baselinePosition(baselineType) - fontMetrics.ascent(baselineType);
if (is<InlineFlowBox>(*child)) {
RenderBoxModelObject& boxObject = downcast<InlineFlowBox>(*child).renderer();
newLogicalTop -= childLineStyle.isHorizontalWritingMode()
? boxObject.borderTop() + boxObject.paddingTop()
: boxObject.borderRight() + boxObject.paddingRight();
}
newLogicalTopIncludingMargins = newLogicalTop;
} else if (!child->renderer().isBR()) {
const auto& box = downcast<RenderBox>(child->renderer());
newLogicalTopIncludingMargins = newLogicalTop;
// We may flip lines in case of verticalLR mode, so we can assume verticalRL for now.
LayoutUnit overSideMargin = child->isHorizontal() ? box.marginTop() : box.marginRight();
LayoutUnit underSideMargin = child->isHorizontal() ? box.marginBottom() : box.marginLeft();
newLogicalTop += overSideMargin;
boxHeightIncludingMargins += overSideMargin + underSideMargin;
}
child->setLogicalTop(newLogicalTop);
if (childAffectsTopBottomPos) {
if (is<RenderRubyRun>(child->renderer())) {
// Treat the leading on the first and last lines of ruby runs as not being part of the overall lineTop/lineBottom.
// Really this is a workaround hack for the fact that ruby should have been done as line layout and not done using
// inline-block.
if (renderer().style().isFlippedLinesWritingMode() == (child->renderer().style().rubyPosition() == RubyPositionAfter))
hasAnnotationsBefore = true;
else
hasAnnotationsAfter = true;
auto& rubyRun = downcast<RenderRubyRun>(child->renderer());
if (RenderRubyBase* rubyBase = rubyRun.rubyBase()) {
LayoutUnit bottomRubyBaseLeading = (child->logicalHeight() - rubyBase->logicalBottom()) + rubyBase->logicalHeight() - (rubyBase->lastRootBox() ? rubyBase->lastRootBox()->lineBottom() : LayoutUnit());
LayoutUnit topRubyBaseLeading = rubyBase->logicalTop() + (rubyBase->firstRootBox() ? rubyBase->firstRootBox()->lineTop() : LayoutUnit());
newLogicalTop += !renderer().style().isFlippedLinesWritingMode() ? topRubyBaseLeading : bottomRubyBaseLeading;
boxHeight -= (topRubyBaseLeading + bottomRubyBaseLeading);
}
}
if (is<InlineTextBox>(*child)) {
bool emphasisMarkIsOver;
if (downcast<InlineTextBox>(*child).emphasisMarkExistsAndIsAbove(childLineStyle, emphasisMarkIsOver)) {
if (emphasisMarkIsOver != childLineStyle.isFlippedLinesWritingMode())
hasAnnotationsBefore = true;
else
hasAnnotationsAfter = true;
}
}
if (!setLineTop) {
setLineTop = true;
lineTop = newLogicalTop;
lineTopIncludingMargins = std::min(lineTop, newLogicalTopIncludingMargins);
} else {
lineTop = std::min(lineTop, newLogicalTop);
lineTopIncludingMargins = std::min(lineTop, std::min(lineTopIncludingMargins, newLogicalTopIncludingMargins));
}
lineBottom = std::max(lineBottom, newLogicalTop + boxHeight);
lineBottomIncludingMargins = std::max(lineBottom, std::max(lineBottomIncludingMargins, newLogicalTopIncludingMargins + boxHeightIncludingMargins));
}
// Adjust boxes to use their real box y/height and not the logical height (as dictated by
// line-height).
if (inlineFlowBox)
inlineFlowBox->placeBoxesInBlockDirection(top, maxHeight, maxAscent, strictMode, lineTop, lineBottom, setLineTop,
lineTopIncludingMargins, lineBottomIncludingMargins, hasAnnotationsBefore, hasAnnotationsAfter, baselineType);
}
if (isRootBox) {
if (strictMode || hasTextChildren() || (descendantsHaveSameLineHeightAndBaseline() && hasTextDescendants())) {
if (!setLineTop) {
setLineTop = true;
lineTop = logicalTop();
lineTopIncludingMargins = lineTop;
} else {
lineTop = std::min<LayoutUnit>(lineTop, logicalTop());
lineTopIncludingMargins = std::min(lineTop, lineTopIncludingMargins);
}
lineBottom = std::max<LayoutUnit>(lineBottom, logicalBottom());
lineBottomIncludingMargins = std::max(lineBottom, lineBottomIncludingMargins);
}
if (renderer().style().isFlippedLinesWritingMode())
flipLinesInBlockDirection(lineTopIncludingMargins, lineBottomIncludingMargins);
}
}
void InlineFlowBox::maxLogicalBottomForTextDecorationLine(float& maxLogicalBottom, const RenderElement* decorationRenderer, TextDecoration textDecoration) const
{
for (InlineBox* child = firstChild(); child; child = child->nextOnLine()) {
if (child->renderer().isOutOfFlowPositioned())
continue; // Positioned placeholders don't affect calculations.
if (!(child->lineStyle().textDecorationsInEffect() & textDecoration))
continue; // If the text decoration isn't in effect on the child, then it must be outside of |decorationRenderer|'s hierarchy.
if (decorationRenderer && decorationRenderer->isRenderInline() && !isAncestorAndWithinBlock(downcast<RenderInline>(*decorationRenderer), &child->renderer()))
continue;
if (is<InlineFlowBox>(*child))
downcast<InlineFlowBox>(*child).maxLogicalBottomForTextDecorationLine(maxLogicalBottom, decorationRenderer, textDecoration);
else {
if (child->isInlineTextBox() || child->lineStyle().textDecorationSkip() == TextDecorationSkipNone)
maxLogicalBottom = std::max<float>(maxLogicalBottom, child->logicalBottom());
}
}
}
void InlineFlowBox::minLogicalTopForTextDecorationLine(float& minLogicalTop, const RenderElement* decorationRenderer, TextDecoration textDecoration) const
{
for (InlineBox* child = firstChild(); child; child = child->nextOnLine()) {
if (child->renderer().isOutOfFlowPositioned())
continue; // Positioned placeholders don't affect calculations.
if (!(child->lineStyle().textDecorationsInEffect() & textDecoration))
continue; // If the text decoration isn't in effect on the child, then it must be outside of |decorationRenderer|'s hierarchy.
if (decorationRenderer && decorationRenderer->isRenderInline() && !isAncestorAndWithinBlock(downcast<RenderInline>(*decorationRenderer), &child->renderer()))
continue;
if (is<InlineFlowBox>(*child))
downcast<InlineFlowBox>(*child).minLogicalTopForTextDecorationLine(minLogicalTop, decorationRenderer, textDecoration);
else {
if (child->isInlineTextBox() || child->lineStyle().textDecorationSkip() == TextDecorationSkipNone)
minLogicalTop = std::min<float>(minLogicalTop, child->logicalTop());
}
}
}
void InlineFlowBox::flipLinesInBlockDirection(LayoutUnit lineTop, LayoutUnit lineBottom)
{
// Flip the box on the line such that the top is now relative to the lineBottom instead of the lineTop.
setLogicalTop(lineBottom - (logicalTop() - lineTop) - logicalHeight());
for (InlineBox* child = firstChild(); child; child = child->nextOnLine()) {
if (child->renderer().isOutOfFlowPositioned())
continue; // Positioned placeholders aren't affected here.
if (is<InlineFlowBox>(*child))
downcast<InlineFlowBox>(*child).flipLinesInBlockDirection(lineTop, lineBottom);
else
child->setLogicalTop(lineBottom - (child->logicalTop() - lineTop) - child->logicalHeight());
}
}
inline void InlineFlowBox::addBoxShadowVisualOverflow(LayoutRect& logicalVisualOverflow)
{
// box-shadow on root line boxes is applying to the block and not to the lines.
if (!parent())
return;
const RenderStyle& lineStyle = this->lineStyle();
if (!lineStyle.boxShadow())
return;
LayoutUnit boxShadowLogicalTop;
LayoutUnit boxShadowLogicalBottom;
lineStyle.getBoxShadowBlockDirectionExtent(boxShadowLogicalTop, boxShadowLogicalBottom);
// Similar to how glyph overflow works, if our lines are flipped, then it's actually the opposite shadow that applies, since
// the line is "upside down" in terms of block coordinates.
LayoutUnit shadowLogicalTop = lineStyle.isFlippedLinesWritingMode() ? -boxShadowLogicalBottom : boxShadowLogicalTop;
LayoutUnit shadowLogicalBottom = lineStyle.isFlippedLinesWritingMode() ? -boxShadowLogicalTop : boxShadowLogicalBottom;
LayoutUnit logicalTopVisualOverflow = std::min<LayoutUnit>(logicalTop() + shadowLogicalTop, logicalVisualOverflow.y());
LayoutUnit logicalBottomVisualOverflow = std::max<LayoutUnit>(logicalBottom() + shadowLogicalBottom, logicalVisualOverflow.maxY());
LayoutUnit boxShadowLogicalLeft;
LayoutUnit boxShadowLogicalRight;
lineStyle.getBoxShadowInlineDirectionExtent(boxShadowLogicalLeft, boxShadowLogicalRight);
LayoutUnit logicalLeftVisualOverflow = std::min<LayoutUnit>(logicalLeft() + boxShadowLogicalLeft, logicalVisualOverflow.x());
LayoutUnit logicalRightVisualOverflow = std::max<LayoutUnit>(logicalRight() + boxShadowLogicalRight, logicalVisualOverflow.maxX());
logicalVisualOverflow = LayoutRect(logicalLeftVisualOverflow, logicalTopVisualOverflow,
logicalRightVisualOverflow - logicalLeftVisualOverflow, logicalBottomVisualOverflow - logicalTopVisualOverflow);
}
inline void InlineFlowBox::addBorderOutsetVisualOverflow(LayoutRect& logicalVisualOverflow)
{
// border-image-outset on root line boxes is applying to the block and not to the lines.
if (!parent())
return;
const RenderStyle& lineStyle = this->lineStyle();
if (!lineStyle.hasBorderImageOutsets())
return;
LayoutBoxExtent borderOutsets = lineStyle.borderImageOutsets();
LayoutUnit borderOutsetLogicalTop = borderOutsets.before(lineStyle.writingMode());
LayoutUnit borderOutsetLogicalBottom = borderOutsets.after(lineStyle.writingMode());
LayoutUnit borderOutsetLogicalLeft = borderOutsets.start(lineStyle.writingMode());
LayoutUnit borderOutsetLogicalRight = borderOutsets.end(lineStyle.writingMode());
// Similar to how glyph overflow works, if our lines are flipped, then it's actually the opposite border that applies, since
// the line is "upside down" in terms of block coordinates. vertical-rl and horizontal-bt are the flipped line modes.
LayoutUnit outsetLogicalTop = lineStyle.isFlippedLinesWritingMode() ? borderOutsetLogicalBottom : borderOutsetLogicalTop;
LayoutUnit outsetLogicalBottom = lineStyle.isFlippedLinesWritingMode() ? borderOutsetLogicalTop : borderOutsetLogicalBottom;
LayoutUnit logicalTopVisualOverflow = std::min<LayoutUnit>(logicalTop() - outsetLogicalTop, logicalVisualOverflow.y());
LayoutUnit logicalBottomVisualOverflow = std::max<LayoutUnit>(logicalBottom() + outsetLogicalBottom, logicalVisualOverflow.maxY());
LayoutUnit outsetLogicalLeft = includeLogicalLeftEdge() ? borderOutsetLogicalLeft : LayoutUnit();
LayoutUnit outsetLogicalRight = includeLogicalRightEdge() ? borderOutsetLogicalRight : LayoutUnit();
LayoutUnit logicalLeftVisualOverflow = std::min<LayoutUnit>(logicalLeft() - outsetLogicalLeft, logicalVisualOverflow.x());
LayoutUnit logicalRightVisualOverflow = std::max<LayoutUnit>(logicalRight() + outsetLogicalRight, logicalVisualOverflow.maxX());
logicalVisualOverflow = LayoutRect(logicalLeftVisualOverflow, logicalTopVisualOverflow,
logicalRightVisualOverflow - logicalLeftVisualOverflow, logicalBottomVisualOverflow - logicalTopVisualOverflow);
}
inline void InlineFlowBox::addTextBoxVisualOverflow(InlineTextBox& textBox, GlyphOverflowAndFallbackFontsMap& textBoxDataMap, LayoutRect& logicalVisualOverflow)
{
if (textBox.knownToHaveNoOverflow())
return;
const RenderStyle& lineStyle = this->lineStyle();
GlyphOverflowAndFallbackFontsMap::iterator it = textBoxDataMap.find(&textBox);
GlyphOverflow* glyphOverflow = it == textBoxDataMap.end() ? nullptr : &it->value.second;
bool isFlippedLine = lineStyle.isFlippedLinesWritingMode();
int topGlyphEdge = glyphOverflow ? (isFlippedLine ? glyphOverflow->bottom : glyphOverflow->top) : 0;
int bottomGlyphEdge = glyphOverflow ? (isFlippedLine ? glyphOverflow->top : glyphOverflow->bottom) : 0;
int leftGlyphEdge = glyphOverflow ? glyphOverflow->left : 0;
int rightGlyphEdge = glyphOverflow ? glyphOverflow->right : 0;
auto viewportSize = textBox.renderer().frame().view() ? textBox.renderer().frame().view()->size() : IntSize();
int strokeOverflow = std::ceil(lineStyle.computedStrokeWidth(viewportSize) / 2.0f);
int topGlyphOverflow = -strokeOverflow - topGlyphEdge;
int bottomGlyphOverflow = strokeOverflow + bottomGlyphEdge;
int leftGlyphOverflow = -strokeOverflow - leftGlyphEdge;
int rightGlyphOverflow = strokeOverflow + rightGlyphEdge;
bool emphasisMarkIsAbove;
if (lineStyle.textEmphasisMark() != TextEmphasisMarkNone && textBox.emphasisMarkExistsAndIsAbove(lineStyle, emphasisMarkIsAbove)) {
int emphasisMarkHeight = lineStyle.fontCascade().emphasisMarkHeight(lineStyle.textEmphasisMarkString());
if (emphasisMarkIsAbove == !lineStyle.isFlippedLinesWritingMode())
topGlyphOverflow = std::min(topGlyphOverflow, -emphasisMarkHeight);
else
bottomGlyphOverflow = std::max(bottomGlyphOverflow, emphasisMarkHeight);
}
// If letter-spacing is negative, we should factor that into right layout overflow. (Even in RTL, letter-spacing is
// applied to the right, so this is not an issue with left overflow.
rightGlyphOverflow -= std::min(0, (int)lineStyle.fontCascade().letterSpacing());
LayoutUnit textShadowLogicalTop;
LayoutUnit textShadowLogicalBottom;
lineStyle.getTextShadowBlockDirectionExtent(textShadowLogicalTop, textShadowLogicalBottom);
LayoutUnit childOverflowLogicalTop = std::min<LayoutUnit>(textShadowLogicalTop + topGlyphOverflow, topGlyphOverflow);
LayoutUnit childOverflowLogicalBottom = std::max<LayoutUnit>(textShadowLogicalBottom + bottomGlyphOverflow, bottomGlyphOverflow);
LayoutUnit textShadowLogicalLeft;
LayoutUnit textShadowLogicalRight;
lineStyle.getTextShadowInlineDirectionExtent(textShadowLogicalLeft, textShadowLogicalRight);
LayoutUnit childOverflowLogicalLeft = std::min<LayoutUnit>(textShadowLogicalLeft + leftGlyphOverflow, leftGlyphOverflow);
LayoutUnit childOverflowLogicalRight = std::max<LayoutUnit>(textShadowLogicalRight + rightGlyphOverflow, rightGlyphOverflow);
LayoutUnit logicalTopVisualOverflow = std::min<LayoutUnit>(textBox.logicalTop() + childOverflowLogicalTop, logicalVisualOverflow.y());
LayoutUnit logicalBottomVisualOverflow = std::max<LayoutUnit>(textBox.logicalBottom() + childOverflowLogicalBottom, logicalVisualOverflow.maxY());
LayoutUnit logicalLeftVisualOverflow = std::min<LayoutUnit>(textBox.logicalLeft() + childOverflowLogicalLeft, logicalVisualOverflow.x());
LayoutUnit logicalRightVisualOverflow = std::max<LayoutUnit>(textBox.logicalRight() + childOverflowLogicalRight, logicalVisualOverflow.maxX());
logicalVisualOverflow = LayoutRect(logicalLeftVisualOverflow, logicalTopVisualOverflow,
logicalRightVisualOverflow - logicalLeftVisualOverflow, logicalBottomVisualOverflow - logicalTopVisualOverflow);
textBox.setLogicalOverflowRect(logicalVisualOverflow);
}
inline void InlineFlowBox::addOutlineVisualOverflow(LayoutRect& logicalVisualOverflow)
{
const auto& lineStyle = this->lineStyle();
if (!lineStyle.hasOutlineInVisualOverflow())
return;
LayoutUnit outlineSize = lineStyle.outlineSize();
LayoutUnit logicalTopVisualOverflow = std::min(LayoutUnit(logicalTop() - outlineSize), logicalVisualOverflow.y());
LayoutUnit logicalBottomVisualOverflow = std::max(LayoutUnit(logicalBottom() + outlineSize), logicalVisualOverflow.maxY());
LayoutUnit logicalLeftVisualOverflow = std::min(LayoutUnit(logicalLeft() - outlineSize), logicalVisualOverflow.x());
LayoutUnit logicalRightVisualOverflow = std::max(LayoutUnit(logicalRight() + outlineSize), logicalVisualOverflow.maxX());
logicalVisualOverflow = LayoutRect(logicalLeftVisualOverflow, logicalTopVisualOverflow,
logicalRightVisualOverflow - logicalLeftVisualOverflow, logicalBottomVisualOverflow - logicalTopVisualOverflow);
}
inline void InlineFlowBox::addReplacedChildOverflow(const InlineBox* inlineBox, LayoutRect& logicalLayoutOverflow, LayoutRect& logicalVisualOverflow)
{
const RenderBox& box = downcast<RenderBox>(inlineBox->renderer());
// Visual overflow only propagates if the box doesn't have a self-painting layer. This rectangle does not include
// transforms or relative positioning (since those objects always have self-painting layers), but it does need to be adjusted
// for writing-mode differences.
if (!box.hasSelfPaintingLayer()) {
LayoutRect childLogicalVisualOverflow = box.logicalVisualOverflowRectForPropagation(&renderer().style());
childLogicalVisualOverflow.move(inlineBox->logicalLeft(), inlineBox->logicalTop());
logicalVisualOverflow.unite(childLogicalVisualOverflow);
}
// Layout overflow internal to the child box only propagates if the child box doesn't have overflow clip set.
// Otherwise the child border box propagates as layout overflow. This rectangle must include transforms and relative positioning
// and be adjusted for writing-mode differences.
LayoutRect childLogicalLayoutOverflow = box.logicalLayoutOverflowRectForPropagation(&renderer().style());
childLogicalLayoutOverflow.move(inlineBox->logicalLeft(), inlineBox->logicalTop());
logicalLayoutOverflow.unite(childLogicalLayoutOverflow);
}
void InlineFlowBox::computeOverflow(LayoutUnit lineTop, LayoutUnit lineBottom, GlyphOverflowAndFallbackFontsMap& textBoxDataMap)
{
// If we know we have no overflow, we can just bail.
if (knownToHaveNoOverflow())
return;
if (m_overflow)
m_overflow = nullptr;
// Visual overflow just includes overflow for stuff we need to repaint ourselves. Self-painting layers are ignored.
// Layout overflow is used to determine scrolling extent, so it still includes child layers and also factors in
// transforms, relative positioning, etc.
LayoutRect logicalLayoutOverflow(enclosingLayoutRect(logicalFrameRectIncludingLineHeight(lineTop, lineBottom)));
LayoutRect logicalVisualOverflow(logicalLayoutOverflow);
addBoxShadowVisualOverflow(logicalVisualOverflow);
addOutlineVisualOverflow(logicalVisualOverflow);
addBorderOutsetVisualOverflow(logicalVisualOverflow);
for (InlineBox* child = firstChild(); child; child = child->nextOnLine()) {
if (child->renderer().isOutOfFlowPositioned())
continue; // Positioned placeholders don't affect calculations.
if (is<RenderLineBreak>(child->renderer()))
continue;
if (is<RenderText>(child->renderer())) {
auto& textBox = downcast<InlineTextBox>(*child);
LayoutRect textBoxOverflow(enclosingLayoutRect(textBox.logicalFrameRect()));
addTextBoxVisualOverflow(textBox, textBoxDataMap, textBoxOverflow);
logicalVisualOverflow.unite(textBoxOverflow);
} else if (is<RenderInline>(child->renderer())) {
auto& flow = downcast<InlineFlowBox>(*child);
flow.computeOverflow(lineTop, lineBottom, textBoxDataMap);
if (!flow.renderer().hasSelfPaintingLayer())
logicalVisualOverflow.unite(flow.logicalVisualOverflowRect(lineTop, lineBottom));
LayoutRect childLayoutOverflow = flow.logicalLayoutOverflowRect(lineTop, lineBottom);
childLayoutOverflow.move(flow.renderer().relativePositionLogicalOffset());
logicalLayoutOverflow.unite(childLayoutOverflow);
} else
addReplacedChildOverflow(child, logicalLayoutOverflow, logicalVisualOverflow);
}
setOverflowFromLogicalRects(logicalLayoutOverflow, logicalVisualOverflow, lineTop, lineBottom);
}
void InlineFlowBox::setLayoutOverflow(const LayoutRect& rect, LayoutUnit lineTop, LayoutUnit lineBottom)
{
LayoutRect frameBox = enclosingLayoutRect(frameRectIncludingLineHeight(lineTop, lineBottom));
if (frameBox.contains(rect) || rect.isEmpty())
return;
if (!m_overflow)
m_overflow = adoptRef(new RenderOverflow(frameBox, frameBox));
m_overflow->setLayoutOverflow(rect);
}
void InlineFlowBox::setVisualOverflow(const LayoutRect& rect, LayoutUnit lineTop, LayoutUnit lineBottom)
{
LayoutRect frameBox = enclosingLayoutRect(frameRectIncludingLineHeight(lineTop, lineBottom));
if (frameBox.contains(rect) || rect.isEmpty())
return;
if (!m_overflow)
m_overflow = adoptRef(new RenderOverflow(frameBox, frameBox));
m_overflow->setVisualOverflow(rect);
}
void InlineFlowBox::setOverflowFromLogicalRects(const LayoutRect& logicalLayoutOverflow, const LayoutRect& logicalVisualOverflow, LayoutUnit lineTop, LayoutUnit lineBottom)
{
LayoutRect layoutOverflow(isHorizontal() ? logicalLayoutOverflow : logicalLayoutOverflow.transposedRect());
setLayoutOverflow(layoutOverflow, lineTop, lineBottom);
LayoutRect visualOverflow(isHorizontal() ? logicalVisualOverflow : logicalVisualOverflow.transposedRect());
setVisualOverflow(visualOverflow, lineTop, lineBottom);
}
bool InlineFlowBox::nodeAtPoint(const HitTestRequest& request, HitTestResult& result, const HitTestLocation& locationInContainer, const LayoutPoint& accumulatedOffset, LayoutUnit lineTop, LayoutUnit lineBottom, HitTestAction hitTestAction)
{
if (hitTestAction != HitTestForeground)
return false;
LayoutRect overflowRect(visualOverflowRect(lineTop, lineBottom));
flipForWritingMode(overflowRect);
overflowRect.moveBy(accumulatedOffset);
if (!locationInContainer.intersects(overflowRect))
return false;
// Check children first.
// We need to account for culled inline parents of the hit-tested nodes, so that they may also get included in area-based hit-tests.
RenderElement* culledParent = nullptr;
for (InlineBox* child = lastChild(); child; child = child->prevOnLine()) {
if (is<RenderText>(child->renderer()) || !child->boxModelObject()->hasSelfPaintingLayer()) {
RenderElement* newParent = nullptr;
// Culled parents are only relevant for area-based hit-tests, so ignore it in point-based ones.
if (locationInContainer.isRectBasedTest()) {
newParent = child->renderer().parent();
if (newParent == &renderer())
newParent = nullptr;
}
// Check the culled parent after all its children have been checked, to do this we wait until
// we are about to test an element with a different parent.
if (newParent != culledParent) {
if (!newParent || !newParent->isDescendantOf(culledParent)) {
while (culledParent && culledParent != &renderer() && culledParent != newParent) {
if (is<RenderInline>(*culledParent) && downcast<RenderInline>(*culledParent).hitTestCulledInline(request, result, locationInContainer, accumulatedOffset))
return true;
culledParent = culledParent->parent();
}
}
culledParent = newParent;
}
if (child->nodeAtPoint(request, result, locationInContainer, accumulatedOffset, lineTop, lineBottom, hitTestAction)) {
renderer().updateHitTestResult(result, locationInContainer.point() - toLayoutSize(accumulatedOffset));
return true;
}
}
}
// Check any culled ancestor of the final children tested.
while (culledParent && culledParent != &renderer()) {
if (is<RenderInline>(*culledParent) && downcast<RenderInline>(*culledParent).hitTestCulledInline(request, result, locationInContainer, accumulatedOffset))
return true;
culledParent = culledParent->parent();
}
// Now check ourselves. Pixel snap hit testing.
if (!visibleToHitTesting())
return false;
// Do not hittest content beyond the ellipsis box.
if (isRootInlineBox() && hasEllipsisBox()) {
const EllipsisBox* ellipsisBox = root().ellipsisBox();
FloatRect boundsRect(frameRect());
if (isHorizontal())
renderer().style().isLeftToRightDirection() ? boundsRect.shiftXEdgeTo(ellipsisBox->right()) : boundsRect.setWidth(ellipsisBox->left() - left());
else
boundsRect.shiftYEdgeTo(ellipsisBox->right());
flipForWritingMode(boundsRect);
boundsRect.moveBy(accumulatedOffset);
// We are beyond the ellipsis box.
if (locationInContainer.intersects(boundsRect))
return false;
}
// Constrain our hit testing to the line top and bottom if necessary.
bool noQuirksMode = renderer().document().inNoQuirksMode();
if (!noQuirksMode && !hasTextChildren() && !(descendantsHaveSameLineHeightAndBaseline() && hasTextDescendants())) {
RootInlineBox& rootBox = root();
LayoutUnit top = isHorizontal() ? y() : x();
LayoutUnit logicalHeight = isHorizontal() ? height() : width();
LayoutUnit bottom = std::min(rootBox.lineBottom(), top + logicalHeight);
top = std::max(rootBox.lineTop(), top);
logicalHeight = bottom - top;
}
// Move x/y to our coordinates.
FloatRect rect(frameRect());
flipForWritingMode(rect);
rect.moveBy(accumulatedOffset);
if (locationInContainer.intersects(rect)) {
renderer().updateHitTestResult(result, flipForWritingMode(locationInContainer.point() - toLayoutSize(accumulatedOffset))); // Don't add in m_x or m_y here, we want coords in the containing block's space.
if (result.addNodeToListBasedTestResult(renderer().element(), request, locationInContainer, rect) == HitTestProgress::Stop)
return true;
}
return false;
}
void InlineFlowBox::paint(PaintInfo& paintInfo, const LayoutPoint& paintOffset, LayoutUnit lineTop, LayoutUnit lineBottom)
{
if (paintInfo.phase != PaintPhaseForeground && paintInfo.phase != PaintPhaseSelection && paintInfo.phase != PaintPhaseOutline && paintInfo.phase != PaintPhaseSelfOutline && paintInfo.phase != PaintPhaseChildOutlines && paintInfo.phase != PaintPhaseTextClip && paintInfo.phase != PaintPhaseMask)
return;
LayoutRect overflowRect(visualOverflowRect(lineTop, lineBottom));
flipForWritingMode(overflowRect);
overflowRect.moveBy(paintOffset);
if (!paintInfo.rect.intersects(snappedIntRect(overflowRect)))
return;
if (paintInfo.phase != PaintPhaseChildOutlines) {
if (paintInfo.phase == PaintPhaseOutline || paintInfo.phase == PaintPhaseSelfOutline) {
// Add ourselves to the paint info struct's list of inlines that need to paint their
// outlines.
if (renderer().style().visibility() == VISIBLE && renderer().hasOutline() && !isRootInlineBox()) {
RenderInline& inlineFlow = downcast<RenderInline>(renderer());
RenderBlock* containingBlock = nullptr;
bool containingBlockPaintsContinuationOutline = inlineFlow.continuation() || inlineFlow.isContinuation();
if (containingBlockPaintsContinuationOutline) {
// FIXME: See https://bugs.webkit.org/show_bug.cgi?id=54690. We currently don't reconnect inline continuations
// after a child removal. As a result, those merged inlines do not get seperated and hence not get enclosed by
// anonymous blocks. In this case, it is better to bail out and paint it ourself.
RenderBlock* enclosingAnonymousBlock = renderer().containingBlock();
if (!enclosingAnonymousBlock->isAnonymousBlock())
containingBlockPaintsContinuationOutline = false;
else {
containingBlock = enclosingAnonymousBlock->containingBlock();
for (auto* box = &renderer(); box != containingBlock; box = &box->parent()->enclosingBoxModelObject()) {
if (box->hasSelfPaintingLayer()) {
containingBlockPaintsContinuationOutline = false;
break;
}
}
}
}
if (containingBlockPaintsContinuationOutline) {
// Add ourselves to the containing block of the entire continuation so that it can
// paint us atomically.
containingBlock->addContinuationWithOutline(downcast<RenderInline>(renderer().element()->renderer()));
} else if (!inlineFlow.isContinuation())
paintInfo.outlineObjects->add(&inlineFlow);
}
} else if (paintInfo.phase == PaintPhaseMask)
paintMask(paintInfo, paintOffset);
else {
// Paint our background, border and box-shadow.
paintBoxDecorations(paintInfo, paintOffset);
}
}
if (paintInfo.phase == PaintPhaseMask)
return;
PaintPhase paintPhase = paintInfo.phase == PaintPhaseChildOutlines ? PaintPhaseOutline : paintInfo.phase;
PaintInfo childInfo(paintInfo);
childInfo.phase = paintPhase;
childInfo.updateSubtreePaintRootForChildren(&renderer());
// Paint our children.
if (paintPhase != PaintPhaseSelfOutline) {
for (InlineBox* curr = firstChild(); curr; curr = curr->nextOnLine()) {
if (curr->renderer().isText() || !curr->boxModelObject()->hasSelfPaintingLayer())
curr->paint(childInfo, paintOffset, lineTop, lineBottom);
}
}
}
void InlineFlowBox::paintFillLayers(const PaintInfo& paintInfo, const Color& color, const FillLayer& fillLayer, const LayoutRect& rect, CompositeOperator op)
{
Vector<const FillLayer*, 8> layers;
for (auto* layer = &fillLayer; layer; layer = layer->next())
layers.append(layer);
layers.reverse();
for (auto* layer : layers)
paintFillLayer(paintInfo, color, *layer, rect, op);
}
bool InlineFlowBox::boxShadowCanBeAppliedToBackground(const FillLayer& lastBackgroundLayer) const
{
// The checks here match how paintFillLayer() decides whether to clip (if it does, the shadow
// would be clipped out, so it has to be drawn separately).
StyleImage* image = lastBackgroundLayer.image();
bool hasFillImage = image && image->canRender(&renderer(), renderer().style().effectiveZoom());
return (!hasFillImage && !renderer().style().hasBorderRadius()) || (!prevLineBox() && !nextLineBox()) || !parent();
}
void InlineFlowBox::paintFillLayer(const PaintInfo& paintInfo, const Color& color, const FillLayer& fillLayer, const LayoutRect& rect, CompositeOperator op)
{
auto* image = fillLayer.image();
bool hasFillImage = image && image->canRender(&renderer(), renderer().style().effectiveZoom());
if ((!hasFillImage && !renderer().style().hasBorderRadius()) || (!prevLineBox() && !nextLineBox()) || !parent())
renderer().paintFillLayerExtended(paintInfo, color, fillLayer, rect, BackgroundBleedNone, this, rect.size(), op);
#if ENABLE(CSS_BOX_DECORATION_BREAK)
else if (renderer().style().boxDecorationBreak() == DCLONE) {
GraphicsContextStateSaver stateSaver(paintInfo.context());
paintInfo.context().clip(LayoutRect(rect.x(), rect.y(), width(), height()));
renderer().paintFillLayerExtended(paintInfo, color, fillLayer, rect, BackgroundBleedNone, this, rect.size(), op);
}
#endif
else {
// We have a fill image that spans multiple lines.
// We need to adjust tx and ty by the width of all previous lines.
// Think of background painting on inlines as though you had one long line, a single continuous
// strip. Even though that strip has been broken up across multiple lines, you still paint it
// as though you had one single line. This means each line has to pick up the background where
// the previous line left off.
LayoutUnit logicalOffsetOnLine = 0;
LayoutUnit totalLogicalWidth;
if (renderer().style().direction() == LTR) {
for (InlineFlowBox* curr = prevLineBox(); curr; curr = curr->prevLineBox())
logicalOffsetOnLine += curr->logicalWidth();
totalLogicalWidth = logicalOffsetOnLine;
for (InlineFlowBox* curr = this; curr; curr = curr->nextLineBox())
totalLogicalWidth += curr->logicalWidth();
} else {
for (InlineFlowBox* curr = nextLineBox(); curr; curr = curr->nextLineBox())
logicalOffsetOnLine += curr->logicalWidth();
totalLogicalWidth = logicalOffsetOnLine;
for (InlineFlowBox* curr = this; curr; curr = curr->prevLineBox())
totalLogicalWidth += curr->logicalWidth();
}
LayoutUnit stripX = rect.x() - (isHorizontal() ? logicalOffsetOnLine : LayoutUnit());
LayoutUnit stripY = rect.y() - (isHorizontal() ? LayoutUnit() : logicalOffsetOnLine);
LayoutUnit stripWidth = isHorizontal() ? totalLogicalWidth : LayoutUnit(width());
LayoutUnit stripHeight = isHorizontal() ? LayoutUnit(height()) : totalLogicalWidth;
GraphicsContextStateSaver stateSaver(paintInfo.context());
paintInfo.context().clip(LayoutRect(rect.x(), rect.y(), width(), height()));
renderer().paintFillLayerExtended(paintInfo, color, fillLayer, LayoutRect(stripX, stripY, stripWidth, stripHeight), BackgroundBleedNone, this, rect.size(), op);
}
}
void InlineFlowBox::paintBoxShadow(const PaintInfo& info, const RenderStyle& style, ShadowStyle shadowStyle, const LayoutRect& paintRect)
{
if ((!prevLineBox() && !nextLineBox()) || !parent())
renderer().paintBoxShadow(info, paintRect, style, shadowStyle);
else {
// FIXME: We can do better here in the multi-line case. We want to push a clip so that the shadow doesn't
// protrude incorrectly at the edges, and we want to possibly include shadows cast from the previous/following lines
renderer().paintBoxShadow(info, paintRect, style, shadowStyle, includeLogicalLeftEdge(), includeLogicalRightEdge());
}
}
void InlineFlowBox::constrainToLineTopAndBottomIfNeeded(LayoutRect& rect) const
{
bool noQuirksMode = renderer().document().inNoQuirksMode();
if (!noQuirksMode && !hasTextChildren() && !(descendantsHaveSameLineHeightAndBaseline() && hasTextDescendants())) {
const RootInlineBox& rootBox = root();
LayoutUnit logicalTop = isHorizontal() ? rect.y() : rect.x();
LayoutUnit logicalHeight = isHorizontal() ? rect.height() : rect.width();
LayoutUnit bottom = std::min(rootBox.lineBottom(), logicalTop + logicalHeight);
logicalTop = std::max(rootBox.lineTop(), logicalTop);
logicalHeight = bottom - logicalTop;
if (isHorizontal()) {
rect.setY(logicalTop);
rect.setHeight(logicalHeight);
} else {
rect.setX(logicalTop);
rect.setWidth(logicalHeight);
}
}
}
static LayoutRect clipRectForNinePieceImageStrip(InlineFlowBox* box, const NinePieceImage& image, const LayoutRect& paintRect)
{
LayoutRect clipRect(paintRect);
auto& style = box->renderer().style();
LayoutBoxExtent outsets = style.imageOutsets(image);
if (box->isHorizontal()) {
clipRect.setY(paintRect.y() - outsets.top());
clipRect.setHeight(paintRect.height() + outsets.top() + outsets.bottom());
if (box->includeLogicalLeftEdge()) {
clipRect.setX(paintRect.x() - outsets.left());
clipRect.setWidth(paintRect.width() + outsets.left());
}
if (box->includeLogicalRightEdge())
clipRect.setWidth(clipRect.width() + outsets.right());
} else {
clipRect.setX(paintRect.x() - outsets.left());
clipRect.setWidth(paintRect.width() + outsets.left() + outsets.right());
if (box->includeLogicalLeftEdge()) {
clipRect.setY(paintRect.y() - outsets.top());
clipRect.setHeight(paintRect.height() + outsets.top());
}
if (box->includeLogicalRightEdge())
clipRect.setHeight(clipRect.height() + outsets.bottom());
}
return clipRect;
}
void InlineFlowBox::paintBoxDecorations(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
if (!paintInfo.shouldPaintWithinRoot(renderer()) || renderer().style().visibility() != VISIBLE || paintInfo.phase != PaintPhaseForeground)
return;
LayoutRect frameRect(this->frameRect());
constrainToLineTopAndBottomIfNeeded(frameRect);
// Move x/y to our coordinates.
LayoutRect localRect(frameRect);
flipForWritingMode(localRect);
// You can use p::first-line to specify a background. If so, the root line boxes for
// a line may actually have to paint a background.
if (parent() && !renderer().hasVisibleBoxDecorations())
return;
const RenderStyle& lineStyle = this->lineStyle();
if (!parent() && (!isFirstLine() || &lineStyle == &renderer().style()))
return;
LayoutPoint adjustedPaintoffset = paintOffset + localRect.location();
GraphicsContext& context = paintInfo.context();
LayoutRect paintRect = LayoutRect(adjustedPaintoffset, frameRect.size());
// Shadow comes first and is behind the background and border.
if (!renderer().boxShadowShouldBeAppliedToBackground(adjustedPaintoffset, BackgroundBleedNone, this))
paintBoxShadow(paintInfo, lineStyle, Normal, paintRect);
const Color& color = lineStyle.visitedDependentColorWithColorFilter(CSSPropertyBackgroundColor);
paintFillLayers(paintInfo, color, lineStyle.backgroundLayers(), paintRect);
paintBoxShadow(paintInfo, lineStyle, Inset, paintRect);
// :first-line cannot be used to put borders on a line. Always paint borders with our
// non-first-line style.
if (!parent() || !renderer().style().hasVisibleBorderDecoration())
return;
const NinePieceImage& borderImage = renderer().style().borderImage();
StyleImage* borderImageSource = borderImage.image();
bool hasBorderImage = borderImageSource && borderImageSource->canRender(&renderer(), lineStyle.effectiveZoom());
if (hasBorderImage && !borderImageSource->isLoaded())
return; // Don't paint anything while we wait for the image to load.
// The simple case is where we either have no border image or we are the only box for this object. In those
// cases only a single call to draw is required.
if (!hasBorderImage || (!prevLineBox() && !nextLineBox()))
renderer().paintBorder(paintInfo, paintRect, lineStyle, BackgroundBleedNone, includeLogicalLeftEdge(), includeLogicalRightEdge());
else {
// We have a border image that spans multiple lines.
// We need to adjust tx and ty by the width of all previous lines.
// Think of border image painting on inlines as though you had one long line, a single continuous
// strip. Even though that strip has been broken up across multiple lines, you still paint it
// as though you had one single line. This means each line has to pick up the image where
// the previous line left off.
// FIXME: What the heck do we do with RTL here? The math we're using is obviously not right,
// but it isn't even clear how this should work at all.
LayoutUnit logicalOffsetOnLine = 0;
for (InlineFlowBox* curr = prevLineBox(); curr; curr = curr->prevLineBox())
logicalOffsetOnLine += curr->logicalWidth();
LayoutUnit totalLogicalWidth = logicalOffsetOnLine;
for (InlineFlowBox* curr = this; curr; curr = curr->nextLineBox())
totalLogicalWidth += curr->logicalWidth();
LayoutUnit stripX = adjustedPaintoffset.x() - (isHorizontal() ? logicalOffsetOnLine : LayoutUnit());
LayoutUnit stripY = adjustedPaintoffset.y() - (isHorizontal() ? LayoutUnit() : logicalOffsetOnLine);
LayoutUnit stripWidth = isHorizontal() ? totalLogicalWidth : frameRect.width();
LayoutUnit stripHeight = isHorizontal() ? frameRect.height() : totalLogicalWidth;
LayoutRect clipRect = clipRectForNinePieceImageStrip(this, borderImage, paintRect);
GraphicsContextStateSaver stateSaver(context);
context.clip(clipRect);
renderer().paintBorder(paintInfo, LayoutRect(stripX, stripY, stripWidth, stripHeight), lineStyle);
}
}
void InlineFlowBox::paintMask(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
if (!paintInfo.shouldPaintWithinRoot(renderer()) || renderer().style().visibility() != VISIBLE || paintInfo.phase != PaintPhaseMask)
return;
LayoutRect frameRect(this->frameRect());
constrainToLineTopAndBottomIfNeeded(frameRect);
// Move x/y to our coordinates.
LayoutRect localRect(frameRect);
flipForWritingMode(localRect);
LayoutPoint adjustedPaintOffset = paintOffset + localRect.location();
const NinePieceImage& maskNinePieceImage = renderer().style().maskBoxImage();
StyleImage* maskBoxImage = renderer().style().maskBoxImage().image();
// Figure out if we need to push a transparency layer to render our mask.
bool pushTransparencyLayer = false;
bool compositedMask = renderer().hasLayer() && renderer().layer()->hasCompositedMask();
bool flattenCompositingLayers = renderer().view().frameView().paintBehavior() & PaintBehaviorFlattenCompositingLayers;
CompositeOperator compositeOp = CompositeSourceOver;
if (!compositedMask || flattenCompositingLayers) {
if ((maskBoxImage && renderer().style().maskLayers().hasImage()) || renderer().style().maskLayers().next())
pushTransparencyLayer = true;
compositeOp = CompositeDestinationIn;
if (pushTransparencyLayer) {
paintInfo.context().setCompositeOperation(CompositeDestinationIn);
paintInfo.context().beginTransparencyLayer(1.0f);
compositeOp = CompositeSourceOver;
}
}
LayoutRect paintRect = LayoutRect(adjustedPaintOffset, frameRect.size());
paintFillLayers(paintInfo, Color(), renderer().style().maskLayers(), paintRect, compositeOp);
bool hasBoxImage = maskBoxImage && maskBoxImage->canRender(&renderer(), renderer().style().effectiveZoom());
if (!hasBoxImage || !maskBoxImage->isLoaded()) {
if (pushTransparencyLayer)
paintInfo.context().endTransparencyLayer();
return; // Don't paint anything while we wait for the image to load.
}
// The simple case is where we are the only box for this object. In those
// cases only a single call to draw is required.
if (!prevLineBox() && !nextLineBox()) {
renderer().paintNinePieceImage(paintInfo.context(), LayoutRect(adjustedPaintOffset, frameRect.size()), renderer().style(), maskNinePieceImage, compositeOp);
} else {
// We have a mask image that spans multiple lines.
// We need to adjust _tx and _ty by the width of all previous lines.
LayoutUnit logicalOffsetOnLine = 0;
for (InlineFlowBox* curr = prevLineBox(); curr; curr = curr->prevLineBox())
logicalOffsetOnLine += curr->logicalWidth();
LayoutUnit totalLogicalWidth = logicalOffsetOnLine;
for (InlineFlowBox* curr = this; curr; curr = curr->nextLineBox())
totalLogicalWidth += curr->logicalWidth();
LayoutUnit stripX = adjustedPaintOffset.x() - (isHorizontal() ? logicalOffsetOnLine : LayoutUnit());
LayoutUnit stripY = adjustedPaintOffset.y() - (isHorizontal() ? LayoutUnit() : logicalOffsetOnLine);
LayoutUnit stripWidth = isHorizontal() ? totalLogicalWidth : frameRect.width();
LayoutUnit stripHeight = isHorizontal() ? frameRect.height() : totalLogicalWidth;
LayoutRect clipRect = clipRectForNinePieceImageStrip(this, maskNinePieceImage, paintRect);
GraphicsContextStateSaver stateSaver(paintInfo.context());
paintInfo.context().clip(clipRect);
renderer().paintNinePieceImage(paintInfo.context(), LayoutRect(stripX, stripY, stripWidth, stripHeight), renderer().style(), maskNinePieceImage, compositeOp);
}
if (pushTransparencyLayer)
paintInfo.context().endTransparencyLayer();
}
InlineBox* InlineFlowBox::firstLeafChild() const
{
InlineBox* leaf = nullptr;
for (InlineBox* child = firstChild(); child && !leaf; child = child->nextOnLine())
leaf = child->isLeaf() ? child : downcast<InlineFlowBox>(*child).firstLeafChild();
return leaf;
}
InlineBox* InlineFlowBox::lastLeafChild() const
{
InlineBox* leaf = nullptr;
for (InlineBox* child = lastChild(); child && !leaf; child = child->prevOnLine())
leaf = child->isLeaf() ? child : downcast<InlineFlowBox>(*child).lastLeafChild();
return leaf;
}
RenderObject::SelectionState InlineFlowBox::selectionState()
{
return RenderObject::SelectionNone;
}
bool InlineFlowBox::canAccommodateEllipsis(bool ltr, int blockEdge, int ellipsisWidth) const
{
for (InlineBox *box = firstChild(); box; box = box->nextOnLine()) {
if (!box->canAccommodateEllipsis(ltr, blockEdge, ellipsisWidth))
return false;
}
return true;
}
float InlineFlowBox::placeEllipsisBox(bool ltr, float blockLeftEdge, float blockRightEdge, float ellipsisWidth, float &truncatedWidth, bool& foundBox)
{
float result = -1;
// We iterate over all children, the foundBox variable tells us when we've found the
// box containing the ellipsis. All boxes after that one in the flow are hidden.
// If our flow is ltr then iterate over the boxes from left to right, otherwise iterate
// from right to left. Varying the order allows us to correctly hide the boxes following the ellipsis.
InlineBox* box = ltr ? firstChild() : lastChild();
// NOTE: these will cross after foundBox = true.
int visibleLeftEdge = blockLeftEdge;
int visibleRightEdge = blockRightEdge;
while (box) {
int currResult = box->placeEllipsisBox(ltr, visibleLeftEdge, visibleRightEdge, ellipsisWidth, truncatedWidth, foundBox);
if (currResult != -1 && result == -1)
result = currResult;
if (ltr) {
visibleLeftEdge += box->logicalWidth();
box = box->nextOnLine();
}
else {
visibleRightEdge -= box->logicalWidth();
box = box->prevOnLine();
}
}
return result;
}
void InlineFlowBox::clearTruncation()
{
for (InlineBox *box = firstChild(); box; box = box->nextOnLine())
box->clearTruncation();
}
LayoutUnit InlineFlowBox::computeOverAnnotationAdjustment(LayoutUnit allowedPosition) const
{
LayoutUnit result = 0;
for (InlineBox* child = firstChild(); child; child = child->nextOnLine()) {
if (child->renderer().isOutOfFlowPositioned())
continue; // Positioned placeholders don't affect calculations.
if (is<InlineFlowBox>(*child))
result = std::max(result, downcast<InlineFlowBox>(*child).computeOverAnnotationAdjustment(allowedPosition));
if (child->renderer().isReplaced() && is<RenderRubyRun>(child->renderer()) && child->renderer().style().rubyPosition() == RubyPositionBefore) {
auto& rubyRun = downcast<RenderRubyRun>(child->renderer());
RenderRubyText* rubyText = rubyRun.rubyText();
if (!rubyText)
continue;
if (!rubyRun.style().isFlippedLinesWritingMode()) {
LayoutUnit topOfFirstRubyTextLine = rubyText->logicalTop() + (rubyText->firstRootBox() ? rubyText->firstRootBox()->lineTop() : LayoutUnit());
if (topOfFirstRubyTextLine >= 0)
continue;
topOfFirstRubyTextLine += child->logicalTop();
result = std::max(result, allowedPosition - topOfFirstRubyTextLine);
} else {
LayoutUnit bottomOfLastRubyTextLine = rubyText->logicalTop() + (rubyText->lastRootBox() ? rubyText->lastRootBox()->lineBottom() : rubyText->logicalHeight());
if (bottomOfLastRubyTextLine <= child->logicalHeight())
continue;
bottomOfLastRubyTextLine += child->logicalTop();
result = std::max(result, bottomOfLastRubyTextLine - allowedPosition);
}
}
if (is<InlineTextBox>(*child)) {
const RenderStyle& childLineStyle = child->lineStyle();
bool emphasisMarkIsAbove;
if (childLineStyle.textEmphasisMark() != TextEmphasisMarkNone && downcast<InlineTextBox>(*child).emphasisMarkExistsAndIsAbove(childLineStyle, emphasisMarkIsAbove) && emphasisMarkIsAbove) {
if (!childLineStyle.isFlippedLinesWritingMode()) {
int topOfEmphasisMark = child->logicalTop() - childLineStyle.fontCascade().emphasisMarkHeight(childLineStyle.textEmphasisMarkString());
result = std::max(result, allowedPosition - topOfEmphasisMark);
} else {
int bottomOfEmphasisMark = child->logicalBottom() + childLineStyle.fontCascade().emphasisMarkHeight(childLineStyle.textEmphasisMarkString());
result = std::max(result, bottomOfEmphasisMark - allowedPosition);
}
}
}
}
return result;
}
LayoutUnit InlineFlowBox::computeUnderAnnotationAdjustment(LayoutUnit allowedPosition) const
{
LayoutUnit result = 0;
for (InlineBox* child = firstChild(); child; child = child->nextOnLine()) {
if (child->renderer().isOutOfFlowPositioned())
continue; // Positioned placeholders don't affect calculations.
if (is<InlineFlowBox>(*child))
result = std::max(result, downcast<InlineFlowBox>(*child).computeUnderAnnotationAdjustment(allowedPosition));
if (child->renderer().isReplaced() && is<RenderRubyRun>(child->renderer()) && child->renderer().style().rubyPosition() == RubyPositionAfter) {
auto& rubyRun = downcast<RenderRubyRun>(child->renderer());
RenderRubyText* rubyText = rubyRun.rubyText();
if (!rubyText)
continue;
if (rubyRun.style().isFlippedLinesWritingMode()) {
LayoutUnit topOfFirstRubyTextLine = rubyText->logicalTop() + (rubyText->firstRootBox() ? rubyText->firstRootBox()->lineTop() : LayoutUnit());
if (topOfFirstRubyTextLine >= 0)
continue;
topOfFirstRubyTextLine += child->logicalTop();
result = std::max(result, allowedPosition - topOfFirstRubyTextLine);
} else {
LayoutUnit bottomOfLastRubyTextLine = rubyText->logicalTop() + (rubyText->lastRootBox() ? rubyText->lastRootBox()->lineBottom() : rubyText->logicalHeight());
if (bottomOfLastRubyTextLine <= child->logicalHeight())
continue;
bottomOfLastRubyTextLine += child->logicalTop();
result = std::max(result, bottomOfLastRubyTextLine - allowedPosition);
}
}
if (is<InlineTextBox>(*child)) {
const RenderStyle& childLineStyle = child->lineStyle();
bool emphasisMarkIsAbove;
downcast<InlineTextBox>(*child).emphasisMarkExistsAndIsAbove(childLineStyle, emphasisMarkIsAbove);
if (childLineStyle.textEmphasisMark() != TextEmphasisMarkNone && !emphasisMarkIsAbove) {
if (!childLineStyle.isFlippedLinesWritingMode()) {
LayoutUnit bottomOfEmphasisMark = child->logicalBottom() + childLineStyle.fontCascade().emphasisMarkHeight(childLineStyle.textEmphasisMarkString());
result = std::max(result, bottomOfEmphasisMark - allowedPosition);
} else {
LayoutUnit topOfEmphasisMark = child->logicalTop() - childLineStyle.fontCascade().emphasisMarkHeight(childLineStyle.textEmphasisMarkString());
result = std::max(result, allowedPosition - topOfEmphasisMark);
}
}
}
}
return result;
}
void InlineFlowBox::collectLeafBoxesInLogicalOrder(Vector<InlineBox*>& leafBoxesInLogicalOrder, CustomInlineBoxRangeReverse customReverseImplementation, void* userData) const
{
InlineBox* leaf = firstLeafChild();
// FIXME: The reordering code is a copy of parts from BidiResolver::createBidiRunsForLine, operating directly on InlineBoxes, instead of BidiRuns.
// Investigate on how this code could possibly be shared.
unsigned char minLevel = 128;
unsigned char maxLevel = 0;
// First find highest and lowest levels, and initialize leafBoxesInLogicalOrder with the leaf boxes in visual order.
for (; leaf; leaf = leaf->nextLeafChild()) {
minLevel = std::min(minLevel, leaf->bidiLevel());
maxLevel = std::max(maxLevel, leaf->bidiLevel());
leafBoxesInLogicalOrder.append(leaf);
}
if (renderer().style().rtlOrdering() == VisualOrder)
return;
// Reverse of reordering of the line (L2 according to Bidi spec):
// L2. From the highest level found in the text to the lowest odd level on each line,
// reverse any contiguous sequence of characters that are at that level or higher.
// Reversing the reordering of the line is only done up to the lowest odd level.
if (!(minLevel % 2))
++minLevel;
Vector<InlineBox*>::iterator end = leafBoxesInLogicalOrder.end();
while (minLevel <= maxLevel) {
Vector<InlineBox*>::iterator it = leafBoxesInLogicalOrder.begin();
while (it != end) {
while (it != end) {
if ((*it)->bidiLevel() >= minLevel)
break;
++it;
}
Vector<InlineBox*>::iterator first = it;
while (it != end) {
if ((*it)->bidiLevel() < minLevel)
break;
++it;
}
Vector<InlineBox*>::iterator last = it;
if (customReverseImplementation) {
ASSERT(userData);
(*customReverseImplementation)(userData, first, last);
} else
std::reverse(first, last);
}
++minLevel;
}
}
void InlineFlowBox::computeReplacedAndTextLineTopAndBottom(LayoutUnit& lineTop, LayoutUnit& lineBottom) const
{
for (const auto* box = firstChild(); box; box = box->nextOnLine()) {
if (is<InlineFlowBox>(*box))
downcast<InlineFlowBox>(*box).computeReplacedAndTextLineTopAndBottom(lineTop, lineBottom);
else {
if (box->logicalTop() < lineTop)
lineTop = box->logicalTop();
if (box->logicalBottom() > lineBottom)
lineBottom = box->logicalBottom();
}
}
}
#if ENABLE(TREE_DEBUGGING)
const char* InlineFlowBox::boxName() const
{
return "InlineFlowBox";
}
void InlineFlowBox::outputLineTreeAndMark(WTF::TextStream& stream, const InlineBox* markedBox, int depth) const
{
InlineBox::outputLineTreeAndMark(stream, markedBox, depth);
for (const InlineBox* box = firstChild(); box; box = box->nextOnLine())
box->outputLineTreeAndMark(stream, markedBox, depth + 1);
}
#endif
#ifndef NDEBUG
void InlineFlowBox::checkConsistency() const
{
assertNotDeleted();
ASSERT_WITH_SECURITY_IMPLICATION(!m_hasBadChildList);
#ifdef CHECK_CONSISTENCY
const InlineBox* previousChild = nullptr;
for (const InlineBox* child = firstChild(); child; child = child->nextOnLine()) {
ASSERT(child->parent() == this);
ASSERT(child->prevOnLine() == previousChild);
previousChild = child;
}
ASSERT(previousChild == m_lastChild);
#endif
}
#endif
} // namespace WebCore