blob: 478f87703804b784f9ed606e1e2d88b6025b2720 [file] [log] [blame]
// Note: For maximum-speed code, see "Optimizing Code" on the Emscripten wiki, https://github.com/kripken/emscripten/wiki/Optimizing-Code
// Note: Some Emscripten settings may limit the speed of the generated code.
// The Module object: Our interface to the outside world. We import
// and export values on it, and do the work to get that through
// closure compiler if necessary. There are various ways Module can be used:
// 1. Not defined. We create it here
// 2. A function parameter, function(Module) { ..generated code.. }
// 3. pre-run appended it, var Module = {}; ..generated code..
// 4. External script tag defines var Module.
// We need to do an eval in order to handle the closure compiler
// case, where this code here is minified but Module was defined
// elsewhere (e.g. case 4 above). We also need to check if Module
// already exists (e.g. case 3 above).
// Note that if you want to run closure, and also to use Module
// after the generated code, you will need to define var Module = {};
// before the code. Then that object will be used in the code, and you
// can continue to use Module afterwards as well.
var Module;
if (!Module) Module = eval('(function() { try { return Module || {} } catch(e) { return {} } })()');
// Sometimes an existing Module object exists with properties
// meant to overwrite the default module functionality. Here
// we collect those properties and reapply _after_ we configure
// the current environment's defaults to avoid having to be so
// defensive during initialization.
var moduleOverrides = {};
for (var key in Module) {
if (Module.hasOwnProperty(key)) {
moduleOverrides[key] = Module[key];
}
}
// The environment setup code below is customized to use Module.
// *** Environment setup code ***
var ENVIRONMENT_IS_NODE = typeof process === 'object' && typeof require === 'function';
var ENVIRONMENT_IS_WEB = typeof window === 'object';
var ENVIRONMENT_IS_WORKER = typeof importScripts === 'function';
var ENVIRONMENT_IS_SHELL = !ENVIRONMENT_IS_WEB && !ENVIRONMENT_IS_NODE && !ENVIRONMENT_IS_WORKER;
arguments = ["fleefl"];
var JSRegress_outputBuffer = "";
if (ENVIRONMENT_IS_NODE) {
// Expose functionality in the same simple way that the shells work
// Note that we pollute the global namespace here, otherwise we break in node
Module['print'] = function(x) {
process['stdout'].write(x + '\n');
};
Module['printErr'] = function(x) {
process['stderr'].write(x + '\n');
};
var nodeFS = require('fs');
var nodePath = require('path');
Module['read'] = function(filename, binary) {
filename = nodePath['normalize'](filename);
var ret = nodeFS['readFileSync'](filename);
// The path is absolute if the normalized version is the same as the resolved.
if (!ret && filename != nodePath['resolve'](filename)) {
filename = path.join(__dirname, '..', 'src', filename);
ret = nodeFS['readFileSync'](filename);
}
if (ret && !binary) ret = ret.toString();
return ret;
};
Module['readBinary'] = function(filename) { return Module['read'](filename, true) };
Module['load'] = function(f) {
globalEval(read(f));
};
Module['arguments'] = process['argv'].slice(2);
module.exports = Module;
}
else if (ENVIRONMENT_IS_SHELL) {
Module['print'] = function() {
for (var i = 0; i < arguments.length; ++i) {
if (i)
JSRegress_outputBuffer += " ";
JSRegress_outputBuffer += arguments[i];
}
JSRegress_outputBuffer += "\n";
};
if (typeof printErr != 'undefined') Module['printErr'] = printErr; // not present in v8 or older sm
if (typeof read != 'undefined') {
Module['read'] = read;
} else {
Module['read'] = function() { throw 'no read() available (jsc?)' };
}
Module['readBinary'] = function(f) {
return read(f, 'binary');
};
if (typeof scriptArgs != 'undefined') {
Module['arguments'] = scriptArgs;
} else if (typeof arguments != 'undefined') {
Module['arguments'] = arguments;
}
this['Module'] = Module;
}
else if (ENVIRONMENT_IS_WEB || ENVIRONMENT_IS_WORKER) {
Module['read'] = function(url) {
var xhr = new XMLHttpRequest();
xhr.open('GET', url, false);
xhr.send(null);
return xhr.responseText;
};
if (typeof arguments != 'undefined') {
Module['arguments'] = arguments;
}
if (ENVIRONMENT_IS_WEB) {
Module['print'] = function() {
for (var i = 0; i < arguments.length; ++i) {
if (i)
JSRegress_outputBuffer += " ";
JSRegress_outputBuffer += arguments[i];
}
JSRegress_outputBuffer += "\n";
};
Module['printErr'] = function(x) {
console.log(x);
};
this['Module'] = Module;
} else if (ENVIRONMENT_IS_WORKER) {
// We can do very little here...
var TRY_USE_DUMP = false;
Module['print'] = (TRY_USE_DUMP && (typeof(dump) !== "undefined") ? (function(x) {
dump(x);
}) : (function(x) {
// self.postMessage(x); // enable this if you want stdout to be sent as messages
}));
Module['load'] = importScripts;
}
}
else {
// Unreachable because SHELL is dependant on the others
throw 'Unknown runtime environment. Where are we?';
}
function globalEval(x) {
eval.call(null, x);
}
if (!Module['load'] == 'undefined' && Module['read']) {
Module['load'] = function(f) {
globalEval(Module['read'](f));
};
}
if (!Module['print']) {
Module['print'] = function(){};
}
if (!Module['printErr']) {
Module['printErr'] = Module['print'];
}
if (!Module['arguments']) {
Module['arguments'] = [];
}
// *** Environment setup code ***
// Closure helpers
Module.print = Module['print'];
Module.printErr = Module['printErr'];
// Callbacks
Module['preRun'] = [];
Module['postRun'] = [];
// Merge back in the overrides
for (var key in moduleOverrides) {
if (moduleOverrides.hasOwnProperty(key)) {
Module[key] = moduleOverrides[key];
}
}
// === Auto-generated preamble library stuff ===
//========================================
// Runtime code shared with compiler
//========================================
var Runtime = {
stackSave: function () {
return STACKTOP;
},
stackRestore: function (stackTop) {
STACKTOP = stackTop;
},
forceAlign: function (target, quantum) {
quantum = quantum || 4;
if (quantum == 1) return target;
if (isNumber(target) && isNumber(quantum)) {
return Math.ceil(target/quantum)*quantum;
} else if (isNumber(quantum) && isPowerOfTwo(quantum)) {
var logg = log2(quantum);
return '((((' +target + ')+' + (quantum-1) + ')>>' + logg + ')<<' + logg + ')';
}
return 'Math.ceil((' + target + ')/' + quantum + ')*' + quantum;
},
isNumberType: function (type) {
return type in Runtime.INT_TYPES || type in Runtime.FLOAT_TYPES;
},
isPointerType: function isPointerType(type) {
return type[type.length-1] == '*';
},
isStructType: function isStructType(type) {
if (isPointerType(type)) return false;
if (isArrayType(type)) return true;
if (/<?{ ?[^}]* ?}>?/.test(type)) return true; // { i32, i8 } etc. - anonymous struct types
// See comment in isStructPointerType()
return type[0] == '%';
},
INT_TYPES: {"i1":0,"i8":0,"i16":0,"i32":0,"i64":0},
FLOAT_TYPES: {"float":0,"double":0},
or64: function (x, y) {
var l = (x | 0) | (y | 0);
var h = (Math.round(x / 4294967296) | Math.round(y / 4294967296)) * 4294967296;
return l + h;
},
and64: function (x, y) {
var l = (x | 0) & (y | 0);
var h = (Math.round(x / 4294967296) & Math.round(y / 4294967296)) * 4294967296;
return l + h;
},
xor64: function (x, y) {
var l = (x | 0) ^ (y | 0);
var h = (Math.round(x / 4294967296) ^ Math.round(y / 4294967296)) * 4294967296;
return l + h;
},
getNativeTypeSize: function (type, quantumSize) {
if (Runtime.QUANTUM_SIZE == 1) return 1;
var size = {
'%i1': 1,
'%i8': 1,
'%i16': 2,
'%i32': 4,
'%i64': 8,
"%float": 4,
"%double": 8
}['%'+type]; // add '%' since float and double confuse Closure compiler as keys, and also spidermonkey as a compiler will remove 's from '_i8' etc
if (!size) {
if (type.charAt(type.length-1) == '*') {
size = Runtime.QUANTUM_SIZE; // A pointer
} else if (type[0] == 'i') {
var bits = parseInt(type.substr(1));
assert(bits % 8 == 0);
size = bits/8;
}
}
return size;
},
getNativeFieldSize: function (type) {
return Math.max(Runtime.getNativeTypeSize(type), Runtime.QUANTUM_SIZE);
},
dedup: function dedup(items, ident) {
var seen = {};
if (ident) {
return items.filter(function(item) {
if (seen[item[ident]]) return false;
seen[item[ident]] = true;
return true;
});
} else {
return items.filter(function(item) {
if (seen[item]) return false;
seen[item] = true;
return true;
});
}
},
set: function set() {
var args = typeof arguments[0] === 'object' ? arguments[0] : arguments;
var ret = {};
for (var i = 0; i < args.length; i++) {
ret[args[i]] = 0;
}
return ret;
},
STACK_ALIGN: 8,
getAlignSize: function (type, size, vararg) {
// we align i64s and doubles on 64-bit boundaries, unlike x86
if (type == 'i64' || type == 'double' || vararg) return 8;
if (!type) return Math.min(size, 8); // align structures internally to 64 bits
return Math.min(size || (type ? Runtime.getNativeFieldSize(type) : 0), Runtime.QUANTUM_SIZE);
},
calculateStructAlignment: function calculateStructAlignment(type) {
type.flatSize = 0;
type.alignSize = 0;
var diffs = [];
var prev = -1;
var index = 0;
type.flatIndexes = type.fields.map(function(field) {
index++;
var size, alignSize;
if (Runtime.isNumberType(field) || Runtime.isPointerType(field)) {
size = Runtime.getNativeTypeSize(field); // pack char; char; in structs, also char[X]s.
alignSize = Runtime.getAlignSize(field, size);
} else if (Runtime.isStructType(field)) {
if (field[1] === '0') {
// this is [0 x something]. When inside another structure like here, it must be at the end,
// and it adds no size
// XXX this happens in java-nbody for example... assert(index === type.fields.length, 'zero-length in the middle!');
size = 0;
alignSize = type.alignSize || QUANTUM_SIZE;
} else {
size = Types.types[field].flatSize;
alignSize = Runtime.getAlignSize(null, Types.types[field].alignSize);
}
} else if (field[0] == 'b') {
// bN, large number field, like a [N x i8]
size = field.substr(1)|0;
alignSize = 1;
} else {
throw 'Unclear type in struct: ' + field + ', in ' + type.name_ + ' :: ' + dump(Types.types[type.name_]);
}
if (type.packed) alignSize = 1;
type.alignSize = Math.max(type.alignSize, alignSize);
var curr = Runtime.alignMemory(type.flatSize, alignSize); // if necessary, place this on aligned memory
type.flatSize = curr + size;
if (prev >= 0) {
diffs.push(curr-prev);
}
prev = curr;
return curr;
});
type.flatSize = Runtime.alignMemory(type.flatSize, type.alignSize);
if (diffs.length == 0) {
type.flatFactor = type.flatSize;
} else if (Runtime.dedup(diffs).length == 1) {
type.flatFactor = diffs[0];
}
type.needsFlattening = (type.flatFactor != 1);
return type.flatIndexes;
},
generateStructInfo: function (struct, typeName, offset) {
var type, alignment;
if (typeName) {
offset = offset || 0;
type = (typeof Types === 'undefined' ? Runtime.typeInfo : Types.types)[typeName];
if (!type) return null;
if (type.fields.length != struct.length) {
printErr('Number of named fields must match the type for ' + typeName + ': possibly duplicate struct names. Cannot return structInfo');
return null;
}
alignment = type.flatIndexes;
} else {
var type = { fields: struct.map(function(item) { return item[0] }) };
alignment = Runtime.calculateStructAlignment(type);
}
var ret = {
__size__: type.flatSize
};
if (typeName) {
struct.forEach(function(item, i) {
if (typeof item === 'string') {
ret[item] = alignment[i] + offset;
} else {
// embedded struct
var key;
for (var k in item) key = k;
ret[key] = Runtime.generateStructInfo(item[key], type.fields[i], alignment[i]);
}
});
} else {
struct.forEach(function(item, i) {
ret[item[1]] = alignment[i];
});
}
return ret;
},
dynCall: function (sig, ptr, args) {
if (args && args.length) {
if (!args.splice) args = Array.prototype.slice.call(args);
args.splice(0, 0, ptr);
return Module['dynCall_' + sig].apply(null, args);
} else {
return Module['dynCall_' + sig].call(null, ptr);
}
},
functionPointers: [],
addFunction: function (func) {
for (var i = 0; i < Runtime.functionPointers.length; i++) {
if (!Runtime.functionPointers[i]) {
Runtime.functionPointers[i] = func;
return 2 + 2*i;
}
}
throw 'Finished up all reserved function pointers. Use a higher value for RESERVED_FUNCTION_POINTERS.';
},
removeFunction: function (index) {
Runtime.functionPointers[(index-2)/2] = null;
},
warnOnce: function (text) {
if (!Runtime.warnOnce.shown) Runtime.warnOnce.shown = {};
if (!Runtime.warnOnce.shown[text]) {
Runtime.warnOnce.shown[text] = 1;
Module.printErr(text);
}
},
funcWrappers: {},
getFuncWrapper: function (func, sig) {
assert(sig);
if (!Runtime.funcWrappers[func]) {
Runtime.funcWrappers[func] = function() {
return Runtime.dynCall(sig, func, arguments);
};
}
return Runtime.funcWrappers[func];
},
UTF8Processor: function () {
var buffer = [];
var needed = 0;
this.processCChar = function (code) {
code = code & 0xff;
if (needed) {
buffer.push(code);
needed--;
}
if (buffer.length == 0) {
if (code < 128) return String.fromCharCode(code);
buffer.push(code);
if (code > 191 && code < 224) {
needed = 1;
} else {
needed = 2;
}
return '';
}
if (needed > 0) return '';
var c1 = buffer[0];
var c2 = buffer[1];
var c3 = buffer[2];
var ret;
if (c1 > 191 && c1 < 224) {
ret = String.fromCharCode(((c1 & 31) << 6) | (c2 & 63));
} else {
ret = String.fromCharCode(((c1 & 15) << 12) | ((c2 & 63) << 6) | (c3 & 63));
}
buffer.length = 0;
return ret;
}
this.processJSString = function(string) {
string = unescape(encodeURIComponent(string));
var ret = [];
for (var i = 0; i < string.length; i++) {
ret.push(string.charCodeAt(i));
}
return ret;
}
},
stackAlloc: function (size) { var ret = STACKTOP;STACKTOP = (STACKTOP + size)|0;STACKTOP = ((((STACKTOP)+7)>>3)<<3); return ret; },
staticAlloc: function (size) { var ret = STATICTOP;STATICTOP = (STATICTOP + size)|0;STATICTOP = ((((STATICTOP)+7)>>3)<<3); return ret; },
dynamicAlloc: function (size) { var ret = DYNAMICTOP;DYNAMICTOP = (DYNAMICTOP + size)|0;DYNAMICTOP = ((((DYNAMICTOP)+7)>>3)<<3); if (DYNAMICTOP >= TOTAL_MEMORY) enlargeMemory();; return ret; },
alignMemory: function (size,quantum) { var ret = size = Math.ceil((size)/(quantum ? quantum : 8))*(quantum ? quantum : 8); return ret; },
makeBigInt: function (low,high,unsigned) { var ret = (unsigned ? ((+(((low)>>>(0))))+((+(((high)>>>(0))))*(+(4294967296)))) : ((+(((low)>>>(0))))+((+(((high)|(0))))*(+(4294967296))))); return ret; },
GLOBAL_BASE: 8,
QUANTUM_SIZE: 4,
__dummy__: 0
}
//========================================
// Runtime essentials
//========================================
var __THREW__ = 0; // Used in checking for thrown exceptions.
var ABORT = false; // whether we are quitting the application. no code should run after this. set in exit() and abort()
var EXITSTATUS = 0;
var undef = 0;
// tempInt is used for 32-bit signed values or smaller. tempBigInt is used
// for 32-bit unsigned values or more than 32 bits. TODO: audit all uses of tempInt
var tempValue, tempInt, tempBigInt, tempInt2, tempBigInt2, tempPair, tempBigIntI, tempBigIntR, tempBigIntS, tempBigIntP, tempBigIntD;
var tempI64, tempI64b;
var tempRet0, tempRet1, tempRet2, tempRet3, tempRet4, tempRet5, tempRet6, tempRet7, tempRet8, tempRet9;
function assert(condition, text) {
if (!condition) {
abort('Assertion failed: ' + text);
}
}
var globalScope = this;
// C calling interface. A convenient way to call C functions (in C files, or
// defined with extern "C").
//
// Note: LLVM optimizations can inline and remove functions, after which you will not be
// able to call them. Closure can also do so. To avoid that, add your function to
// the exports using something like
//
// -s EXPORTED_FUNCTIONS='["_main", "_myfunc"]'
//
// @param ident The name of the C function (note that C++ functions will be name-mangled - use extern "C")
// @param returnType The return type of the function, one of the JS types 'number', 'string' or 'array' (use 'number' for any C pointer, and
// 'array' for JavaScript arrays and typed arrays; note that arrays are 8-bit).
// @param argTypes An array of the types of arguments for the function (if there are no arguments, this can be ommitted). Types are as in returnType,
// except that 'array' is not possible (there is no way for us to know the length of the array)
// @param args An array of the arguments to the function, as native JS values (as in returnType)
// Note that string arguments will be stored on the stack (the JS string will become a C string on the stack).
// @return The return value, as a native JS value (as in returnType)
function ccall(ident, returnType, argTypes, args) {
return ccallFunc(getCFunc(ident), returnType, argTypes, args);
}
Module["ccall"] = ccall;
// Returns the C function with a specified identifier (for C++, you need to do manual name mangling)
function getCFunc(ident) {
try {
var func = Module['_' + ident]; // closure exported function
if (!func) func = eval('_' + ident); // explicit lookup
} catch(e) {
}
assert(func, 'Cannot call unknown function ' + ident + ' (perhaps LLVM optimizations or closure removed it?)');
return func;
}
// Internal function that does a C call using a function, not an identifier
function ccallFunc(func, returnType, argTypes, args) {
var stack = 0;
function toC(value, type) {
if (type == 'string') {
if (value === null || value === undefined || value === 0) return 0; // null string
if (!stack) stack = Runtime.stackSave();
var ret = Runtime.stackAlloc(value.length+1);
writeStringToMemory(value, ret);
return ret;
} else if (type == 'array') {
if (!stack) stack = Runtime.stackSave();
var ret = Runtime.stackAlloc(value.length);
writeArrayToMemory(value, ret);
return ret;
}
return value;
}
function fromC(value, type) {
if (type == 'string') {
return Pointer_stringify(value);
}
assert(type != 'array');
return value;
}
var i = 0;
var cArgs = args ? args.map(function(arg) {
return toC(arg, argTypes[i++]);
}) : [];
var ret = fromC(func.apply(null, cArgs), returnType);
if (stack) Runtime.stackRestore(stack);
return ret;
}
// Returns a native JS wrapper for a C function. This is similar to ccall, but
// returns a function you can call repeatedly in a normal way. For example:
//
// var my_function = cwrap('my_c_function', 'number', ['number', 'number']);
// alert(my_function(5, 22));
// alert(my_function(99, 12));
//
function cwrap(ident, returnType, argTypes) {
var func = getCFunc(ident);
return function() {
return ccallFunc(func, returnType, argTypes, Array.prototype.slice.call(arguments));
}
}
Module["cwrap"] = cwrap;
// Sets a value in memory in a dynamic way at run-time. Uses the
// type data. This is the same as makeSetValue, except that
// makeSetValue is done at compile-time and generates the needed
// code then, whereas this function picks the right code at
// run-time.
// Note that setValue and getValue only do *aligned* writes and reads!
// Note that ccall uses JS types as for defining types, while setValue and
// getValue need LLVM types ('i8', 'i32') - this is a lower-level operation
function setValue(ptr, value, type, noSafe) {
type = type || 'i8';
if (type.charAt(type.length-1) === '*') type = 'i32'; // pointers are 32-bit
switch(type) {
case 'i1': HEAP8[(ptr)]=value; break;
case 'i8': HEAP8[(ptr)]=value; break;
case 'i16': HEAP16[((ptr)>>1)]=value; break;
case 'i32': HEAP32[((ptr)>>2)]=value; break;
case 'i64': (tempI64 = [value>>>0,((Math.min((+(Math.floor((value)/(+(4294967296))))), (+(4294967295))))|0)>>>0],HEAP32[((ptr)>>2)]=tempI64[0],HEAP32[(((ptr)+(4))>>2)]=tempI64[1]); break;
case 'float': HEAPF32[((ptr)>>2)]=value; break;
case 'double': HEAPF64[((ptr)>>3)]=value; break;
default: abort('invalid type for setValue: ' + type);
}
}
Module['setValue'] = setValue;
// Parallel to setValue.
function getValue(ptr, type, noSafe) {
type = type || 'i8';
if (type.charAt(type.length-1) === '*') type = 'i32'; // pointers are 32-bit
switch(type) {
case 'i1': return HEAP8[(ptr)];
case 'i8': return HEAP8[(ptr)];
case 'i16': return HEAP16[((ptr)>>1)];
case 'i32': return HEAP32[((ptr)>>2)];
case 'i64': return HEAP32[((ptr)>>2)];
case 'float': return HEAPF32[((ptr)>>2)];
case 'double': return HEAPF64[((ptr)>>3)];
default: abort('invalid type for setValue: ' + type);
}
return null;
}
Module['getValue'] = getValue;
var ALLOC_NORMAL = 0; // Tries to use _malloc()
var ALLOC_STACK = 1; // Lives for the duration of the current function call
var ALLOC_STATIC = 2; // Cannot be freed
var ALLOC_DYNAMIC = 3; // Cannot be freed except through sbrk
var ALLOC_NONE = 4; // Do not allocate
Module['ALLOC_NORMAL'] = ALLOC_NORMAL;
Module['ALLOC_STACK'] = ALLOC_STACK;
Module['ALLOC_STATIC'] = ALLOC_STATIC;
Module['ALLOC_DYNAMIC'] = ALLOC_DYNAMIC;
Module['ALLOC_NONE'] = ALLOC_NONE;
// allocate(): This is for internal use. You can use it yourself as well, but the interface
// is a little tricky (see docs right below). The reason is that it is optimized
// for multiple syntaxes to save space in generated code. So you should
// normally not use allocate(), and instead allocate memory using _malloc(),
// initialize it with setValue(), and so forth.
// @slab: An array of data, or a number. If a number, then the size of the block to allocate,
// in *bytes* (note that this is sometimes confusing: the next parameter does not
// affect this!)
// @types: Either an array of types, one for each byte (or 0 if no type at that position),
// or a single type which is used for the entire block. This only matters if there
// is initial data - if @slab is a number, then this does not matter at all and is
// ignored.
// @allocator: How to allocate memory, see ALLOC_*
function allocate(slab, types, allocator, ptr) {
var zeroinit, size;
if (typeof slab === 'number') {
zeroinit = true;
size = slab;
} else {
zeroinit = false;
size = slab.length;
}
var singleType = typeof types === 'string' ? types : null;
var ret;
if (allocator == ALLOC_NONE) {
ret = ptr;
} else {
ret = [_malloc, Runtime.stackAlloc, Runtime.staticAlloc, Runtime.dynamicAlloc][allocator === undefined ? ALLOC_STATIC : allocator](Math.max(size, singleType ? 1 : types.length));
}
if (zeroinit) {
var ptr = ret, stop;
assert((ret & 3) == 0);
stop = ret + (size & ~3);
for (; ptr < stop; ptr += 4) {
HEAP32[((ptr)>>2)]=0;
}
stop = ret + size;
while (ptr < stop) {
HEAP8[((ptr++)|0)]=0;
}
return ret;
}
if (singleType === 'i8') {
if (slab.subarray || slab.slice) {
HEAPU8.set(slab, ret);
} else {
HEAPU8.set(new Uint8Array(slab), ret);
}
return ret;
}
var i = 0, type, typeSize, previousType;
while (i < size) {
var curr = slab[i];
if (typeof curr === 'function') {
curr = Runtime.getFunctionIndex(curr);
}
type = singleType || types[i];
if (type === 0) {
i++;
continue;
}
if (type == 'i64') type = 'i32'; // special case: we have one i32 here, and one i32 later
setValue(ret+i, curr, type);
// no need to look up size unless type changes, so cache it
if (previousType !== type) {
typeSize = Runtime.getNativeTypeSize(type);
previousType = type;
}
i += typeSize;
}
return ret;
}
Module['allocate'] = allocate;
function Pointer_stringify(ptr, /* optional */ length) {
// Find the length, and check for UTF while doing so
var hasUtf = false;
var t;
var i = 0;
while (1) {
t = HEAPU8[(((ptr)+(i))|0)];
if (t >= 128) hasUtf = true;
else if (t == 0 && !length) break;
i++;
if (length && i == length) break;
}
if (!length) length = i;
var ret = '';
if (!hasUtf) {
var MAX_CHUNK = 1024; // split up into chunks, because .apply on a huge string can overflow the stack
var curr;
while (length > 0) {
curr = String.fromCharCode.apply(String, HEAPU8.subarray(ptr, ptr + Math.min(length, MAX_CHUNK)));
ret = ret ? ret + curr : curr;
ptr += MAX_CHUNK;
length -= MAX_CHUNK;
}
return ret;
}
var utf8 = new Runtime.UTF8Processor();
for (i = 0; i < length; i++) {
t = HEAPU8[(((ptr)+(i))|0)];
ret += utf8.processCChar(t);
}
return ret;
}
Module['Pointer_stringify'] = Pointer_stringify;
// Memory management
var PAGE_SIZE = 4096;
function alignMemoryPage(x) {
return ((x+4095)>>12)<<12;
}
var HEAP;
var HEAP8, HEAPU8, HEAP16, HEAPU16, HEAP32, HEAPU32, HEAPF32, HEAPF64;
var STATIC_BASE = 0, STATICTOP = 0, staticSealed = false; // static area
var STACK_BASE = 0, STACKTOP = 0, STACK_MAX = 0; // stack area
var DYNAMIC_BASE = 0, DYNAMICTOP = 0; // dynamic area handled by sbrk
function enlargeMemory() {
abort('Cannot enlarge memory arrays in asm.js. Either (1) compile with -s TOTAL_MEMORY=X with X higher than the current value, or (2) set Module.TOTAL_MEMORY before the program runs.');
}
var TOTAL_STACK = Module['TOTAL_STACK'] || 5242880;
var TOTAL_MEMORY = Module['TOTAL_MEMORY'] || 16777216;
var FAST_MEMORY = Module['FAST_MEMORY'] || 2097152;
// Initialize the runtime's memory
// check for full engine support (use string 'subarray' to avoid closure compiler confusion)
assert(!!Int32Array && !!Float64Array && !!(new Int32Array(1)['subarray']) && !!(new Int32Array(1)['set']),
'Cannot fallback to non-typed array case: Code is too specialized');
var buffer = new ArrayBuffer(TOTAL_MEMORY);
HEAP8 = new Int8Array(buffer);
HEAP16 = new Int16Array(buffer);
HEAP32 = new Int32Array(buffer);
HEAPU8 = new Uint8Array(buffer);
HEAPU16 = new Uint16Array(buffer);
HEAPU32 = new Uint32Array(buffer);
HEAPF32 = new Float32Array(buffer);
HEAPF64 = new Float64Array(buffer);
// Endianness check (note: assumes compiler arch was little-endian)
HEAP32[0] = 255;
assert(HEAPU8[0] === 255 && HEAPU8[3] === 0, 'Typed arrays 2 must be run on a little-endian system');
Module['HEAP'] = HEAP;
Module['HEAP8'] = HEAP8;
Module['HEAP16'] = HEAP16;
Module['HEAP32'] = HEAP32;
Module['HEAPU8'] = HEAPU8;
Module['HEAPU16'] = HEAPU16;
Module['HEAPU32'] = HEAPU32;
Module['HEAPF32'] = HEAPF32;
Module['HEAPF64'] = HEAPF64;
function callRuntimeCallbacks(callbacks) {
while(callbacks.length > 0) {
var callback = callbacks.shift();
if (typeof callback == 'function') {
callback();
continue;
}
var func = callback.func;
if (typeof func === 'number') {
if (callback.arg === undefined) {
Runtime.dynCall('v', func);
} else {
Runtime.dynCall('vi', func, [callback.arg]);
}
} else {
func(callback.arg === undefined ? null : callback.arg);
}
}
}
var __ATPRERUN__ = []; // functions called before the runtime is initialized
var __ATINIT__ = []; // functions called during startup
var __ATMAIN__ = []; // functions called when main() is to be run
var __ATEXIT__ = []; // functions called during shutdown
var __ATPOSTRUN__ = []; // functions called after the runtime has exited
var runtimeInitialized = false;
function preRun() {
// compatibility - merge in anything from Module['preRun'] at this time
if (Module['preRun']) {
if (typeof Module['preRun'] == 'function') Module['preRun'] = [Module['preRun']];
while (Module['preRun'].length) {
addOnPreRun(Module['preRun'].shift());
}
}
callRuntimeCallbacks(__ATPRERUN__);
}
function ensureInitRuntime() {
if (runtimeInitialized) return;
runtimeInitialized = true;
callRuntimeCallbacks(__ATINIT__);
}
function preMain() {
callRuntimeCallbacks(__ATMAIN__);
}
function exitRuntime() {
callRuntimeCallbacks(__ATEXIT__);
}
function postRun() {
// compatibility - merge in anything from Module['postRun'] at this time
if (Module['postRun']) {
if (typeof Module['postRun'] == 'function') Module['postRun'] = [Module['postRun']];
while (Module['postRun'].length) {
addOnPostRun(Module['postRun'].shift());
}
}
callRuntimeCallbacks(__ATPOSTRUN__);
}
function addOnPreRun(cb) {
__ATPRERUN__.unshift(cb);
}
Module['addOnPreRun'] = Module.addOnPreRun = addOnPreRun;
function addOnInit(cb) {
__ATINIT__.unshift(cb);
}
Module['addOnInit'] = Module.addOnInit = addOnInit;
function addOnPreMain(cb) {
__ATMAIN__.unshift(cb);
}
Module['addOnPreMain'] = Module.addOnPreMain = addOnPreMain;
function addOnExit(cb) {
__ATEXIT__.unshift(cb);
}
Module['addOnExit'] = Module.addOnExit = addOnExit;
function addOnPostRun(cb) {
__ATPOSTRUN__.unshift(cb);
}
Module['addOnPostRun'] = Module.addOnPostRun = addOnPostRun;
// Tools
// This processes a JS string into a C-line array of numbers, 0-terminated.
// For LLVM-originating strings, see parser.js:parseLLVMString function
function intArrayFromString(stringy, dontAddNull, length /* optional */) {
var ret = (new Runtime.UTF8Processor()).processJSString(stringy);
if (length) {
ret.length = length;
}
if (!dontAddNull) {
ret.push(0);
}
return ret;
}
Module['intArrayFromString'] = intArrayFromString;
function intArrayToString(array) {
var ret = [];
for (var i = 0; i < array.length; i++) {
var chr = array[i];
if (chr > 0xFF) {
chr &= 0xFF;
}
ret.push(String.fromCharCode(chr));
}
return ret.join('');
}
Module['intArrayToString'] = intArrayToString;
// Write a Javascript array to somewhere in the heap
function writeStringToMemory(string, buffer, dontAddNull) {
var array = intArrayFromString(string, dontAddNull);
var i = 0;
while (i < array.length) {
var chr = array[i];
HEAP8[(((buffer)+(i))|0)]=chr
i = i + 1;
}
}
Module['writeStringToMemory'] = writeStringToMemory;
function writeArrayToMemory(array, buffer) {
for (var i = 0; i < array.length; i++) {
HEAP8[(((buffer)+(i))|0)]=array[i];
}
}
Module['writeArrayToMemory'] = writeArrayToMemory;
function unSign(value, bits, ignore, sig) {
if (value >= 0) {
return value;
}
return bits <= 32 ? 2*Math.abs(1 << (bits-1)) + value // Need some trickery, since if bits == 32, we are right at the limit of the bits JS uses in bitshifts
: Math.pow(2, bits) + value;
}
function reSign(value, bits, ignore, sig) {
if (value <= 0) {
return value;
}
var half = bits <= 32 ? Math.abs(1 << (bits-1)) // abs is needed if bits == 32
: Math.pow(2, bits-1);
if (value >= half && (bits <= 32 || value > half)) { // for huge values, we can hit the precision limit and always get true here. so don't do that
// but, in general there is no perfect solution here. With 64-bit ints, we get rounding and errors
// TODO: In i64 mode 1, resign the two parts separately and safely
value = -2*half + value; // Cannot bitshift half, as it may be at the limit of the bits JS uses in bitshifts
}
return value;
}
if (!Math['imul']) Math['imul'] = function(a, b) {
var ah = a >>> 16;
var al = a & 0xffff;
var bh = b >>> 16;
var bl = b & 0xffff;
return (al*bl + ((ah*bl + al*bh) << 16))|0;
};
Math.imul = Math['imul'];
// A counter of dependencies for calling run(). If we need to
// do asynchronous work before running, increment this and
// decrement it. Incrementing must happen in a place like
// PRE_RUN_ADDITIONS (used by emcc to add file preloading).
// Note that you can add dependencies in preRun, even though
// it happens right before run - run will be postponed until
// the dependencies are met.
var runDependencies = 0;
var runDependencyTracking = {};
var calledInit = false, calledRun = false;
var runDependencyWatcher = null;
function addRunDependency(id) {
runDependencies++;
if (Module['monitorRunDependencies']) {
Module['monitorRunDependencies'](runDependencies);
}
if (id) {
assert(!runDependencyTracking[id]);
runDependencyTracking[id] = 1;
} else {
Module.printErr('warning: run dependency added without ID');
}
}
Module['addRunDependency'] = addRunDependency;
function removeRunDependency(id) {
runDependencies--;
if (Module['monitorRunDependencies']) {
Module['monitorRunDependencies'](runDependencies);
}
if (id) {
assert(runDependencyTracking[id]);
delete runDependencyTracking[id];
} else {
Module.printErr('warning: run dependency removed without ID');
}
if (runDependencies == 0) {
if (runDependencyWatcher !== null) {
clearInterval(runDependencyWatcher);
runDependencyWatcher = null;
}
// If run has never been called, and we should call run (INVOKE_RUN is true, and Module.noInitialRun is not false)
if (!calledRun && shouldRunNow) run();
}
}
Module['removeRunDependency'] = removeRunDependency;
Module["preloadedImages"] = {}; // maps url to image data
Module["preloadedAudios"] = {}; // maps url to audio data
function loadMemoryInitializer(filename) {
function applyData(data) {
HEAPU8.set(data, STATIC_BASE);
}
// always do this asynchronously, to keep shell and web as similar as possible
addOnPreRun(function() {
if (ENVIRONMENT_IS_NODE || ENVIRONMENT_IS_SHELL) {
applyData(Module['readBinary'](filename));
} else {
Browser.asyncLoad(filename, function(data) {
applyData(data);
}, function(data) {
throw 'could not load memory initializer ' + filename;
});
}
});
}
// === Body ===
STATIC_BASE = 8;
STATICTOP = STATIC_BASE + 8864;
/* global initializers */ __ATINIT__.push({ func: function() { runPostSets() } });
/* memory initializer */ allocate([0,0,0,0,0,0,0,0,239,205,171,137,103,69,35,1,16,50,84,118,152,186,220,254,135,225,178,195,180,165,150,240,85,115,97,103,101,58,32,104,97,115,104,115,116,114,105,110,103,32,60,115,101,101,100,62,0,0,0,0,0,0,0,0,104,97,115,104,32,118,97,108,117,101,58,32,37,115,10,0,84,105,103,101,114,32,45,32,65,32,70,97,115,116,32,78,101,119,32,72,97,115,104,32,70,117,110,99,116,105,111,110,44,32,98,121,32,82,111,115,115,32,65,110,100,101,114,115,111,110,32,97,110,100,32,69,108,105,32,66,105,104,97,109,0,0,0,0,0,0,0,0,48,49,50,51,52,53,54,55,56,57,65,66,67,68,69,70,0,0,0,0,0,0,0,0], "i8", ALLOC_NONE, Runtime.GLOBAL_BASE)
var tempDoublePtr = Runtime.alignMemory(allocate(12, "i8", ALLOC_STATIC), 8);
assert(tempDoublePtr % 8 == 0);
function copyTempFloat(ptr) { // functions, because inlining this code increases code size too much
HEAP8[tempDoublePtr] = HEAP8[ptr];
HEAP8[tempDoublePtr+1] = HEAP8[ptr+1];
HEAP8[tempDoublePtr+2] = HEAP8[ptr+2];
HEAP8[tempDoublePtr+3] = HEAP8[ptr+3];
}
function copyTempDouble(ptr) {
HEAP8[tempDoublePtr] = HEAP8[ptr];
HEAP8[tempDoublePtr+1] = HEAP8[ptr+1];
HEAP8[tempDoublePtr+2] = HEAP8[ptr+2];
HEAP8[tempDoublePtr+3] = HEAP8[ptr+3];
HEAP8[tempDoublePtr+4] = HEAP8[ptr+4];
HEAP8[tempDoublePtr+5] = HEAP8[ptr+5];
HEAP8[tempDoublePtr+6] = HEAP8[ptr+6];
HEAP8[tempDoublePtr+7] = HEAP8[ptr+7];
}
Module["_strlen"] = _strlen;
Module["_memcpy"] = _memcpy;var _llvm_memcpy_p0i8_p0i8_i32=_memcpy;
Module["_memset"] = _memset;var _llvm_memset_p0i8_i32=_memset;
var ERRNO_CODES={EPERM:1,ENOENT:2,ESRCH:3,EINTR:4,EIO:5,ENXIO:6,E2BIG:7,ENOEXEC:8,EBADF:9,ECHILD:10,EAGAIN:11,EWOULDBLOCK:11,ENOMEM:12,EACCES:13,EFAULT:14,ENOTBLK:15,EBUSY:16,EEXIST:17,EXDEV:18,ENODEV:19,ENOTDIR:20,EISDIR:21,EINVAL:22,ENFILE:23,EMFILE:24,ENOTTY:25,ETXTBSY:26,EFBIG:27,ENOSPC:28,ESPIPE:29,EROFS:30,EMLINK:31,EPIPE:32,EDOM:33,ERANGE:34,ENOMSG:35,EIDRM:36,ECHRNG:37,EL2NSYNC:38,EL3HLT:39,EL3RST:40,ELNRNG:41,EUNATCH:42,ENOCSI:43,EL2HLT:44,EDEADLK:45,ENOLCK:46,EBADE:50,EBADR:51,EXFULL:52,ENOANO:53,EBADRQC:54,EBADSLT:55,EDEADLOCK:56,EBFONT:57,ENOSTR:60,ENODATA:61,ETIME:62,ENOSR:63,ENONET:64,ENOPKG:65,EREMOTE:66,ENOLINK:67,EADV:68,ESRMNT:69,ECOMM:70,EPROTO:71,EMULTIHOP:74,EDOTDOT:76,EBADMSG:77,ENOTUNIQ:80,EBADFD:81,EREMCHG:82,ELIBACC:83,ELIBBAD:84,ELIBSCN:85,ELIBMAX:86,ELIBEXEC:87,ENOSYS:88,ENOTEMPTY:90,ENAMETOOLONG:91,ELOOP:92,EOPNOTSUPP:95,EPFNOSUPPORT:96,ECONNRESET:104,ENOBUFS:105,EAFNOSUPPORT:106,EPROTOTYPE:107,ENOTSOCK:108,ENOPROTOOPT:109,ESHUTDOWN:110,ECONNREFUSED:111,EADDRINUSE:112,ECONNABORTED:113,ENETUNREACH:114,ENETDOWN:115,ETIMEDOUT:116,EHOSTDOWN:117,EHOSTUNREACH:118,EINPROGRESS:119,EALREADY:120,EDESTADDRREQ:121,EMSGSIZE:122,EPROTONOSUPPORT:123,ESOCKTNOSUPPORT:124,EADDRNOTAVAIL:125,ENETRESET:126,EISCONN:127,ENOTCONN:128,ETOOMANYREFS:129,EUSERS:131,EDQUOT:132,ESTALE:133,ENOTSUP:134,ENOMEDIUM:135,EILSEQ:138,EOVERFLOW:139,ECANCELED:140,ENOTRECOVERABLE:141,EOWNERDEAD:142,ESTRPIPE:143};
var ERRNO_MESSAGES={0:"Success",1:"Not super-user",2:"No such file or directory",3:"No such process",4:"Interrupted system call",5:"I/O error",6:"No such device or address",7:"Arg list too long",8:"Exec format error",9:"Bad file number",10:"No children",11:"No more processes",12:"Not enough core",13:"Permission denied",14:"Bad address",15:"Block device required",16:"Mount device busy",17:"File exists",18:"Cross-device link",19:"No such device",20:"Not a directory",21:"Is a directory",22:"Invalid argument",23:"Too many open files in system",24:"Too many open files",25:"Not a typewriter",26:"Text file busy",27:"File too large",28:"No space left on device",29:"Illegal seek",30:"Read only file system",31:"Too many links",32:"Broken pipe",33:"Math arg out of domain of func",34:"Math result not representable",35:"No message of desired type",36:"Identifier removed",37:"Channel number out of range",38:"Level 2 not synchronized",39:"Level 3 halted",40:"Level 3 reset",41:"Link number out of range",42:"Protocol driver not attached",43:"No CSI structure available",44:"Level 2 halted",45:"Deadlock condition",46:"No record locks available",50:"Invalid exchange",51:"Invalid request descriptor",52:"Exchange full",53:"No anode",54:"Invalid request code",55:"Invalid slot",56:"File locking deadlock error",57:"Bad font file fmt",60:"Device not a stream",61:"No data (for no delay io)",62:"Timer expired",63:"Out of streams resources",64:"Machine is not on the network",65:"Package not installed",66:"The object is remote",67:"The link has been severed",68:"Advertise error",69:"Srmount error",70:"Communication error on send",71:"Protocol error",74:"Multihop attempted",76:"Cross mount point (not really error)",77:"Trying to read unreadable message",80:"Given log. name not unique",81:"f.d. invalid for this operation",82:"Remote address changed",83:"Can access a needed shared lib",84:"Accessing a corrupted shared lib",85:".lib section in a.out corrupted",86:"Attempting to link in too many libs",87:"Attempting to exec a shared library",88:"Function not implemented",90:"Directory not empty",91:"File or path name too long",92:"Too many symbolic links",95:"Operation not supported on transport endpoint",96:"Protocol family not supported",104:"Connection reset by peer",105:"No buffer space available",106:"Address family not supported by protocol family",107:"Protocol wrong type for socket",108:"Socket operation on non-socket",109:"Protocol not available",110:"Can't send after socket shutdown",111:"Connection refused",112:"Address already in use",113:"Connection aborted",114:"Network is unreachable",115:"Network interface is not configured",116:"Connection timed out",117:"Host is down",118:"Host is unreachable",119:"Connection already in progress",120:"Socket already connected",121:"Destination address required",122:"Message too long",123:"Unknown protocol",124:"Socket type not supported",125:"Address not available",126:"Connection reset by network",127:"Socket is already connected",128:"Socket is not connected",129:"Too many references",131:"Too many users",132:"Quota exceeded",133:"Stale file handle",134:"Not supported",135:"No medium (in tape drive)",138:"Illegal byte sequence",139:"Value too large for defined data type",140:"Operation canceled",141:"State not recoverable",142:"Previous owner died",143:"Streams pipe error"};
var ___errno_state=0;function ___setErrNo(value) {
// For convenient setting and returning of errno.
HEAP32[((___errno_state)>>2)]=value
return value;
}
var VFS=undefined;
var PATH={splitPath:function (filename) {
var splitPathRe = /^(\/?|)([\s\S]*?)((?:\.{1,2}|[^\/]+?|)(\.[^.\/]*|))(?:[\/]*)$/;
return splitPathRe.exec(filename).slice(1);
},normalizeArray:function (parts, allowAboveRoot) {
// if the path tries to go above the root, `up` ends up > 0
var up = 0;
for (var i = parts.length - 1; i >= 0; i--) {
var last = parts[i];
if (last === '.') {
parts.splice(i, 1);
} else if (last === '..') {
parts.splice(i, 1);
up++;
} else if (up) {
parts.splice(i, 1);
up--;
}
}
// if the path is allowed to go above the root, restore leading ..s
if (allowAboveRoot) {
for (; up--; up) {
parts.unshift('..');
}
}
return parts;
},normalize:function (path) {
var isAbsolute = path.charAt(0) === '/',
trailingSlash = path.substr(-1) === '/';
// Normalize the path
path = PATH.normalizeArray(path.split('/').filter(function(p) {
return !!p;
}), !isAbsolute).join('/');
if (!path && !isAbsolute) {
path = '.';
}
if (path && trailingSlash) {
path += '/';
}
return (isAbsolute ? '/' : '') + path;
},dirname:function (path) {
var result = PATH.splitPath(path),
root = result[0],
dir = result[1];
if (!root && !dir) {
// No dirname whatsoever
return '.';
}
if (dir) {
// It has a dirname, strip trailing slash
dir = dir.substr(0, dir.length - 1);
}
return root + dir;
},basename:function (path, ext) {
// EMSCRIPTEN return '/'' for '/', not an empty string
if (path === '/') return '/';
var f = PATH.splitPath(path)[2];
if (ext && f.substr(-1 * ext.length) === ext) {
f = f.substr(0, f.length - ext.length);
}
return f;
},join:function () {
var paths = Array.prototype.slice.call(arguments, 0);
return PATH.normalize(paths.filter(function(p, index) {
if (typeof p !== 'string') {
throw new TypeError('Arguments to path.join must be strings');
}
return p;
}).join('/'));
},resolve:function () {
var resolvedPath = '',
resolvedAbsolute = false;
for (var i = arguments.length - 1; i >= -1 && !resolvedAbsolute; i--) {
var path = (i >= 0) ? arguments[i] : FS.cwd();
// Skip empty and invalid entries
if (typeof path !== 'string') {
throw new TypeError('Arguments to path.resolve must be strings');
} else if (!path) {
continue;
}
resolvedPath = path + '/' + resolvedPath;
resolvedAbsolute = path.charAt(0) === '/';
}
// At this point the path should be resolved to a full absolute path, but
// handle relative paths to be safe (might happen when process.cwd() fails)
resolvedPath = PATH.normalizeArray(resolvedPath.split('/').filter(function(p) {
return !!p;
}), !resolvedAbsolute).join('/');
return ((resolvedAbsolute ? '/' : '') + resolvedPath) || '.';
},relative:function (from, to) {
from = PATH.resolve(from).substr(1);
to = PATH.resolve(to).substr(1);
function trim(arr) {
var start = 0;
for (; start < arr.length; start++) {
if (arr[start] !== '') break;
}
var end = arr.length - 1;
for (; end >= 0; end--) {
if (arr[end] !== '') break;
}
if (start > end) return [];
return arr.slice(start, end - start + 1);
}
var fromParts = trim(from.split('/'));
var toParts = trim(to.split('/'));
var length = Math.min(fromParts.length, toParts.length);
var samePartsLength = length;
for (var i = 0; i < length; i++) {
if (fromParts[i] !== toParts[i]) {
samePartsLength = i;
break;
}
}
var outputParts = [];
for (var i = samePartsLength; i < fromParts.length; i++) {
outputParts.push('..');
}
outputParts = outputParts.concat(toParts.slice(samePartsLength));
return outputParts.join('/');
}};
var TTY={ttys:[],register:function (dev, ops) {
TTY.ttys[dev] = { input: [], output: [], ops: ops };
FS.registerDevice(dev, TTY.stream_ops);
},stream_ops:{open:function (stream) {
// this wouldn't be required if the library wasn't eval'd at first...
if (!TTY.utf8) {
TTY.utf8 = new Runtime.UTF8Processor();
}
var tty = TTY.ttys[stream.node.rdev];
if (!tty) {
throw new FS.ErrnoError(ERRNO_CODES.ENODEV);
}
stream.tty = tty;
stream.seekable = false;
},close:function (stream) {
// flush any pending line data
if (stream.tty.output.length) {
stream.tty.ops.put_char(stream.tty, 10);
}
},read:function (stream, buffer, offset, length, pos /* ignored */) {
if (!stream.tty || !stream.tty.ops.get_char) {
throw new FS.ErrnoError(ERRNO_CODES.ENXIO);
}
var bytesRead = 0;
for (var i = 0; i < length; i++) {
var result;
try {
result = stream.tty.ops.get_char(stream.tty);
} catch (e) {
throw new FS.ErrnoError(ERRNO_CODES.EIO);
}
if (result === undefined && bytesRead === 0) {
throw new FS.ErrnoError(ERRNO_CODES.EAGAIN);
}
if (result === null || result === undefined) break;
bytesRead++;
buffer[offset+i] = result;
}
if (bytesRead) {
stream.node.timestamp = Date.now();
}
return bytesRead;
},write:function (stream, buffer, offset, length, pos) {
if (!stream.tty || !stream.tty.ops.put_char) {
throw new FS.ErrnoError(ERRNO_CODES.ENXIO);
}
for (var i = 0; i < length; i++) {
try {
stream.tty.ops.put_char(stream.tty, buffer[offset+i]);
} catch (e) {
throw new FS.ErrnoError(ERRNO_CODES.EIO);
}
}
if (length) {
stream.node.timestamp = Date.now();
}
return i;
}},default_tty_ops:{get_char:function (tty) {
if (!tty.input.length) {
var result = null;
if (ENVIRONMENT_IS_NODE) {
if (process.stdin.destroyed) {
return undefined;
}
result = process.stdin.read();
} else if (typeof window != 'undefined' &&
typeof window.prompt == 'function') {
// Browser.
result = window.prompt('Input: '); // returns null on cancel
if (result !== null) {
result += '\n';
}
} else if (typeof readline == 'function') {
// Command line.
result = readline();
if (result !== null) {
result += '\n';
}
}
if (!result) {
return null;
}
tty.input = intArrayFromString(result, true);
}
return tty.input.shift();
},put_char:function (tty, val) {
if (val === null || val === 10) {
Module['print'](tty.output.join(''));
tty.output = [];
} else {
tty.output.push(TTY.utf8.processCChar(val));
}
}},default_tty1_ops:{put_char:function (tty, val) {
if (val === null || val === 10) {
Module['printErr'](tty.output.join(''));
tty.output = [];
} else {
tty.output.push(TTY.utf8.processCChar(val));
}
}}};
var MEMFS={mount:function (mount) {
return MEMFS.create_node(null, '/', 0040000 | 0777, 0);
},create_node:function (parent, name, mode, dev) {
if (FS.isBlkdev(mode) || FS.isFIFO(mode)) {
// no supported
throw new FS.ErrnoError(ERRNO_CODES.EPERM);
}
var node = FS.createNode(parent, name, mode, dev);
if (FS.isDir(node.mode)) {
node.node_ops = {
getattr: MEMFS.node_ops.getattr,
setattr: MEMFS.node_ops.setattr,
lookup: MEMFS.node_ops.lookup,
mknod: MEMFS.node_ops.mknod,
mknod: MEMFS.node_ops.mknod,
rename: MEMFS.node_ops.rename,
unlink: MEMFS.node_ops.unlink,
rmdir: MEMFS.node_ops.rmdir,
readdir: MEMFS.node_ops.readdir,
symlink: MEMFS.node_ops.symlink
};
node.stream_ops = {
llseek: MEMFS.stream_ops.llseek
};
node.contents = {};
} else if (FS.isFile(node.mode)) {
node.node_ops = {
getattr: MEMFS.node_ops.getattr,
setattr: MEMFS.node_ops.setattr
};
node.stream_ops = {
llseek: MEMFS.stream_ops.llseek,
read: MEMFS.stream_ops.read,
write: MEMFS.stream_ops.write,
allocate: MEMFS.stream_ops.allocate,
mmap: MEMFS.stream_ops.mmap
};
node.contents = [];
} else if (FS.isLink(node.mode)) {
node.node_ops = {
getattr: MEMFS.node_ops.getattr,
setattr: MEMFS.node_ops.setattr,
readlink: MEMFS.node_ops.readlink
};
node.stream_ops = {};
} else if (FS.isChrdev(node.mode)) {
node.node_ops = {
getattr: MEMFS.node_ops.getattr,
setattr: MEMFS.node_ops.setattr
};
node.stream_ops = FS.chrdev_stream_ops;
}
node.timestamp = Date.now();
// add the new node to the parent
if (parent) {
parent.contents[name] = node;
}
return node;
},node_ops:{getattr:function (node) {
var attr = {};
// device numbers reuse inode numbers.
attr.dev = FS.isChrdev(node.mode) ? node.id : 1;
attr.ino = node.id;
attr.mode = node.mode;
attr.nlink = 1;
attr.uid = 0;
attr.gid = 0;
attr.rdev = node.rdev;
if (FS.isDir(node.mode)) {
attr.size = 4096;
} else if (FS.isFile(node.mode)) {
attr.size = node.contents.length;
} else if (FS.isLink(node.mode)) {
attr.size = node.link.length;
} else {
attr.size = 0;
}
attr.atime = new Date(node.timestamp);
attr.mtime = new Date(node.timestamp);
attr.ctime = new Date(node.timestamp);
// NOTE: In our implementation, st_blocks = Math.ceil(st_size/st_blksize),
// but this is not required by the standard.
attr.blksize = 4096;
attr.blocks = Math.ceil(attr.size / attr.blksize);
return attr;
},setattr:function (node, attr) {
if (attr.mode !== undefined) {
node.mode = attr.mode;
}
if (attr.timestamp !== undefined) {
node.timestamp = attr.timestamp;
}
if (attr.size !== undefined) {
var contents = node.contents;
if (attr.size < contents.length) contents.length = attr.size;
else while (attr.size > contents.length) contents.push(0);
}
},lookup:function (parent, name) {
throw new FS.ErrnoError(ERRNO_CODES.ENOENT);
},mknod:function (parent, name, mode, dev) {
return MEMFS.create_node(parent, name, mode, dev);
},rename:function (old_node, new_dir, new_name) {
// if we're overwriting a directory at new_name, make sure it's empty.
if (FS.isDir(old_node.mode)) {
var new_node;
try {
new_node = FS.lookupNode(new_dir, new_name);
} catch (e) {
}
if (new_node) {
for (var i in new_node.contents) {
throw new FS.ErrnoError(ERRNO_CODES.ENOTEMPTY);
}
}
}
// do the internal rewiring
delete old_node.parent.contents[old_node.name];
old_node.name = new_name;
new_dir.contents[new_name] = old_node;
},unlink:function (parent, name) {
delete parent.contents[name];
},rmdir:function (parent, name) {
var node = FS.lookupNode(parent, name);
for (var i in node.contents) {
throw new FS.ErrnoError(ERRNO_CODES.ENOTEMPTY);
}
delete parent.contents[name];
},readdir:function (node) {
var entries = ['.', '..']
for (var key in node.contents) {
if (!node.contents.hasOwnProperty(key)) {
continue;
}
entries.push(key);
}
return entries;
},symlink:function (parent, newname, oldpath) {
var node = MEMFS.create_node(parent, newname, 0777 | 0120000, 0);
node.link = oldpath;
return node;
},readlink:function (node) {
if (!FS.isLink(node.mode)) {
throw new FS.ErrnoError(ERRNO_CODES.EINVAL);
}
return node.link;
}},stream_ops:{read:function (stream, buffer, offset, length, position) {
var contents = stream.node.contents;
var size = Math.min(contents.length - position, length);
if (contents.subarray) { // typed array
buffer.set(contents.subarray(position, position + size), offset);
} else
{
for (var i = 0; i < size; i++) {
buffer[offset + i] = contents[position + i];
}
}
return size;
},write:function (stream, buffer, offset, length, position) {
var contents = stream.node.contents;
while (contents.length < position) contents.push(0);
for (var i = 0; i < length; i++) {
contents[position + i] = buffer[offset + i];
}
stream.node.timestamp = Date.now();
return length;
},llseek:function (stream, offset, whence) {
var position = offset;
if (whence === 1) { // SEEK_CUR.
position += stream.position;
} else if (whence === 2) { // SEEK_END.
if (FS.isFile(stream.node.mode)) {
position += stream.node.contents.length;
}
}
if (position < 0) {
throw new FS.ErrnoError(ERRNO_CODES.EINVAL);
}
stream.ungotten = [];
stream.position = position;
return position;
},allocate:function (stream, offset, length) {
var contents = stream.node.contents;
var limit = offset + length;
while (limit > contents.length) contents.push(0);
},mmap:function (stream, buffer, offset, length, position, prot, flags) {
if (!FS.isFile(stream.node.mode)) {
throw new FS.ErrnoError(ERRNO_CODES.ENODEV);
}
var ptr;
var allocated;
var contents = stream.node.contents;
// Only make a new copy when MAP_PRIVATE is specified.
if (!(flags & 0x02)) {
// We can't emulate MAP_SHARED when the file is not backed by the buffer
// we're mapping to (e.g. the HEAP buffer).
assert(contents.buffer === buffer || contents.buffer === buffer.buffer);
allocated = false;
ptr = contents.byteOffset;
} else {
// Try to avoid unnecessary slices.
if (position > 0 || position + length < contents.length) {
if (contents.subarray) {
contents = contents.subarray(position, position + length);
} else {
contents = Array.prototype.slice.call(contents, position, position + length);
}
}
allocated = true;
ptr = _malloc(length);
if (!ptr) {
throw new FS.ErrnoError(ERRNO_CODES.ENOMEM);
}
buffer.set(contents, ptr);
}
return { ptr: ptr, allocated: allocated };
}}};
var _stdin=allocate(1, "i32*", ALLOC_STATIC);
var _stdout=allocate(1, "i32*", ALLOC_STATIC);
var _stderr=allocate(1, "i32*", ALLOC_STATIC);
function _fflush(stream) {
// int fflush(FILE *stream);
// http://pubs.opengroup.org/onlinepubs/000095399/functions/fflush.html
// we don't currently perform any user-space buffering of data
}var FS={root:null,nodes:[null],devices:[null],streams:[null],nextInode:1,name_table:null,currentPath:"/",initialized:false,ignorePermissions:true,ErrnoError:function ErrnoError(errno) {
this.errno = errno;
for (var key in ERRNO_CODES) {
if (ERRNO_CODES[key] === errno) {
this.code = key;
break;
}
}
this.message = ERRNO_MESSAGES[errno];
},handleFSError:function (e) {
if (!(e instanceof FS.ErrnoError)) throw e + ' : ' + new Error().stack;
return ___setErrNo(e.errno);
},hashName:function (parentid, name) {
var hash = 0;
for (var i = 0; i < name.length; i++) {
hash = ((hash << 5) - hash + name.charCodeAt(i)) | 0;
}
return ((parentid + hash) >>> 0) % FS.name_table.length;
},hashAddNode:function (node) {
var hash = FS.hashName(node.parent.id, node.name);
node.name_next = FS.name_table[hash];
FS.name_table[hash] = node;
},hashRemoveNode:function (node) {
var hash = FS.hashName(node.parent.id, node.name);
if (FS.name_table[hash] === node) {
FS.name_table[hash] = node.name_next;
} else {
var current = FS.name_table[hash];
while (current) {
if (current.name_next === node) {
current.name_next = node.name_next;
break;
}
current = current.name_next;
}
}
},lookupNode:function (parent, name) {
var err = FS.mayLookup(parent);
if (err) {
throw new FS.ErrnoError(err);
}
var hash = FS.hashName(parent.id, name);
for (var node = FS.name_table[hash]; node; node = node.name_next) {
if (node.parent.id === parent.id && node.name === name) {
return node;
}
}
// if we failed to find it in the cache, call into the VFS
return FS.lookup(parent, name);
},createNode:function (parent, name, mode, rdev) {
var node = {
id: FS.nextInode++,
name: name,
mode: mode,
node_ops: {},
stream_ops: {},
rdev: rdev,
parent: null,
mount: null
};
if (!parent) {
parent = node; // root node sets parent to itself
}
node.parent = parent;
node.mount = parent.mount;
// compatibility
var readMode = 292 | 73;
var writeMode = 146;
// NOTE we must use Object.defineProperties instead of individual calls to
// Object.defineProperty in order to make closure compiler happy
Object.defineProperties(node, {
read: {
get: function() { return (node.mode & readMode) === readMode; },
set: function(val) { val ? node.mode |= readMode : node.mode &= ~readMode; }
},
write: {
get: function() { return (node.mode & writeMode) === writeMode; },
set: function(val) { val ? node.mode |= writeMode : node.mode &= ~writeMode; }
},
isFolder: {
get: function() { return FS.isDir(node.mode); },
},
isDevice: {
get: function() { return FS.isChrdev(node.mode); },
},
});
FS.hashAddNode(node);
return node;
},destroyNode:function (node) {
FS.hashRemoveNode(node);
},isRoot:function (node) {
return node === node.parent;
},isMountpoint:function (node) {
return node.mounted;
},isFile:function (mode) {
return (mode & 0170000) === 0100000;
},isDir:function (mode) {
return (mode & 0170000) === 0040000;
},isLink:function (mode) {
return (mode & 0170000) === 0120000;
},isChrdev:function (mode) {
return (mode & 0170000) === 0020000;
},isBlkdev:function (mode) {
return (mode & 0170000) === 0060000;
},isFIFO:function (mode) {
return (mode & 0170000) === 0010000;
},cwd:function () {
return FS.currentPath;
},lookupPath:function (path, opts) {
path = PATH.resolve(FS.currentPath, path);
opts = opts || { recurse_count: 0 };
if (opts.recurse_count > 8) { // max recursive lookup of 8
throw new FS.ErrnoError(ERRNO_CODES.ELOOP);
}
// split the path
var parts = PATH.normalizeArray(path.split('/').filter(function(p) {
return !!p;
}), false);
// start at the root
var current = FS.root;
var current_path = '/';
for (var i = 0; i < parts.length; i++) {
var islast = (i === parts.length-1);
if (islast && opts.parent) {
// stop resolving
break;
}
current = FS.lookupNode(current, parts[i]);
current_path = PATH.join(current_path, parts[i]);
// jump to the mount's root node if this is a mountpoint
if (FS.isMountpoint(current)) {
current = current.mount.root;
}
// follow symlinks
// by default, lookupPath will not follow a symlink if it is the final path component.
// setting opts.follow = true will override this behavior.
if (!islast || opts.follow) {
var count = 0;
while (FS.isLink(current.mode)) {
var link = FS.readlink(current_path);
current_path = PATH.resolve(PATH.dirname(current_path), link);
var lookup = FS.lookupPath(current_path, { recurse_count: opts.recurse_count });
current = lookup.node;
if (count++ > 40) { // limit max consecutive symlinks to 40 (SYMLOOP_MAX).
throw new FS.ErrnoError(ERRNO_CODES.ELOOP);
}
}
}
}
return { path: current_path, node: current };
},getPath:function (node) {
var path;
while (true) {
if (FS.isRoot(node)) {
return path ? PATH.join(node.mount.mountpoint, path) : node.mount.mountpoint;
}
path = path ? PATH.join(node.name, path) : node.name;
node = node.parent;
}
},flagModes:{"r":0,"rs":8192,"r+":2,"w":1537,"wx":3585,"xw":3585,"w+":1538,"wx+":3586,"xw+":3586,"a":521,"ax":2569,"xa":2569,"a+":522,"ax+":2570,"xa+":2570},modeStringToFlags:function (str) {
var flags = FS.flagModes[str];
if (typeof flags === 'undefined') {
throw new Error('Unknown file open mode: ' + str);
}
return flags;
},flagsToPermissionString:function (flag) {
var accmode = flag & 3;
var perms = ['r', 'w', 'rw'][accmode];
if ((flag & 1024)) {
perms += 'w';
}
return perms;
},nodePermissions:function (node, perms) {
if (FS.ignorePermissions) {
return 0;
}
// return 0 if any user, group or owner bits are set.
if (perms.indexOf('r') !== -1 && !(node.mode & 292)) {
return ERRNO_CODES.EACCES;
} else if (perms.indexOf('w') !== -1 && !(node.mode & 146)) {
return ERRNO_CODES.EACCES;
} else if (perms.indexOf('x') !== -1 && !(node.mode & 73)) {
return ERRNO_CODES.EACCES;
}
return 0;
},mayLookup:function (dir) {
return FS.nodePermissions(dir, 'x');
},mayMknod:function (mode) {
switch (mode & 0170000) {
case 0100000:
case 0020000:
case 0060000:
case 0010000:
case 0140000:
return 0;
default:
return ERRNO_CODES.EINVAL;
}
},mayCreate:function (dir, name) {
try {
var node = FS.lookupNode(dir, name);
return ERRNO_CODES.EEXIST;
} catch (e) {
}
return FS.nodePermissions(dir, 'wx');
},mayDelete:function (dir, name, isdir) {
var node;
try {
node = FS.lookupNode(dir, name);
} catch (e) {
return e.errno;
}
var err = FS.nodePermissions(dir, 'wx');
if (err) {
return err;
}
if (isdir) {
if (!FS.isDir(node.mode)) {
return ERRNO_CODES.ENOTDIR;
}
if (FS.isRoot(node) || FS.getPath(node) === FS.currentPath) {
return ERRNO_CODES.EBUSY;
}
} else {
if (FS.isDir(node.mode)) {
return ERRNO_CODES.EISDIR;
}
}
return 0;
},mayOpen:function (node, flags) {
if (!node) {
return ERRNO_CODES.ENOENT;
}
if (FS.isLink(node.mode)) {
return ERRNO_CODES.ELOOP;
} else if (FS.isDir(node.mode)) {
if ((flags & 3) !== 0 || // opening for write
(flags & 1024)) {
return ERRNO_CODES.EISDIR;
}
}
return FS.nodePermissions(node, FS.flagsToPermissionString(flags));
},chrdev_stream_ops:{open:function (stream) {
var device = FS.getDevice(stream.node.rdev);
// override node's stream ops with the device's
stream.stream_ops = device.stream_ops;
// forward the open call
if (stream.stream_ops.open) {
stream.stream_ops.open(stream);
}
},llseek:function () {
throw new FS.ErrnoError(ERRNO_CODES.ESPIPE);
}},major:function (dev) {
return ((dev) >> 8);
},minor:function (dev) {
return ((dev) & 0xff);
},makedev:function (ma, mi) {
return ((ma) << 8 | (mi));
},registerDevice:function (dev, ops) {
FS.devices[dev] = { stream_ops: ops };
},getDevice:function (dev) {
return FS.devices[dev];
},MAX_OPEN_FDS:4096,nextfd:function (fd_start, fd_end) {
fd_start = fd_start || 1;
fd_end = fd_end || FS.MAX_OPEN_FDS;
for (var fd = fd_start; fd <= fd_end; fd++) {
if (!FS.streams[fd]) {
return fd;
}
}
throw new FS.ErrnoError(ERRNO_CODES.EMFILE);
},getStream:function (fd) {
return FS.streams[fd];
},createStream:function (stream, fd_start, fd_end) {
var fd = FS.nextfd(fd_start, fd_end);
stream.fd = fd;
// compatibility
Object.defineProperties(stream, {
object: {
get: function() { return stream.node; },
set: function(val) { stream.node = val; }
},
isRead: {
get: function() { return (stream.flags & 3) !== 1; }
},
isWrite: {
get: function() { return (stream.flags & 3) !== 0; }
},
isAppend: {
get: function() { return (stream.flags & 8); }
}
});
FS.streams[fd] = stream;
return stream;
},closeStream:function (fd) {
FS.streams[fd] = null;
},getMode:function (canRead, canWrite) {
var mode = 0;
if (canRead) mode |= 292 | 73;
if (canWrite) mode |= 146;
return mode;
},joinPath:function (parts, forceRelative) {
var path = PATH.join.apply(null, parts);
if (forceRelative && path[0] == '/') path = path.substr(1);
return path;
},absolutePath:function (relative, base) {
return PATH.resolve(base, relative);
},standardizePath:function (path) {
return PATH.normalize(path);
},findObject:function (path, dontResolveLastLink) {
var ret = FS.analyzePath(path, dontResolveLastLink);
if (ret.exists) {
return ret.object;
} else {
___setErrNo(ret.error);
return null;
}
},analyzePath:function (path, dontResolveLastLink) {
// operate from within the context of the symlink's target
try {
var lookup = FS.lookupPath(path, { follow: !dontResolveLastLink });
path = lookup.path;
} catch (e) {
}
var ret = {
isRoot: false, exists: false, error: 0, name: null, path: null, object: null,
parentExists: false, parentPath: null, parentObject: null
};
try {
var lookup = FS.lookupPath(path, { parent: true });
ret.parentExists = true;
ret.parentPath = lookup.path;
ret.parentObject = lookup.node;
ret.name = PATH.basename(path);
lookup = FS.lookupPath(path, { follow: !dontResolveLastLink });
ret.exists = true;
ret.path = lookup.path;
ret.object = lookup.node;
ret.name = lookup.node.name;
ret.isRoot = lookup.path === '/';
} catch (e) {
ret.error = e.errno;
};
return ret;
},createFolder:function (parent, name, canRead, canWrite) {
var path = PATH.join(typeof parent === 'string' ? parent : FS.getPath(parent), name);
var mode = FS.getMode(canRead, canWrite);
return FS.mkdir(path, mode);
},createPath:function (parent, path, canRead, canWrite) {
parent = typeof parent === 'string' ? parent : FS.getPath(parent);
var parts = path.split('/').reverse();
while (parts.length) {
var part = parts.pop();
if (!part) continue;
var current = PATH.join(parent, part);
try {
FS.mkdir(current, 0777);
} catch (e) {
// ignore EEXIST
}
parent = current;
}
return current;
},createFile:function (parent, name, properties, canRead, canWrite) {
var path = PATH.join(typeof parent === 'string' ? parent : FS.getPath(parent), name);
var mode = FS.getMode(canRead, canWrite);
return FS.create(path, mode);
},createDataFile:function (parent, name, data, canRead, canWrite) {
var path = PATH.join(typeof parent === 'string' ? parent : FS.getPath(parent), name);
var mode = FS.getMode(canRead, canWrite);
var node = FS.create(path, mode);
if (data) {
if (typeof data === 'string') {
var arr = new Array(data.length);
for (var i = 0, len = data.length; i < len; ++i) arr[i] = data.charCodeAt(i);
data = arr;
}
// make sure we can write to the file
FS.chmod(path, mode | 146);
var stream = FS.open(path, 'w');
FS.write(stream, data, 0, data.length, 0);
FS.close(stream);
FS.chmod(path, mode);
}
return node;
},createDevice:function (parent, name, input, output) {
var path = PATH.join(typeof parent === 'string' ? parent : FS.getPath(parent), name);
var mode = input && output ? 0777 : (input ? 0333 : 0555);
if (!FS.createDevice.major) FS.createDevice.major = 64;
var dev = FS.makedev(FS.createDevice.major++, 0);
// Create a fake device that a set of stream ops to emulate
// the old behavior.
FS.registerDevice(dev, {
open: function(stream) {
stream.seekable = false;
},
close: function(stream) {
// flush any pending line data
if (output && output.buffer && output.buffer.length) {
output(10);
}
},
read: function(stream, buffer, offset, length, pos /* ignored */) {
var bytesRead = 0;
for (var i = 0; i < length; i++) {
var result;
try {
result = input();
} catch (e) {
throw new FS.ErrnoError(ERRNO_CODES.EIO);
}
if (result === undefined && bytesRead === 0) {
throw new FS.ErrnoError(ERRNO_CODES.EAGAIN);
}
if (result === null || result === undefined) break;
bytesRead++;
buffer[offset+i] = result;
}
if (bytesRead) {
stream.node.timestamp = Date.now();
}
return bytesRead;
},
write: function(stream, buffer, offset, length, pos) {
for (var i = 0; i < length; i++) {
try {
output(buffer[offset+i]);
} catch (e) {
throw new FS.ErrnoError(ERRNO_CODES.EIO);
}
}
if (length) {
stream.node.timestamp = Date.now();
}
return i;
}
});
return FS.mkdev(path, mode, dev);
},createLink:function (parent, name, target, canRead, canWrite) {
var path = PATH.join(typeof parent === 'string' ? parent : FS.getPath(parent), name);
return FS.symlink(target, path);
},forceLoadFile:function (obj) {
if (obj.isDevice || obj.isFolder || obj.link || obj.contents) return true;
var success = true;
if (typeof XMLHttpRequest !== 'undefined') {
throw new Error("Lazy loading should have been performed (contents set) in createLazyFile, but it was not. Lazy loading only works in web workers. Use --embed-file or --preload-file in emcc on the main thread.");
} else if (Module['read']) {
// Command-line.
try {
// WARNING: Can't read binary files in V8's d8 or tracemonkey's js, as
// read() will try to parse UTF8.
obj.contents = intArrayFromString(Module['read'](obj.url), true);
} catch (e) {
success = false;
}
} else {
throw new Error('Cannot load without read() or XMLHttpRequest.');
}
if (!success) ___setErrNo(ERRNO_CODES.EIO);
return success;
},createLazyFile:function (parent, name, url, canRead, canWrite) {
if (typeof XMLHttpRequest !== 'undefined') {
if (!ENVIRONMENT_IS_WORKER) throw 'Cannot do synchronous binary XHRs outside webworkers in modern browsers. Use --embed-file or --preload-file in emcc';
// Lazy chunked Uint8Array (implements get and length from Uint8Array). Actual getting is abstracted away for eventual reuse.
var LazyUint8Array = function() {
this.lengthKnown = false;
this.chunks = []; // Loaded chunks. Index is the chunk number
}
LazyUint8Array.prototype.get = function(idx) {
if (idx > this.length-1 || idx < 0) {
return undefined;
}
var chunkOffset = idx % this.chunkSize;
var chunkNum = Math.floor(idx / this.chunkSize);
return this.getter(chunkNum)[chunkOffset];
}
LazyUint8Array.prototype.setDataGetter = function(getter) {
this.getter = getter;
}
LazyUint8Array.prototype.cacheLength = function() {
// Find length
var xhr = new XMLHttpRequest();
xhr.open('HEAD', url, false);
xhr.send(null);
if (!(xhr.status >= 200 && xhr.status < 300 || xhr.status === 304)) throw new Error("Couldn't load " + url + ". Status: " + xhr.status);
var datalength = Number(xhr.getResponseHeader("Content-length"));
var header;
var hasByteServing = (header = xhr.getResponseHeader("Accept-Ranges")) && header === "bytes";
var chunkSize = 1024*1024; // Chunk size in bytes
if (!hasByteServing) chunkSize = datalength;
// Function to get a range from the remote URL.
var doXHR = (function(from, to) {
if (from > to) throw new Error("invalid range (" + from + ", " + to + ") or no bytes requested!");
if (to > datalength-1) throw new Error("only " + datalength + " bytes available! programmer error!");
// TODO: Use mozResponseArrayBuffer, responseStream, etc. if available.
var xhr = new XMLHttpRequest();
xhr.open('GET', url, false);
if (datalength !== chunkSize) xhr.setRequestHeader("Range", "bytes=" + from + "-" + to);
// Some hints to the browser that we want binary data.
if (typeof Uint8Array != 'undefined') xhr.responseType = 'arraybuffer';
if (xhr.overrideMimeType) {
xhr.overrideMimeType('text/plain; charset=x-user-defined');
}
xhr.send(null);
if (!(xhr.status >= 200 && xhr.status < 300 || xhr.status === 304)) throw new Error("Couldn't load " + url + ". Status: " + xhr.status);
if (xhr.response !== undefined) {
return new Uint8Array(xhr.response || []);
} else {
return intArrayFromString(xhr.responseText || '', true);
}
});
var lazyArray = this;
lazyArray.setDataGetter(function(chunkNum) {
var start = chunkNum * chunkSize;
var end = (chunkNum+1) * chunkSize - 1; // including this byte
end = Math.min(end, datalength-1); // if datalength-1 is selected, this is the last block
if (typeof(lazyArray.chunks[chunkNum]) === "undefined") {
lazyArray.chunks[chunkNum] = doXHR(start, end);
}
if (typeof(lazyArray.chunks[chunkNum]) === "undefined") throw new Error("doXHR failed!");
return lazyArray.chunks[chunkNum];
});
this._length = datalength;
this._chunkSize = chunkSize;
this.lengthKnown = true;
}
var lazyArray = new LazyUint8Array();
Object.defineProperty(lazyArray, "length", {
get: function() {
if(!this.lengthKnown) {
this.cacheLength();
}
return this._length;
}
});
Object.defineProperty(lazyArray, "chunkSize", {
get: function() {
if(!this.lengthKnown) {
this.cacheLength();
}
return this._chunkSize;
}
});
var properties = { isDevice: false, contents: lazyArray };
} else {
var properties = { isDevice: false, url: url };
}
var node = FS.createFile(parent, name, properties, canRead, canWrite);
// This is a total hack, but I want to get this lazy file code out of the
// core of MEMFS. If we want to keep this lazy file concept I feel it should
// be its own thin LAZYFS proxying calls to MEMFS.
if (properties.contents) {
node.contents = properties.contents;
} else if (properties.url) {
node.contents = null;
node.url = properties.url;
}
// override each stream op with one that tries to force load the lazy file first
var stream_ops = {};
var keys = Object.keys(node.stream_ops);
keys.forEach(function(key) {
var fn = node.stream_ops[key];
stream_ops[key] = function() {
if (!FS.forceLoadFile(node)) {
throw new FS.ErrnoError(ERRNO_CODES.EIO);
}
return fn.apply(null, arguments);
};
});
// use a custom read function
stream_ops.read = function(stream, buffer, offset, length, position) {
if (!FS.forceLoadFile(node)) {
throw new FS.ErrnoError(ERRNO_CODES.EIO);
}
var contents = stream.node.contents;
var size = Math.min(contents.length - position, length);
if (contents.slice) { // normal array
for (var i = 0; i < size; i++) {
buffer[offset + i] = contents[position + i];
}
} else {
for (var i = 0; i < size; i++) { // LazyUint8Array from sync binary XHR
buffer[offset + i] = contents.get(position + i);
}
}
return size;
};
node.stream_ops = stream_ops;
return node;
},createPreloadedFile:function (parent, name, url, canRead, canWrite, onload, onerror, dontCreateFile) {
Browser.init();
// TODO we should allow people to just pass in a complete filename instead
// of parent and name being that we just join them anyways
var fullname = PATH.resolve(PATH.join(parent, name));
function processData(byteArray) {
function finish(byteArray) {
if (!dontCreateFile) {
FS.createDataFile(parent, name, byteArray, canRead, canWrite);
}
if (onload) onload();
removeRunDependency('cp ' + fullname);
}
var handled = false;
Module['preloadPlugins'].forEach(function(plugin) {
if (handled) return;
if (plugin['canHandle'](fullname)) {
plugin['handle'](byteArray, fullname, finish, function() {
if (onerror) onerror();
removeRunDependency('cp ' + fullname);
});
handled = true;
}
});
if (!handled) finish(byteArray);
}
addRunDependency('cp ' + fullname);
if (typeof url == 'string') {
Browser.asyncLoad(url, function(byteArray) {
processData(byteArray);
}, onerror);
} else {
processData(url);
}
},createDefaultDirectories:function () {
FS.mkdir('/tmp', 0777);
},createDefaultDevices:function () {
// create /dev
FS.mkdir('/dev', 0777);
// setup /dev/null
FS.registerDevice(FS.makedev(1, 3), {
read: function() { return 0; },
write: function() { return 0; }
});
FS.mkdev('/dev/null', 0666, FS.makedev(1, 3));
// setup /dev/tty and /dev/tty1
// stderr needs to print output using Module['printErr']
// so we register a second tty just for it.
TTY.register(FS.makedev(5, 0), TTY.default_tty_ops);
TTY.register(FS.makedev(6, 0), TTY.default_tty1_ops);
FS.mkdev('/dev/tty', 0666, FS.makedev(5, 0));
FS.mkdev('/dev/tty1', 0666, FS.makedev(6, 0));
// we're not going to emulate the actual shm device,
// just create the tmp dirs that reside in it commonly
FS.mkdir('/dev/shm', 0777);
FS.mkdir('/dev/shm/tmp', 0777);
},createStandardStreams:function () {
// TODO deprecate the old functionality of a single
// input / output callback and that utilizes FS.createDevice
// and instead require a unique set of stream ops
// by default, we symlink the standard streams to the
// default tty devices. however, if the standard streams
// have been overwritten we create a unique device for
// them instead.
if (Module['stdin']) {
FS.createDevice('/dev', 'stdin', Module['stdin']);
} else {
FS.symlink('/dev/tty', '/dev/stdin');
}
if (Module['stdout']) {
FS.createDevice('/dev', 'stdout', null, Module['stdout']);
} else {
FS.symlink('/dev/tty', '/dev/stdout');
}
if (Module['stderr']) {
FS.createDevice('/dev', 'stderr', null, Module['stderr']);
} else {
FS.symlink('/dev/tty1', '/dev/stderr');
}
// open default streams for the stdin, stdout and stderr devices
var stdin = FS.open('/dev/stdin', 'r');
HEAP32[((_stdin)>>2)]=stdin.fd;
assert(stdin.fd === 1, 'invalid handle for stdin (' + stdin.fd + ')');
var stdout = FS.open('/dev/stdout', 'w');
HEAP32[((_stdout)>>2)]=stdout.fd;
assert(stdout.fd === 2, 'invalid handle for stdout (' + stdout.fd + ')');
var stderr = FS.open('/dev/stderr', 'w');
HEAP32[((_stderr)>>2)]=stderr.fd;
assert(stderr.fd === 3, 'invalid handle for stderr (' + stderr.fd + ')');
},staticInit:function () {
FS.name_table = new Array(4096);
FS.root = FS.createNode(null, '/', 0040000 | 0777, 0);
FS.mount(MEMFS, {}, '/');
FS.createDefaultDirectories();
FS.createDefaultDevices();
},init:function (input, output, error) {
assert(!FS.init.initialized, 'FS.init was previously called. If you want to initialize later with custom parameters, remove any earlier calls (note that one is automatically added to the generated code)');
FS.init.initialized = true;
// Allow Module.stdin etc. to provide defaults, if none explicitly passed to us here
Module['stdin'] = input || Module['stdin'];
Module['stdout'] = output || Module['stdout'];
Module['stderr'] = error || Module['stderr'];
FS.createStandardStreams();
},quit:function () {
FS.init.initialized = false;
for (var i = 0; i < FS.streams.length; i++) {
var stream = FS.streams[i];
if (!stream) {
continue;
}
FS.close(stream);
}
},mount:function (type, opts, mountpoint) {
var mount = {
type: type,
opts: opts,
mountpoint: mountpoint,
root: null
};
var lookup;
if (mountpoint) {
lookup = FS.lookupPath(mountpoint, { follow: false });
}
// create a root node for the fs
var root = type.mount(mount);
root.mount = mount;
mount.root = root;
// assign the mount info to the mountpoint's node
if (lookup) {
lookup.node.mount = mount;
lookup.node.mounted = true;
// compatibility update FS.root if we mount to /
if (mountpoint === '/') {
FS.root = mount.root;
}
}
return root;
},lookup:function (parent, name) {
return parent.node_ops.lookup(parent, name);
},mknod:function (path, mode, dev) {
var lookup = FS.lookupPath(path, { parent: true });
var parent = lookup.node;
var name = PATH.basename(path);
var err = FS.mayCreate(parent, name);
if (err) {
throw new FS.ErrnoError(err);
}
if (!parent.node_ops.mknod) {
throw new FS.ErrnoError(ERRNO_CODES.EPERM);
}
return parent.node_ops.mknod(parent, name, mode, dev);
},create:function (path, mode) {
mode &= 4095;
mode |= 0100000;
return FS.mknod(path, mode, 0);
},mkdir:function (path, mode) {
mode &= 511 | 0001000;
mode |= 0040000;
return FS.mknod(path, mode, 0);
},mkdev:function (path, mode, dev) {
mode |= 0020000;
return FS.mknod(path, mode, dev);
},symlink:function (oldpath, newpath) {
var lookup = FS.lookupPath(newpath, { parent: true });
var parent = lookup.node;
var newname = PATH.basename(newpath);
var err = FS.mayCreate(parent, newname);
if (err) {
throw new FS.ErrnoError(err);
}
if (!parent.node_ops.symlink) {
throw new FS.ErrnoError(ERRNO_CODES.EPERM);
}
return parent.node_ops.symlink(parent, newname, oldpath);
},rename:function (old_path, new_path) {
var old_dirname = PATH.dirname(old_path);
var new_dirname = PATH.dirname(new_path);
var old_name = PATH.basename(old_path);
var new_name = PATH.basename(new_path);
// parents must exist
var lookup, old_dir, new_dir;
try {
lookup = FS.lookupPath(old_path, { parent: true });
old_dir = lookup.node;
lookup = FS.lookupPath(new_path, { parent: true });
new_dir = lookup.node;
} catch (e) {
throw new FS.ErrnoError(ERRNO_CODES.EBUSY);
}
// need to be part of the same mount
if (old_dir.mount !== new_dir.mount) {
throw new FS.ErrnoError(ERRNO_CODES.EXDEV);
}
// source must exist
var old_node = FS.lookupNode(old_dir, old_name);
// old path should not be an ancestor of the new path
var relative = PATH.relative(old_path, new_dirname);
if (relative.charAt(0) !== '.') {
throw new FS.ErrnoError(ERRNO_CODES.EINVAL);
}
// new path should not be an ancestor of the old path
relative = PATH.relative(new_path, old_dirname);
if (relative.charAt(0) !== '.') {
throw new FS.ErrnoError(ERRNO_CODES.ENOTEMPTY);
}
// see if the new path already exists
var new_node;
try {
new_node = FS.lookupNode(new_dir, new_name);
} catch (e) {
// not fatal
}
// early out if nothing needs to change
if (old_node === new_node) {
return;
}
// we'll need to delete the old entry
var isdir = FS.isDir(old_node.mode);
var err = FS.mayDelete(old_dir, old_name, isdir);
if (err) {
throw new FS.ErrnoError(err);
}
// need delete permissions if we'll be overwriting.
// need create permissions if new doesn't already exist.
err = new_node ?
FS.mayDelete(new_dir, new_name, isdir) :
FS.mayCreate(new_dir, new_name);
if (err) {
throw new FS.ErrnoError(err);
}
if (!old_dir.node_ops.rename) {
throw new FS.ErrnoError(ERRNO_CODES.EPERM);
}
if (FS.isMountpoint(old_node) || (new_node && FS.isMountpoint(new_node))) {
throw new FS.ErrnoError(ERRNO_CODES.EBUSY);
}
// if we are going to change the parent, check write permissions
if (new_dir !== old_dir) {
err = FS.nodePermissions(old_dir, 'w');
if (err) {
throw new FS.ErrnoError(err);
}
}
// remove the node from the lookup hash
FS.hashRemoveNode(old_node);
// do the underlying fs rename
try {
old_dir.node_ops.rename(old_node, new_dir, new_name);
} catch (e) {
throw e;
} finally {
// add the node back to the hash (in case node_ops.rename
// changed its name)
FS.hashAddNode(old_node);
}
},rmdir:function (path) {
var lookup = FS.lookupPath(path, { parent: true });
var parent = lookup.node;
var name = PATH.basename(path);
var node = FS.lookupNode(parent, name);
var err = FS.mayDelete(parent, name, true);
if (err) {
throw new FS.ErrnoError(err);
}
if (!parent.node_ops.rmdir) {
throw new FS.ErrnoError(ERRNO_CODES.EPERM);
}
if (FS.isMountpoint(node)) {
throw new FS.ErrnoError(ERRNO_CODES.EBUSY);
}
parent.node_ops.rmdir(parent, name);
FS.destroyNode(node);
},readdir:function (path) {
var lookup = FS.lookupPath(path, { follow: true });
var node = lookup.node;
if (!node.node_ops.readdir) {
throw new FS.ErrnoError(ERRNO_CODES.ENOTDIR);
}
return node.node_ops.readdir(node);
},unlink:function (path) {
var lookup = FS.lookupPath(path, { parent: true });
var parent = lookup.node;
var name = PATH.basename(path);
var node = FS.lookupNode(parent, name);
var err = FS.mayDelete(parent, name, false);
if (err) {
// POSIX says unlink should set EPERM, not EISDIR
if (err === ERRNO_CODES.EISDIR) err = ERRNO_CODES.EPERM;
throw new FS.ErrnoError(err);
}
if (!parent.node_ops.unlink) {
throw new FS.ErrnoError(ERRNO_CODES.EPERM);
}
if (FS.isMountpoint(node)) {
throw new FS.ErrnoError(ERRNO_CODES.EBUSY);
}
parent.node_ops.unlink(parent, name);
FS.destroyNode(node);
},readlink:function (path) {
var lookup = FS.lookupPath(path, { follow: false });
var link = lookup.node;
if (!link.node_ops.readlink) {
throw new FS.ErrnoError(ERRNO_CODES.EINVAL);
}
return link.node_ops.readlink(link);
},stat:function (path, dontFollow) {
var lookup = FS.lookupPath(path, { follow: !dontFollow });
var node = lookup.node;
if (!node.node_ops.getattr) {
throw new FS.ErrnoError(ERRNO_CODES.EPERM);
}
return node.node_ops.getattr(node);
},lstat:function (path) {
return FS.stat(path, true);
},chmod:function (path, mode, dontFollow) {
var node;
if (typeof path === 'string') {
var lookup = FS.lookupPath(path, { follow: !dontFollow });
node = lookup.node;
} else {
node = path;
}
if (!node.node_ops.setattr) {
throw new FS.ErrnoError(ERRNO_CODES.EPERM);
}
node.node_ops.setattr(node, {
mode: (mode & 4095) | (node.mode & ~4095),
timestamp: Date.now()
});
},lchmod:function (path, mode) {
FS.chmod(path, mode, true);
},fchmod:function (fd, mode) {
var stream = FS.getStream(fd);
if (!stream) {
throw new FS.ErrnoError(ERRNO_CODES.EBADF);
}
FS.chmod(stream.node, mode);
},chown:function (path, uid, gid, dontFollow) {
var node;
if (typeof path === 'string') {
var lookup = FS.lookupPath(path, { follow: !dontFollow });
node = lookup.node;
} else {
node = path;
}
if (!node.node_ops.setattr) {
throw new FS.ErrnoError(ERRNO_CODES.EPERM);
}
node.node_ops.setattr(node, {
timestamp: Date.now()
// we ignore the uid / gid for now
});
},lchown:function (path, uid, gid) {
FS.chown(path, uid, gid, true);
},fchown:function (fd, uid, gid) {
var stream = FS.getStream(fd);
if (!stream) {
throw new FS.ErrnoError(ERRNO_CODES.EBADF);
}
FS.chown(stream.node, uid, gid);
},truncate:function (path, len) {
if (len < 0) {
throw new FS.ErrnoError(ERRNO_CODES.EINVAL);
}
var node;
if (typeof path === 'string') {
var lookup = FS.lookupPath(path, { follow: true });
node = lookup.node;
} else {
node = path;
}
if (!node.node_ops.setattr) {
throw new FS.ErrnoError(ERRNO_CODES.EPERM);
}
if (FS.isDir(node.mode)) {
throw new FS.ErrnoError(ERRNO_CODES.EISDIR);
}
if (!FS.isFile(node.mode)) {
throw new FS.ErrnoError(ERRNO_CODES.EINVAL);
}
var err = FS.nodePermissions(node, 'w');
if (err) {
throw new FS.ErrnoError(err);
}
node.node_ops.setattr(node, {
size: len,
timestamp: Date.now()
});
},ftruncate:function (fd, len) {
var stream = FS.getStream(fd);
if (!stream) {
throw new FS.ErrnoError(ERRNO_CODES.EBADF);
}
if ((stream.flags & 3) === 0) {
throw new FS.ErrnoError(ERRNO_CODES.EINVAL);
}
FS.truncate(stream.node, len);
},utime:function (path, atime, mtime) {
var lookup = FS.lookupPath(path, { follow: true });
var node = lookup.node;
node.node_ops.setattr(node, {
timestamp: Math.max(atime, mtime)
});
},open:function (path, flags, mode, fd_start, fd_end) {
path = PATH.normalize(path);
flags = typeof flags === 'string' ? FS.modeStringToFlags(flags) : flags;
mode = typeof mode === 'undefined' ? 0666 : mode;
if ((flags & 512)) {
mode = (mode & 4095) | 0100000;
} else {
mode = 0;
}
var node;
try {
var lookup = FS.lookupPath(path, {
follow: !(flags & 0200000)
});
node = lookup.node;
path = lookup.path;
} catch (e) {
// ignore
}
// perhaps we need to create the node
if ((flags & 512)) {
if (node) {
// if O_CREAT and O_EXCL are set, error out if the node already exists
if ((flags & 2048)) {
throw new FS.ErrnoError(ERRNO_CODES.EEXIST);
}
} else {
// node doesn't exist, try to create it
node = FS.mknod(path, mode, 0);
}
}
if (!node) {
throw new FS.ErrnoError(ERRNO_CODES.ENOENT);
}
// can't truncate a device
if (FS.isChrdev(node.mode)) {
flags &= ~1024;
}
// check permissions
var err = FS.mayOpen(node, flags);
if (err) {
throw new FS.ErrnoError(err);
}
// do truncation if necessary
if ((flags & 1024)) {
FS.truncate(node, 0);
}
// register the stream with the filesystem
var stream = FS.createStream({
path: path,
node: node,
flags: flags,
seekable: true,
position: 0,
stream_ops: node.stream_ops,
// used by the file family libc calls (fopen, fwrite, ferror, etc.)
ungotten: [],
error: false
}, fd_start, fd_end);
// call the new stream's open function
if (stream.stream_ops.open) {
stream.stream_ops.open(stream);
}
return stream;
},close:function (stream) {
try {
if (stream.stream_ops.close) {
stream.stream_ops.close(stream);
}
} catch (e) {
throw e;
} finally {
FS.closeStream(stream.fd);
}
},llseek:function (stream, offset, whence) {
if (!stream.seekable || !stream.stream_ops.llseek) {
throw new FS.ErrnoError(ERRNO_CODES.ESPIPE);
}
return stream.stream_ops.llseek(stream, offset, whence);
},read:function (stream, buffer, offset, length, position) {
if (length < 0 || position < 0) {
throw new FS.ErrnoError(ERRNO_CODES.EINVAL);
}
if ((stream.flags & 3) === 1) {
throw new FS.ErrnoError(ERRNO_CODES.EBADF);
}
if (FS.isDir(stream.node.mode)) {
throw new FS.ErrnoError(ERRNO_CODES.EISDIR);
}
if (!stream.stream_ops.read) {
throw new FS.ErrnoError(ERRNO_CODES.EINVAL);
}
var seeking = true;
if (typeof position === 'undefined') {
position = stream.position;
seeking = false;
} else if (!stream.seekable) {
throw new FS.ErrnoError(ERRNO_CODES.ESPIPE);
}
var bytesRead = stream.stream_ops.read(stream, buffer, offset, length, position);
if (!seeking) stream.position += bytesRead;
return bytesRead;
},write:function (stream, buffer, offset, length, position) {
if (length < 0 || position < 0) {
throw new FS.ErrnoError(ERRNO_CODES.EINVAL);
}
if ((stream.flags & 3) === 0) {
throw new FS.ErrnoError(ERRNO_CODES.EBADF);
}
if (FS.isDir(stream.node.mode)) {
throw new FS.ErrnoError(ERRNO_CODES.EISDIR);
}
if (!stream.stream_ops.write) {
throw new FS.ErrnoError(ERRNO_CODES.EINVAL);
}
var seeking = true;
if (typeof position === 'undefined') {
position = stream.position;
seeking = false;
} else if (!stream.seekable) {
throw new FS.ErrnoError(ERRNO_CODES.ESPIPE);
}
if (stream.flags & 8) {
// seek to the end before writing in append mode
FS.llseek(stream, 0, 2);
}
var bytesWritten = stream.stream_ops.write(stream, buffer, offset, length, position);
if (!seeking) stream.position += bytesWritten;
return bytesWritten;
},allocate:function (stream, offset, length) {
if (offset < 0 || length <= 0) {
throw new FS.ErrnoError(ERRNO_CODES.EINVAL);
}
if ((stream.flags & 3) === 0) {
throw new FS.ErrnoError(ERRNO_CODES.EBADF);
}
if (!FS.isFile(stream.node.mode) && !FS.isDir(node.mode)) {
throw new FS.ErrnoError(ERRNO_CODES.ENODEV);
}
if (!stream.stream_ops.allocate) {
throw new FS.ErrnoError(ERRNO_CODES.EOPNOTSUPP);
}
stream.stream_ops.allocate(stream, offset, length);
},mmap:function (stream, buffer, offset, length, position, prot, flags) {
// TODO if PROT is PROT_WRITE, make sure we have write access
if ((stream.flags & 3) === 1) {
throw new FS.ErrnoError(ERRNO_CODES.EACCES);
}
if (!stream.stream_ops.mmap) {
throw new FS.errnoError(ERRNO_CODES.ENODEV);
}
return stream.stream_ops.mmap(stream, buffer, offset, length, position, prot, flags);
}};
function _send(fd, buf, len, flags) {
var info = FS.getStream(fd);
if (!info) {
___setErrNo(ERRNO_CODES.EBADF);
return -1;
}
if (info.socket.readyState === WebSocket.CLOSING || info.socket.readyState === WebSocket.CLOSED) {
___setErrNo(ERRNO_CODES.ENOTCONN);
return -1;
} else if (info.socket.readyState === WebSocket.CONNECTING) {
___setErrNo(ERRNO_CODES.EAGAIN);
return -1;
}
info.sender(HEAPU8.subarray(buf, buf+len));
return len;
}
function _pwrite(fildes, buf, nbyte, offset) {
// ssize_t pwrite(int fildes, const void *buf, size_t nbyte, off_t offset);
// http://pubs.opengroup.org/onlinepubs/000095399/functions/write.html
var stream = FS.getStream(fildes);
if (!stream) {
___setErrNo(ERRNO_CODES.EBADF);
return -1;
}
try {
var slab = HEAP8;
return FS.write(stream, slab, buf, nbyte, offset);
} catch (e) {
FS.handleFSError(e);
return -1;
}
}function _write(fildes, buf, nbyte) {
// ssize_t write(int fildes, const void *buf, size_t nbyte);
// http://pubs.opengroup.org/onlinepubs/000095399/functions/write.html
var stream = FS.getStream(fildes);
if (!stream) {
___setErrNo(ERRNO_CODES.EBADF);
return -1;
}
if (stream && ('socket' in stream)) {
return _send(fildes, buf, nbyte, 0);
}
try {
var slab = HEAP8;
return FS.write(stream, slab, buf, nbyte);
} catch (e) {
FS.handleFSError(e);
return -1;
}
}function _fwrite(ptr, size, nitems, stream) {
// size_t fwrite(const void *restrict ptr, size_t size, size_t nitems, FILE *restrict stream);
// http://pubs.opengroup.org/onlinepubs/000095399/functions/fwrite.html
var bytesToWrite = nitems * size;
if (bytesToWrite == 0) return 0;
var bytesWritten = _write(stream, ptr, bytesToWrite);
if (bytesWritten == -1) {
var streamObj = FS.getStream(stream);
if (streamObj) streamObj.error = true;
return 0;
} else {
return Math.floor(bytesWritten / size);
}
}
function __reallyNegative(x) {
return x < 0 || (x === 0 && (1/x) === -Infinity);
}function __formatString(format, varargs) {
var textIndex = format;
var argIndex = 0;
function getNextArg(type) {
// NOTE: Explicitly ignoring type safety. Otherwise this fails:
// int x = 4; printf("%c\n", (char)x);
var ret;
if (type === 'double') {
ret = HEAPF64[(((varargs)+(argIndex))>>3)];
} else if (type == 'i64') {
ret = [HEAP32[(((varargs)+(argIndex))>>2)],
HEAP32[(((varargs)+(argIndex+8))>>2)]];
argIndex += 8; // each 32-bit chunk is in a 64-bit block
} else {
type = 'i32'; // varargs are always i32, i64, or double
ret = HEAP32[(((varargs)+(argIndex))>>2)];
}
argIndex += Math.max(Runtime.getNativeFieldSize(type), Runtime.getAlignSize(type, null, true));
return ret;
}
var ret = [];
var curr, next, currArg;
while(1) {
var startTextIndex = textIndex;
curr = HEAP8[(textIndex)];
if (curr === 0) break;
next = HEAP8[((textIndex+1)|0)];
if (curr == 37) {
// Handle flags.
var flagAlwaysSigned = false;
var flagLeftAlign = false;
var flagAlternative = false;
var flagZeroPad = false;
flagsLoop: while (1) {
switch (next) {
case 43:
flagAlwaysSigned = true;
break;
case 45:
flagLeftAlign = true;
break;
case 35:
flagAlternative = true;
break;
case 48:
if (flagZeroPad) {
break flagsLoop;
} else {
flagZeroPad = true;
break;
}
default:
break flagsLoop;
}
textIndex++;
next = HEAP8[((textIndex+1)|0)];
}
// Handle width.
var width = 0;
if (next == 42) {
width = getNextArg('i32');
textIndex++;
next = HEAP8[((textIndex+1)|0)];
} else {
while (next >= 48 && next <= 57) {
width = width * 10 + (next - 48);
textIndex++;
next = HEAP8[((textIndex+1)|0)];
}
}
// Handle precision.
var precisionSet = false;
if (next == 46) {
var precision = 0;
precisionSet = true;
textIndex++;
next = HEAP8[((textIndex+1)|0)];
if (next == 42) {
precision = getNextArg('i32');
textIndex++;
} else {
while(1) {
var precisionChr = HEAP8[((textIndex+1)|0)];
if (precisionChr < 48 ||
precisionChr > 57) break;
precision = precision * 10 + (precisionChr - 48);
textIndex++;
}
}
next = HEAP8[((textIndex+1)|0)];
} else {
var precision = 6; // Standard default.
}
// Handle integer sizes. WARNING: These assume a 32-bit architecture!
var argSize;
switch (String.fromCharCode(next)) {
case 'h':
var nextNext = HEAP8[((textIndex+2)|0)];
if (nextNext == 104) {
textIndex++;
argSize = 1; // char (actually i32 in varargs)
} else {
argSize = 2; // short (actually i32 in varargs)
}
break;
case 'l':
var nextNext = HEAP8[((textIndex+2)|0)];
if (nextNext == 108) {
textIndex++;
argSize = 8; // long long
} else {
argSize = 4; // long
}
break;
case 'L': // long long
case 'q': // int64_t
case 'j': // intmax_t
argSize = 8;
break;
case 'z': // size_t
case 't': // ptrdiff_t
case 'I': // signed ptrdiff_t or unsigned size_t
argSize = 4;
break;
default:
argSize = null;
}
if (argSize) textIndex++;
next = HEAP8[((textIndex+1)|0)];
// Handle type specifier.
switch (String.fromCharCode(next)) {
case 'd': case 'i': case 'u': case 'o': case 'x': case 'X': case 'p': {
// Integer.
var signed = next == 100 || next == 105;
argSize = argSize || 4;
var currArg = getNextArg('i' + (argSize * 8));
var origArg = currArg;
var argText;
// Flatten i64-1 [low, high] into a (slightly rounded) double
if (argSize == 8) {
currArg = Runtime.makeBigInt(currArg[0], currArg[1], next == 117);
}
// Truncate to requested size.
if (argSize <= 4) {
var limit = Math.pow(256, argSize) - 1;
currArg = (signed ? reSign : unSign)(currArg & limit, argSize * 8);
}
// Format the number.
var currAbsArg = Math.abs(currArg);
var prefix = '';
if (next == 100 || next == 105) {
if (argSize == 8 && i64Math) argText = i64Math.stringify(origArg[0], origArg[1], null); else
argText = reSign(currArg, 8 * argSize, 1).toString(10);
} else if (next == 117) {
if (argSize == 8 && i64Math) argText = i64Math.stringify(origArg[0], origArg[1], true); else
argText = unSign(currArg, 8 * argSize, 1).toString(10);
currArg = Math.abs(currArg);
} else if (next == 111) {
argText = (flagAlternative ? '0' : '') + currAbsArg.toString(8);
} else if (next == 120 || next == 88) {
prefix = (flagAlternative && currArg != 0) ? '0x' : '';
if (argSize == 8 && i64Math) {
if (origArg[1]) {
argText = (origArg[1]>>>0).toString(16);
var lower = (origArg[0]>>>0).toString(16);
while (lower.length < 8) lower = '0' + lower;
argText += lower;
} else {
argText = (origArg[0]>>>0).toString(16);
}
} else
if (currArg < 0) {
// Represent negative numbers in hex as 2's complement.
currArg = -currArg;
argText = (currAbsArg - 1).toString(16);
var buffer = [];
for (var i = 0; i < argText.length; i++) {
buffer.push((0xF - parseInt(argText[i], 16)).toString(16));
}
argText = buffer.join('');
while (argText.length < argSize * 2) argText = 'f' + argText;
} else {
argText = currAbsArg.toString(16);
}
if (next == 88) {
prefix = prefix.toUpperCase();
argText = argText.toUpperCase();
}
} else if (next == 112) {
if (currAbsArg === 0) {
argText = '(nil)';
} else {
prefix = '0x';
argText = currAbsArg.toString(16);
}
}
if (precisionSet) {
while (argText.length < precision) {
argText = '0' + argText;
}
}
// Add sign if needed
if (flagAlwaysSigned) {
if (currArg < 0) {
prefix = '-' + prefix;
} else {
prefix = '+' + prefix;
}
}
// Add padding.
while (prefix.length + argText.length < width) {
if (flagLeftAlign) {
argText += ' ';
} else {
if (flagZeroPad) {
argText = '0' + argText;
} else {
prefix = ' ' + prefix;
}
}
}
// Insert the result into the buffer.
argText = prefix + argText;
argText.split('').forEach(function(chr) {
ret.push(chr.charCodeAt(0));
});
break;
}
case 'f': case 'F': case 'e': case 'E': case 'g': case 'G': {
// Float.
var currArg = getNextArg('double');
var argText;
if (isNaN(currArg)) {
argText = 'nan';
flagZeroPad = false;
} else if (!isFinite(currArg)) {
argText = (currArg < 0 ? '-' : '') + 'inf';
flagZeroPad = false;
} else {
var isGeneral = false;
var effectivePrecision = Math.min(precision, 20);
// Convert g/G to f/F or e/E, as per:
// http://pubs.opengroup.org/onlinepubs/9699919799/functions/printf.html
if (next == 103 || next == 71) {
isGeneral = true;
precision = precision || 1;
var exponent = parseInt(currArg.toExponential(effectivePrecision).split('e')[1], 10);
if (precision > exponent && exponent >= -4) {
next = ((next == 103) ? 'f' : 'F').charCodeAt(0);
precision -= exponent + 1;
} else {
next = ((next == 103) ? 'e' : 'E').charCodeAt(0);
precision--;
}
effectivePrecision = Math.min(precision, 20);
}
if (next == 101 || next == 69) {
argText = currArg.toExponential(effectivePrecision);
// Make sure the exponent has at least 2 digits.
if (/[eE][-+]\d$/.test(argText)) {
argText = argText.slice(0, -1) + '0' + argText.slice(-1);
}
} else if (next == 102 || next == 70) {
argText = currArg.toFixed(effectivePrecision);
if (currArg === 0 && __reallyNegative(currArg)) {
argText = '-' + argText;
}
}
var parts = argText.split('e');
if (isGeneral && !flagAlternative) {
// Discard trailing zeros and periods.
while (parts[0].length > 1 && parts[0].indexOf('.') != -1 &&
(parts[0].slice(-1) == '0' || parts[0].slice(-1) == '.')) {
parts[0] = parts[0].slice(0, -1);
}
} else {
// Make sure we have a period in alternative mode.
if (flagAlternative && argText.indexOf('.') == -1) parts[0] += '.';
// Zero pad until required precision.
while (precision > effectivePrecision++) parts[0] += '0';
}
argText = parts[0] + (parts.length > 1 ? 'e' + parts[1] : '');
// Capitalize 'E' if needed.
if (next == 69) argText = argText.toUpperCase();
// Add sign.
if (flagAlwaysSigned && currArg >= 0) {
argText = '+' + argText;
}
}
// Add padding.
while (argText.length < width) {
if (flagLeftAlign) {
argText += ' ';
} else {
if (flagZeroPad && (argText[0] == '-' || argText[0] == '+')) {
argText = argText[0] + '0' + argText.slice(1);
} else {
argText = (flagZeroPad ? '0' : ' ') + argText;
}
}
}
// Adjust case.
if (next < 97) argText = argText.toUpperCase();
// Insert the result into the buffer.
argText.split('').forEach(function(chr) {
ret.push(chr.charCodeAt(0));
});
break;
}
case 's': {
// String.
var arg = getNextArg('i8*');
var argLength = arg ? _strlen(arg) : '(null)'.length;
if (precisionSet) argLength = Math.min(argLength, precision);
if (!flagLeftAlign) {
while (argLength < width--) {
ret.push(32);
}
}
if (arg) {
for (var i = 0; i < argLength; i++) {
ret.push(HEAPU8[((arg++)|0)]);
}
} else {
ret = ret.concat(intArrayFromString('(null)'.substr(0, argLength), true));
}
if (flagLeftAlign) {
while (argLength < width--) {
ret.push(32);
}
}
break;
}
case 'c': {
// Character.
if (flagLeftAlign) ret.push(getNextArg('i8'));
while (--width > 0) {
ret.push(32);
}
if (!flagLeftAlign) ret.push(getNextArg('i8'));
break;
}
case 'n': {
// Write the length written so far to the next parameter.
var ptr = getNextArg('i32*');
HEAP32[((ptr)>>2)]=ret.length
break;
}
case '%': {
// Literal percent sign.
ret.push(curr);
break;
}
default: {
// Unknown specifiers remain untouched.
for (var i = startTextIndex; i < textIndex + 2; i++) {
ret.push(HEAP8[(i)]);
}
}
}
textIndex += 2;
// TODO: Support a/A (hex float) and m (last error) specifiers.
// TODO: Support %1${specifier} for arg selection.
} else {
ret.push(curr);
textIndex += 1;
}
}
return ret;
}function _fprintf(stream, format, varargs) {
// int fprintf(FILE *restrict stream, const char *restrict format, ...);
// http://pubs.opengroup.org/onlinepubs/000095399/functions/printf.html
var result = __formatString(format, varargs);
var stack = Runtime.stackSave();
var ret = _fwrite(allocate(result, 'i8', ALLOC_STACK), 1, result.length, stream);
Runtime.stackRestore(stack);
return ret;
}function _printf(format, varargs) {
// int printf(const char *restrict format, ...);
// http://pubs.opengroup.org/onlinepubs/000095399/functions/printf.html
var stdout = HEAP32[((_stdout)>>2)];
return _fprintf(stdout, format, varargs);
}
function _fputs(s, stream) {
// int fputs(const char *restrict s, FILE *restrict stream);
// http://pubs.opengroup.org/onlinepubs/000095399/functions/fputs.html
return _write(stream, s, _strlen(s));
}
function _fputc(c, stream) {
// int fputc(int c, FILE *stream);
// http://pubs.opengroup.org/onlinepubs/000095399/functions/fputc.html
var chr = unSign(c & 0xFF);
HEAP8[((_fputc.ret)|0)]=chr
var ret = _write(stream, _fputc.ret, 1);
if (ret == -1) {
var streamObj = FS.getStream(stream);
if (streamObj) streamObj.error = true;
return -1;
} else {
return chr;
}
}function _puts(s) {
// int puts(const char *s);
// http://pubs.opengroup.org/onlinepubs/000095399/functions/puts.html
// NOTE: puts() always writes an extra newline.
var stdout = HEAP32[((_stdout)>>2)];
var ret = _fputs(s, stdout);
if (ret < 0) {
return ret;
} else {
var newlineRet = _fputc(10, stdout);
return (newlineRet < 0) ? -1 : ret + 1;
}
}
function _abort() {
Module['abort']();
}
function ___errno_location() {
return ___errno_state;
}var ___errno=___errno_location;
function _sbrk(bytes) {
// Implement a Linux-like 'memory area' for our 'process'.
// Changes the size of the memory area by |bytes|; returns the
// address of the previous top ('break') of the memory area
// We control the "dynamic" memory - DYNAMIC_BASE to DYNAMICTOP
var self = _sbrk;
if (!self.called) {
DYNAMICTOP = alignMemoryPage(DYNAMICTOP); // make sure we start out aligned
self.called = true;
assert(Runtime.dynamicAlloc);
self.alloc = Runtime.dynamicAlloc;
Runtime.dynamicAlloc = function() { abort('cannot dynamically allocate, sbrk now has control') };
}
var ret = DYNAMICTOP;
if (bytes != 0) self.alloc(bytes);
return ret; // Previous break location.
}
function _sysconf(name) {
// long sysconf(int name);
// http://pubs.opengroup.org/onlinepubs/009695399/functions/sysconf.html
switch(name) {
case 8: return PAGE_SIZE;
case 54:
case 56:
case 21:
case 61:
case 63:
case 22:
case 67:
case 23:
case 24:
case 25:
case 26:
case 27:
case 69:
case 28:
case 101:
case 70:
case 71:
case 29:
case 30:
case 199:
case 75:
case 76:
case 32:
case 43:
case 44:
case 80:
case 46:
case 47:
case 45:
case 48:
case 49:
case 42:
case 82:
case 33:
case 7:
case 108:
case 109:
case 107:
case 112:
case 119:
case 121:
return 200809;
case 13:
case 104:
case 94:
case 95:
case 34:
case 35:
case 77:
case 81:
case 83:
case 84:
case 85:
case 86:
case 87:
case 88:
case 89:
case 90:
case 91:
case 94:
case 95:
case 110:
case 111:
case 113:
case 114:
case 115:
case 116:
case 117:
case 118:
case 120:
case 40:
case 16:
case 79:
case 19:
return -1;
case 92:
case 93:
case 5:
case 72:
case 6:
case 74:
case 92:
case 93:
case 96:
case 97:
case 98:
case 99:
case 102:
case 103:
case 105:
return 1;
case 38:
case 66:
case 50:
case 51:
case 4:
return 1024;
case 15:
case 64:
case 41:
return 32;
case 55:
case 37:
case 17:
return 2147483647;
case 18:
case 1:
return 47839;
case 59:
case 57:
return 99;
case 68:
case 58:
return 2048;
case 0: return 2097152;
case 3: return 65536;
case 14: return 32768;
case 73: return 32767;
case 39: return 16384;
case 60: return 1000;
case 106: return 700;
case 52: return 256;
case 62: return 255;
case 2: return 100;
case 65: return 64;
case 36: return 20;
case 100: return 16;
case 20: return 6;
case 53: return 4;
case 10: return 1;
}
___setErrNo(ERRNO_CODES.EINVAL);
return -1;
}
function _time(ptr) {
var ret = Math.floor(Date.now()/1000);
if (ptr) {
HEAP32[((ptr)>>2)]=ret
}
return ret;
}
var Browser={mainLoop:{scheduler:null,shouldPause:false,paused:false,queue:[],pause:function () {
Browser.mainLoop.shouldPause = true;
},resume:function () {
if (Browser.mainLoop.paused) {
Browser.mainLoop.paused = false;
Browser.mainLoop.scheduler();
}
Browser.mainLoop.shouldPause = false;
},updateStatus:function () {
if (Module['setStatus']) {
var message = Module['statusMessage'] || 'Please wait...';
var remaining = Browser.mainLoop.remainingBlockers;
var expected = Browser.mainLoop.expectedBlockers;
if (remaining) {
if (remaining < expected) {
Module['setStatus'](message + ' (' + (expected - remaining) + '/' + expected + ')');
} else {
Module['setStatus'](message);
}
} else {
Module['setStatus']('');
}
}
}},isFullScreen:false,pointerLock:false,moduleContextCreatedCallbacks:[],workers:[],init:function () {
if (!Module["preloadPlugins"]) Module["preloadPlugins"] = []; // needs to exist even in workers
if (Browser.initted || ENVIRONMENT_IS_WORKER) return;
Browser.initted = true;
try {
new Blob();
Browser.hasBlobConstructor = true;
} catch(e) {
Browser.hasBlobConstructor = false;
console.log("warning: no blob constructor, cannot create blobs with mimetypes");
}
Browser.BlobBuilder = typeof MozBlobBuilder != "undefined" ? MozBlobBuilder : (typeof WebKitBlobBuilder != "undefined" ? WebKitBlobBuilder : (!Browser.hasBlobConstructor ? console.log("warning: no BlobBuilder") : null));
Browser.URLObject = typeof window != "undefined" ? (window.URL ? window.URL : window.webkitURL) : undefined;
if (!Module.noImageDecoding && typeof Browser.URLObject === 'undefined') {
console.log("warning: Browser does not support creating object URLs. Built-in browser image decoding will not be available.");
Module.noImageDecoding = true;
}
// Support for plugins that can process preloaded files. You can add more of these to
// your app by creating and appending to Module.preloadPlugins.
//
// Each plugin is asked if it can handle a file based on the file's name. If it can,
// it is given the file's raw data. When it is done, it calls a callback with the file's
// (possibly modified) data. For example, a plugin might decompress a file, or it
// might create some side data structure for use later (like an Image element, etc.).
var imagePlugin = {};
imagePlugin['canHandle'] = function(name) {
return !Module.noImageDecoding && /\.(jpg|jpeg|png|bmp)$/i.test(name);
};
imagePlugin['handle'] = function(byteArray, name, onload, onerror) {
var b = null;
if (Browser.hasBlobConstructor) {
try {
b = new Blob([byteArray], { type: Browser.getMimetype(name) });
if (b.size !== byteArray.length) { // Safari bug #118630
// Safari's Blob can only take an ArrayBuffer
b = new Blob([(new Uint8Array(byteArray)).buffer], { type: Browser.getMimetype(name) });
}
} catch(e) {
Runtime.warnOnce('Blob constructor present but fails: ' + e + '; falling back to blob builder');
}
}
if (!b) {
var bb = new Browser.BlobBuilder();
bb.append((new Uint8Array(byteArray)).buffer); // we need to pass a buffer, and must copy the array to get the right data range
b = bb.getBlob();
}
var url = Browser.URLObject.createObjectURL(b);
var img = new Image();
img.onload = function() {
assert(img.complete, 'Image ' + name + ' could not be decoded');
var canvas = document.createElement('canvas');
canvas.width = img.width;
canvas.height = img.height;
var ctx = canvas.getContext('2d');
ctx.drawImage(img, 0, 0);
Module["preloadedImages"][name] = canvas;
Browser.URLObject.revokeObjectURL(url);
if (onload) onload(byteArray);
};
img.onerror = function(event) {
console.log('Image ' + url + ' could not be decoded');
if (onerror) onerror();
};
img.src = url;
};
Module['preloadPlugins'].push(imagePlugin);
var audioPlugin = {};
audioPlugin['canHandle'] = function(name) {
return !Module.noAudioDecoding && name.substr(-4) in { '.ogg': 1, '.wav': 1, '.mp3': 1 };
};
audioPlugin['handle'] = function(byteArray, name, onload, onerror) {
var done = false;
function finish(audio) {
if (done) return;
done = true;
Module["preloadedAudios"][name] = audio;
if (onload) onload(byteArray);
}
function fail() {
if (done) return;
done = true;
Module["preloadedAudios"][name] = new Audio(); // empty shim
if (onerror) onerror();
}
if (Browser.hasBlobConstructor) {
try {
var b = new Blob([byteArray], { type: Browser.getMimetype(name) });
} catch(e) {
return fail();
}
var url = Browser.URLObject.createObjectURL(b); // XXX we never revoke this!
var audio = new Audio();
audio.addEventListener('canplaythrough', function() { finish(audio) }, false); // use addEventListener due to chromium bug 124926
audio.onerror = function(event) {
if (done) return;
console.log('warning: browser could not fully decode audio ' + name + ', trying slower base64 approach');
function encode64(data) {
var BASE = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/';
var PAD = '=';
var ret = '';
var leftchar = 0;
var leftbits = 0;
for (var i = 0; i < data.length; i++) {
leftchar = (leftchar << 8) | data[i];
leftbits += 8;
while (leftbits >= 6) {
var curr = (leftchar >> (leftbits-6)) & 0x3f;
leftbits -= 6;
ret += BASE[curr];
}
}
if (leftbits == 2) {
ret += BASE[(leftchar&3) << 4];
ret += PAD + PAD;
} else if (leftbits == 4) {
ret += BASE[(leftchar&0xf) << 2];
ret += PAD;
}
return ret;
}
audio.src = 'data:audio/x-' + name.substr(-3) + ';base64,' + encode64(byteArray);
finish(audio); // we don't wait for confirmation this worked - but it's worth trying
};
audio.src = url;
// workaround for chrome bug 124926 - we do not always get oncanplaythrough or onerror
Browser.safeSetTimeout(function() {
finish(audio); // try to use it even though it is not necessarily ready to play
}, 10000);
} else {
return fail();
}
};
Module['preloadPlugins'].push(audioPlugin);
// Canvas event setup
var canvas = Module['canvas'];
canvas.requestPointerLock = canvas['requestPointerLock'] ||
canvas['mozRequestPointerLock'] ||
canvas['webkitRequestPointerLock'];
canvas.exitPointerLock = document['exitPointerLock'] ||
document['mozExitPointerLock'] ||
document['webkitExitPointerLock'] ||
function(){}; // no-op if function does not exist
canvas.exitPointerLock = canvas.exitPointerLock.bind(document);
function pointerLockChange() {
Browser.pointerLock = document['pointerLockElement'] === canvas ||
document['mozPointerLockElement'] === canvas ||
document['webkitPointerLockElement'] === canvas;
}
document.addEventListener('pointerlockchange', pointerLockChange, false);
document.addEventListener('mozpointerlockchange', pointerLockChange, false);
document.addEventListener('webkitpointerlockchange', pointerLockChange, false);
if (Module['elementPointerLock']) {
canvas.addEventListener("click", function(ev) {
if (!Browser.pointerLock && canvas.requestPointerLock) {
canvas.requestPointerLock();
ev.preventDefault();
}
}, false);
}
},createContext:function (canvas, useWebGL, setInModule) {
var ctx;
try {
if (useWebGL) {
ctx = canvas.getContext('experimental-webgl', {
alpha: false
});
} else {
ctx = canvas.getContext('2d');
}
if (!ctx) throw ':(';
} catch (e) {
Module.print('Could not create canvas - ' + e);
return null;
}
if (useWebGL) {
// Set the background of the WebGL canvas to black
canvas.style.backgroundColor = "black";
// Warn on context loss
canvas.addEventListener('webglcontextlost', function(event) {
alert('WebGL context lost. You will need to reload the page.');
}, false);
}
if (setInModule) {
Module.ctx = ctx;
Module.useWebGL = useWebGL;
Browser.moduleContextCreatedCallbacks.forEach(function(callback) { callback() });
Browser.init();
}
return ctx;
},destroyContext:function (canvas, useWebGL, setInModule) {},fullScreenHandlersInstalled:false,lockPointer:undefined,resizeCanvas:undefined,requestFullScreen:function (lockPointer, resizeCanvas) {
Browser.lockPointer = lockPointer;
Browser.resizeCanvas = resizeCanvas;
if (typeof Browser.lockPointer === 'undefined') Browser.lockPointer = true;
if (typeof Browser.resizeCanvas === 'undefined') Browser.resizeCanvas = false;
var canvas = Module['canvas'];
function fullScreenChange() {
Browser.isFullScreen = false;
if ((document['webkitFullScreenElement'] || document['webkitFullscreenElement'] ||
document['mozFullScreenElement'] || document['mozFullscreenElement'] ||
document['fullScreenElement'] || document['fullscreenElement']) === canvas) {
canvas.cancelFullScreen = document['cancelFullScreen'] ||
document['mozCancelFullScreen'] ||
document['webkitCancelFullScreen'];
canvas.cancelFullScreen = canvas.cancelFullScreen.bind(document);
if (Browser.lockPointer) canvas.requestPointerLock();
Browser.isFullScreen = true;
if (Browser.resizeCanvas) Browser.setFullScreenCanvasSize();
} else if (Browser.resizeCanvas){
Browser.setWindowedCanvasSize();
}
if (Module['onFullScreen']) Module['onFullScreen'](Browser.isFullScreen);
}
if (!Browser.fullScreenHandlersInstalled) {
Browser.fullScreenHandlersInstalled = true;
document.addEventListener('fullscreenchange', fullScreenChange, false);
document.addEventListener('mozfullscreenchange', fullScreenChange, false);
document.addEventListener('webkitfullscreenchange', fullScreenChange, false);
}
canvas.requestFullScreen = canvas['requestFullScreen'] ||
canvas['mozRequestFullScreen'] ||
(canvas['webkitRequestFullScreen'] ? function() { canvas['webkitRequestFullScreen'](Element['ALLOW_KEYBOARD_INPUT']) } : null);
canvas.requestFullScreen();
},requestAnimationFrame:function (func) {
if (!window.requestAnimationFrame) {
window.requestAnimationFrame = window['requestAnimationFrame'] ||
window['mozRequestAnimationFrame'] ||
window['webkitRequestAnimationFrame'] ||
window['msRequestAnimationFrame'] ||
window['oRequestAnimationFrame'] ||
window['setTimeout'];
}
window.requestAnimationFrame(func);
},safeCallback:function (func) {
return function() {
if (!ABORT) return func.apply(null, arguments);
};
},safeRequestAnimationFrame:function (func) {
return Browser.requestAnimationFrame(function() {
if (!ABORT) func();
});
},safeSetTimeout:function (func, timeout) {
return setTimeout(function() {
if (!ABORT) func();
}, timeout);
},safeSetInterval:function (func, timeout) {
return setInterval(function() {
if (!ABORT) func();
}, timeout);
},getMimetype:function (name) {
return {
'jpg': 'image/jpeg',
'jpeg': 'image/jpeg',
'png': 'image/png',
'bmp': 'image/bmp',
'ogg': 'audio/ogg',
'wav': 'audio/wav',
'mp3': 'audio/mpeg'
}[name.substr(name.lastIndexOf('.')+1)];
},getUserMedia:function (func) {
if(!window.getUserMedia) {
window.getUserMedia = navigator['getUserMedia'] ||
navigator['mozGetUserMedia'];
}
window.getUserMedia(func);
},getMovementX:function (event) {
return event['movementX'] ||
event['mozMovementX'] ||
event['webkitMovementX'] ||
0;
},getMovementY:function (event) {
return event['movementY'] ||
event['mozMovementY'] ||
event['webkitMovementY'] ||
0;
},mouseX:0,mouseY:0,mouseMovementX:0,mouseMovementY:0,calculateMouseEvent:function (event) { // event should be mousemove, mousedown or mouseup
if (Browser.pointerLock) {
// When the pointer is locked, calculate the coordinates
// based on the movement of the mouse.
// Workaround for Firefox bug 764498
if (event.type != 'mousemove' &&
('mozMovementX' in event)) {
Browser.mouseMovementX = Browser.mouseMovementY = 0;
} else {
Browser.mouseMovementX = Browser.getMovementX(event);
Browser.mouseMovementY = Browser.getMovementY(event);
}
// check if SDL is available
if (typeof SDL != "undefined") {
Browser.mouseX = SDL.mouseX + Browser.mouseMovementX;
Browser.mouseY = SDL.mouseY + Browser.mouseMovementY;
} else {
// just add the mouse delta to the current absolut mouse position
// FIXME: ideally this should be clamped against the canvas size and zero
Browser.mouseX += Browser.mouseMovementX;
Browser.mouseY += Browser.mouseMovementY;
}
} else {
// Otherwise, calculate the movement based on the changes
// in the coordinates.
var rect = Module["canvas"].getBoundingClientRect();
var x = event.pageX - (window.scrollX + rect.left);
var y = event.pageY - (window.scrollY + rect.top);
// the canvas might be CSS-scaled compared to its backbuffer;
// SDL-using content will want mouse coordinates in terms
// of backbuffer units.
var cw = Module["canvas"].width;
var ch = Module["canvas"].height;
x = x * (cw / rect.width);
y = y * (ch / rect.height);
Browser.mouseMovementX = x - Browser.mouseX;
Browser.mouseMovementY = y - Browser.mouseY;
Browser.mouseX = x;
Browser.mouseY = y;
}
},xhrLoad:function (url, onload, onerror) {
var xhr = new XMLHttpRequest();
xhr.open('GET', url, true);
xhr.responseType = 'arraybuffer';
xhr.onload = function() {
if (xhr.status == 200 || (xhr.status == 0 && xhr.response)) { // file URLs can return 0
onload(xhr.response);
} else {
onerror();
}
};
xhr.onerror = onerror;
xhr.send(null);
},asyncLoad:function (url, onload, onerror, noRunDep) {
Browser.xhrLoad(url, function(arrayBuffer) {
assert(arrayBuffer, 'Loading data file "' + url + '" failed (no arrayBuffer).');
onload(new Uint8Array(arrayBuffer));
if (!noRunDep) removeRunDependency('al ' + url);
}, function(event) {
if (onerror) {
onerror();
} else {
throw 'Loading data file "' + url + '" failed.';
}
});
if (!noRunDep) addRunDependency('al ' + url);
},resizeListeners:[],updateResizeListeners:function () {
var canvas = Module['canvas'];
Browser.resizeListeners.forEach(function(listener) {
listener(canvas.width, canvas.height);
});
},setCanvasSize:function (width, height, noUpdates) {
var canvas = Module['canvas'];
canvas.width = width;
canvas.height = height;
if (!noUpdates) Browser.updateResizeListeners();
},windowedWidth:0,windowedHeight:0,setFullScreenCanvasSize:function () {
var canvas = Module['canvas'];
this.windowedWidth = canvas.width;
this.windowedHeight = canvas.height;
canvas.width = screen.width;
canvas.height = screen.height;
// check if SDL is available
if (typeof SDL != "undefined") {
var flags = HEAPU32[((SDL.screen+Runtime.QUANTUM_SIZE*0)>>2)];
flags = flags | 0x00800000; // set SDL_FULLSCREEN flag
HEAP32[((SDL.screen+Runtime.QUANTUM_SIZE*0)>>2)]=flags
}
Browser.updateResizeListeners();
},setWindowedCanvasSize:function () {
var canvas = Module['canvas'];
canvas.width = this.windowedWidth;
canvas.height = this.windowedHeight;
// check if SDL is available
if (typeof SDL != "undefined") {
var flags = HEAPU32[((SDL.screen+Runtime.QUANTUM_SIZE*0)>>2)];
flags = flags & ~0x00800000; // clear SDL_FULLSCREEN flag
HEAP32[((SDL.screen+Runtime.QUANTUM_SIZE*0)>>2)]=flags
}
Browser.updateResizeListeners();
}};
FS.staticInit();__ATINIT__.unshift({ func: function() { if (!Module["noFSInit"] && !FS.init.initialized) FS.init() } });__ATMAIN__.push({ func: function() { FS.ignorePermissions = false } });__ATEXIT__.push({ func: function() { FS.quit() } });Module["FS_createFolder"] = FS.createFolder;Module["FS_createPath"] = FS.createPath;Module["FS_createDataFile"] = FS.createDataFile;Module["FS_createPreloadedFile"] = FS.createPreloadedFile;Module["FS_createLazyFile"] = FS.createLazyFile;Module["FS_createLink"] = FS.createLink;Module["FS_createDevice"] = FS.createDevice;
___errno_state = Runtime.staticAlloc(4); HEAP32[((___errno_state)>>2)]=0;
_fputc.ret = allocate([0], "i8", ALLOC_STATIC);
Module["requestFullScreen"] = function(lockPointer, resizeCanvas) { Browser.requestFullScreen(lockPointer, resizeCanvas) };
Module["requestAnimationFrame"] = function(func) { Browser.requestAnimationFrame(func) };
Module["setCanvasSize"] = function(width, height, noUpdates) { Browser.setCanvasSize(width, height, noUpdates) };
Module["pauseMainLoop"] = function() { Browser.mainLoop.pause() };
Module["resumeMainLoop"] = function() { Browser.mainLoop.resume() };
Module["getUserMedia"] = function() { Browser.getUserMedia() }
STACK_BASE = STACKTOP = Runtime.alignMemory(STATICTOP);
staticSealed = true; // seal the static portion of memory
STACK_MAX = STACK_BASE + 5242880;
DYNAMIC_BASE = DYNAMICTOP = Runtime.alignMemory(STACK_MAX);
assert(DYNAMIC_BASE < TOTAL_MEMORY); // Stack must fit in TOTAL_MEMORY; allocations from here on may enlarge TOTAL_MEMORY
var ctlz_i8 = allocate([8,7,6,6,5,5,5,5,4,4,4,4,4,4,4,4,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], "i8", ALLOC_DYNAMIC);
var cttz_i8 = allocate([8,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,6,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,7,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,6,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0], "i8", ALLOC_DYNAMIC);
var Math_min = Math.min;
function invoke_ii(index,a1) {
try {
return Module["dynCall_ii"](index,a1);
} catch(e) {
if (typeof e !== 'number' && e !== 'longjmp') throw e;
asm["setThrew"](1, 0);
}
}
function invoke_v(index) {
try {
Module["dynCall_v"](index);
} catch(e) {
if (typeof e !== 'number' && e !== 'longjmp') throw e;
asm["setThrew"](1, 0);
}
}
function invoke_iii(index,a1,a2) {
try {
return Module["dynCall_iii"](index,a1,a2);
} catch(e) {
if (typeof e !== 'number' && e !== 'longjmp') throw e;
asm["setThrew"](1, 0);
}
}
function invoke_vi(index,a1) {
try {
Module["dynCall_vi"](index,a1);
} catch(e) {
if (typeof e !== 'number' && e !== 'longjmp') throw e;
asm["setThrew"](1, 0);
}
}
function asmPrintInt(x, y) {
Module.print('int ' + x + ',' + y);// + ' ' + new Error().stack);
}
function asmPrintFloat(x, y) {
Module.print('float ' + x + ',' + y);// + ' ' + new Error().stack);
}
// EMSCRIPTEN_START_ASM
var asm = (function(global, env, buffer) {
'use asm';
var HEAP8 = new global.Int8Array(buffer);
var HEAP16 = new global.Int16Array(buffer);
var HEAP32 = new global.Int32Array(buffer);
var HEAPU8 = new global.Uint8Array(buffer);
var HEAPU16 = new global.Uint16Array(buffer);
var HEAPU32 = new global.Uint32Array(buffer);
var HEAPF32 = new global.Float32Array(buffer);
var HEAPF64 = new global.Float64Array(buffer);
var STACKTOP=env.STACKTOP|0;
var STACK_MAX=env.STACK_MAX|0;
var tempDoublePtr=env.tempDoublePtr|0;
var ABORT=env.ABORT|0;
var cttz_i8=env.cttz_i8|0;
var ctlz_i8=env.ctlz_i8|0;
var NaN=+env.NaN;
var Infinity=+env.Infinity;
var __THREW__ = 0;
var threwValue = 0;
var setjmpId = 0;
var undef = 0;
var tempInt = 0, tempBigInt = 0, tempBigIntP = 0, tempBigIntS = 0, tempBigIntR = 0.0, tempBigIntI = 0, tempBigIntD = 0, tempValue = 0, tempDouble = 0.0;
var tempRet0 = 0;
var tempRet1 = 0;
var tempRet2 = 0;
var tempRet3 = 0;
var tempRet4 = 0;
var tempRet5 = 0;
var tempRet6 = 0;
var tempRet7 = 0;
var tempRet8 = 0;
var tempRet9 = 0;
var Math_floor=global.Math.floor;
var Math_abs=global.Math.abs;
var Math_sqrt=global.Math.sqrt;
var Math_pow=global.Math.pow;
var Math_cos=global.Math.cos;
var Math_sin=global.Math.sin;
var Math_tan=global.Math.tan;
var Math_acos=global.Math.acos;
var Math_asin=global.Math.asin;
var Math_atan=global.Math.atan;
var Math_atan2=global.Math.atan2;
var Math_exp=global.Math.exp;
var Math_log=global.Math.log;
var Math_ceil=global.Math.ceil;
var Math_imul=global.Math.imul;
var abort=env.abort;
var assert=env.assert;
var asmPrintInt=env.asmPrintInt;
var asmPrintFloat=env.asmPrintFloat;
var Math_min=env.min;
var invoke_ii=env.invoke_ii;
var invoke_v=env.invoke_v;
var invoke_iii=env.invoke_iii;
var invoke_vi=env.invoke_vi;
var _fputc=env._fputc;
var _pwrite=env._pwrite;
var _sbrk=env._sbrk;
var _puts=env._puts;
var ___setErrNo=env.___setErrNo;
var _fwrite=env._fwrite;
var __reallyNegative=env.__reallyNegative;
var __formatString=env.__formatString;
var _send=env._send;
var _write=env._write;
var _fputs=env._fputs;
var _abort=env._abort;
var _fprintf=env._fprintf;
var _time=env._time;
var _printf=env._printf;
var ___errno_location=env.___errno_location;
var _fflush=env._fflush;
var _sysconf=env._sysconf;
// EMSCRIPTEN_START_FUNCS
function stackAlloc(i1) {
i1 = i1 | 0;
var i2 = 0;
i2 = STACKTOP;
STACKTOP = STACKTOP + i1 | 0;
STACKTOP = STACKTOP + 7 >> 3 << 3;
return i2 | 0;
}
function stackSave() {
return STACKTOP | 0;
}
function stackRestore(i1) {
i1 = i1 | 0;
STACKTOP = i1;
}
function setThrew(i1, i2) {
i1 = i1 | 0;
i2 = i2 | 0;
if ((__THREW__ | 0) == 0) {
__THREW__ = i1;
threwValue = i2;
}
}
function copyTempFloat(i1) {
i1 = i1 | 0;
HEAP8[tempDoublePtr] = HEAP8[i1];
HEAP8[tempDoublePtr + 1 | 0] = HEAP8[i1 + 1 | 0];
HEAP8[tempDoublePtr + 2 | 0] = HEAP8[i1 + 2 | 0];
HEAP8[tempDoublePtr + 3 | 0] = HEAP8[i1 + 3 | 0];
}
function copyTempDouble(i1) {
i1 = i1 | 0;
HEAP8[tempDoublePtr] = HEAP8[i1];
HEAP8[tempDoublePtr + 1 | 0] = HEAP8[i1 + 1 | 0];
HEAP8[tempDoublePtr + 2 | 0] = HEAP8[i1 + 2 | 0];
HEAP8[tempDoublePtr + 3 | 0] = HEAP8[i1 + 3 | 0];
HEAP8[tempDoublePtr + 4 | 0] = HEAP8[i1 + 4 | 0];
HEAP8[tempDoublePtr + 5 | 0] = HEAP8[i1 + 5 | 0];
HEAP8[tempDoublePtr + 6 | 0] = HEAP8[i1 + 6 | 0];
HEAP8[tempDoublePtr + 7 | 0] = HEAP8[i1 + 7 | 0];
}
function setTempRet0(i1) {
i1 = i1 | 0;
tempRet0 = i1;
}
function setTempRet1(i1) {
i1 = i1 | 0;
tempRet1 = i1;
}
function setTempRet2(i1) {
i1 = i1 | 0;
tempRet2 = i1;
}
function setTempRet3(i1) {
i1 = i1 | 0;
tempRet3 = i1;
}
function setTempRet4(i1) {
i1 = i1 | 0;
tempRet4 = i1;
}
function setTempRet5(i1) {
i1 = i1 | 0;
tempRet5 = i1;
}
function setTempRet6(i1) {
i1 = i1 | 0;
tempRet6 = i1;
}
function setTempRet7(i1) {
i1 = i1 | 0;
tempRet7 = i1;
}
function setTempRet8(i1) {
i1 = i1 | 0;
tempRet8 = i1;
}
function setTempRet9(i1) {
i1 = i1 | 0;
tempRet9 = i1;
}
function runPostSets() {
}
function _cube2crypto_hashstring(i1) {
i1 = i1 | 0;
var i2 = 0, i3 = 0, i4 = 0, i5 = 0, i6 = 0;
i2 = STACKTOP;
STACKTOP = STACKTOP + 24 | 0;
i3 = i2 | 0;
i4 = _malloc(49) | 0;
_tiger_hash(i1, _strlen(i1 | 0) | 0, i3);
i1 = i3;
i3 = 0;
do {
i5 = HEAPU8[i1 + i3 | 0] | 0;
i6 = i3 << 1;
HEAP8[i4 + i6 | 0] = HEAP8[160 + (i5 & 15) | 0] | 0;
HEAP8[i4 + (i6 | 1) | 0] = HEAP8[160 + (i5 >>> 4) | 0] | 0;
i3 = i3 + 1 | 0;
} while (i3 >>> 0 < 24);
HEAP8[i4 + 50 | 0] = 0;
STACKTOP = i2;
return i4 | 0;
}
function _tiger_compress(i1, i2) {
i1 = i1 | 0;
i2 = i2 | 0;
var i3 = 0, i4 = 0, i5 = 0, i6 = 0, i7 = 0, i8 = 0, i9 = 0, i10 = 0, i11 = 0, i12 = 0, i13 = 0, i14 = 0, i15 = 0, i16 = 0, i17 = 0, i18 = 0, i19 = 0, i20 = 0, i21 = 0, i22 = 0, i23 = 0, i24 = 0, i25 = 0, i26 = 0, i27 = 0, i28 = 0, i29 = 0, i30 = 0, i31 = 0, i32 = 0, i33 = 0, i34 = 0, i35 = 0, i36 = 0, i37 = 0, i38 = 0, i39 = 0, i40 = 0, i41 = 0, i42 = 0, i43 = 0, i44 = 0, i45 = 0, i46 = 0, i47 = 0, i48 = 0, i49 = 0, i50 = 0, i51 = 0, i52 = 0, i53 = 0, i54 = 0, i55 = 0, i56 = 0, i57 = 0, i58 = 0, i59 = 0, i60 = 0, i61 = 0, i62 = 0, i63 = 0, i64 = 0, i65 = 0, i66 = 0, i67 = 0, i68 = 0, i69 = 0, i70 = 0, i71 = 0, i72 = 0, i73 = 0;
i3 = HEAP32[i2 >> 2] | 0;
i4 = HEAP32[i2 + 4 >> 2] | 0;
i5 = i2 + 8 | 0;
i6 = HEAP32[i5 >> 2] | 0;
i7 = HEAP32[i5 + 4 >> 2] | 0;
i8 = i2 + 16 | 0;
i9 = HEAP32[i8 >> 2] | 0;
i10 = HEAP32[i8 + 4 >> 2] | 0;
i11 = i1 + 8 | 0;
i12 = i1 + 16 | 0;
i13 = i1 + 24 | 0;
i14 = i1 + 32 | 0;
i15 = i1 + 40 | 0;
i16 = i1 + 48 | 0;
i17 = i1 + 56 | 0;
i18 = i10;
i19 = i9;
i20 = HEAP32[i1 + 4 >> 2] | 0;
i21 = HEAP32[i1 >> 2] | 0;
i1 = HEAP32[i11 + 4 >> 2] | 0;
i22 = HEAP32[i11 >> 2] | 0;
i11 = HEAP32[i12 + 4 >> 2] | 0;
i23 = HEAP32[i12 >> 2] | 0;
i12 = HEAP32[i13 + 4 >> 2] | 0;
i24 = HEAP32[i13 >> 2] | 0;
i13 = HEAP32[i14 + 4 >> 2] | 0;
i25 = HEAP32[i14 >> 2] | 0;
i14 = HEAP32[i15 + 4 >> 2] | 0;
i26 = HEAP32[i15 >> 2] | 0;
i15 = HEAP32[i16 + 4 >> 2] | 0;
i27 = HEAP32[i16 >> 2] | 0;
i16 = HEAP32[i17 + 4 >> 2] | 0;
i28 = HEAP32[i17 >> 2] | 0;
i17 = 0;
i29 = i7;
i30 = i6;
i31 = i4;
i32 = i3;
while (1) {
if ((i17 | 0) == 0) {
i33 = 0;
i34 = 5;
i35 = i20;
i36 = i21;
i37 = i1;
i38 = i22;
i39 = i11;
i40 = i23;
i41 = i12;
i42 = i24;
i43 = i13;
i44 = i25;
i45 = i14;
i46 = i26;
i47 = i15;
i48 = i27;
i49 = i16;
i50 = i28;
} else {
i51 = _i64Subtract(i21, i20, i28 ^ -1515870811, i16 ^ -1515870811) | 0;
i52 = tempRet0;
i53 = i51 ^ i22;
i54 = i52 ^ i1;
i55 = _i64Add(i53, i54, i23, i11) | 0;
i56 = tempRet0;
i57 = _i64Subtract(i24, i12, (i53 << 19 | 0 >>> 13) ^ -524288 ^ i55, ~(i54 << 19 | i53 >>> 13) ^ i56) | 0;
i58 = tempRet0;
i59 = i57 ^ i25;
i60 = i58 ^ i13;
i61 = _i64Add(i59, i60, i26, i14) | 0;
i62 = tempRet0;
i63 = _i64Subtract(i27, i15, ~(i59 >>> 23 | i60 << 9) ^ i61, (i60 >>> 23 | 0 << 9) ^ 511 ^ i62) | 0;
i64 = tempRet0;
i65 = i63 ^ i28;
i66 = i64 ^ i16;
i67 = _i64Add(i65, i66, i51, i52) | 0;
i52 = tempRet0;
i51 = _i64Subtract(i53, i54, (i65 << 19 | 0 >>> 13) ^ -524288 ^ i67, ~(i66 << 19 | i65 >>> 13) ^ i52) | 0;
i54 = tempRet0;
i53 = i51 ^ i55;
i55 = i54 ^ i56;
i56 = _i64Add(i53, i55, i57, i58) | 0;
i58 = tempRet0;
i57 = _i64Subtract(i59, i60, ~(i53 >>> 23 | i55 << 9) ^ i56, (i55 >>> 23 | 0 << 9) ^ 511 ^ i58) | 0;
i60 = tempRet0;
i59 = i57 ^ i61;
i61 = i60 ^ i62;
i62 = _i64Add(i59, i61, i63, i64) | 0;
i64 = tempRet0;
i63 = _i64Subtract(i65, i66, i62 ^ -1985229329, i64 ^ 19088743) | 0;
i66 = (i17 | 0) == 1;
i33 = i66 ? 0 : 0;
i34 = i66 ? 7 : 9;
i35 = i52;
i36 = i67;
i37 = i54;
i38 = i51;
i39 = i55;
i40 = i53;
i41 = i58;
i42 = i56;
i43 = i60;
i44 = i57;
i45 = i61;
i46 = i59;
i47 = i64;
i48 = i62;
i49 = tempRet0;
i50 = i63;
}
i63 = i36 ^ i19;
i62 = i35 ^ i18;
i64 = 184 + ((i63 & 255) << 3) | 0;
i59 = 184 + (((i63 >>> 16 | i62 << 16) & 255 | 256) << 3) | 0;
i61 = 184 + ((i62 & 255 | 512) << 3) | 0;
i57 = 184 + (((i62 >>> 16 | 0 << 16) & 255 | 768) << 3) | 0;
i60 = _i64Subtract(i32, i31, HEAP32[i59 >> 2] ^ HEAP32[i64 >> 2] ^ HEAP32[i61 >> 2] ^ HEAP32[i57 >> 2], HEAP32[i59 + 4 >> 2] ^ HEAP32[i64 + 4 >> 2] ^ HEAP32[i61 + 4 >> 2] ^ HEAP32[i57 + 4 >> 2]) | 0;
i57 = tempRet0;
i61 = 184 + (((i63 >>> 8 | i62 << 24) & 255 | 768) << 3) | 0;
i64 = 184 + (((i63 >>> 24 | i62 << 8) & 255 | 512) << 3) | 0;
i59 = 184 + (((i62 >>> 8 | 0 << 24) & 255 | 256) << 3) | 0;
i56 = 184 + ((i62 >>> 24 | 0 << 8) << 3) | 0;
i58 = _i64Add(HEAP32[i64 >> 2] ^ HEAP32[i61 >> 2] ^ HEAP32[i59 >> 2] ^ HEAP32[i56 >> 2], HEAP32[i64 + 4 >> 2] ^ HEAP32[i61 + 4 >> 2] ^ HEAP32[i59 + 4 >> 2] ^ HEAP32[i56 + 4 >> 2], i30, i29) | 0;
i56 = ___muldi3(i58, tempRet0, i34, i33) | 0;
i58 = i60 ^ i38;
i60 = i57 ^ i37;
i57 = 184 + ((i58 & 255) << 3) | 0;
i59 = 184 + (((i58 >>> 16 | i60 << 16) & 255 | 256) << 3) | 0;
i61 = 184 + ((i60 & 255 | 512) << 3) | 0;
i64 = 184 + (((i60 >>> 16 | 0 << 16) & 255 | 768) << 3) | 0;
i53 = _i64Subtract(i56, tempRet0, HEAP32[i59 >> 2] ^ HEAP32[i57 >> 2] ^ HEAP32[i61 >> 2] ^ HEAP32[i64 >> 2], HEAP32[i59 + 4 >> 2] ^ HEAP32[i57 + 4 >> 2] ^ HEAP32[i61 + 4 >> 2] ^ HEAP32[i64 + 4 >> 2]) | 0;
i64 = tempRet0;
i61 = 184 + (((i58 >>> 8 | i60 << 24) & 255 | 768) << 3) | 0;
i57 = 184 + (((i58 >>> 24 | i60 << 8) & 255 | 512) << 3) | 0;
i59 = 184 + (((i60 >>> 8 | 0 << 24) & 255 | 256) << 3) | 0;
i56 = 184 + ((i60 >>> 24 | 0 << 8) << 3) | 0;
i55 = _i64Add(HEAP32[i57 >> 2] ^ HEAP32[i61 >> 2] ^ HEAP32[i59 >> 2] ^ HEAP32[i56 >> 2], HEAP32[i57 + 4 >> 2] ^ HEAP32[i61 + 4 >> 2] ^ HEAP32[i59 + 4 >> 2] ^ HEAP32[i56 + 4 >> 2], i63, i62) | 0;
i62 = ___muldi3(i55, tempRet0, i34, i33) | 0;
i55 = i53 ^ i40;
i53 = i64 ^ i39;
i64 = 184 + ((i55 & 255) << 3) | 0;
i63 = 184 + (((i55 >>> 16 | i53 << 16) & 255 | 256) << 3) | 0;
i56 = 184 + ((i53 & 255 | 512) << 3) | 0;
i59 = 184 + (((i53 >>> 16 | 0 << 16) & 255 | 768) << 3) | 0;
i61 = _i64Subtract(i62, tempRet0, HEAP32[i63 >> 2] ^ HEAP32[i64 >> 2] ^ HEAP32[i56 >> 2] ^ HEAP32[i59 >> 2], HEAP32[i63 + 4 >> 2] ^ HEAP32[i64 + 4 >> 2] ^ HEAP32[i56 + 4 >> 2] ^ HEAP32[i59 + 4 >> 2]) | 0;
i59 = tempRet0;
i56 = 184 + (((i55 >>> 8 | i53 << 24) & 255 | 768) << 3) | 0;
i64 = 184 + (((i55 >>> 24 | i53 << 8) & 255 | 512) << 3) | 0;
i63 = 184 + (((i53 >>> 8 | 0 << 24) & 255 | 256) << 3) | 0;
i62 = 184 + ((i53 >>> 24 | 0 << 8) << 3) | 0;
i57 = _i64Add(HEAP32[i64 >> 2] ^ HEAP32[i56 >> 2] ^ HEAP32[i63 >> 2] ^ HEAP32[i62 >> 2], HEAP32[i64 + 4 >> 2] ^ HEAP32[i56 + 4 >> 2] ^ HEAP32[i63 + 4 >> 2] ^ HEAP32[i62 + 4 >> 2], i58, i60) | 0;
i60 = ___muldi3(i57, tempRet0, i34, i33) | 0;
i57 = i61 ^ i42;
i61 = i59 ^ i41;
i59 = 184 + ((i57 & 255) << 3) | 0;
i58 = 184 + (((i57 >>> 16 | i61 << 16) & 255 | 256) << 3) | 0;
i62 = 184 + ((i61 & 255 | 512) << 3) | 0;
i63 = 184 + (((i61 >>> 16 | 0 << 16) & 255 | 768) << 3) | 0;
i56 = _i64Subtract(i60, tempRet0, HEAP32[i58 >> 2] ^ HEAP32[i59 >> 2] ^ HEAP32[i62 >> 2] ^ HEAP32[i63 >> 2], HEAP32[i58 + 4 >> 2] ^ HEAP32[i59 + 4 >> 2] ^ HEAP32[i62 + 4 >> 2] ^ HEAP32[i63 + 4 >> 2]) | 0;
i63 = tempRet0;
i62 = 184 + (((i57 >>> 8 | i61 << 24) & 255 | 768) << 3) | 0;
i59 = 184 + (((i57 >>> 24 | i61 << 8) & 255 | 512) << 3) | 0;
i58 = 184 + (((i61 >>> 8 | 0 << 24) & 255 | 256) << 3) | 0;
i60 = 184 + ((i61 >>> 24 | 0 << 8) << 3) | 0;
i64 = _i64Add(HEAP32[i59 >> 2] ^ HEAP32[i62 >> 2] ^ HEAP32[i58 >> 2] ^ HEAP32[i60 >> 2], HEAP32[i59 + 4 >> 2] ^ HEAP32[i62 + 4 >> 2] ^ HEAP32[i58 + 4 >> 2] ^ HEAP32[i60 + 4 >> 2], i55, i53) | 0;
i53 = ___muldi3(i64, tempRet0, i34, i33) | 0;
i64 = i56 ^ i44;
i56 = i63 ^ i43;
i63 = 184 + ((i64 & 255) << 3) | 0;
i55 = 184 + (((i64 >>> 16 | i56 << 16) & 255 | 256) << 3) | 0;
i60 = 184 + ((i56 & 255 | 512) << 3) | 0;
i58 = 184 + (((i56 >>> 16 | 0 << 16) & 255 | 768) << 3) | 0;
i62 = _i64Subtract(i53, tempRet0, HEAP32[i55 >> 2] ^ HEAP32[i63 >> 2] ^ HEAP32[i60 >> 2] ^ HEAP32[i58 >> 2], HEAP32[i55 + 4 >> 2] ^ HEAP32[i63 + 4 >> 2] ^ HEAP32[i60 + 4 >> 2] ^ HEAP32[i58 + 4 >> 2]) | 0;
i58 = tempRet0;
i60 = 184 + (((i64 >>> 8 | i56 << 24) & 255 | 768) << 3) | 0;
i63 = 184 + (((i64 >>> 24 | i56 << 8) & 255 | 512) << 3) | 0;
i55 = 184 + (((i56 >>> 8 | 0 << 24) & 255 | 256) << 3) | 0;
i53 = 184 + ((i56 >>> 24 | 0 << 8) << 3) | 0;
i59 = _i64Add(HEAP32[i63 >> 2] ^ HEAP32[i60 >> 2] ^ HEAP32[i55 >> 2] ^ HEAP32[i53 >> 2], HEAP32[i63 + 4 >> 2] ^ HEAP32[i60 + 4 >> 2] ^ HEAP32[i55 + 4 >> 2] ^ HEAP32[i53 + 4 >> 2], i57, i61) | 0;
i61 = ___muldi3(i59, tempRet0, i34, i33) | 0;
i59 = i62 ^ i46;
i62 = i58 ^ i45;
i58 = 184 + ((i59 & 255) << 3) | 0;
i57 = 184 + (((i59 >>> 16 | i62 << 16) & 255 | 256) << 3) | 0;
i53 = 184 + ((i62 & 255 | 512) << 3) | 0;
i55 = 184 + (((i62 >>> 16 | 0 << 16) & 255 | 768) << 3) | 0;
i60 = _i64Subtract(i61, tempRet0, HEAP32[i57 >> 2] ^ HEAP32[i58 >> 2] ^ HEAP32[i53 >> 2] ^ HEAP32[i55 >> 2], HEAP32[i57 + 4 >> 2] ^ HEAP32[i58 + 4 >> 2] ^ HEAP32[i53 + 4 >> 2] ^ HEAP32[i55 + 4 >> 2]) | 0;
i55 = tempRet0;
i53 = 184 + (((i59 >>> 8 | i62 << 24) & 255 | 768) << 3) | 0;
i58 = 184 + (((i59 >>> 24 | i62 << 8) & 255 | 512) << 3) | 0;
i57 = 184 + (((i62 >>> 8 | 0 << 24) & 255 | 256) << 3) | 0;
i61 = 184 + ((i62 >>> 24 | 0 << 8) << 3) | 0;
i63 = _i64Add(HEAP32[i58 >> 2] ^ HEAP32[i53 >> 2] ^ HEAP32[i57 >> 2] ^ HEAP32[i61 >> 2], HEAP32[i58 + 4 >> 2] ^ HEAP32[i53 + 4 >> 2] ^ HEAP32[i57 + 4 >> 2] ^ HEAP32[i61 + 4 >> 2], i64, i56) | 0;
i56 = ___muldi3(i63, tempRet0, i34, i33) | 0;
i63 = i60 ^ i48;
i60 = i55 ^ i47;
i55 = 184 + ((i63 & 255) << 3) | 0;
i64 = 184 + (((i63 >>> 16 | i60 << 16) & 255 | 256) << 3) | 0;
i61 = 184 + ((i60 & 255 | 512) << 3) | 0;
i57 = 184 + (((i60 >>> 16 | 0 << 16) & 255 | 768) << 3) | 0;
i53 = _i64Subtract(i56, tempRet0, HEAP32[i64 >> 2] ^ HEAP32[i55 >> 2] ^ HEAP32[i61 >> 2] ^ HEAP32[i57 >> 2], HEAP32[i64 + 4 >> 2] ^ HEAP32[i55 + 4 >> 2] ^ HEAP32[i61 + 4 >> 2] ^ HEAP32[i57 + 4 >> 2]) | 0;
i57 = tempRet0;
i61 = 184 + (((i63 >>> 8 | i60 << 24) & 255 | 768) << 3) | 0;
i55 = 184 + (((i63 >>> 24 | i60 << 8) & 255 | 512) << 3) | 0;
i64 = 184 + (((i60 >>> 8 | 0 << 24) & 255 | 256) << 3) | 0;
i56 = 184 + ((i60 >>> 24 | 0 << 8) << 3) | 0;
i58 = _i64Add(HEAP32[i55 >> 2] ^ HEAP32[i61 >> 2] ^ HEAP32[i64 >> 2] ^ HEAP32[i56 >> 2], HEAP32[i55 + 4 >> 2] ^ HEAP32[i61 + 4 >> 2] ^ HEAP32[i64 + 4 >> 2] ^ HEAP32[i56 + 4 >> 2], i59, i62) | 0;
i62 = ___muldi3(i58, tempRet0, i34, i33) | 0;
i68 = i53 ^ i50;
i69 = i57 ^ i49;
i57 = 184 + ((i68 & 255) << 3) | 0;
i53 = 184 + (((i68 >>> 16 | i69 << 16) & 255 | 256) << 3) | 0;
i58 = 184 + ((i69 & 255 | 512) << 3) | 0;
i59 = 184 + (((i69 >>> 16 | 0 << 16) & 255 | 768) << 3) | 0;
i70 = _i64Subtract(i62, tempRet0, HEAP32[i53 >> 2] ^ HEAP32[i57 >> 2] ^ HEAP32[i58 >> 2] ^ HEAP32[i59 >> 2], HEAP32[i53 + 4 >> 2] ^ HEAP32[i57 + 4 >> 2] ^ HEAP32[i58 + 4 >> 2] ^ HEAP32[i59 + 4 >> 2]) | 0;
i71 = tempRet0;
i59 = 184 + (((i68 >>> 8 | i69 << 24) & 255 | 768) << 3) | 0;
i58 = 184 + (((i68 >>> 24 | i69 << 8) & 255 | 512) << 3) | 0;
i57 = 184 + (((i69 >>> 8 | 0 << 24) & 255 | 256) << 3) | 0;
i53 = 184 + ((i69 >>> 24 | 0 << 8) << 3) | 0;
i62 = _i64Add(HEAP32[i58 >> 2] ^ HEAP32[i59 >> 2] ^ HEAP32[i57 >> 2] ^ HEAP32[i53 >> 2], HEAP32[i58 + 4 >> 2] ^ HEAP32[i59 + 4 >> 2] ^ HEAP32[i57 + 4 >> 2] ^ HEAP32[i53 + 4 >> 2], i63, i60) | 0;
i72 = ___muldi3(i62, tempRet0, i34, i33) | 0;
i73 = tempRet0;
i62 = i17 + 1 | 0;
if ((i62 | 0) < 3) {
i18 = i71;
i19 = i70;
i20 = i35;
i21 = i36;
i1 = i37;
i22 = i38;
i11 = i39;
i23 = i40;
i12 = i41;
i24 = i42;
i13 = i43;
i25 = i44;
i14 = i45;
i26 = i46;
i15 = i47;
i27 = i48;
i16 = i49;
i28 = i50;
i17 = i62;
i29 = i69;
i30 = i68;
i31 = i73;
i32 = i72;
} else {
break;
}
}
i32 = _i64Subtract(i68, i69, i6, i7) | 0;
i7 = tempRet0;
i6 = _i64Add(i70, i71, i9, i10) | 0;
HEAP32[i2 >> 2] = i72 ^ i3;
HEAP32[i2 + 4 >> 2] = i73 ^ i4;
HEAP32[i5 >> 2] = i32;
HEAP32[i5 + 4 >> 2] = i7;
HEAP32[i8 >> 2] = i6;
HEAP32[i8 + 4 >> 2] = tempRet0;
return;
}
function _tiger_gensboxes() {
var i1 = 0, i2 = 0, i3 = 0, i4 = 0, i5 = 0, i6 = 0, i7 = 0, i8 = 0, i9 = 0, i10 = 0, i11 = 0, i12 = 0, i13 = 0, i14 = 0, i15 = 0, i16 = 0, i17 = 0, i18 = 0;
i1 = STACKTOP;
STACKTOP = STACKTOP + 88 | 0;
i2 = i1 | 0;
i3 = i1 + 24 | 0;
i4 = i3;
i5 = i2;
HEAP32[i5 >> 2] = HEAP32[4];
HEAP32[i5 + 4 >> 2] = HEAP32[5];
HEAP32[i5 + 8 >> 2] = HEAP32[6];
HEAP32[i5 + 12 >> 2] = HEAP32[7];
HEAP32[i5 + 16 >> 2] = HEAP32[8];
HEAP32[i5 + 20 >> 2] = HEAP32[9];
_memcpy(i4 | 0, 88, 64) | 0;
i4 = i3 | 0;
i3 = 0;
do {
_memset(184 + (i3 << 3) | 0, i3 & 255 | 0, 8);
i3 = i3 + 1 | 0;
} while ((i3 | 0) < 1024);
i3 = i2 | 0;
i5 = 0;
i6 = 2;
while (1) {
i7 = i6;
i8 = 0;
while (1) {
i9 = i7 + 1 | 0;
if ((i9 | 0) > 2) {
_tiger_compress(i4, i3);
i10 = 0;
} else {
i10 = i9;
}
i9 = 184 + (i8 << 3) | 0;
i11 = i2 + (i10 << 3) | 0;
i12 = 0;
do {
i13 = i9 + i12 | 0;
i14 = HEAP8[i13] | 0;
i15 = 184 + ((HEAPU8[i11 + i12 | 0] | 0) << 3) + i12 | 0;
HEAP8[i13] = HEAP8[i15] | 0;
HEAP8[i15] = i14;
i12 = i12 + 1 | 0;
} while ((i12 | 0) < 8);
i12 = i10 + 1 | 0;
if ((i12 | 0) > 2) {
_tiger_compress(i4, i3);
i16 = 0;
} else {
i16 = i12;
}
i12 = 184 + (i8 + 256 << 3) | 0;
i11 = i2 + (i16 << 3) | 0;
i9 = 0;
do {
i14 = i12 + i9 | 0;
i15 = HEAP8[i14] | 0;
i13 = 184 + ((HEAPU8[i11 + i9 | 0] | 0 | 256) << 3) + i9 | 0;
HEAP8[i14] = HEAP8[i13] | 0;
HEAP8[i13] = i15;
i9 = i9 + 1 | 0;
} while ((i9 | 0) < 8);
i9 = i16 + 1 | 0;
if ((i9 | 0) > 2) {
_tiger_compress(i4, i3);
i17 = 0;
} else {
i17 = i9;
}
i9 = 184 + (i8 + 512 << 3) | 0;
i11 = i2 + (i17 << 3) | 0;
i12 = 0;
do {
i15 = i9 + i12 | 0;
i13 = HEAP8[i15] | 0;
i14 = 184 + ((HEAPU8[i11 + i12 | 0] | 0 | 512) << 3) + i12 | 0;
HEAP8[i15] = HEAP8[i14] | 0;
HEAP8[i14] = i13;
i12 = i12 + 1 | 0;
} while ((i12 | 0) < 8);
i12 = i17 + 1 | 0;
if ((i12 | 0) > 2) {
_tiger_compress(i4, i3);
i18 = 0;
} else {
i18 = i12;
}
i12 = 184 + (i8 + 768 << 3) | 0;
i11 = i2 + (i18 << 3) | 0;
i9 = 0;
do {
i13 = i12 + i9 | 0;
i14 = HEAP8[i13] | 0;
i15 = 184 + ((HEAPU8[i11 + i9 | 0] | 0 | 768) << 3) + i9 | 0;
HEAP8[i13] = HEAP8[i15] | 0;
HEAP8[i15] = i14;
i9 = i9 + 1 | 0;
} while ((i9 | 0) < 8);
i9 = i8 + 1 | 0;
if ((i9 | 0) < 256) {
i7 = i18;
i8 = i9;
} else {
break;
}
}
i8 = i5 + 1 | 0;
if ((i8 | 0) < 5) {
i5 = i8;
i6 = i18;
} else {
break;
}
}
STACKTOP = i1;
return;
}
function _tiger_hash(i1, i2, i3) {
i1 = i1 | 0;
i2 = i2 | 0;
i3 = i3 | 0;
var i4 = 0, i5 = 0, i6 = 0, i7 = 0, i8 = 0, i9 = 0, i10 = 0, i11 = 0, i12 = 0, i13 = 0, i14 = 0, i15 = 0, i16 = 0, i17 = 0, i18 = 0, i19 = 0, i20 = 0, i21 = 0, i22 = 0, i23 = 0, i24 = 0, i25 = 0, i26 = 0, i27 = 0;
i4 = STACKTOP;
STACKTOP = STACKTOP + 64 | 0;
i5 = i4 | 0;
i6 = i5;
i7 = i5 | 0;
i8 = i5;
if (!(HEAP8[8] | 0)) {
_tiger_gensboxes();
HEAP8[8] = 1;
}
i9 = i3 | 0;
HEAP32[i9 >> 2] = -1985229329;
HEAP32[i9 + 4 >> 2] = 19088743;
i10 = i3 + 8 | 0;
HEAP32[i10 >> 2] = 1985229328;
HEAP32[i10 + 4 >> 2] = -19088744;
i10 = i3 + 16 | 0;
HEAP32[i10 >> 2] = -1011687033;
HEAP32[i10 + 4 >> 2] = -258562636;
if ((i2 | 0) > 63) {
i10 = i2 - 64 | 0;
i3 = i10 & -64;
i11 = i1 + (i3 + 64) | 0;
i12 = i1;
i13 = i2;
while (1) {
_tiger_compress(i12, i9);
i14 = i13 - 64 | 0;
if ((i14 | 0) > 63) {
i12 = i12 + 64 | 0;
i13 = i14;
} else {
break;
}
}
i15 = i11;
i16 = i10 - i3 | 0;
} else {
i15 = i1;
i16 = i2;
}
if ((i16 | 0) > 0) {
i1 = 0;
do {
HEAP8[i8 + i1 | 0] = HEAP8[i15 + i1 | 0] | 0;
i1 = i1 + 1 | 0;
} while ((i1 | 0) < (i16 | 0));
HEAP8[i8 + i16 | 0] = 1;
i1 = i16 + 1 | 0;
if ((i1 & 7 | 0) == 0) {
i17 = i1;
} else {
i18 = i1;
i19 = 11;
}
} else {
HEAP8[i5] = 1;
i18 = 1;
i19 = 11;
}
if ((i19 | 0) == 11) {
while (1) {
i19 = 0;
HEAP8[i8 + i18 | 0] = 0;
i1 = i18 + 1 | 0;
if ((i1 & 7 | 0) == 0) {
i17 = i1;
break;
} else {
i18 = i1;
i19 = 11;
}
}
}
do {
if ((i17 | 0) > 56) {
if ((i17 | 0) < 64) {
_memset(i6 + i17 | 0, 0, 64 - i17 | 0);
}
_tiger_compress(i7, i9);
i20 = 0;
} else {
if ((i17 | 0) < 56) {
i20 = i17;
break;
}
i21 = i2;
i22 = (i2 | 0) < 0 ? -1 : 0;
i23 = i21 << 3 | 0 >>> 29;
i24 = i22 << 3 | i21 >>> 29;
i25 = i5 + 56 | 0;
i26 = i25 | 0;
HEAP32[i26 >> 2] = i23;
i27 = i25 + 4 | 0;
HEAP32[i27 >> 2] = i24;
_tiger_compress(i7, i9);
STACKTOP = i4;
return;
}
} while (0);
_memset(i6 + i20 | 0, 0, 56 - i20 | 0);
i21 = i2;
i22 = (i2 | 0) < 0 ? -1 : 0;
i23 = i21 << 3 | 0 >>> 29;
i24 = i22 << 3 | i21 >>> 29;
i25 = i5 + 56 | 0;
i26 = i25 | 0;
HEAP32[i26 >> 2] = i23;
i27 = i25 + 4 | 0;
HEAP32[i27 >> 2] = i24;
_tiger_compress(i7, i9);
STACKTOP = i4;
return;
}
function _main(i1, i2) {
i1 = i1 | 0;
i2 = i2 | 0;
var i3 = 0, i4 = 0, i5 = 0, i6 = 0;
i3 = STACKTOP;
do {
if ((i1 | 0) == 2) {
i4 = HEAP32[i2 + 4 >> 2] | 0;
if ((i4 | 0) == 0) {
break;
}
i5 = _cube2crypto_hashstring(i4) | 0;
_printf(72, (i4 = STACKTOP, STACKTOP = STACKTOP + 8 | 0, HEAP32[i4 >> 2] = i5, i4) | 0) | 0;
STACKTOP = i4;
_free(i5);
i6 = 0;
STACKTOP = i3;
return i6 | 0;
}
} while (0);
_puts(40) | 0;
i6 = 1;
STACKTOP = i3;
return i6 | 0;
}
function _malloc(i1) {
i1 = i1 | 0;
var i2 = 0, i3 = 0, i4 = 0, i5 = 0, i6 = 0, i7 = 0, i8 = 0, i9 = 0, i10 = 0, i11 = 0, i12 = 0, i13 = 0, i14 = 0, i15 = 0, i16 = 0, i17 = 0, i18 = 0, i19 = 0, i20 = 0, i21 = 0, i22 = 0, i23 = 0, i24 = 0, i25 = 0, i26 = 0, i27 = 0, i28 = 0, i29 = 0, i30 = 0, i31 = 0, i32 = 0, i33 = 0, i34 = 0, i35 = 0, i36 = 0, i37 = 0, i38 = 0, i39 = 0, i40 = 0, i41 = 0, i42 = 0, i43 = 0, i44 = 0, i45 = 0, i46 = 0, i47 = 0, i48 = 0, i49 = 0, i50 = 0, i51 = 0, i52 = 0, i53 = 0, i54 = 0, i55 = 0, i56 = 0, i57 = 0, i58 = 0, i59 = 0, i60 = 0, i61 = 0, i62 = 0, i63 = 0, i64 = 0, i65 = 0, i66 = 0, i67 = 0, i68 = 0, i69 = 0, i70 = 0, i71 = 0, i72 = 0, i73 = 0, i74 = 0, i75 = 0, i76 = 0, i77 = 0, i78 = 0, i79 = 0, i80 = 0, i81 = 0, i82 = 0, i83 = 0, i84 = 0, i85 = 0, i86 = 0;
do {
if (i1 >>> 0 < 245) {
if (i1 >>> 0 < 11) {
i2 = 16;
} else {
i2 = i1 + 11 & -8;
}
i3 = i2 >>> 3;
i4 = HEAP32[2100] | 0;
i5 = i4 >>> (i3 >>> 0);
if ((i5 & 3 | 0) != 0) {
i6 = (i5 & 1 ^ 1) + i3 | 0;
i7 = i6 << 1;
i8 = 8440 + (i7 << 2) | 0;
i9 = 8440 + (i7 + 2 << 2) | 0;
i7 = HEAP32[i9 >> 2] | 0;
i10 = i7 + 8 | 0;
i11 = HEAP32[i10 >> 2] | 0;
do {
if ((i8 | 0) == (i11 | 0)) {
HEAP32[2100] = i4 & ~(1 << i6);
} else {
if (i11 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
return 0;
}
i12 = i11 + 12 | 0;
if ((HEAP32[i12 >> 2] | 0) == (i7 | 0)) {
HEAP32[i12 >> 2] = i8;
HEAP32[i9 >> 2] = i11;
break;
} else {
_abort();
return 0;
}
}
} while (0);
i11 = i6 << 3;
HEAP32[i7 + 4 >> 2] = i11 | 3;
i9 = i7 + (i11 | 4) | 0;
HEAP32[i9 >> 2] = HEAP32[i9 >> 2] | 1;
i13 = i10;
return i13 | 0;
}
if (i2 >>> 0 <= (HEAP32[2102] | 0) >>> 0) {
i14 = i2;
break;
}
if ((i5 | 0) != 0) {
i9 = 2 << i3;
i11 = i5 << i3 & (i9 | -i9);
i9 = (i11 & -i11) - 1 | 0;
i11 = i9 >>> 12 & 16;
i8 = i9 >>> (i11 >>> 0);
i9 = i8 >>> 5 & 8;
i12 = i8 >>> (i9 >>> 0);
i8 = i12 >>> 2 & 4;
i15 = i12 >>> (i8 >>> 0);
i12 = i15 >>> 1 & 2;
i16 = i15 >>> (i12 >>> 0);
i15 = i16 >>> 1 & 1;
i17 = (i9 | i11 | i8 | i12 | i15) + (i16 >>> (i15 >>> 0)) | 0;
i15 = i17 << 1;
i16 = 8440 + (i15 << 2) | 0;
i12 = 8440 + (i15 + 2 << 2) | 0;
i15 = HEAP32[i12 >> 2] | 0;
i8 = i15 + 8 | 0;
i11 = HEAP32[i8 >> 2] | 0;
do {
if ((i16 | 0) == (i11 | 0)) {
HEAP32[2100] = i4 & ~(1 << i17);
} else {
if (i11 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
return 0;
}
i9 = i11 + 12 | 0;
if ((HEAP32[i9 >> 2] | 0) == (i15 | 0)) {
HEAP32[i9 >> 2] = i16;
HEAP32[i12 >> 2] = i11;
break;
} else {
_abort();
return 0;
}
}
} while (0);
i11 = i17 << 3;
i12 = i11 - i2 | 0;
HEAP32[i15 + 4 >> 2] = i2 | 3;
i16 = i15;
i4 = i16 + i2 | 0;
HEAP32[i16 + (i2 | 4) >> 2] = i12 | 1;
HEAP32[i16 + i11 >> 2] = i12;
i11 = HEAP32[2102] | 0;
if ((i11 | 0) != 0) {
i16 = HEAP32[2105] | 0;
i3 = i11 >>> 3;
i11 = i3 << 1;
i5 = 8440 + (i11 << 2) | 0;
i10 = HEAP32[2100] | 0;
i7 = 1 << i3;
do {
if ((i10 & i7 | 0) == 0) {
HEAP32[2100] = i10 | i7;
i18 = i5;
i19 = 8440 + (i11 + 2 << 2) | 0;
} else {
i3 = 8440 + (i11 + 2 << 2) | 0;
i6 = HEAP32[i3 >> 2] | 0;
if (i6 >>> 0 >= (HEAP32[2104] | 0) >>> 0) {
i18 = i6;
i19 = i3;
break;
}
_abort();
return 0;
}
} while (0);
HEAP32[i19 >> 2] = i16;
HEAP32[i18 + 12 >> 2] = i16;
HEAP32[i16 + 8 >> 2] = i18;
HEAP32[i16 + 12 >> 2] = i5;
}
HEAP32[2102] = i12;
HEAP32[2105] = i4;
i13 = i8;
return i13 | 0;
}
i11 = HEAP32[2101] | 0;
if ((i11 | 0) == 0) {
i14 = i2;
break;
}
i7 = (i11 & -i11) - 1 | 0;
i11 = i7 >>> 12 & 16;
i10 = i7 >>> (i11 >>> 0);
i7 = i10 >>> 5 & 8;
i15 = i10 >>> (i7 >>> 0);
i10 = i15 >>> 2 & 4;
i17 = i15 >>> (i10 >>> 0);
i15 = i17 >>> 1 & 2;
i3 = i17 >>> (i15 >>> 0);
i17 = i3 >>> 1 & 1;
i6 = HEAP32[8704 + ((i7 | i11 | i10 | i15 | i17) + (i3 >>> (i17 >>> 0)) << 2) >> 2] | 0;
i17 = i6;
i3 = i6;
i15 = (HEAP32[i6 + 4 >> 2] & -8) - i2 | 0;
while (1) {
i6 = HEAP32[i17 + 16 >> 2] | 0;
if ((i6 | 0) == 0) {
i10 = HEAP32[i17 + 20 >> 2] | 0;
if ((i10 | 0) == 0) {
break;
} else {
i20 = i10;
}
} else {
i20 = i6;
}
i6 = (HEAP32[i20 + 4 >> 2] & -8) - i2 | 0;
i10 = i6 >>> 0 < i15 >>> 0;
i17 = i20;
i3 = i10 ? i20 : i3;
i15 = i10 ? i6 : i15;
}
i17 = i3;
i8 = HEAP32[2104] | 0;
if (i17 >>> 0 < i8 >>> 0) {
_abort();
return 0;
}
i4 = i17 + i2 | 0;
i12 = i4;
if (i17 >>> 0 >= i4 >>> 0) {
_abort();
return 0;
}
i4 = HEAP32[i3 + 24 >> 2] | 0;
i5 = HEAP32[i3 + 12 >> 2] | 0;
do {
if ((i5 | 0) == (i3 | 0)) {
i16 = i3 + 20 | 0;
i6 = HEAP32[i16 >> 2] | 0;
if ((i6 | 0) == 0) {
i10 = i3 + 16 | 0;
i11 = HEAP32[i10 >> 2] | 0;
if ((i11 | 0) == 0) {
i21 = 0;
break;
} else {
i22 = i11;
i23 = i10;
}
} else {
i22 = i6;
i23 = i16;
}
while (1) {
i16 = i22 + 20 | 0;
i6 = HEAP32[i16 >> 2] | 0;
if ((i6 | 0) != 0) {
i22 = i6;
i23 = i16;
continue;
}
i16 = i22 + 16 | 0;
i6 = HEAP32[i16 >> 2] | 0;
if ((i6 | 0) == 0) {
break;
} else {
i22 = i6;
i23 = i16;
}
}
if (i23 >>> 0 < i8 >>> 0) {
_abort();
return 0;
} else {
HEAP32[i23 >> 2] = 0;
i21 = i22;
break;
}
} else {
i16 = HEAP32[i3 + 8 >> 2] | 0;
if (i16 >>> 0 < i8 >>> 0) {
_abort();
return 0;
}
i6 = i16 + 12 | 0;
if ((HEAP32[i6 >> 2] | 0) != (i3 | 0)) {
_abort();
return 0;
}
i10 = i5 + 8 | 0;
if ((HEAP32[i10 >> 2] | 0) == (i3 | 0)) {
HEAP32[i6 >> 2] = i5;
HEAP32[i10 >> 2] = i16;
i21 = i5;
break;
} else {
_abort();
return 0;
}
}
} while (0);
L78 : do {
if ((i4 | 0) != 0) {
i5 = i3 + 28 | 0;
i8 = 8704 + (HEAP32[i5 >> 2] << 2) | 0;
do {
if ((i3 | 0) == (HEAP32[i8 >> 2] | 0)) {
HEAP32[i8 >> 2] = i21;
if ((i21 | 0) != 0) {
break;
}
HEAP32[2101] = HEAP32[2101] & ~(1 << HEAP32[i5 >> 2]);
break L78;
} else {
if (i4 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
return 0;
}
i16 = i4 + 16 | 0;
if ((HEAP32[i16 >> 2] | 0) == (i3 | 0)) {
HEAP32[i16 >> 2] = i21;
} else {
HEAP32[i4 + 20 >> 2] = i21;
}
if ((i21 | 0) == 0) {
break L78;
}
}
} while (0);
if (i21 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
return 0;
}
HEAP32[i21 + 24 >> 2] = i4;
i5 = HEAP32[i3 + 16 >> 2] | 0;
do {
if ((i5 | 0) != 0) {
if (i5 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
return 0;
} else {
HEAP32[i21 + 16 >> 2] = i5;
HEAP32[i5 + 24 >> 2] = i21;
break;
}
}
} while (0);
i5 = HEAP32[i3 + 20 >> 2] | 0;
if ((i5 | 0) == 0) {
break;
}
if (i5 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
return 0;
} else {
HEAP32[i21 + 20 >> 2] = i5;
HEAP32[i5 + 24 >> 2] = i21;
break;
}
}
} while (0);
if (i15 >>> 0 < 16) {
i4 = i15 + i2 | 0;
HEAP32[i3 + 4 >> 2] = i4 | 3;
i5 = i17 + (i4 + 4) | 0;
HEAP32[i5 >> 2] = HEAP32[i5 >> 2] | 1;
} else {
HEAP32[i3 + 4 >> 2] = i2 | 3;
HEAP32[i17 + (i2 | 4) >> 2] = i15 | 1;
HEAP32[i17 + (i15 + i2) >> 2] = i15;
i5 = HEAP32[2102] | 0;
if ((i5 | 0) != 0) {
i4 = HEAP32[2105] | 0;
i8 = i5 >>> 3;
i5 = i8 << 1;
i16 = 8440 + (i5 << 2) | 0;
i10 = HEAP32[2100] | 0;
i6 = 1 << i8;
do {
if ((i10 & i6 | 0) == 0) {
HEAP32[2100] = i10 | i6;
i24 = i16;
i25 = 8440 + (i5 + 2 << 2) | 0;
} else {
i8 = 8440 + (i5 + 2 << 2) | 0;
i11 = HEAP32[i8 >> 2] | 0;
if (i11 >>> 0 >= (HEAP32[2104] | 0) >>> 0) {
i24 = i11;
i25 = i8;
break;
}
_abort();
return 0;
}
} while (0);
HEAP32[i25 >> 2] = i4;
HEAP32[i24 + 12 >> 2] = i4;
HEAP32[i4 + 8 >> 2] = i24;
HEAP32[i4 + 12 >> 2] = i16;
}
HEAP32[2102] = i15;
HEAP32[2105] = i12;
}
i5 = i3 + 8 | 0;
if ((i5 | 0) == 0) {
i14 = i2;
break;
} else {
i13 = i5;
}
return i13 | 0;
} else {
if (i1 >>> 0 > 4294967231) {
i14 = -1;
break;
}
i5 = i1 + 11 | 0;
i6 = i5 & -8;
i10 = HEAP32[2101] | 0;
if ((i10 | 0) == 0) {
i14 = i6;
break;
}
i17 = -i6 | 0;
i8 = i5 >>> 8;
do {
if ((i8 | 0) == 0) {
i26 = 0;
} else {
if (i6 >>> 0 > 16777215) {
i26 = 31;
break;
}
i5 = (i8 + 1048320 | 0) >>> 16 & 8;
i11 = i8 << i5;
i7 = (i11 + 520192 | 0) >>> 16 & 4;
i9 = i11 << i7;
i11 = (i9 + 245760 | 0) >>> 16 & 2;
i27 = 14 - (i7 | i5 | i11) + (i9 << i11 >>> 15) | 0;
i26 = i6 >>> ((i27 + 7 | 0) >>> 0) & 1 | i27 << 1;
}
} while (0);
i8 = HEAP32[8704 + (i26 << 2) >> 2] | 0;
L126 : do {
if ((i8 | 0) == 0) {
i28 = 0;
i29 = i17;
i30 = 0;
} else {
if ((i26 | 0) == 31) {
i31 = 0;
} else {
i31 = 25 - (i26 >>> 1) | 0;
}
i3 = 0;
i12 = i17;
i15 = i8;
i16 = i6 << i31;
i4 = 0;
while (1) {
i27 = HEAP32[i15 + 4 >> 2] & -8;
i11 = i27 - i6 | 0;
if (i11 >>> 0 < i12 >>> 0) {
if ((i27 | 0) == (i6 | 0)) {
i28 = i15;
i29 = i11;
i30 = i15;
break L126;
} else {
i32 = i15;
i33 = i11;
}
} else {
i32 = i3;
i33 = i12;
}
i11 = HEAP32[i15 + 20 >> 2] | 0;
i27 = HEAP32[i15 + 16 + (i16 >>> 31 << 2) >> 2] | 0;
i9 = (i11 | 0) == 0 | (i11 | 0) == (i27 | 0) ? i4 : i11;
if ((i27 | 0) == 0) {
i28 = i32;
i29 = i33;
i30 = i9;
break;
} else {
i3 = i32;
i12 = i33;
i15 = i27;
i16 = i16 << 1;
i4 = i9;
}
}
}
} while (0);
if ((i30 | 0) == 0 & (i28 | 0) == 0) {
i8 = 2 << i26;
i17 = i10 & (i8 | -i8);
if ((i17 | 0) == 0) {
i14 = i6;
break;
}
i8 = (i17 & -i17) - 1 | 0;
i17 = i8 >>> 12 & 16;
i4 = i8 >>> (i17 >>> 0);
i8 = i4 >>> 5 & 8;
i16 = i4 >>> (i8 >>> 0);
i4 = i16 >>> 2 & 4;
i15 = i16 >>> (i4 >>> 0);
i16 = i15 >>> 1 & 2;
i12 = i15 >>> (i16 >>> 0);
i15 = i12 >>> 1 & 1;
i34 = HEAP32[8704 + ((i8 | i17 | i4 | i16 | i15) + (i12 >>> (i15 >>> 0)) << 2) >> 2] | 0;
} else {
i34 = i30;
}
if ((i34 | 0) == 0) {
i35 = i29;
i36 = i28;
} else {
i15 = i34;
i12 = i29;
i16 = i28;
while (1) {
i4 = (HEAP32[i15 + 4 >> 2] & -8) - i6 | 0;
i17 = i4 >>> 0 < i12 >>> 0;
i8 = i17 ? i4 : i12;
i4 = i17 ? i15 : i16;
i17 = HEAP32[i15 + 16 >> 2] | 0;
if ((i17 | 0) != 0) {
i15 = i17;
i12 = i8;
i16 = i4;
continue;
}
i17 = HEAP32[i15 + 20 >> 2] | 0;
if ((i17 | 0) == 0) {
i35 = i8;
i36 = i4;
break;
} else {
i15 = i17;
i12 = i8;
i16 = i4;
}
}
}
if ((i36 | 0) == 0) {
i14 = i6;
break;
}
if (i35 >>> 0 >= ((HEAP32[2102] | 0) - i6 | 0) >>> 0) {
i14 = i6;
break;
}
i16 = i36;
i12 = HEAP32[2104] | 0;
if (i16 >>> 0 < i12 >>> 0) {
_abort();
return 0;
}
i15 = i16 + i6 | 0;
i10 = i15;
if (i16 >>> 0 >= i15 >>> 0) {
_abort();
return 0;
}
i4 = HEAP32[i36 + 24 >> 2] | 0;
i8 = HEAP32[i36 + 12 >> 2] | 0;
do {
if ((i8 | 0) == (i36 | 0)) {
i17 = i36 + 20 | 0;
i3 = HEAP32[i17 >> 2] | 0;
if ((i3 | 0) == 0) {
i9 = i36 + 16 | 0;
i27 = HEAP32[i9 >> 2] | 0;
if ((i27 | 0) == 0) {
i37 = 0;
break;
} else {
i38 = i27;
i39 = i9;
}
} else {
i38 = i3;
i39 = i17;
}
while (1) {
i17 = i38 + 20 | 0;
i3 = HEAP32[i17 >> 2] | 0;
if ((i3 | 0) != 0) {
i38 = i3;
i39 = i17;
continue;
}
i17 = i38 + 16 | 0;
i3 = HEAP32[i17 >> 2] | 0;
if ((i3 | 0) == 0) {
break;
} else {
i38 = i3;
i39 = i17;
}
}
if (i39 >>> 0 < i12 >>> 0) {
_abort();
return 0;
} else {
HEAP32[i39 >> 2] = 0;
i37 = i38;
break;
}
} else {
i17 = HEAP32[i36 + 8 >> 2] | 0;
if (i17 >>> 0 < i12 >>> 0) {
_abort();
return 0;
}
i3 = i17 + 12 | 0;
if ((HEAP32[i3 >> 2] | 0) != (i36 | 0)) {
_abort();
return 0;
}
i9 = i8 + 8 | 0;
if ((HEAP32[i9 >> 2] | 0) == (i36 | 0)) {
HEAP32[i3 >> 2] = i8;
HEAP32[i9 >> 2] = i17;
i37 = i8;
break;
} else {
_abort();
return 0;
}
}
} while (0);
L176 : do {
if ((i4 | 0) != 0) {
i8 = i36 + 28 | 0;
i12 = 8704 + (HEAP32[i8 >> 2] << 2) | 0;
do {
if ((i36 | 0) == (HEAP32[i12 >> 2] | 0)) {
HEAP32[i12 >> 2] = i37;
if ((i37 | 0) != 0) {
break;
}
HEAP32[2101] = HEAP32[2101] & ~(1 << HEAP32[i8 >> 2]);
break L176;
} else {
if (i4 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
return 0;
}
i17 = i4 + 16 | 0;
if ((HEAP32[i17 >> 2] | 0) == (i36 | 0)) {
HEAP32[i17 >> 2] = i37;
} else {
HEAP32[i4 + 20 >> 2] = i37;
}
if ((i37 | 0) == 0) {
break L176;
}
}
} while (0);
if (i37 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
return 0;
}
HEAP32[i37 + 24 >> 2] = i4;
i8 = HEAP32[i36 + 16 >> 2] | 0;
do {
if ((i8 | 0) != 0) {
if (i8 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
return 0;
} else {
HEAP32[i37 + 16 >> 2] = i8;
HEAP32[i8 + 24 >> 2] = i37;
break;
}
}
} while (0);
i8 = HEAP32[i36 + 20 >> 2] | 0;
if ((i8 | 0) == 0) {
break;
}
if (i8 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
return 0;
} else {
HEAP32[i37 + 20 >> 2] = i8;
HEAP32[i8 + 24 >> 2] = i37;
break;
}
}
} while (0);
do {
if (i35 >>> 0 < 16) {
i4 = i35 + i6 | 0;
HEAP32[i36 + 4 >> 2] = i4 | 3;
i8 = i16 + (i4 + 4) | 0;
HEAP32[i8 >> 2] = HEAP32[i8 >> 2] | 1;
} else {
HEAP32[i36 + 4 >> 2] = i6 | 3;
HEAP32[i16 + (i6 | 4) >> 2] = i35 | 1;
HEAP32[i16 + (i35 + i6) >> 2] = i35;
i8 = i35 >>> 3;
if (i35 >>> 0 < 256) {
i4 = i8 << 1;
i12 = 8440 + (i4 << 2) | 0;
i17 = HEAP32[2100] | 0;
i9 = 1 << i8;
do {
if ((i17 & i9 | 0) == 0) {
HEAP32[2100] = i17 | i9;
i40 = i12;
i41 = 8440 + (i4 + 2 << 2) | 0;
} else {
i8 = 8440 + (i4 + 2 << 2) | 0;
i3 = HEAP32[i8 >> 2] | 0;
if (i3 >>> 0 >= (HEAP32[2104] | 0) >>> 0) {
i40 = i3;
i41 = i8;
break;
}
_abort();
return 0;
}
} while (0);
HEAP32[i41 >> 2] = i10;
HEAP32[i40 + 12 >> 2] = i10;
HEAP32[i16 + (i6 + 8) >> 2] = i40;
HEAP32[i16 + (i6 + 12) >> 2] = i12;
break;
}
i4 = i15;
i9 = i35 >>> 8;
do {
if ((i9 | 0) == 0) {
i42 = 0;
} else {
if (i35 >>> 0 > 16777215) {
i42 = 31;
break;
}
i17 = (i9 + 1048320 | 0) >>> 16 & 8;
i8 = i9 << i17;
i3 = (i8 + 520192 | 0) >>> 16 & 4;
i27 = i8 << i3;
i8 = (i27 + 245760 | 0) >>> 16 & 2;
i11 = 14 - (i3 | i17 | i8) + (i27 << i8 >>> 15) | 0;
i42 = i35 >>> ((i11 + 7 | 0) >>> 0) & 1 | i11 << 1;
}
} while (0);
i9 = 8704 + (i42 << 2) | 0;
HEAP32[i16 + (i6 + 28) >> 2] = i42;
HEAP32[i16 + (i6 + 20) >> 2] = 0;
HEAP32[i16 + (i6 + 16) >> 2] = 0;
i12 = HEAP32[2101] | 0;
i11 = 1 << i42;
if ((i12 & i11 | 0) == 0) {
HEAP32[2101] = i12 | i11;
HEAP32[i9 >> 2] = i4;
HEAP32[i16 + (i6 + 24) >> 2] = i9;
HEAP32[i16 + (i6 + 12) >> 2] = i4;
HEAP32[i16 + (i6 + 8) >> 2] = i4;
break;
}
if ((i42 | 0) == 31) {
i43 = 0;
} else {
i43 = 25 - (i42 >>> 1) | 0;
}
i11 = i35 << i43;
i12 = HEAP32[i9 >> 2] | 0;
while (1) {
if ((HEAP32[i12 + 4 >> 2] & -8 | 0) == (i35 | 0)) {
break;
}
i44 = i12 + 16 + (i11 >>> 31 << 2) | 0;
i9 = HEAP32[i44 >> 2] | 0;
if ((i9 | 0) == 0) {
i45 = 151;
break;
} else {
i11 = i11 << 1;
i12 = i9;
}
}
if ((i45 | 0) == 151) {
if (i44 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
return 0;
} else {
HEAP32[i44 >> 2] = i4;
HEAP32[i16 + (i6 + 24) >> 2] = i12;
HEAP32[i16 + (i6 + 12) >> 2] = i4;
HEAP32[i16 + (i6 + 8) >> 2] = i4;
break;
}
}
i11 = i12 + 8 | 0;
i9 = HEAP32[i11 >> 2] | 0;
i8 = HEAP32[2104] | 0;
if (i12 >>> 0 < i8 >>> 0) {
_abort();
return 0;
}
if (i9 >>> 0 < i8 >>> 0) {
_abort();
return 0;
} else {
HEAP32[i9 + 12 >> 2] = i4;
HEAP32[i11 >> 2] = i4;
HEAP32[i16 + (i6 + 8) >> 2] = i9;
HEAP32[i16 + (i6 + 12) >> 2] = i12;
HEAP32[i16 + (i6 + 24) >> 2] = 0;
break;
}
}
} while (0);
i16 = i36 + 8 | 0;
if ((i16 | 0) == 0) {
i14 = i6;
break;
} else {
i13 = i16;
}
return i13 | 0;
}
} while (0);
i36 = HEAP32[2102] | 0;
if (i14 >>> 0 <= i36 >>> 0) {
i44 = i36 - i14 | 0;
i35 = HEAP32[2105] | 0;
if (i44 >>> 0 > 15) {
i43 = i35;
HEAP32[2105] = i43 + i14;
HEAP32[2102] = i44;
HEAP32[i43 + (i14 + 4) >> 2] = i44 | 1;
HEAP32[i43 + i36 >> 2] = i44;
HEAP32[i35 + 4 >> 2] = i14 | 3;
} else {
HEAP32[2102] = 0;
HEAP32[2105] = 0;
HEAP32[i35 + 4 >> 2] = i36 | 3;
i44 = i35 + (i36 + 4) | 0;
HEAP32[i44 >> 2] = HEAP32[i44 >> 2] | 1;
}
i13 = i35 + 8 | 0;
return i13 | 0;
}
i35 = HEAP32[2103] | 0;
if (i14 >>> 0 < i35 >>> 0) {
i44 = i35 - i14 | 0;
HEAP32[2103] = i44;
i35 = HEAP32[2106] | 0;
i36 = i35;
HEAP32[2106] = i36 + i14;
HEAP32[i36 + (i14 + 4) >> 2] = i44 | 1;
HEAP32[i35 + 4 >> 2] = i14 | 3;
i13 = i35 + 8 | 0;
return i13 | 0;
}
do {
if ((HEAP32[2094] | 0) == 0) {
i35 = _sysconf(8) | 0;
if ((i35 - 1 & i35 | 0) == 0) {
HEAP32[2096] = i35;
HEAP32[2095] = i35;
HEAP32[2097] = -1;
HEAP32[2098] = -1;
HEAP32[2099] = 0;
HEAP32[2211] = 0;
HEAP32[2094] = (_time(0) | 0) & -16 ^ 1431655768;
break;
} else {
_abort();
return 0;
}
}
} while (0);
i35 = i14 + 48 | 0;
i44 = HEAP32[2096] | 0;
i36 = i14 + 47 | 0;
i43 = i44 + i36 | 0;
i42 = -i44 | 0;
i44 = i43 & i42;
if (i44 >>> 0 <= i14 >>> 0) {
i13 = 0;
return i13 | 0;
}
i40 = HEAP32[2210] | 0;
do {
if ((i40 | 0) != 0) {
i41 = HEAP32[2208] | 0;
i37 = i41 + i44 | 0;
if (i37 >>> 0 <= i41 >>> 0 | i37 >>> 0 > i40 >>> 0) {
i13 = 0;
} else {
break;
}
return i13 | 0;
}
} while (0);
L268 : do {
if ((HEAP32[2211] & 4 | 0) == 0) {
i40 = HEAP32[2106] | 0;
L270 : do {
if ((i40 | 0) == 0) {
i45 = 181;
} else {
i37 = i40;
i41 = 8848;
while (1) {
i46 = i41 | 0;
i38 = HEAP32[i46 >> 2] | 0;
if (i38 >>> 0 <= i37 >>> 0) {
i47 = i41 + 4 | 0;
if ((i38 + (HEAP32[i47 >> 2] | 0) | 0) >>> 0 > i37 >>> 0) {
break;
}
}
i38 = HEAP32[i41 + 8 >> 2] | 0;
if ((i38 | 0) == 0) {
i45 = 181;
break L270;
} else {
i41 = i38;
}
}
if ((i41 | 0) == 0) {
i45 = 181;
break;
}
i37 = i43 - (HEAP32[2103] | 0) & i42;
if (i37 >>> 0 >= 2147483647) {
i48 = 0;
break;
}
i12 = _sbrk(i37 | 0) | 0;
i4 = (i12 | 0) == ((HEAP32[i46 >> 2] | 0) + (HEAP32[i47 >> 2] | 0) | 0);
i49 = i4 ? i12 : -1;
i50 = i4 ? i37 : 0;
i51 = i12;
i52 = i37;
i45 = 190;
}
} while (0);
do {
if ((i45 | 0) == 181) {
i40 = _sbrk(0) | 0;
if ((i40 | 0) == -1) {
i48 = 0;
break;
}
i6 = i40;
i37 = HEAP32[2095] | 0;
i12 = i37 - 1 | 0;
if ((i12 & i6 | 0) == 0) {
i53 = i44;
} else {
i53 = i44 - i6 + (i12 + i6 & -i37) | 0;
}
i37 = HEAP32[2208] | 0;
i6 = i37 + i53 | 0;
if (!(i53 >>> 0 > i14 >>> 0 & i53 >>> 0 < 2147483647)) {
i48 = 0;
break;
}
i12 = HEAP32[2210] | 0;
if ((i12 | 0) != 0) {
if (i6 >>> 0 <= i37 >>> 0 | i6 >>> 0 > i12 >>> 0) {
i48 = 0;
break;
}
}
i12 = _sbrk(i53 | 0) | 0;
i6 = (i12 | 0) == (i40 | 0);
i49 = i6 ? i40 : -1;
i50 = i6 ? i53 : 0;
i51 = i12;
i52 = i53;
i45 = 190;
}
} while (0);
L290 : do {
if ((i45 | 0) == 190) {
i12 = -i52 | 0;
if ((i49 | 0) != -1) {
i54 = i50;
i55 = i49;
i45 = 201;
break L268;
}
do {
if ((i51 | 0) != -1 & i52 >>> 0 < 2147483647 & i52 >>> 0 < i35 >>> 0) {
i6 = HEAP32[2096] | 0;
i40 = i36 - i52 + i6 & -i6;
if (i40 >>> 0 >= 2147483647) {
i56 = i52;
break;
}
if ((_sbrk(i40 | 0) | 0) == -1) {
_sbrk(i12 | 0) | 0;
i48 = i50;
break L290;
} else {
i56 = i40 + i52 | 0;
break;
}
} else {
i56 = i52;
}
} while (0);
if ((i51 | 0) == -1) {
i48 = i50;
} else {
i54 = i56;
i55 = i51;
i45 = 201;
break L268;
}
}
} while (0);
HEAP32[2211] = HEAP32[2211] | 4;
i57 = i48;
i45 = 198;
} else {
i57 = 0;
i45 = 198;
}
} while (0);
do {
if ((i45 | 0) == 198) {
if (i44 >>> 0 >= 2147483647) {
break;
}
i48 = _sbrk(i44 | 0) | 0;
i51 = _sbrk(0) | 0;
if (!((i51 | 0) != -1 & (i48 | 0) != -1 & i48 >>> 0 < i51 >>> 0)) {
break;
}
i56 = i51 - i48 | 0;
i51 = i56 >>> 0 > (i14 + 40 | 0) >>> 0;
i50 = i51 ? i48 : -1;
if ((i50 | 0) != -1) {
i54 = i51 ? i56 : i57;
i55 = i50;
i45 = 201;
}
}
} while (0);
do {
if ((i45 | 0) == 201) {
i57 = (HEAP32[2208] | 0) + i54 | 0;
HEAP32[2208] = i57;
if (i57 >>> 0 > (HEAP32[2209] | 0) >>> 0) {
HEAP32[2209] = i57;
}
i57 = HEAP32[2106] | 0;
L310 : do {
if ((i57 | 0) == 0) {
i44 = HEAP32[2104] | 0;
if ((i44 | 0) == 0 | i55 >>> 0 < i44 >>> 0) {
HEAP32[2104] = i55;
}
HEAP32[2212] = i55;
HEAP32[2213] = i54;
HEAP32[2215] = 0;
HEAP32[2109] = HEAP32[2094];
HEAP32[2108] = -1;
i44 = 0;
do {
i50 = i44 << 1;
i56 = 8440 + (i50 << 2) | 0;
HEAP32[8440 + (i50 + 3 << 2) >> 2] = i56;
HEAP32[8440 + (i50 + 2 << 2) >> 2] = i56;
i44 = i44 + 1 | 0;
} while (i44 >>> 0 < 32);
i44 = i55 + 8 | 0;
if ((i44 & 7 | 0) == 0) {
i58 = 0;
} else {
i58 = -i44 & 7;
}
i44 = i54 - 40 - i58 | 0;
HEAP32[2106] = i55 + i58;
HEAP32[2103] = i44;
HEAP32[i55 + (i58 + 4) >> 2] = i44 | 1;
HEAP32[i55 + (i54 - 36) >> 2] = 40;
HEAP32[2107] = HEAP32[2098];
} else {
i44 = 8848;
while (1) {
i59 = HEAP32[i44 >> 2] | 0;
i60 = i44 + 4 | 0;
i61 = HEAP32[i60 >> 2] | 0;
if ((i55 | 0) == (i59 + i61 | 0)) {
i45 = 213;
break;
}
i56 = HEAP32[i44 + 8 >> 2] | 0;
if ((i56 | 0) == 0) {
break;
} else {
i44 = i56;
}
}
do {
if ((i45 | 0) == 213) {
if ((HEAP32[i44 + 12 >> 2] & 8 | 0) != 0) {
break;
}
i56 = i57;
if (!(i56 >>> 0 >= i59 >>> 0 & i56 >>> 0 < i55 >>> 0)) {
break;
}
HEAP32[i60 >> 2] = i61 + i54;
i56 = HEAP32[2106] | 0;
i50 = (HEAP32[2103] | 0) + i54 | 0;
i51 = i56;
i48 = i56 + 8 | 0;
if ((i48 & 7 | 0) == 0) {
i62 = 0;
} else {
i62 = -i48 & 7;
}
i48 = i50 - i62 | 0;
HEAP32[2106] = i51 + i62;
HEAP32[2103] = i48;
HEAP32[i51 + (i62 + 4) >> 2] = i48 | 1;
HEAP32[i51 + (i50 + 4) >> 2] = 40;
HEAP32[2107] = HEAP32[2098];
break L310;
}
} while (0);
if (i55 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
HEAP32[2104] = i55;
}
i44 = i55 + i54 | 0;
i50 = 8848;
while (1) {
i63 = i50 | 0;
if ((HEAP32[i63 >> 2] | 0) == (i44 | 0)) {
i45 = 223;
break;
}
i51 = HEAP32[i50 + 8 >> 2] | 0;
if ((i51 | 0) == 0) {
break;
} else {
i50 = i51;
}
}
do {
if ((i45 | 0) == 223) {
if ((HEAP32[i50 + 12 >> 2] & 8 | 0) != 0) {
break;
}
HEAP32[i63 >> 2] = i55;
i44 = i50 + 4 | 0;
HEAP32[i44 >> 2] = (HEAP32[i44 >> 2] | 0) + i54;
i44 = i55 + 8 | 0;
if ((i44 & 7 | 0) == 0) {
i64 = 0;
} else {
i64 = -i44 & 7;
}
i44 = i55 + (i54 + 8) | 0;
if ((i44 & 7 | 0) == 0) {
i65 = 0;
} else {
i65 = -i44 & 7;
}
i44 = i55 + (i65 + i54) | 0;
i51 = i44;
i48 = i64 + i14 | 0;
i56 = i55 + i48 | 0;
i52 = i56;
i36 = i44 - (i55 + i64) - i14 | 0;
HEAP32[i55 + (i64 + 4) >> 2] = i14 | 3;
do {
if ((i51 | 0) == (HEAP32[2106] | 0)) {
i35 = (HEAP32[2103] | 0) + i36 | 0;
HEAP32[2103] = i35;
HEAP32[2106] = i52;
HEAP32[i55 + (i48 + 4) >> 2] = i35 | 1;
} else {
if ((i51 | 0) == (HEAP32[2105] | 0)) {
i35 = (HEAP32[2102] | 0) + i36 | 0;
HEAP32[2102] = i35;
HEAP32[2105] = i52;
HEAP32[i55 + (i48 + 4) >> 2] = i35 | 1;
HEAP32[i55 + (i35 + i48) >> 2] = i35;
break;
}
i35 = i54 + 4 | 0;
i49 = HEAP32[i55 + (i35 + i65) >> 2] | 0;
if ((i49 & 3 | 0) == 1) {
i53 = i49 & -8;
i47 = i49 >>> 3;
L355 : do {
if (i49 >>> 0 < 256) {
i46 = HEAP32[i55 + ((i65 | 8) + i54) >> 2] | 0;
i42 = HEAP32[i55 + (i54 + 12 + i65) >> 2] | 0;
i43 = 8440 + (i47 << 1 << 2) | 0;
do {
if ((i46 | 0) != (i43 | 0)) {
if (i46 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
return 0;
}
if ((HEAP32[i46 + 12 >> 2] | 0) == (i51 | 0)) {
break;
}
_abort();
return 0;
}
} while (0);
if ((i42 | 0) == (i46 | 0)) {
HEAP32[2100] = HEAP32[2100] & ~(1 << i47);
break;
}
do {
if ((i42 | 0) == (i43 | 0)) {
i66 = i42 + 8 | 0;
} else {
if (i42 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
return 0;
}
i12 = i42 + 8 | 0;
if ((HEAP32[i12 >> 2] | 0) == (i51 | 0)) {
i66 = i12;
break;
}
_abort();
return 0;
}
} while (0);
HEAP32[i46 + 12 >> 2] = i42;
HEAP32[i66 >> 2] = i46;
} else {
i43 = i44;
i12 = HEAP32[i55 + ((i65 | 24) + i54) >> 2] | 0;
i41 = HEAP32[i55 + (i54 + 12 + i65) >> 2] | 0;
do {
if ((i41 | 0) == (i43 | 0)) {
i40 = i65 | 16;
i6 = i55 + (i35 + i40) | 0;
i37 = HEAP32[i6 >> 2] | 0;
if ((i37 | 0) == 0) {
i4 = i55 + (i40 + i54) | 0;
i40 = HEAP32[i4 >> 2] | 0;
if ((i40 | 0) == 0) {
i67 = 0;
break;
} else {
i68 = i40;
i69 = i4;
}
} else {
i68 = i37;
i69 = i6;
}
while (1) {
i6 = i68 + 20 | 0;
i37 = HEAP32[i6 >> 2] | 0;
if ((i37 | 0) != 0) {
i68 = i37;
i69 = i6;
continue;
}
i6 = i68 + 16 | 0;
i37 = HEAP32[i6 >> 2] | 0;
if ((i37 | 0) == 0) {
break;
} else {
i68 = i37;
i69 = i6;
}
}
if (i69 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
return 0;
} else {
HEAP32[i69 >> 2] = 0;
i67 = i68;
break;
}
} else {
i6 = HEAP32[i55 + ((i65 | 8) + i54) >> 2] | 0;
if (i6 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
return 0;
}
i37 = i6 + 12 | 0;
if ((HEAP32[i37 >> 2] | 0) != (i43 | 0)) {
_abort();
return 0;
}
i4 = i41 + 8 | 0;
if ((HEAP32[i4 >> 2] | 0) == (i43 | 0)) {
HEAP32[i37 >> 2] = i41;
HEAP32[i4 >> 2] = i6;
i67 = i41;
break;
} else {
_abort();
return 0;
}
}
} while (0);
if ((i12 | 0) == 0) {
break;
}
i41 = i55 + (i54 + 28 + i65) | 0;
i46 = 8704 + (HEAP32[i41 >> 2] << 2) | 0;
do {
if ((i43 | 0) == (HEAP32[i46 >> 2] | 0)) {
HEAP32[i46 >> 2] = i67;
if ((i67 | 0) != 0) {
break;
}
HEAP32[2101] = HEAP32[2101] & ~(1 << HEAP32[i41 >> 2]);
break L355;
} else {
if (i12 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
return 0;
}
i42 = i12 + 16 | 0;
if ((HEAP32[i42 >> 2] | 0) == (i43 | 0)) {
HEAP32[i42 >> 2] = i67;
} else {
HEAP32[i12 + 20 >> 2] = i67;
}
if ((i67 | 0) == 0) {
break L355;
}
}
} while (0);
if (i67 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
return 0;
}
HEAP32[i67 + 24 >> 2] = i12;
i43 = i65 | 16;
i41 = HEAP32[i55 + (i43 + i54) >> 2] | 0;
do {
if ((i41 | 0) != 0) {
if (i41 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
return 0;
} else {
HEAP32[i67 + 16 >> 2] = i41;
HEAP32[i41 + 24 >> 2] = i67;
break;
}
}
} while (0);
i41 = HEAP32[i55 + (i35 + i43) >> 2] | 0;
if ((i41 | 0) == 0) {
break;
}
if (i41 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
return 0;
} else {
HEAP32[i67 + 20 >> 2] = i41;
HEAP32[i41 + 24 >> 2] = i67;
break;
}
}
} while (0);
i70 = i55 + ((i53 | i65) + i54) | 0;
i71 = i53 + i36 | 0;
} else {
i70 = i51;
i71 = i36;
}
i35 = i70 + 4 | 0;
HEAP32[i35 >> 2] = HEAP32[i35 >> 2] & -2;
HEAP32[i55 + (i48 + 4) >> 2] = i71 | 1;
HEAP32[i55 + (i71 + i48) >> 2] = i71;
i35 = i71 >>> 3;
if (i71 >>> 0 < 256) {
i47 = i35 << 1;
i49 = 8440 + (i47 << 2) | 0;
i41 = HEAP32[2100] | 0;
i12 = 1 << i35;
do {
if ((i41 & i12 | 0) == 0) {
HEAP32[2100] = i41 | i12;
i72 = i49;
i73 = 8440 + (i47 + 2 << 2) | 0;
} else {
i35 = 8440 + (i47 + 2 << 2) | 0;
i46 = HEAP32[i35 >> 2] | 0;
if (i46 >>> 0 >= (HEAP32[2104] | 0) >>> 0) {
i72 = i46;
i73 = i35;
break;
}
_abort();
return 0;
}
} while (0);
HEAP32[i73 >> 2] = i52;
HEAP32[i72 + 12 >> 2] = i52;
HEAP32[i55 + (i48 + 8) >> 2] = i72;
HEAP32[i55 + (i48 + 12) >> 2] = i49;
break;
}
i47 = i56;
i12 = i71 >>> 8;
do {
if ((i12 | 0) == 0) {
i74 = 0;
} else {
if (i71 >>> 0 > 16777215) {
i74 = 31;
break;
}
i41 = (i12 + 1048320 | 0) >>> 16 & 8;
i53 = i12 << i41;
i35 = (i53 + 520192 | 0) >>> 16 & 4;
i46 = i53 << i35;
i53 = (i46 + 245760 | 0) >>> 16 & 2;
i42 = 14 - (i35 | i41 | i53) + (i46 << i53 >>> 15) | 0;
i74 = i71 >>> ((i42 + 7 | 0) >>> 0) & 1 | i42 << 1;
}
} while (0);
i12 = 8704 + (i74 << 2) | 0;
HEAP32[i55 + (i48 + 28) >> 2] = i74;
HEAP32[i55 + (i48 + 20) >> 2] = 0;
HEAP32[i55 + (i48 + 16) >> 2] = 0;
i49 = HEAP32[2101] | 0;
i42 = 1 << i74;
if ((i49 & i42 | 0) == 0) {
HEAP32[2101] = i49 | i42;
HEAP32[i12 >> 2] = i47;
HEAP32[i55 + (i48 + 24) >> 2] = i12;
HEAP32[i55 + (i48 + 12) >> 2] = i47;
HEAP32[i55 + (i48 + 8) >> 2] = i47;
break;
}
if ((i74 | 0) == 31) {
i75 = 0;
} else {
i75 = 25 - (i74 >>> 1) | 0;
}
i42 = i71 << i75;
i49 = HEAP32[i12 >> 2] | 0;
while (1) {
if ((HEAP32[i49 + 4 >> 2] & -8 | 0) == (i71 | 0)) {
break;
}
i76 = i49 + 16 + (i42 >>> 31 << 2) | 0;
i12 = HEAP32[i76 >> 2] | 0;
if ((i12 | 0) == 0) {
i45 = 296;
break;
} else {
i42 = i42 << 1;
i49 = i12;
}
}
if ((i45 | 0) == 296) {
if (i76 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
return 0;
} else {
HEAP32[i76 >> 2] = i47;
HEAP32[i55 + (i48 + 24) >> 2] = i49;
HEAP32[i55 + (i48 + 12) >> 2] = i47;
HEAP32[i55 + (i48 + 8) >> 2] = i47;
break;
}
}
i42 = i49 + 8 | 0;
i12 = HEAP32[i42 >> 2] | 0;
i53 = HEAP32[2104] | 0;
if (i49 >>> 0 < i53 >>> 0) {
_abort();
return 0;
}
if (i12 >>> 0 < i53 >>> 0) {
_abort();
return 0;
} else {
HEAP32[i12 + 12 >> 2] = i47;
HEAP32[i42 >> 2] = i47;
HEAP32[i55 + (i48 + 8) >> 2] = i12;
HEAP32[i55 + (i48 + 12) >> 2] = i49;
HEAP32[i55 + (i48 + 24) >> 2] = 0;
break;
}
}
} while (0);
i13 = i55 + (i64 | 8) | 0;
return i13 | 0;
}
} while (0);
i50 = i57;
i48 = 8848;
while (1) {
i77 = HEAP32[i48 >> 2] | 0;
if (i77 >>> 0 <= i50 >>> 0) {
i78 = HEAP32[i48 + 4 >> 2] | 0;
i79 = i77 + i78 | 0;
if (i79 >>> 0 > i50 >>> 0) {
break;
}
}
i48 = HEAP32[i48 + 8 >> 2] | 0;
}
i48 = i77 + (i78 - 39) | 0;
if ((i48 & 7 | 0) == 0) {
i80 = 0;
} else {
i80 = -i48 & 7;
}
i48 = i77 + (i78 - 47 + i80) | 0;
i56 = i48 >>> 0 < (i57 + 16 | 0) >>> 0 ? i50 : i48;
i48 = i56 + 8 | 0;
i52 = i55 + 8 | 0;
if ((i52 & 7 | 0) == 0) {
i81 = 0;
} else {
i81 = -i52 & 7;
}
i52 = i54 - 40 - i81 | 0;
HEAP32[2106] = i55 + i81;
HEAP32[2103] = i52;
HEAP32[i55 + (i81 + 4) >> 2] = i52 | 1;
HEAP32[i55 + (i54 - 36) >> 2] = 40;
HEAP32[2107] = HEAP32[2098];
HEAP32[i56 + 4 >> 2] = 27;
HEAP32[i48 >> 2] = HEAP32[2212];
HEAP32[i48 + 4 >> 2] = HEAP32[8852 >> 2];
HEAP32[i48 + 8 >> 2] = HEAP32[8856 >> 2];
HEAP32[i48 + 12 >> 2] = HEAP32[8860 >> 2];
HEAP32[2212] = i55;
HEAP32[2213] = i54;
HEAP32[2215] = 0;
HEAP32[2214] = i48;
i48 = i56 + 28 | 0;
HEAP32[i48 >> 2] = 7;
if ((i56 + 32 | 0) >>> 0 < i79 >>> 0) {
i52 = i48;
while (1) {
i48 = i52 + 4 | 0;
HEAP32[i48 >> 2] = 7;
if ((i52 + 8 | 0) >>> 0 < i79 >>> 0) {
i52 = i48;
} else {
break;
}
}
}
if ((i56 | 0) == (i50 | 0)) {
break;
}
i52 = i56 - i57 | 0;
i48 = i50 + (i52 + 4) | 0;
HEAP32[i48 >> 2] = HEAP32[i48 >> 2] & -2;
HEAP32[i57 + 4 >> 2] = i52 | 1;
HEAP32[i50 + i52 >> 2] = i52;
i48 = i52 >>> 3;
if (i52 >>> 0 < 256) {
i36 = i48 << 1;
i51 = 8440 + (i36 << 2) | 0;
i44 = HEAP32[2100] | 0;
i12 = 1 << i48;
do {
if ((i44 & i12 | 0) == 0) {
HEAP32[2100] = i44 | i12;
i82 = i51;
i83 = 8440 + (i36 + 2 << 2) | 0;
} else {
i48 = 8440 + (i36 + 2 << 2) | 0;
i42 = HEAP32[i48 >> 2] | 0;
if (i42 >>> 0 >= (HEAP32[2104] | 0) >>> 0) {
i82 = i42;
i83 = i48;
break;
}
_abort();
return 0;
}
} while (0);
HEAP32[i83 >> 2] = i57;
HEAP32[i82 + 12 >> 2] = i57;
HEAP32[i57 + 8 >> 2] = i82;
HEAP32[i57 + 12 >> 2] = i51;
break;
}
i36 = i57;
i12 = i52 >>> 8;
do {
if ((i12 | 0) == 0) {
i84 = 0;
} else {
if (i52 >>> 0 > 16777215) {
i84 = 31;
break;
}
i44 = (i12 + 1048320 | 0) >>> 16 & 8;
i50 = i12 << i44;
i56 = (i50 + 520192 | 0) >>> 16 & 4;
i48 = i50 << i56;
i50 = (i48 + 245760 | 0) >>> 16 & 2;
i42 = 14 - (i56 | i44 | i50) + (i48 << i50 >>> 15) | 0;
i84 = i52 >>> ((i42 + 7 | 0) >>> 0) & 1 | i42 << 1;
}
} while (0);
i12 = 8704 + (i84 << 2) | 0;
HEAP32[i57 + 28 >> 2] = i84;
HEAP32[i57 + 20 >> 2] = 0;
HEAP32[i57 + 16 >> 2] = 0;
i51 = HEAP32[2101] | 0;
i42 = 1 << i84;
if ((i51 & i42 | 0) == 0) {
HEAP32[2101] = i51 | i42;
HEAP32[i12 >> 2] = i36;
HEAP32[i57 + 24 >> 2] = i12;
HEAP32[i57 + 12 >> 2] = i57;
HEAP32[i57 + 8 >> 2] = i57;
break;
}
if ((i84 | 0) == 31) {
i85 = 0;
} else {
i85 = 25 - (i84 >>> 1) | 0;
}
i42 = i52 << i85;
i51 = HEAP32[i12 >> 2] | 0;
while (1) {
if ((HEAP32[i51 + 4 >> 2] & -8 | 0) == (i52 | 0)) {
break;
}
i86 = i51 + 16 + (i42 >>> 31 << 2) | 0;
i12 = HEAP32[i86 >> 2] | 0;
if ((i12 | 0) == 0) {
i45 = 331;
break;
} else {
i42 = i42 << 1;
i51 = i12;
}
}
if ((i45 | 0) == 331) {
if (i86 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
return 0;
} else {
HEAP32[i86 >> 2] = i36;
HEAP32[i57 + 24 >> 2] = i51;
HEAP32[i57 + 12 >> 2] = i57;
HEAP32[i57 + 8 >> 2] = i57;
break;
}
}
i42 = i51 + 8 | 0;
i52 = HEAP32[i42 >> 2] | 0;
i12 = HEAP32[2104] | 0;
if (i51 >>> 0 < i12 >>> 0) {
_abort();
return 0;
}
if (i52 >>> 0 < i12 >>> 0) {
_abort();
return 0;
} else {
HEAP32[i52 + 12 >> 2] = i36;
HEAP32[i42 >> 2] = i36;
HEAP32[i57 + 8 >> 2] = i52;
HEAP32[i57 + 12 >> 2] = i51;
HEAP32[i57 + 24 >> 2] = 0;
break;
}
}
} while (0);
i57 = HEAP32[2103] | 0;
if (i57 >>> 0 <= i14 >>> 0) {
break;
}
i52 = i57 - i14 | 0;
HEAP32[2103] = i52;
i57 = HEAP32[2106] | 0;
i42 = i57;
HEAP32[2106] = i42 + i14;
HEAP32[i42 + (i14 + 4) >> 2] = i52 | 1;
HEAP32[i57 + 4 >> 2] = i14 | 3;
i13 = i57 + 8 | 0;
return i13 | 0;
}
} while (0);
HEAP32[(___errno_location() | 0) >> 2] = 12;
i13 = 0;
return i13 | 0;
}
function _free(i1) {
i1 = i1 | 0;
var i2 = 0, i3 = 0, i4 = 0, i5 = 0, i6 = 0, i7 = 0, i8 = 0, i9 = 0, i10 = 0, i11 = 0, i12 = 0, i13 = 0, i14 = 0, i15 = 0, i16 = 0, i17 = 0, i18 = 0, i19 = 0, i20 = 0, i21 = 0, i22 = 0, i23 = 0, i24 = 0, i25 = 0, i26 = 0, i27 = 0, i28 = 0, i29 = 0, i30 = 0, i31 = 0, i32 = 0, i33 = 0, i34 = 0, i35 = 0, i36 = 0, i37 = 0, i38 = 0, i39 = 0, i40 = 0;
if ((i1 | 0) == 0) {
return;
}
i2 = i1 - 8 | 0;
i3 = i2;
i4 = HEAP32[2104] | 0;
if (i2 >>> 0 < i4 >>> 0) {
_abort();
}
i5 = HEAP32[i1 - 4 >> 2] | 0;
i6 = i5 & 3;
if ((i6 | 0) == 1) {
_abort();
}
i7 = i5 & -8;
i8 = i1 + (i7 - 8) | 0;
i9 = i8;
L10 : do {
if ((i5 & 1 | 0) == 0) {
i10 = HEAP32[i2 >> 2] | 0;
if ((i6 | 0) == 0) {
return;
}
i11 = -8 - i10 | 0;
i12 = i1 + i11 | 0;
i13 = i12;
i14 = i10 + i7 | 0;
if (i12 >>> 0 < i4 >>> 0) {
_abort();
}
if ((i13 | 0) == (HEAP32[2105] | 0)) {
i15 = i1 + (i7 - 4) | 0;
if ((HEAP32[i15 >> 2] & 3 | 0) != 3) {
i16 = i13;
i17 = i14;
break;
}
HEAP32[2102] = i14;
HEAP32[i15 >> 2] = HEAP32[i15 >> 2] & -2;
HEAP32[i1 + (i11 + 4) >> 2] = i14 | 1;
HEAP32[i8 >> 2] = i14;
return;
}
i15 = i10 >>> 3;
if (i10 >>> 0 < 256) {
i10 = HEAP32[i1 + (i11 + 8) >> 2] | 0;
i18 = HEAP32[i1 + (i11 + 12) >> 2] | 0;
i19 = 8440 + (i15 << 1 << 2) | 0;
do {
if ((i10 | 0) != (i19 | 0)) {
if (i10 >>> 0 < i4 >>> 0) {
_abort();
}
if ((HEAP32[i10 + 12 >> 2] | 0) == (i13 | 0)) {
break;
}
_abort();
}
} while (0);
if ((i18 | 0) == (i10 | 0)) {
HEAP32[2100] = HEAP32[2100] & ~(1 << i15);
i16 = i13;
i17 = i14;
break;
}
do {
if ((i18 | 0) == (i19 | 0)) {
i20 = i18 + 8 | 0;
} else {
if (i18 >>> 0 < i4 >>> 0) {
_abort();
}
i21 = i18 + 8 | 0;
if ((HEAP32[i21 >> 2] | 0) == (i13 | 0)) {
i20 = i21;
break;
}
_abort();
}
} while (0);
HEAP32[i10 + 12 >> 2] = i18;
HEAP32[i20 >> 2] = i10;
i16 = i13;
i17 = i14;
break;
}
i19 = i12;
i15 = HEAP32[i1 + (i11 + 24) >> 2] | 0;
i21 = HEAP32[i1 + (i11 + 12) >> 2] | 0;
do {
if ((i21 | 0) == (i19 | 0)) {
i22 = i1 + (i11 + 20) | 0;
i23 = HEAP32[i22 >> 2] | 0;
if ((i23 | 0) == 0) {
i24 = i1 + (i11 + 16) | 0;
i25 = HEAP32[i24 >> 2] | 0;
if ((i25 | 0) == 0) {
i26 = 0;
break;
} else {
i27 = i25;
i28 = i24;
}
} else {
i27 = i23;
i28 = i22;
}
while (1) {
i22 = i27 + 20 | 0;
i23 = HEAP32[i22 >> 2] | 0;
if ((i23 | 0) != 0) {
i27 = i23;
i28 = i22;
continue;
}
i22 = i27 + 16 | 0;
i23 = HEAP32[i22 >> 2] | 0;
if ((i23 | 0) == 0) {
break;
} else {
i27 = i23;
i28 = i22;
}
}
if (i28 >>> 0 < i4 >>> 0) {
_abort();
} else {
HEAP32[i28 >> 2] = 0;
i26 = i27;
break;
}
} else {
i22 = HEAP32[i1 + (i11 + 8) >> 2] | 0;
if (i22 >>> 0 < i4 >>> 0) {
_abort();
}
i23 = i22 + 12 | 0;
if ((HEAP32[i23 >> 2] | 0) != (i19 | 0)) {
_abort();
}
i24 = i21 + 8 | 0;
if ((HEAP32[i24 >> 2] | 0) == (i19 | 0)) {
HEAP32[i23 >> 2] = i21;
HEAP32[i24 >> 2] = i22;
i26 = i21;
break;
} else {
_abort();
}
}
} while (0);
if ((i15 | 0) == 0) {
i16 = i13;
i17 = i14;
break;
}
i21 = i1 + (i11 + 28) | 0;
i12 = 8704 + (HEAP32[i21 >> 2] << 2) | 0;
do {
if ((i19 | 0) == (HEAP32[i12 >> 2] | 0)) {
HEAP32[i12 >> 2] = i26;
if ((i26 | 0) != 0) {
break;
}
HEAP32[2101] = HEAP32[2101] & ~(1 << HEAP32[i21 >> 2]);
i16 = i13;
i17 = i14;
break L10;
} else {
if (i15 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
}
i10 = i15 + 16 | 0;
if ((HEAP32[i10 >> 2] | 0) == (i19 | 0)) {
HEAP32[i10 >> 2] = i26;
} else {
HEAP32[i15 + 20 >> 2] = i26;
}
if ((i26 | 0) == 0) {
i16 = i13;
i17 = i14;
break L10;
}
}
} while (0);
if (i26 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
}
HEAP32[i26 + 24 >> 2] = i15;
i19 = HEAP32[i1 + (i11 + 16) >> 2] | 0;
do {
if ((i19 | 0) != 0) {
if (i19 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
} else {
HEAP32[i26 + 16 >> 2] = i19;
HEAP32[i19 + 24 >> 2] = i26;
break;
}
}
} while (0);
i19 = HEAP32[i1 + (i11 + 20) >> 2] | 0;
if ((i19 | 0) == 0) {
i16 = i13;
i17 = i14;
break;
}
if (i19 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
} else {
HEAP32[i26 + 20 >> 2] = i19;
HEAP32[i19 + 24 >> 2] = i26;
i16 = i13;
i17 = i14;
break;
}
} else {
i16 = i3;
i17 = i7;
}
} while (0);
i3 = i16;
if (i3 >>> 0 >= i8 >>> 0) {
_abort();
}
i26 = i1 + (i7 - 4) | 0;
i4 = HEAP32[i26 >> 2] | 0;
if ((i4 & 1 | 0) == 0) {
_abort();
}
do {
if ((i4 & 2 | 0) == 0) {
if ((i9 | 0) == (HEAP32[2106] | 0)) {
i27 = (HEAP32[2103] | 0) + i17 | 0;
HEAP32[2103] = i27;
HEAP32[2106] = i16;
HEAP32[i16 + 4 >> 2] = i27 | 1;
if ((i16 | 0) != (HEAP32[2105] | 0)) {
return;
}
HEAP32[2105] = 0;
HEAP32[2102] = 0;
return;
}
if ((i9 | 0) == (HEAP32[2105] | 0)) {
i27 = (HEAP32[2102] | 0) + i17 | 0;
HEAP32[2102] = i27;
HEAP32[2105] = i16;
HEAP32[i16 + 4 >> 2] = i27 | 1;
HEAP32[i3 + i27 >> 2] = i27;
return;
}
i27 = (i4 & -8) + i17 | 0;
i28 = i4 >>> 3;
L112 : do {
if (i4 >>> 0 < 256) {
i20 = HEAP32[i1 + i7 >> 2] | 0;
i6 = HEAP32[i1 + (i7 | 4) >> 2] | 0;
i2 = 8440 + (i28 << 1 << 2) | 0;
do {
if ((i20 | 0) != (i2 | 0)) {
if (i20 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
}
if ((HEAP32[i20 + 12 >> 2] | 0) == (i9 | 0)) {
break;
}
_abort();
}
} while (0);
if ((i6 | 0) == (i20 | 0)) {
HEAP32[2100] = HEAP32[2100] & ~(1 << i28);
break;
}
do {
if ((i6 | 0) == (i2 | 0)) {
i29 = i6 + 8 | 0;
} else {
if (i6 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
}
i5 = i6 + 8 | 0;
if ((HEAP32[i5 >> 2] | 0) == (i9 | 0)) {
i29 = i5;
break;
}
_abort();
}
} while (0);
HEAP32[i20 + 12 >> 2] = i6;
HEAP32[i29 >> 2] = i20;
} else {
i2 = i8;
i5 = HEAP32[i1 + (i7 + 16) >> 2] | 0;
i19 = HEAP32[i1 + (i7 | 4) >> 2] | 0;
do {
if ((i19 | 0) == (i2 | 0)) {
i15 = i1 + (i7 + 12) | 0;
i21 = HEAP32[i15 >> 2] | 0;
if ((i21 | 0) == 0) {
i12 = i1 + (i7 + 8) | 0;
i10 = HEAP32[i12 >> 2] | 0;
if ((i10 | 0) == 0) {
i30 = 0;
break;
} else {
i31 = i10;
i32 = i12;
}
} else {
i31 = i21;
i32 = i15;
}
while (1) {
i15 = i31 + 20 | 0;
i21 = HEAP32[i15 >> 2] | 0;
if ((i21 | 0) != 0) {
i31 = i21;
i32 = i15;
continue;
}
i15 = i31 + 16 | 0;
i21 = HEAP32[i15 >> 2] | 0;
if ((i21 | 0) == 0) {
break;
} else {
i31 = i21;
i32 = i15;
}
}
if (i32 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
} else {
HEAP32[i32 >> 2] = 0;
i30 = i31;
break;
}
} else {
i15 = HEAP32[i1 + i7 >> 2] | 0;
if (i15 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
}
i21 = i15 + 12 | 0;
if ((HEAP32[i21 >> 2] | 0) != (i2 | 0)) {
_abort();
}
i12 = i19 + 8 | 0;
if ((HEAP32[i12 >> 2] | 0) == (i2 | 0)) {
HEAP32[i21 >> 2] = i19;
HEAP32[i12 >> 2] = i15;
i30 = i19;
break;
} else {
_abort();
}
}
} while (0);
if ((i5 | 0) == 0) {
break;
}
i19 = i1 + (i7 + 20) | 0;
i20 = 8704 + (HEAP32[i19 >> 2] << 2) | 0;
do {
if ((i2 | 0) == (HEAP32[i20 >> 2] | 0)) {
HEAP32[i20 >> 2] = i30;
if ((i30 | 0) != 0) {
break;
}
HEAP32[2101] = HEAP32[2101] & ~(1 << HEAP32[i19 >> 2]);
break L112;
} else {
if (i5 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
}
i6 = i5 + 16 | 0;
if ((HEAP32[i6 >> 2] | 0) == (i2 | 0)) {
HEAP32[i6 >> 2] = i30;
} else {
HEAP32[i5 + 20 >> 2] = i30;
}
if ((i30 | 0) == 0) {
break L112;
}
}
} while (0);
if (i30 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
}
HEAP32[i30 + 24 >> 2] = i5;
i2 = HEAP32[i1 + (i7 + 8) >> 2] | 0;
do {
if ((i2 | 0) != 0) {
if (i2 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
} else {
HEAP32[i30 + 16 >> 2] = i2;
HEAP32[i2 + 24 >> 2] = i30;
break;
}
}
} while (0);
i2 = HEAP32[i1 + (i7 + 12) >> 2] | 0;
if ((i2 | 0) == 0) {
break;
}
if (i2 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
} else {
HEAP32[i30 + 20 >> 2] = i2;
HEAP32[i2 + 24 >> 2] = i30;
break;
}
}
} while (0);
HEAP32[i16 + 4 >> 2] = i27 | 1;
HEAP32[i3 + i27 >> 2] = i27;
if ((i16 | 0) != (HEAP32[2105] | 0)) {
i33 = i27;
break;
}
HEAP32[2102] = i27;
return;
} else {
HEAP32[i26 >> 2] = i4 & -2;
HEAP32[i16 + 4 >> 2] = i17 | 1;
HEAP32[i3 + i17 >> 2] = i17;
i33 = i17;
}
} while (0);
i17 = i33 >>> 3;
if (i33 >>> 0 < 256) {
i3 = i17 << 1;
i4 = 8440 + (i3 << 2) | 0;
i26 = HEAP32[2100] | 0;
i30 = 1 << i17;
do {
if ((i26 & i30 | 0) == 0) {
HEAP32[2100] = i26 | i30;
i34 = i4;
i35 = 8440 + (i3 + 2 << 2) | 0;
} else {
i17 = 8440 + (i3 + 2 << 2) | 0;
i7 = HEAP32[i17 >> 2] | 0;
if (i7 >>> 0 >= (HEAP32[2104] | 0) >>> 0) {
i34 = i7;
i35 = i17;
break;
}
_abort();
}
} while (0);
HEAP32[i35 >> 2] = i16;
HEAP32[i34 + 12 >> 2] = i16;
HEAP32[i16 + 8 >> 2] = i34;
HEAP32[i16 + 12 >> 2] = i4;
return;
}
i4 = i16;
i34 = i33 >>> 8;
do {
if ((i34 | 0) == 0) {
i36 = 0;
} else {
if (i33 >>> 0 > 16777215) {
i36 = 31;
break;
}
i35 = (i34 + 1048320 | 0) >>> 16 & 8;
i3 = i34 << i35;
i30 = (i3 + 520192 | 0) >>> 16 & 4;
i26 = i3 << i30;
i3 = (i26 + 245760 | 0) >>> 16 & 2;
i17 = 14 - (i30 | i35 | i3) + (i26 << i3 >>> 15) | 0;
i36 = i33 >>> ((i17 + 7 | 0) >>> 0) & 1 | i17 << 1;
}
} while (0);
i34 = 8704 + (i36 << 2) | 0;
HEAP32[i16 + 28 >> 2] = i36;
HEAP32[i16 + 20 >> 2] = 0;
HEAP32[i16 + 16 >> 2] = 0;
i17 = HEAP32[2101] | 0;
i3 = 1 << i36;
do {
if ((i17 & i3 | 0) == 0) {
HEAP32[2101] = i17 | i3;
HEAP32[i34 >> 2] = i4;
HEAP32[i16 + 24 >> 2] = i34;
HEAP32[i16 + 12 >> 2] = i16;
HEAP32[i16 + 8 >> 2] = i16;
} else {
if ((i36 | 0) == 31) {
i37 = 0;
} else {
i37 = 25 - (i36 >>> 1) | 0;
}
i26 = i33 << i37;
i35 = HEAP32[i34 >> 2] | 0;
while (1) {
if ((HEAP32[i35 + 4 >> 2] & -8 | 0) == (i33 | 0)) {
break;
}
i38 = i35 + 16 + (i26 >>> 31 << 2) | 0;
i30 = HEAP32[i38 >> 2] | 0;
if ((i30 | 0) == 0) {
i39 = 129;
break;
} else {
i26 = i26 << 1;
i35 = i30;
}
}
if ((i39 | 0) == 129) {
if (i38 >>> 0 < (HEAP32[2104] | 0) >>> 0) {
_abort();
} else {
HEAP32[i38 >> 2] = i4;
HEAP32[i16 + 24 >> 2] = i35;
HEAP32[i16 + 12 >> 2] = i16;
HEAP32[i16 + 8 >> 2] = i16;
break;
}
}
i26 = i35 + 8 | 0;
i27 = HEAP32[i26 >> 2] | 0;
i30 = HEAP32[2104] | 0;
if (i35 >>> 0 < i30 >>> 0) {
_abort();
}
if (i27 >>> 0 < i30 >>> 0) {
_abort();
} else {
HEAP32[i27 + 12 >> 2] = i4;
HEAP32[i26 >> 2] = i4;
HEAP32[i16 + 8 >> 2] = i27;
HEAP32[i16 + 12 >> 2] = i35;
HEAP32[i16 + 24 >> 2] = 0;
break;
}
}
} while (0);
i16 = (HEAP32[2108] | 0) - 1 | 0;
HEAP32[2108] = i16;
if ((i16 | 0) == 0) {
i40 = 8856;
} else {
return;
}
while (1) {
i16 = HEAP32[i40 >> 2] | 0;
if ((i16 | 0) == 0) {
break;
} else {
i40 = i16 + 8 | 0;
}
}
HEAP32[2108] = -1;
return;
}
function _strlen(i1) {
i1 = i1 | 0;
var i2 = 0;
i2 = i1;
while (HEAP8[i2] | 0) {
i2 = i2 + 1 | 0;
}
return i2 - i1 | 0;
}
function _memcpy(i1, i2, i3) {
i1 = i1 | 0;
i2 = i2 | 0;
i3 = i3 | 0;
var i4 = 0;
i4 = i1 | 0;
if ((i1 & 3) == (i2 & 3)) {
while (i1 & 3) {
if ((i3 | 0) == 0) return i4 | 0;
HEAP8[i1] = HEAP8[i2] | 0;
i1 = i1 + 1 | 0;
i2 = i2 + 1 | 0;
i3 = i3 - 1 | 0;
}
while ((i3 | 0) >= 4) {
HEAP32[i1 >> 2] = HEAP32[i2 >> 2];
i1 = i1 + 4 | 0;
i2 = i2 + 4 | 0;
i3 = i3 - 4 | 0;
}
}
while ((i3 | 0) > 0) {
HEAP8[i1] = HEAP8[i2] | 0;
i1 = i1 + 1 | 0;
i2 = i2 + 1 | 0;
i3 = i3 - 1 | 0;
}
return i4 | 0;
}
function _memset(i1, i2, i3) {
i1 = i1 | 0;
i2 = i2 | 0;
i3 = i3 | 0;
var i4 = 0, i5 = 0, i6 = 0;
i4 = i1 + i3 | 0;
if ((i3 | 0) >= 20) {
i2 = i2 & 255;
i3 = i1 & 3;
i5 = i2 | i2 << 8 | i2 << 16 | i2 << 24;
i6 = i4 & ~3;
if (i3) {
i3 = i1 + 4 - i3 | 0;
while ((i1 | 0) < (i3 | 0)) {
HEAP8[i1] = i2;
i1 = i1 + 1 | 0;
}
}
while ((i1 | 0) < (i6 | 0)) {
HEAP32[i1 >> 2] = i5;
i1 = i1 + 4 | 0;
}
}
while ((i1 | 0) < (i4 | 0)) {
HEAP8[i1] = i2;
i1 = i1 + 1 | 0;
}
}
function _i64Add(i1, i2, i3, i4) {
i1 = i1 | 0;
i2 = i2 | 0;
i3 = i3 | 0;
i4 = i4 | 0;
var i5 = 0;
i5 = i1 + i3 >>> 0;
return (tempRet0 = i2 + i4 + (i5 >>> 0 < i1 >>> 0 | 0) >>> 0, i5 | 0) | 0;
}
function _i64Subtract(i1, i2, i3, i4) {
i1 = i1 | 0;
i2 = i2 | 0;
i3 = i3 | 0;
i4 = i4 | 0;
var i5 = 0;
i5 = i2 - i4 >>> 0;
i5 = i2 - i4 - (i3 >>> 0 > i1 >>> 0 | 0) >>> 0;
return (tempRet0 = i5, i1 - i3 >>> 0 | 0) | 0;
}
function _bitshift64Shl(i1, i2, i3) {
i1 = i1 | 0;
i2 = i2 | 0;
i3 = i3 | 0;
if ((i3 | 0) < 32) {
tempRet0 = i2 << i3 | (i1 & (1 << i3) - 1 << 32 - i3) >>> 32 - i3;
return i1 << i3;
}
tempRet0 = i1 << i3 - 32;
return 0;
}
function _bitshift64Lshr(i1, i2, i3) {
i1 = i1 | 0;
i2 = i2 | 0;
i3 = i3 | 0;
if ((i3 | 0) < 32) {
tempRet0 = i2 >>> i3;
return i1 >>> i3 | (i2 & (1 << i3) - 1) << 32 - i3;
}
tempRet0 = 0;
return i2 >>> i3 - 32 | 0;
}
function _bitshift64Ashr(i1, i2, i3) {
i1 = i1 | 0;
i2 = i2 | 0;
i3 = i3 | 0;
if ((i3 | 0) < 32) {
tempRet0 = i2 >> i3;
return i1 >>> i3 | (i2 & (1 << i3) - 1) << 32 - i3;
}
tempRet0 = (i2 | 0) < 0 ? -1 : 0;
return i2 >> i3 - 32 | 0;
}
function _llvm_ctlz_i32(i1) {
i1 = i1 | 0;
var i2 = 0;
i2 = HEAP8[ctlz_i8 + (i1 >>> 24) | 0] | 0;
if ((i2 | 0) < 8) return i2 | 0;
i2 = HEAP8[ctlz_i8 + (i1 >> 16 & 255) | 0] | 0;
if ((i2 | 0) < 8) return i2 + 8 | 0;
i2 = HEAP8[ctlz_i8 + (i1 >> 8 & 255) | 0] | 0;
if ((i2 | 0) < 8) return i2 + 16 | 0;
return (HEAP8[ctlz_i8 + (i1 & 255) | 0] | 0) + 24 | 0;
}
function _llvm_cttz_i32(i1) {
i1 = i1 | 0;
var i2 = 0;
i2 = HEAP8[cttz_i8 + (i1 & 255) | 0] | 0;
if ((i2 | 0) < 8) return i2 | 0;
i2 = HEAP8[cttz_i8 + (i1 >> 8 & 255) | 0] | 0;
if ((i2 | 0) < 8) return i2 + 8 | 0;
i2 = HEAP8[cttz_i8 + (i1 >> 16 & 255) | 0] | 0;
if ((i2 | 0) < 8) return i2 + 16 | 0;
return (HEAP8[cttz_i8 + (i1 >>> 24) | 0] | 0) + 24 | 0;
}
function ___muldsi3(i1, i2) {
i1 = i1 | 0;
i2 = i2 | 0;
var i3 = 0, i4 = 0, i5 = 0, i6 = 0;
i3 = i1 & 65535;
i4 = i2 & 65535;
i5 = Math_imul(i4, i3) | 0;
i6 = i1 >>> 16;
i1 = (i5 >>> 16) + (Math_imul(i4, i6) | 0) | 0;
i4 = i2 >>> 16;
i2 = Math_imul(i4, i3) | 0;
return (tempRet0 = (i1 >>> 16) + (Math_imul(i4, i6) | 0) + (((i1 & 65535) + i2 | 0) >>> 16) | 0, i1 + i2 << 16 | i5 & 65535 | 0) | 0;
}
function ___divdi3(i1, i2, i3, i4) {
i1 = i1 | 0;
i2 = i2 | 0;
i3 = i3 | 0;
i4 = i4 | 0;
var i5 = 0, i6 = 0, i7 = 0, i8 = 0, i9 = 0;
i5 = i2 >> 31 | ((i2 | 0) < 0 ? -1 : 0) << 1;
i6 = ((i2 | 0) < 0 ? -1 : 0) >> 31 | ((i2 | 0) < 0 ? -1 : 0) << 1;
i7 = i4 >> 31 | ((i4 | 0) < 0 ? -1 : 0) << 1;
i8 = ((i4 | 0) < 0 ? -1 : 0) >> 31 | ((i4 | 0) < 0 ? -1 : 0) << 1;
i9 = _i64Subtract(i5 ^ i1, i6 ^ i2, i5, i6) | 0;
i2 = tempRet0;
i1 = i7 ^ i5;
i5 = i8 ^ i6;
i6 = _i64Subtract((___udivmoddi4(i9, i2, _i64Subtract(i7 ^ i3, i8 ^ i4, i7, i8) | 0, tempRet0, 0) | 0) ^ i1, tempRet0 ^ i5, i1, i5) | 0;
return (tempRet0 = tempRet0, i6) | 0;
}
function ___remdi3(i1, i2, i3, i4) {
i1 = i1 | 0;
i2 = i2 | 0;
i3 = i3 | 0;
i4 = i4 | 0;
var i5 = 0, i6 = 0, i7 = 0, i8 = 0, i9 = 0, i10 = 0, i11 = 0;
i5 = STACKTOP;
STACKTOP = STACKTOP + 8 | 0;
i6 = i5 | 0;
i7 = i2 >> 31 | ((i2 | 0) < 0 ? -1 : 0) << 1;
i8 = ((i2 | 0) < 0 ? -1 : 0) >> 31 | ((i2 | 0) < 0 ? -1 : 0) << 1;
i9 = i4 >> 31 | ((i4 | 0) < 0 ? -1 : 0) << 1;
i10 = ((i4 | 0) < 0 ? -1 : 0) >> 31 | ((i4 | 0) < 0 ? -1 : 0) << 1;
i11 = _i64Subtract(i7 ^ i1, i8 ^ i2, i7, i8) | 0;
i2 = tempRet0;
i1 = _i64Subtract(i9 ^ i3, i10 ^ i4, i9, i10) | 0;
___udivmoddi4(i11, i2, i1, tempRet0, i6) | 0;
i1 = _i64Subtract(HEAP32[i6 >> 2] ^ i7, HEAP32[i6 + 4 >> 2] ^ i8, i7, i8) | 0;
i8 = tempRet0;
STACKTOP = i5;
return (tempRet0 = i8, i1) | 0;
}
function ___muldi3(i1, i2, i3, i4) {
i1 = i1 | 0;
i2 = i2 | 0;
i3 = i3 | 0;
i4 = i4 | 0;
var i5 = 0, i6 = 0;
i5 = i1;
i1 = i3;
i3 = ___muldsi3(i5, i1) | 0;
i6 = tempRet0;
return (tempRet0 = (Math_imul(i2, i1) | 0) + (Math_imul(i4, i5) | 0) + i6 | i6 & 0, i3 | 0 | 0) | 0;
}
function ___udivdi3(i1, i2, i3, i4) {
i1 = i1 | 0;
i2 = i2 | 0;
i3 = i3 | 0;
i4 = i4 | 0;
var i5 = 0;
i5 = ___udivmoddi4(i1, i2, i3, i4, 0) | 0;
return (tempRet0 = tempRet0, i5) | 0;
}
function ___uremdi3(i1, i2, i3, i4) {
i1 = i1 | 0;
i2 = i2 | 0;
i3 = i3 | 0;
i4 = i4 | 0;
var i5 = 0, i6 = 0;
i5 = STACKTOP;
STACKTOP = STACKTOP + 8 | 0;
i6 = i5 | 0;
___udivmoddi4(i1, i2, i3, i4, i6) | 0;
STACKTOP = i5;
return (tempRet0 = HEAP32[i6 + 4 >> 2] | 0, HEAP32[i6 >> 2] | 0) | 0;
}
function ___udivmoddi4(i1, i2, i3, i4, i5) {
i1 = i1 | 0;
i2 = i2 | 0;
i3 = i3 | 0;
i4 = i4 | 0;
i5 = i5 | 0;
var i6 = 0, i7 = 0, i8 = 0, i9 = 0, i10 = 0, i11 = 0, i12 = 0, i13 = 0, i14 = 0, i15 = 0, i16 = 0, i17 = 0, i18 = 0, i19 = 0, i20 = 0, i21 = 0, i22 = 0, i23 = 0, i24 = 0, i25 = 0, i26 = 0, i27 = 0, i28 = 0, i29 = 0, i30 = 0, i31 = 0, i32 = 0, i33 = 0, i34 = 0, i35 = 0, i36 = 0, i37 = 0;
i6 = i1;
i7 = i2;
i8 = i7;
i9 = i3;
i10 = i4;
i11 = i10;
if ((i8 | 0) == 0) {
i12 = (i5 | 0) != 0;
if ((i11 | 0) == 0) {
if (i12) {
HEAP32[i5 >> 2] = (i6 >>> 0) % (i9 >>> 0);
HEAP32[i5 + 4 >> 2] = 0;
}
i13 = 0;
i14 = (i6 >>> 0) / (i9 >>> 0) >>> 0;
return (tempRet0 = i13, i14) | 0;
} else {
if (!i12) {
i13 = 0;
i14 = 0;
return (tempRet0 = i13, i14) | 0;
}
HEAP32[i5 >> 2] = i1 | 0;
HEAP32[i5 + 4 >> 2] = i2 & 0;
i13 = 0;
i14 = 0;
return (tempRet0 = i13, i14) | 0;
}
}
i12 = (i11 | 0) == 0;
do {
if ((i9 | 0) == 0) {
if (i12) {
if ((i5 | 0) != 0) {
HEAP32[i5 >> 2] = (i8 >>> 0) % (i9 >>> 0);
HEAP32[i5 + 4 >> 2] = 0;
}
i13 = 0;
i14 = (i8 >>> 0) / (i9 >>> 0) >>> 0;
return (tempRet0 = i13, i14) | 0;
}
if ((i6 | 0) == 0) {
if ((i5 | 0) != 0) {
HEAP32[i5 >> 2] = 0;
HEAP32[i5 + 4 >> 2] = (i8 >>> 0) % (i11 >>> 0);
}
i13 = 0;
i14 = (i8 >>> 0) / (i11 >>> 0) >>> 0;
return (tempRet0 = i13, i14) | 0;
}
i15 = i11 - 1 | 0;
if ((i15 & i11 | 0) == 0) {
if ((i5 | 0) != 0) {
HEAP32[i5 >> 2] = i1 | 0;
HEAP32[i5 + 4 >> 2] = i15 & i8 | i2 & 0;
}
i13 = 0;
i14 = i8 >>> ((_llvm_cttz_i32(i11 | 0) | 0) >>> 0);
return (tempRet0 = i13, i14) | 0;
}
i15 = (_llvm_ctlz_i32(i11 | 0) | 0) - (_llvm_ctlz_i32(i8 | 0) | 0) | 0;
if (i15 >>> 0 <= 30) {
i16 = i15 + 1 | 0;
i17 = 31 - i15 | 0;
i18 = i16;
i19 = i8 << i17 | i6 >>> (i16 >>> 0);
i20 = i8 >>> (i16 >>> 0);
i21 = 0;
i22 = i6 << i17;
break;
}
if ((i5 | 0) == 0) {
i13 = 0;
i14 = 0;
return (tempRet0 = i13, i14) | 0;
}
HEAP32[i5 >> 2] = i1 | 0;
HEAP32[i5 + 4 >> 2] = i7 | i2 & 0;
i13 = 0;
i14 = 0;
return (tempRet0 = i13, i14) | 0;
} else {
if (!i12) {
i17 = (_llvm_ctlz_i32(i11 | 0) | 0) - (_llvm_ctlz_i32(i8 | 0) | 0) | 0;
if (i17 >>> 0 <= 31) {
i16 = i17 + 1 | 0;
i15 = 31 - i17 | 0;
i23 = i17 - 31 >> 31;
i18 = i16;
i19 = i6 >>> (i16 >>> 0) & i23 | i8 << i15;
i20 = i8 >>> (i16 >>> 0) & i23;
i21 = 0;
i22 = i6 << i15;
break;
}
if ((i5 | 0) == 0) {
i13 = 0;
i14 = 0;
return (tempRet0 = i13, i14) | 0;
}
HEAP32[i5 >> 2] = i1 | 0;
HEAP32[i5 + 4 >> 2] = i7 | i2 & 0;
i13 = 0;
i14 = 0;
return (tempRet0 = i13, i14) | 0;
}
i15 = i9 - 1 | 0;
if ((i15 & i9 | 0) != 0) {
i23 = (_llvm_ctlz_i32(i9 | 0) | 0) + 33 - (_llvm_ctlz_i32(i8 | 0) | 0) | 0;
i16 = 64 - i23 | 0;
i17 = 32 - i23 | 0;
i24 = i17 >> 31;
i25 = i23 - 32 | 0;
i26 = i25 >> 31;
i18 = i23;
i19 = i17 - 1 >> 31 & i8 >>> (i25 >>> 0) | (i8 << i17 | i6 >>> (i23 >>> 0)) & i26;
i20 = i26 & i8 >>> (i23 >>> 0);
i21 = i6 << i16 & i24;
i22 = (i8 << i16 | i6 >>> (i25 >>> 0)) & i24 | i6 << i17 & i23 - 33 >> 31;
break;
}
if ((i5 | 0) != 0) {
HEAP32[i5 >> 2] = i15 & i6;
HEAP32[i5 + 4 >> 2] = 0;
}
if ((i9 | 0) == 1) {
i13 = i7 | i2 & 0;
i14 = i1 | 0 | 0;
return (tempRet0 = i13, i14) | 0;
} else {
i15 = _llvm_cttz_i32(i9 | 0) | 0;
i13 = i8 >>> (i15 >>> 0) | 0;
i14 = i8 << 32 - i15 | i6 >>> (i15 >>> 0) | 0;
return (tempRet0 = i13, i14) | 0;
}
}
} while (0);
if ((i18 | 0) == 0) {
i27 = i22;
i28 = i21;
i29 = i20;
i30 = i19;
i31 = 0;
i32 = 0;
} else {
i6 = i3 | 0 | 0;
i3 = i10 | i4 & 0;
i4 = _i64Add(i6, i3, -1, -1) | 0;
i10 = tempRet0;
i8 = i22;
i22 = i21;
i21 = i20;
i20 = i19;
i19 = i18;
i18 = 0;
while (1) {
i33 = i22 >>> 31 | i8 << 1;
i34 = i18 | i22 << 1;
i9 = i20 << 1 | i8 >>> 31 | 0;
i1 = i20 >>> 31 | i21 << 1 | 0;
_i64Subtract(i4, i10, i9, i1) | 0;
i2 = tempRet0;
i7 = i2 >> 31 | ((i2 | 0) < 0 ? -1 : 0) << 1;
i35 = i7 & 1;
i36 = _i64Subtract(i9, i1, i7 & i6, (((i2 | 0) < 0 ? -1 : 0) >> 31 | ((i2 | 0) < 0 ? -1 : 0) << 1) & i3) | 0;
i37 = tempRet0;
i2 = i19 - 1 | 0;
if ((i2 | 0) == 0) {
break;
} else {
i8 = i33;
i22 = i34;
i21 = i37;
i20 = i36;
i19 = i2;
i18 = i35;
}
}
i27 = i33;
i28 = i34;
i29 = i37;
i30 = i36;
i31 = 0;
i32 = i35;
}
i35 = i28;
i28 = 0;
if ((i5 | 0) != 0) {
HEAP32[i5 >> 2] = i30;
HEAP32[i5 + 4 >> 2] = i29;
}
i13 = (i35 | 0) >>> 31 | (i27 | i28) << 1 | (i28 << 1 | i35 >>> 31) & 0 | i31;
i14 = (i35 << 1 | 0 >>> 31) & -2 | i32;
return (tempRet0 = i13, i14) | 0;
}
function dynCall_ii(i1, i2) {
i1 = i1 | 0;
i2 = i2 | 0;
return FUNCTION_TABLE_ii[i1 & 1](i2 | 0) | 0;
}
function dynCall_v(i1) {
i1 = i1 | 0;
FUNCTION_TABLE_v[i1 & 1]();
}
function dynCall_iii(i1, i2, i3) {
i1 = i1 | 0;
i2 = i2 | 0;
i3 = i3 | 0;
return FUNCTION_TABLE_iii[i1 & 1](i2 | 0, i3 | 0) | 0;
}
function dynCall_vi(i1, i2) {
i1 = i1 | 0;
i2 = i2 | 0;
FUNCTION_TABLE_vi[i1 & 1](i2 | 0);
}
function b0(i1) {
i1 = i1 | 0;
abort(0);
return 0;
}
function b1() {
abort(1);
}
function b2(i1, i2) {
i1 = i1 | 0;
i2 = i2 | 0;
abort(2);
return 0;
}
function b3(i1) {
i1 = i1 | 0;
abort(3);
}
// EMSCRIPTEN_END_FUNCS
var FUNCTION_TABLE_ii = [b0,b0];
var FUNCTION_TABLE_v = [b1,b1];
var FUNCTION_TABLE_iii = [b2,b2];
var FUNCTION_TABLE_vi = [b3,b3];
return { _strlen: _strlen, _free: _free, _main: _main, _memset: _memset, _malloc: _malloc, _memcpy: _memcpy, runPostSets: runPostSets, stackAlloc: stackAlloc, stackSave: stackSave, stackRestore: stackRestore, setThrew: setThrew, setTempRet0: setTempRet0, setTempRet1: setTempRet1, setTempRet2: setTempRet2, setTempRet3: setTempRet3, setTempRet4: setTempRet4, setTempRet5: setTempRet5, setTempRet6: setTempRet6, setTempRet7: setTempRet7, setTempRet8: setTempRet8, setTempRet9: setTempRet9, dynCall_ii: dynCall_ii, dynCall_v: dynCall_v, dynCall_iii: dynCall_iii, dynCall_vi: dynCall_vi };
})
// EMSCRIPTEN_END_ASM
({ "Math": Math, "Int8Array": Int8Array, "Int16Array": Int16Array, "Int32Array": Int32Array, "Uint8Array": Uint8Array, "Uint16Array": Uint16Array, "Uint32Array": Uint32Array, "Float32Array": Float32Array, "Float64Array": Float64Array }, { "abort": abort, "assert": assert, "asmPrintInt": asmPrintInt, "asmPrintFloat": asmPrintFloat, "min": Math_min, "invoke_ii": invoke_ii, "invoke_v": invoke_v, "invoke_iii": invoke_iii, "invoke_vi": invoke_vi, "_fputc": _fputc, "_pwrite": _pwrite, "_sbrk": _sbrk, "_puts": _puts, "___setErrNo": ___setErrNo, "_fwrite": _fwrite, "__reallyNegative": __reallyNegative, "__formatString": __formatString, "_send": _send, "_write": _write, "_fputs": _fputs, "_abort": _abort, "_fprintf": _fprintf, "_time": _time, "_printf": _printf, "___errno_location": ___errno_location, "_fflush": _fflush, "_sysconf": _sysconf, "STACKTOP": STACKTOP, "STACK_MAX": STACK_MAX, "tempDoublePtr": tempDoublePtr, "ABORT": ABORT, "cttz_i8": cttz_i8, "ctlz_i8": ctlz_i8, "NaN": NaN, "Infinity": Infinity }, buffer);
var _strlen = Module["_strlen"] = asm["_strlen"];
var _free = Module["_free"] = asm["_free"];
var _main = Module["_main"] = asm["_main"];
var _memset = Module["_memset"] = asm["_memset"];
var _malloc = Module["_malloc"] = asm["_malloc"];
var _memcpy = Module["_memcpy"] = asm["_memcpy"];
var runPostSets = Module["runPostSets"] = asm["runPostSets"];
var dynCall_ii = Module["dynCall_ii"] = asm["dynCall_ii"];
var dynCall_v = Module["dynCall_v"] = asm["dynCall_v"];
var dynCall_iii = Module["dynCall_iii"] = asm["dynCall_iii"];
var dynCall_vi = Module["dynCall_vi"] = asm["dynCall_vi"];
Runtime.stackAlloc = function(size) { return asm['stackAlloc'](size) };
Runtime.stackSave = function() { return asm['stackSave']() };
Runtime.stackRestore = function(top) { asm['stackRestore'](top) };
// TODO: strip out parts of this we do not need
//======= begin closure i64 code =======
// Copyright 2009 The Closure Library Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS-IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* @fileoverview Defines a Long class for representing a 64-bit two's-complement
* integer value, which faithfully simulates the behavior of a Java "long". This
* implementation is derived from LongLib in GWT.
*
*/
var i64Math = (function() { // Emscripten wrapper
var goog = { math: {} };
/**
* Constructs a 64-bit two's-complement integer, given its low and high 32-bit
* values as *signed* integers. See the from* functions below for more
* convenient ways of constructing Longs.
*
* The internal representation of a long is the two given signed, 32-bit values.
* We use 32-bit pieces because these are the size of integers on which
* Javascript performs bit-operations. For operations like addition and
* multiplication, we split each number into 16-bit pieces, which can easily be
* multiplied within Javascript's floating-point representation without overflow
* or change in sign.
*
* In the algorithms below, we frequently reduce the negative case to the
* positive case by negating the input(s) and then post-processing the result.
* Note that we must ALWAYS check specially whether those values are MIN_VALUE
* (-2^63) because -MIN_VALUE == MIN_VALUE (since 2^63 cannot be represented as
* a positive number, it overflows back into a negative). Not handling this
* case would often result in infinite recursion.
*
* @param {number} low The low (signed) 32 bits of the long.
* @param {number} high The high (signed) 32 bits of the long.
* @constructor
*/
goog.math.Long = function(low, high) {
/**
* @type {number}
* @private
*/
this.low_ = low | 0; // force into 32 signed bits.
/**
* @type {number}
* @private
*/
this.high_ = high | 0; // force into 32 signed bits.
};
// NOTE: Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the
// from* methods on which they depend.
/**
* A cache of the Long representations of small integer values.
* @type {!Object}
* @private
*/
goog.math.Long.IntCache_ = {};
/**
* Returns a Long representing the given (32-bit) integer value.
* @param {number} value The 32-bit integer in question.
* @return {!goog.math.Long} The corresponding Long value.
*/
goog.math.Long.fromInt = function(value) {
if (-128 <= value && value < 128) {
var cachedObj = goog.math.Long.IntCache_[value];
if (cachedObj) {
return cachedObj;
}
}
var obj = new goog.math.Long(value | 0, value < 0 ? -1 : 0);
if (-128 <= value && value < 128) {
goog.math.Long.IntCache_[value] = obj;
}
return obj;
};
/**
* Returns a Long representing the given value, provided that it is a finite
* number. Otherwise, zero is returned.
* @param {number} value The number in question.
* @return {!goog.math.Long} The corresponding Long value.
*/
goog.math.Long.fromNumber = function(value) {
if (isNaN(value) || !isFinite(value)) {
return goog.math.Long.ZERO;
} else if (value <= -goog.math.Long.TWO_PWR_63_DBL_) {
return goog.math.Long.MIN_VALUE;
} else if (value + 1 >= goog.math.Long.TWO_PWR_63_DBL_) {
return goog.math.Long.MAX_VALUE;
} else if (value < 0) {
return goog.math.Long.fromNumber(-value).negate();
} else {
return new goog.math.Long(
(value % goog.math.Long.TWO_PWR_32_DBL_) | 0,
(value / goog.math.Long.TWO_PWR_32_DBL_) | 0);
}
};
/**
* Returns a Long representing the 64-bit integer that comes by concatenating
* the given high and low bits. Each is assumed to use 32 bits.
* @param {number} lowBits The low 32-bits.
* @param {number} highBits The high 32-bits.
* @return {!goog.math.Long} The corresponding Long value.
*/
goog.math.Long.fromBits = function(lowBits, highBits) {
return new goog.math.Long(lowBits, highBits);
};
/**
* Returns a Long representation of the given string, written using the given
* radix.
* @param {string} str The textual representation of the Long.
* @param {number=} opt_radix The radix in which the text is written.
* @return {!goog.math.Long} The corresponding Long value.
*/
goog.math.Long.fromString = function(str, opt_radix) {
if (str.length == 0) {
throw Error('number format error: empty string');
}
var radix = opt_radix || 10;
if (radix < 2 || 36 < radix) {
throw Error('radix out of range: ' + radix);
}
if (str.charAt(0) == '-') {
return goog.math.Long.fromString(str.substring(1), radix).negate();
} else if (str.indexOf('-') >= 0) {
throw Error('number format error: interior "-" character: ' + str);
}
// Do several (8) digits each time through the loop, so as to
// minimize the calls to the very expensive emulated div.
var radixToPower = goog.math.Long.fromNumber(Math.pow(radix, 8));
var result = goog.math.Long.ZERO;
for (var i = 0; i < str.length; i += 8) {
var size = Math.min(8, str.length - i);
var value = parseInt(str.substring(i, i + size), radix);
if (size < 8) {
var power = goog.math.Long.fromNumber(Math.pow(radix, size));
result = result.multiply(power).add(goog.math.Long.fromNumber(value));
} else {
result = result.multiply(radixToPower);
result = result.add(goog.math.Long.fromNumber(value));
}
}
return result;
};
// NOTE: the compiler should inline these constant values below and then remove
// these variables, so there should be no runtime penalty for these.
/**
* Number used repeated below in calculations. This must appear before the
* first call to any from* function below.
* @type {number}
* @private
*/
goog.math.Long.TWO_PWR_16_DBL_ = 1 << 16;
/**
* @type {number}
* @private
*/
goog.math.Long.TWO_PWR_24_DBL_ = 1 << 24;
/**
* @type {number}
* @private
*/
goog.math.Long.TWO_PWR_32_DBL_ =
goog.math.Long.TWO_PWR_16_DBL_ * goog.math.Long.TWO_PWR_16_DBL_;
/**
* @type {number}
* @private
*/
goog.math.Long.TWO_PWR_31_DBL_ =
goog.math.Long.TWO_PWR_32_DBL_ / 2;
/**
* @type {number}
* @private
*/
goog.math.Long.TWO_PWR_48_DBL_ =
goog.math.Long.TWO_PWR_32_DBL_ * goog.math.Long.TWO_PWR_16_DBL_;
/**
* @type {number}
* @private
*/
goog.math.Long.TWO_PWR_64_DBL_ =
goog.math.Long.TWO_PWR_32_DBL_ * goog.math.Long.TWO_PWR_32_DBL_;
/**
* @type {number}
* @private
*/
goog.math.Long.TWO_PWR_63_DBL_ =
goog.math.Long.TWO_PWR_64_DBL_ / 2;
/** @type {!goog.math.Long} */
goog.math.Long.ZERO = goog.math.Long.fromInt(0);
/** @type {!goog.math.Long} */
goog.math.Long.ONE = goog.math.Long.fromInt(1);
/** @type {!goog.math.Long} */
goog.math.Long.NEG_ONE = goog.math.Long.fromInt(-1);
/** @type {!goog.math.Long} */
goog.math.Long.MAX_VALUE =
goog.math.Long.fromBits(0xFFFFFFFF | 0, 0x7FFFFFFF | 0);
/** @type {!goog.math.Long} */
goog.math.Long.MIN_VALUE = goog.math.Long.fromBits(0, 0x80000000 | 0);
/**
* @type {!goog.math.Long}
* @private
*/
goog.math.Long.TWO_PWR_24_ = goog.math.Long.fromInt(1 << 24);
/** @return {number} The value, assuming it is a 32-bit integer. */
goog.math.Long.prototype.toInt = function() {
return this.low_;
};
/** @return {number} The closest floating-point representation to this value. */
goog.math.Long.prototype.toNumber = function() {
return this.high_ * goog.math.Long.TWO_PWR_32_DBL_ +
this.getLowBitsUnsigned();
};
/**
* @param {number=} opt_radix The radix in which the text should be written.
* @return {string} The textual representation of this value.
*/
goog.math.Long.prototype.toString = function(opt_radix) {
var radix = opt_radix || 10;
if (radix < 2 || 36 < radix) {
throw Error('radix out of range: ' + radix);
}
if (this.isZero()) {
return '0';
}
if (this.isNegative()) {
if (this.equals(goog.math.Long.MIN_VALUE)) {
// We need to change the Long value before it can be negated, so we remove
// the bottom-most digit in this base and then recurse to do the rest.
var radixLong = goog.math.Long.fromNumber(radix);
var div = this.div(radixLong);
var rem = div.multiply(radixLong).subtract(this);
return div.toString(radix) + rem.toInt().toString(radix);
} else {
return '-' + this.negate().toString(radix);
}
}
// Do several (6) digits each time through the loop, so as to
// minimize the calls to the very expensive emulated div.
var radixToPower = goog.math.Long.fromNumber(Math.pow(radix, 6));
var rem = this;
var result = '';
while (true) {
var remDiv = rem.div(radixToPower);
var intval = rem.subtract(remDiv.multiply(radixToPower)).toInt();
var digits = intval.toString(radix);
rem = remDiv;
if (rem.isZero()) {
return digits + result;
} else {
while (digits.length < 6) {
digits = '0' + digits;
}
result = '' + digits + result;
}
}
};
/** @return {number} The high 32-bits as a signed value. */
goog.math.Long.prototype.getHighBits = function() {
return this.high_;
};
/** @return {number} The low 32-bits as a signed value. */
goog.math.Long.prototype.getLowBits = function() {
return this.low_;
};
/** @return {number} The low 32-bits as an unsigned value. */
goog.math.Long.prototype.getLowBitsUnsigned = function() {
return (this.low_ >= 0) ?
this.low_ : goog.math.Long.TWO_PWR_32_DBL_ + this.low_;
};
/**
* @return {number} Returns the number of bits needed to represent the absolute
* value of this Long.
*/
goog.math.Long.prototype.getNumBitsAbs = function() {
if (this.isNegative()) {
if (this.equals(goog.math.Long.MIN_VALUE)) {
return 64;
} else {
return this.negate().getNumBitsAbs();
}
} else {
var val = this.high_ != 0 ? this.high_ : this.low_;
for (var bit = 31; bit > 0; bit--) {
if ((val & (1 << bit)) != 0) {
break;
}
}
return this.high_ != 0 ? bit + 33 : bit + 1;
}
};
/** @return {boolean} Whether this value is zero. */
goog.math.Long.prototype.isZero = function() {
return this.high_ == 0 && this.low_ == 0;
};
/** @return {boolean} Whether this value is negative. */
goog.math.Long.prototype.isNegative = function() {
return this.high_ < 0;
};
/** @return {boolean} Whether this value is odd. */
goog.math.Long.prototype.isOdd = function() {
return (this.low_ & 1) == 1;
};
/**
* @param {goog.math.Long} other Long to compare against.
* @return {boolean} Whether this Long equals the other.
*/
goog.math.Long.prototype.equals = function(other) {
return (this.high_ == other.high_) && (this.low_ == other.low_);
};
/**
* @param {goog.math.Long} other Long to compare against.
* @return {boolean} Whether this Long does not equal the other.
*/
goog.math.Long.prototype.notEquals = function(other) {
return (this.high_ != other.high_) || (this.low_ != other.low_);
};
/**
* @param {goog.math.Long} other Long to compare against.
* @return {boolean} Whether this Long is less than the other.
*/
goog.math.Long.prototype.lessThan = function(other) {
return this.compare(other) < 0;
};
/**
* @param {goog.math.Long} other Long to compare against.
* @return {boolean} Whether this Long is less than or equal to the other.
*/
goog.math.Long.prototype.lessThanOrEqual = function(other) {
return this.compare(other) <= 0;
};
/**
* @param {goog.math.Long} other Long to compare against.
* @return {boolean} Whether this Long is greater than the other.
*/
goog.math.Long.prototype.greaterThan = function(other) {
return this.compare(other) > 0;
};
/**
* @param {goog.math.Long} other Long to compare against.
* @return {boolean} Whether this Long is greater than or equal to the other.
*/
goog.math.Long.prototype.greaterThanOrEqual = function(other) {
return this.compare(other) >= 0;
};
/**
* Compares this Long with the given one.
* @param {goog.math.Long} other Long to compare against.
* @return {number} 0 if they are the same, 1 if the this is greater, and -1
* if the given one is greater.
*/
goog.math.Long.prototype.compare = function(other) {
if (this.equals(other)) {
return 0;
}
var thisNeg = this.isNegative();
var otherNeg = other.isNegative();
if (thisNeg && !otherNeg) {
return -1;
}
if (!thisNeg && otherNeg) {
return 1;
}
// at this point, the signs are the same, so subtraction will not overflow
if (this.subtract(other).isNegative()) {
return -1;
} else {
return 1;
}
};
/** @return {!goog.math.Long} The negation of this value. */
goog.math.Long.prototype.negate = function() {
if (this.equals(goog.math.Long.MIN_VALUE)) {
return goog.math.Long.MIN_VALUE;
} else {
return this.not().add(goog.math.Long.ONE);
}
};
/**
* Returns the sum of this and the given Long.
* @param {goog.math.Long} other Long to add to this one.
* @return {!goog.math.Long} The sum of this and the given Long.
*/
goog.math.Long.prototype.add = function(other) {
// Divide each number into 4 chunks of 16 bits, and then sum the chunks.
var a48 = this.high_ >>> 16;
var a32 = this.high_ & 0xFFFF;
var a16 = this.low_ >>> 16;
var a00 = this.low_ & 0xFFFF;
var b48 = other.high_ >>> 16;
var b32 = other.high_ & 0xFFFF;
var b16 = other.low_ >>> 16;
var b00 = other.low_ & 0xFFFF;
var c48 = 0, c32 = 0, c16 = 0, c00 = 0;
c00 += a00 + b00;
c16 += c00 >>> 16;
c00 &= 0xFFFF;
c16 += a16 + b16;
c32 += c16 >>> 16;
c16 &= 0xFFFF;
c32 += a32 + b32;
c48 += c32 >>> 16;
c32 &= 0xFFFF;
c48 += a48 + b48;
c48 &= 0xFFFF;
return goog.math.Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32);
};
/**
* Returns the difference of this and the given Long.
* @param {goog.math.Long} other Long to subtract from this.
* @return {!goog.math.Long} The difference of this and the given Long.
*/
goog.math.Long.prototype.subtract = function(other) {
return this.add(other.negate());
};
/**
* Returns the product of this and the given long.
* @param {goog.math.Long} other Long to multiply with this.
* @return {!goog.math.Long} The product of this and the other.
*/
goog.math.Long.prototype.multiply = function(other) {
if (this.isZero()) {
return goog.math.Long.ZERO;
} else if (other.isZero()) {
return goog.math.Long.ZERO;
}
if (this.equals(goog.math.Long.MIN_VALUE)) {
return other.isOdd() ? goog.math.Long.MIN_VALUE : goog.math.Long.ZERO;
} else if (other.equals(goog.math.Long.MIN_VALUE)) {
return this.isOdd() ? goog.math.Long.MIN_VALUE : goog.math.Long.ZERO;
}
if (this.isNegative()) {
if (other.isNegative()) {
return this.negate().multiply(other.negate());
} else {
return this.negate().multiply(other).negate();
}
} else if (other.isNegative()) {
return this.multiply(other.negate()).negate();
}
// If both longs are small, use float multiplication
if (this.lessThan(goog.math.Long.TWO_PWR_24_) &&
other.lessThan(goog.math.Long.TWO_PWR_24_)) {
return goog.math.Long.fromNumber(this.toNumber() * other.toNumber());
}
// Divide each long into 4 chunks of 16 bits, and then add up 4x4 products.
// We can skip products that would overflow.
var a48 = this.high_ >>> 16;
var a32 = this.high_ & 0xFFFF;
var a16 = this.low_ >>> 16;
var a00 = this.low_ & 0xFFFF;
var b48 = other.high_ >>> 16;
var b32 = other.high_ & 0xFFFF;
var b16 = other.low_ >>> 16;
var b00 = other.low_ & 0xFFFF;
var c48 = 0, c32 = 0, c16 = 0, c00 = 0;
c00 += a00 * b00;
c16 += c00 >>> 16;
c00 &= 0xFFFF;
c16 += a16 * b00;
c32 += c16 >>> 16;
c16 &= 0xFFFF;
c16 += a00 * b16;
c32 += c16 >>> 16;
c16 &= 0xFFFF;
c32 += a32 * b00;
c48 += c32 >>> 16;
c32 &= 0xFFFF;
c32 += a16 * b16;
c48 += c32 >>> 16;
c32 &= 0xFFFF;
c32 += a00 * b32;
c48 += c32 >>> 16;
c32 &= 0xFFFF;
c48 += a48 * b00 + a32 * b16 + a16 * b32 + a00 * b48;
c48 &= 0xFFFF;
return goog.math.Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32);
};
/**
* Returns this Long divided by the given one.
* @param {goog.math.Long} other Long by which to divide.
* @return {!goog.math.Long} This Long divided by the given one.
*/
goog.math.Long.prototype.div = function(other) {
if (other.isZero()) {
throw Error('division by zero');
} else if (this.isZero()) {
return goog.math.Long.ZERO;
}
if (this.equals(goog.math.Long.MIN_VALUE)) {
if (other.equals(goog.math.Long.ONE) ||
other.equals(goog.math.Long.NEG_ONE)) {
return goog.math.Long.MIN_VALUE; // recall that -MIN_VALUE == MIN_VALUE
} else if (other.equals(goog.math.Long.MIN_VALUE)) {
return goog.math.Long.ONE;
} else {
// At this point, we have |other| >= 2, so |this/other| < |MIN_VALUE|.
var halfThis = this.shiftRight(1);
var approx = halfThis.div(other).shiftLeft(1);
if (approx.equals(goog.math.Long.ZERO)) {
return other.isNegative() ? goog.math.Long.ONE : goog.math.Long.NEG_ONE;
} else {
var rem = this.subtract(other.multiply(approx));
var result = approx.add(rem.div(other));
return result;
}
}
} else if (other.equals(goog.math.Long.MIN_VALUE)) {
return goog.math.Long.ZERO;
}
if (this.isNegative()) {
if (other.isNegative()) {
return this.negate().div(other.negate());
} else {
return this.negate().div(other).negate();
}
} else if (other.isNegative()) {
return this.div(other.negate()).negate();
}
// Repeat the following until the remainder is less than other: find a
// floating-point that approximates remainder / other *from below*, add this
// into the result, and subtract it from the remainder. It is critical that
// the approximate value is less than or equal to the real value so that the
// remainder never becomes negative.
var res = goog.math.Long.ZERO;
var rem = this;
while (rem.greaterThanOrEqual(other)) {
// Approximate the result of division. This may be a little greater or
// smaller than the actual value.
var approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber()));
// We will tweak the approximate result by changing it in the 48-th digit or
// the smallest non-fractional digit, whichever is larger.
var log2 = Math.ceil(Math.log(approx) / Math.LN2);
var delta = (log2 <= 48) ? 1 : Math.pow(2, log2 - 48);
// Decrease the approximation until it is smaller than the remainder. Note
// that if it is too large, the product overflows and is negative.
var approxRes = goog.math.Long.fromNumber(approx);
var approxRem = approxRes.multiply(other);
while (approxRem.isNegative() || approxRem.greaterThan(rem)) {
approx -= delta;
approxRes = goog.math.Long.fromNumber(approx);
approxRem = approxRes.multiply(other);
}
// We know the answer can't be zero... and actually, zero would cause
// infinite recursion since we would make no progress.
if (approxRes.isZero()) {
approxRes = goog.math.Long.ONE;
}
res = res.add(approxRes);
rem = rem.subtract(approxRem);
}
return res;
};
/**
* Returns this Long modulo the given one.
* @param {goog.math.Long} other Long by which to mod.
* @return {!goog.math.Long} This Long modulo the given one.
*/
goog.math.Long.prototype.modulo = function(other) {
return this.subtract(this.div(other).multiply(other));
};
/** @return {!goog.math.Long} The bitwise-NOT of this value. */
goog.math.Long.prototype.not = function() {
return goog.math.Long.fromBits(~this.low_, ~this.high_);
};
/**
* Returns the bitwise-AND of this Long and the given one.
* @param {goog.math.Long} other The Long with which to AND.
* @return {!goog.math.Long} The bitwise-AND of this and the other.
*/
goog.math.Long.prototype.and = function(other) {
return goog.math.Long.fromBits(this.low_ & other.low_,
this.high_ & other.high_);
};
/**
* Returns the bitwise-OR of this Long and the given one.
* @param {goog.math.Long} other The Long with which to OR.
* @return {!goog.math.Long} The bitwise-OR of this and the other.
*/
goog.math.Long.prototype.or = function(other) {
return goog.math.Long.fromBits(this.low_ | other.low_,
this.high_ | other.high_);
};
/**
* Returns the bitwise-XOR of this Long and the given one.
* @param {goog.math.Long} other The Long with which to XOR.
* @return {!goog.math.Long} The bitwise-XOR of this and the other.
*/
goog.math.Long.prototype.xor = function(other) {
return goog.math.Long.fromBits(this.low_ ^ other.low_,
this.high_ ^ other.high_);
};
/**
* Returns this Long with bits shifted to the left by the given amount.
* @param {number} numBits The number of bits by which to shift.
* @return {!goog.math.Long} This shifted to the left by the given amount.
*/
goog.math.Long.prototype.shiftLeft = function(numBits) {
numBits &= 63;
if (numBits == 0) {
return this;
} else {
var low = this.low_;
if (numBits < 32) {
var high = this.high_;
return goog.math.Long.fromBits(
low << numBits,
(high << numBits) | (low >>> (32 - numBits)));
} else {
return goog.math.Long.fromBits(0, low << (numBits - 32));
}
}
};
/**
* Returns this Long with bits shifted to the right by the given amount.
* @param {number} numBits The number of bits by which to shift.
* @return {!goog.math.Long} This shifted to the right by the given amount.
*/
goog.math.Long.prototype.shiftRight = function(numBits) {
numBits &= 63;
if (numBits == 0) {
return this;
} else {
var high = this.high_;
if (numBits < 32) {
var low = this.low_;
return goog.math.Long.fromBits(
(low >>> numBits) | (high << (32 - numBits)),
high >> numBits);
} else {
return goog.math.Long.fromBits(
high >> (numBits - 32),
high >= 0 ? 0 : -1);
}
}
};
/**
* Returns this Long with bits shifted to the right by the given amount, with
* the new top bits matching the current sign bit.
* @param {number} numBits The number of bits by which to shift.
* @return {!goog.math.Long} This shifted to the right by the given amount, with
* zeros placed into the new leading bits.
*/
goog.math.Long.prototype.shiftRightUnsigned = function(numBits) {
numBits &= 63;
if (numBits == 0) {
return this;
} else {
var high = this.high_;
if (numBits < 32) {
var low = this.low_;
return goog.math.Long.fromBits(
(low >>> numBits) | (high << (32 - numBits)),
high >>> numBits);
} else if (numBits == 32) {
return goog.math.Long.fromBits(high, 0);
} else {
return goog.math.Long.fromBits(high >>> (numBits - 32), 0);
}
}
};
//======= begin jsbn =======
var navigator = { appName: 'Modern Browser' }; // polyfill a little
// Copyright (c) 2005 Tom Wu
// All Rights Reserved.
// http://www-cs-students.stanford.edu/~tjw/jsbn/
/*
* Copyright (c) 2003-2005 Tom Wu
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
*
* IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
* INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
* RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
* THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT
* OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* In addition, the following condition applies:
*
* All redistributions must retain an intact copy of this copyright notice
* and disclaimer.
*/
// Basic JavaScript BN library - subset useful for RSA encryption.
// Bits per digit
var dbits;
// JavaScript engine analysis
var canary = 0xdeadbeefcafe;
var j_lm = ((canary&0xffffff)==0xefcafe);
// (public) Constructor
function BigInteger(a,b,c) {
if(a != null)
if("number" == typeof a) this.fromNumber(a,b,c);
else if(b == null && "string" != typeof a) this.fromString(a,256);
else this.fromString(a,b);
}
// return new, unset BigInteger
function nbi() { return new BigInteger(null); }
// am: Compute w_j += (x*this_i), propagate carries,
// c is initial carry, returns final carry.
// c < 3*dvalue, x < 2*dvalue, this_i < dvalue
// We need to select the fastest one that works in this environment.
// am1: use a single mult and divide to get the high bits,
// max digit bits should be 26 because
// max internal value = 2*dvalue^2-2*dvalue (< 2^53)
function am1(i,x,w,j,c,n) {
while(--n >= 0) {
var v = x*this[i++]+w[j]+c;
c = Math.floor(v/0x4000000);
w[j++] = v&0x3ffffff;
}
return c;
}
// am2 avoids a big mult-and-extract completely.
// Max digit bits should be <= 30 because we do bitwise ops
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
function am2(i,x,w,j,c,n) {
var xl = x&0x7fff, xh = x>>15;
while(--n >= 0) {
var l = this[i]&0x7fff;
var h = this[i++]>>15;
var m = xh*l+h*xl;
l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff);
c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
w[j++] = l&0x3fffffff;
}
return c;
}
// Alternately, set max digit bits to 28 since some
// browsers slow down when dealing with 32-bit numbers.
function am3(i,x,w,j,c,n) {
var xl = x&0x3fff, xh = x>>14;
while(--n >= 0) {
var l = this[i]&0x3fff;
var h = this[i++]>>14;
var m = xh*l+h*xl;
l = xl*l+((m&0x3fff)<<14)+w[j]+c;
c = (l>>28)+(m>>14)+xh*h;
w[j++] = l&0xfffffff;
}
return c;
}
if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
BigInteger.prototype.am = am2;
dbits = 30;
}
else if(j_lm && (navigator.appName != "Netscape")) {
BigInteger.prototype.am = am1;
dbits = 26;
}
else { // Mozilla/Netscape seems to prefer am3
BigInteger.prototype.am = am3;
dbits = 28;
}
BigInteger.prototype.DB = dbits;
BigInteger.prototype.DM = ((1<<dbits)-1);
BigInteger.prototype.DV = (1<<dbits);
var BI_FP = 52;
BigInteger.prototype.FV = Math.pow(2,BI_FP);
BigInteger.prototype.F1 = BI_FP-dbits;
BigInteger.prototype.F2 = 2*dbits-BI_FP;
// Digit conversions
var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
var BI_RC = new Array();
var rr,vv;
rr = "0".charCodeAt(0);
for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
rr = "a".charCodeAt(0);
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
rr = "A".charCodeAt(0);
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
function int2char(n) { return BI_RM.charAt(n); }
function intAt(s,i) {
var c = BI_RC[s.charCodeAt(i)];
return (c==null)?-1:c;
}
// (protected) copy this to r
function bnpCopyTo(r) {
for(var i = this.t-1; i >= 0; --i) r[i] = this[i];
r.t = this.t;
r.s = this.s;
}
// (protected) set from integer value x, -DV <= x < DV
function bnpFromInt(x) {
this.t = 1;
this.s = (x<0)?-1:0;
if(x > 0) this[0] = x;
else if(x < -1) this[0] = x+DV;
else this.t = 0;
}
// return bigint initialized to value
function nbv(i) { var r = nbi(); r.fromInt(i); return r; }
// (protected) set from string and radix
function bnpFromString(s,b) {
var k;
if(b == 16) k = 4;
else if(b == 8) k = 3;
else if(b == 256) k = 8; // byte array
else if(b == 2) k = 1;
else if(b == 32) k = 5;
else if(b == 4) k = 2;
else { this.fromRadix(s,b); return; }
this.t = 0;
this.s = 0;
var i = s.length, mi = false, sh = 0;
while(--i >= 0) {
var x = (k==8)?s[i]&0xff:intAt(s,i);
if(x < 0) {
if(s.charAt(i) == "-") mi = true;
continue;
}
mi = false;
if(sh == 0)
this[this.t++] = x;
else if(sh+k > this.DB) {
this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;
this[this.t++] = (x>>(this.DB-sh));
}
else
this[this.t-1] |= x<<sh;
sh += k;
if(sh >= this.DB) sh -= this.DB;
}
if(k == 8 && (s[0]&0x80) != 0) {
this.s = -1;
if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;
}
this.clamp();
if(mi) BigInteger.ZERO.subTo(this,this);
}
// (protected) clamp off excess high words
function bnpClamp() {
var c = this.s&this.DM;
while(this.t > 0 && this[this.t-1] == c) --this.t;
}
// (public) return string representation in given radix
function bnToString(b) {
if(this.s < 0) return "-"+this.negate().toString(b);
var k;
if(b == 16) k = 4;
else if(b == 8) k = 3;
else if(b == 2) k = 1;
else if(b == 32) k = 5;
else if(b == 4) k = 2;
else return this.toRadix(b);
var km = (1<<k)-1, d, m = false, r = "", i = this.t;
var p = this.DB-(i*this.DB)%k;
if(i-- > 0) {
if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); }
while(i >= 0) {
if(p < k) {
d = (this[i]&((1<<p)-1))<<(k-p);
d |= this[--i]>>(p+=this.DB-k);
}
else {
d = (this[i]>>(p-=k))&km;
if(p <= 0) { p += this.DB; --i; }
}
if(d > 0) m = true;
if(m) r += int2char(d);
}
}
return m?r:"0";
}
// (public) -this
function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }
// (public) |this|
function bnAbs() { return (this.s<0)?this.negate():this; }
// (public) return + if this > a, - if this < a, 0 if equal
function bnCompareTo(a) {
var r = this.s-a.s;
if(r != 0) return r;
var i = this.t;
r = i-a.t;
if(r != 0) return (this.s<0)?-r:r;
while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;
return 0;
}
// returns bit length of the integer x
function nbits(x) {
var r = 1, t;
if((t=x>>>16) != 0) { x = t; r += 16; }
if((t=x>>8) != 0) { x = t; r += 8; }
if((t=x>>4) != 0) { x = t; r += 4; }
if((t=x>>2) != 0) { x = t; r += 2; }
if((t=x>>1) != 0) { x = t; r += 1; }
return r;
}
// (public) return the number of bits in "this"
function bnBitLength() {
if(this.t <= 0) return 0;
return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));
}
// (protected) r = this << n*DB
function bnpDLShiftTo(n,r) {
var i;
for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
for(i = n-1; i >= 0; --i) r[i] = 0;
r.t = this.t+n;
r.s = this.s;
}
// (protected) r = this >> n*DB
function bnpDRShiftTo(n,r) {
for(var i = n; i < this.t; ++i) r[i-n] = this[i];
r.t = Math.max(this.t-n,0);
r.s = this.s;
}
// (protected) r = this << n
function bnpLShiftTo(n,r) {
var bs = n%this.DB;
var cbs = this.DB-bs;
var bm = (1<<cbs)-1;
var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;
for(i = this.t-1; i >= 0; --i) {
r[i+ds+1] = (this[i]>>cbs)|c;
c = (this[i]&bm)<<bs;
}
for(i = ds-1; i >= 0; --i) r[i] = 0;
r[ds] = c;
r.t = this.t+ds+1;
r.s = this.s;
r.clamp();
}
// (protected) r = this >> n
function bnpRShiftTo(n,r) {
r.s = this.s;
var ds = Math.floor(n/this.DB);
if(ds >= this.t) { r.t = 0; return; }
var bs = n%this.DB;
var cbs = this.DB-bs;
var bm = (1<<bs)-1;
r[0] = this[ds]>>bs;
for(var i = ds+1; i < this.t; ++i) {
r[i-ds-1] |= (this[i]&bm)<<cbs;
r[i-ds] = this[i]>>bs;
}
if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs;
r.t = this.t-ds;
r.clamp();
}
// (protected) r = this - a
function bnpSubTo(a,r) {
var i = 0, c = 0, m = Math.min(a.t,this.t);
while(i < m) {
c += this[i]-a[i];
r[i++] = c&this.DM;
c >>= this.DB;
}
if(a.t < this.t) {
c -= a.s;
while(i < this.t) {
c += this[i];
r[i++] = c&this.DM;
c >>= this.DB;
}
c += this.s;
}
else {
c += this.s;
while(i < a.t) {
c -= a[i];
r[i++] = c&this.DM;
c >>= this.DB;
}
c -= a.s;
}
r.s = (c<0)?-1:0;
if(c < -1) r[i++] = this.DV+c;
else if(c > 0) r[i++] = c;
r.t = i;
r.clamp();
}
// (protected) r = this * a, r != this,a (HAC 14.12)
// "this" should be the larger one if appropriate.
function bnpMultiplyTo(a,r) {
var x = this.abs(), y = a.abs();
var i = x.t;
r.t = i+y.t;
while(--i >= 0) r[i] = 0;
for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);
r.s = 0;
r.clamp();
if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
}
// (protected) r = this^2, r != this (HAC 14.16)
function bnpSquareTo(r) {
var x = this.abs();
var i = r.t = 2*x.t;
while(--i >= 0) r[i] = 0;
for(i = 0; i < x.t-1; ++i) {
var c = x.am(i,x[i],r,2*i,0,1);
if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {
r[i+x.t] -= x.DV;
r[i+x.t+1] = 1;
}
}
if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);
r.s = 0;
r.clamp();
}
// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
// r != q, this != m. q or r may be null.
function bnpDivRemTo(m,q,r) {
var pm = m.abs();
if(pm.t <= 0) return;
var pt = this.abs();
if(pt.t < pm.t) {
if(q != null) q.fromInt(0);
if(r != null) this.copyTo(r);
return;
}
if(r == null) r = nbi();
var y = nbi(), ts = this.s, ms = m.s;
var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus
if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
else { pm.copyTo(y); pt.copyTo(r); }
var ys = y.t;
var y0 = y[ys-1];
if(y0 == 0) return;
var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0);
var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2;
var i = r.t, j = i-ys, t = (q==null)?nbi():q;
y.dlShiftTo(j,t);
if(r.compareTo(t) >= 0) {
r[r.t++] = 1;
r.subTo(t,r);
}
BigInteger.ONE.dlShiftTo(ys,t);
t.subTo(y,y); // "negative" y so we can replace sub with am later
while(y.t < ys) y[y.t++] = 0;
while(--j >= 0) {
// Estimate quotient digit
var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);
if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out
y.dlShiftTo(j,t);
r.subTo(t,r);
while(r[i] < --qd) r.subTo(t,r);
}
}
if(q != null) {
r.drShiftTo(ys,q);
if(ts != ms) BigInteger.ZERO.subTo(q,q);
}
r.t = ys;
r.clamp();
if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder
if(ts < 0) BigInteger.ZERO.subTo(r,r);
}
// (public) this mod a
function bnMod(a) {
var r = nbi();
this.abs().divRemTo(a,null,r);
if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
return r;
}
// Modular reduction using "classic" algorithm
function Classic(m) { this.m = m; }
function cConvert(x) {
if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
else return x;
}
function cRevert(x) { return x; }
function cReduce(x) { x.divRemTo(this.m,null,x); }
function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
Classic.prototype.convert = cConvert;
Classic.prototype.revert = cRevert;
Classic.prototype.reduce = cReduce;
Classic.prototype.mulTo = cMulTo;
Classic.prototype.sqrTo = cSqrTo;
// (protected) return "-1/this % 2^DB"; useful for Mont. reduction
// justification:
// xy == 1 (mod m)
// xy = 1+km
// xy(2-xy) = (1+km)(1-km)
// x[y(2-xy)] = 1-k^2m^2
// x[y(2-xy)] == 1 (mod m^2)
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
// JS multiply "overflows" differently from C/C++, so care is needed here.
function bnpInvDigit() {
if(this.t < 1) return 0;
var x = this[0];
if((x&1) == 0) return 0;
var y = x&3; // y == 1/x mod 2^2
y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8
y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16
// last step - calculate inverse mod DV directly;
// assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits
// we really want the negative inverse, and -DV < y < DV
return (y>0)?this.DV-y:-y;
}
// Montgomery reduction
function Montgomery(m) {
this.m = m;
this.mp = m.invDigit();
this.mpl = this.mp&0x7fff;
this.mph = this.mp>>15;
this.um = (1<<(m.DB-15))-1;
this.mt2 = 2*m.t;
}
// xR mod m
function montConvert(x) {
var r = nbi();
x.abs().dlShiftTo(this.m.t,r);
r.divRemTo(this.m,null,r);
if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
return r;
}
// x/R mod m
function montRevert(x) {
var r = nbi();
x.copyTo(r);
this.reduce(r);
return r;
}
// x = x/R mod m (HAC 14.32)
function montReduce(x) {
while(x.t <= this.mt2) // pad x so am has enough room later
x[x.t++] = 0;
for(var i = 0; i < this.m.t; ++i) {
// faster way of calculating u0 = x[i]*mp mod DV
var j = x[i]&0x7fff;
var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM;
// use am to combine the multiply-shift-add into one call
j = i+this.m.t;
x[j] += this.m.am(0,u0,x,i,0,this.m.t);
// propagate carry
while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }
}
x.clamp();
x.drShiftTo(this.m.t,x);
if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
}
// r = "x^2/R mod m"; x != r
function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
// r = "xy/R mod m"; x,y != r
function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
Montgomery.prototype.convert = montConvert;
Montgomery.prototype.revert = montRevert;
Montgomery.prototype.reduce = montReduce;
Montgomery.prototype.mulTo = montMulTo;
Montgomery.prototype.sqrTo = montSqrTo;
// (protected) true iff this is even
function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }
// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
function bnpExp(e,z) {
if(e > 0xffffffff || e < 1) return BigInteger.ONE;
var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
g.copyTo(r);
while(--i >= 0) {
z.sqrTo(r,r2);
if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
else { var t = r; r = r2; r2 = t; }
}
return z.revert(r);
}
// (public) this^e % m, 0 <= e < 2^32
function bnModPowInt(e,m) {
var z;
if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
return this.exp(e,z);
}
// protected
BigInteger.prototype.copyTo = bnpCopyTo;
BigInteger.prototype.fromInt = bnpFromInt;
BigInteger.prototype.fromString = bnpFromString;
BigInteger.prototype.clamp = bnpClamp;
BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
BigInteger.prototype.drShiftTo = bnpDRShiftTo;
BigInteger.prototype.lShiftTo = bnpLShiftTo;
BigInteger.prototype.rShiftTo = bnpRShiftTo;
BigInteger.prototype.subTo = bnpSubTo;
BigInteger.prototype.multiplyTo = bnpMultiplyTo;
BigInteger.prototype.squareTo = bnpSquareTo;
BigInteger.prototype.divRemTo = bnpDivRemTo;
BigInteger.prototype.invDigit = bnpInvDigit;
BigInteger.prototype.isEven = bnpIsEven;
BigInteger.prototype.exp = bnpExp;
// public
BigInteger.prototype.toString = bnToString;
BigInteger.prototype.negate = bnNegate;
BigInteger.prototype.abs = bnAbs;
BigInteger.prototype.compareTo = bnCompareTo;
BigInteger.prototype.bitLength = bnBitLength;
BigInteger.prototype.mod = bnMod;
BigInteger.prototype.modPowInt = bnModPowInt;
// "constants"
BigInteger.ZERO = nbv(0);
BigInteger.ONE = nbv(1);
// jsbn2 stuff
// (protected) convert from radix string
function bnpFromRadix(s,b) {
this.fromInt(0);
if(b == null) b = 10;
var cs = this.chunkSize(b);
var d = Math.pow(b,cs), mi = false, j = 0, w = 0;
for(var i = 0; i < s.length; ++i) {
var x = intAt(s,i);
if(x < 0) {
if(s.charAt(i) == "-" && this.signum() == 0) mi = true;
continue;
}
w = b*w+x;
if(++j >= cs) {
this.dMultiply(d);
this.dAddOffset(w,0);
j = 0;
w = 0;
}
}
if(j > 0) {
this.dMultiply(Math.pow(b,j));
this.dAddOffset(w,0);
}
if(mi) BigInteger.ZERO.subTo(this,this);
}
// (protected) return x s.t. r^x < DV
function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); }
// (public) 0 if this == 0, 1 if this > 0
function bnSigNum() {
if(this.s < 0) return -1;
else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
else return 1;
}
// (protected) this *= n, this >= 0, 1 < n < DV
function bnpDMultiply(n) {
this[this.t] = this.am(0,n-1,this,0,0,this.t);
++this.t;
this.clamp();
}
// (protected) this += n << w words, this >= 0
function bnpDAddOffset(n,w) {
if(n == 0) return;
while(this.t <= w) this[this.t++] = 0;
this[w] += n;
while(this[w] >= this.DV) {
this[w] -= this.DV;
if(++w >= this.t) this[this.t++] = 0;
++this[w];
}
}
// (protected) convert to radix string
function bnpToRadix(b) {
if(b == null) b = 10;
if(this.signum() == 0 || b < 2 || b > 36) return "0";
var cs = this.chunkSize(b);
var a = Math.pow(b,cs);
var d = nbv(a), y = nbi(), z = nbi(), r = "";
this.divRemTo(d,y,z);
while(y.signum() > 0) {
r = (a+z.intValue()).toString(b).substr(1) + r;
y.divRemTo(d,y,z);
}
return z.intValue().toString(b) + r;
}
// (public) return value as integer
function bnIntValue() {
if(this.s < 0) {
if(this.t == 1) return this[0]-this.DV;
else if(this.t == 0) return -1;
}
else if(this.t == 1) return this[0];
else if(this.t == 0) return 0;
// assumes 16 < DB < 32
return ((this[1]&((1<<(32-this.DB))-1))<<this.DB)|this[0];
}
// (protected) r = this + a
function bnpAddTo(a,r) {
var i = 0, c = 0, m = Math.min(a.t,this.t);
while(i < m) {
c += this[i]+a[i];
r[i++] = c&this.DM;
c >>= this.DB;
}
if(a.t < this.t) {
c += a.s;
while(i < this.t) {
c += this[i];
r[i++] = c&this.DM;
c >>= this.DB;
}
c += this.s;
}
else {
c += this.s;
while(i < a.t) {
c += a[i];
r[i++] = c&this.DM;
c >>= this.DB;
}
c += a.s;
}
r.s = (c<0)?-1:0;
if(c > 0) r[i++] = c;
else if(c < -1) r[i++] = this.DV+c;
r.t = i;
r.clamp();
}
BigInteger.prototype.fromRadix = bnpFromRadix;
BigInteger.prototype.chunkSize = bnpChunkSize;
BigInteger.prototype.signum = bnSigNum;
BigInteger.prototype.dMultiply = bnpDMultiply;
BigInteger.prototype.dAddOffset = bnpDAddOffset;
BigInteger.prototype.toRadix = bnpToRadix;
BigInteger.prototype.intValue = bnIntValue;
BigInteger.prototype.addTo = bnpAddTo;
//======= end jsbn =======
// Emscripten wrapper
var Wrapper = {
abs: function(l, h) {
var x = new goog.math.Long(l, h);
var ret;
if (x.isNegative()) {
ret = x.negate();
} else {
ret = x;
}
HEAP32[tempDoublePtr>>2] = ret.low_;
HEAP32[tempDoublePtr+4>>2] = ret.high_;
},
ensureTemps: function() {
if (Wrapper.ensuredTemps) return;
Wrapper.ensuredTemps = true;
Wrapper.two32 = new BigInteger();
Wrapper.two32.fromString('4294967296', 10);
Wrapper.two64 = new BigInteger();
Wrapper.two64.fromString('18446744073709551616', 10);
Wrapper.temp1 = new BigInteger();
Wrapper.temp2 = new BigInteger();
},
lh2bignum: function(l, h) {
var a = new BigInteger();
a.fromString(h.toString(), 10);
var b = new BigInteger();
a.multiplyTo(Wrapper.two32, b);
var c = new BigInteger();
c.fromString(l.toString(), 10);
var d = new BigInteger();
c.addTo(b, d);
return d;
},
stringify: function(l, h, unsigned) {
var ret = new goog.math.Long(l, h).toString();
if (unsigned && ret[0] == '-') {
// unsign slowly using jsbn bignums
Wrapper.ensureTemps();
var bignum = new BigInteger();
bignum.fromString(ret, 10);
ret = new BigInteger();
Wrapper.two64.addTo(bignum, ret);
ret = ret.toString(10);
}
return ret;
},
fromString: function(str, base, min, max, unsigned) {
Wrapper.ensureTemps();
var bignum = new BigInteger();
bignum.fromString(str, base);
var bigmin = new BigInteger();
bigmin.fromString(min, 10);
var bigmax = new BigInteger();
bigmax.fromString(max, 10);
if (unsigned && bignum.compareTo(BigInteger.ZERO) < 0) {
var temp = new BigInteger();
bignum.addTo(Wrapper.two64, temp);
bignum = temp;
}
var error = false;
if (bignum.compareTo(bigmin) < 0) {
bignum = bigmin;
error = true;
} else if (bignum.compareTo(bigmax) > 0) {
bignum = bigmax;
error = true;
}
var ret = goog.math.Long.fromString(bignum.toString()); // min-max checks should have clamped this to a range goog.math.Long can handle well
HEAP32[tempDoublePtr>>2] = ret.low_;
HEAP32[tempDoublePtr+4>>2] = ret.high_;
if (error) throw 'range error';
}
};
return Wrapper;
})();
//======= end closure i64 code =======
// === Auto-generated postamble setup entry stuff ===
function ExitStatus(status) {
this.name = "ExitStatus";
this.message = "Program terminated with exit(" + status + ")";
this.status = status;
};
ExitStatus.prototype = new Error();
ExitStatus.prototype.constructor = ExitStatus;
var initialStackTop;
var preloadStartTime = null;
Module['callMain'] = Module.callMain = function callMain(args) {
assert(runDependencies == 0, 'cannot call main when async dependencies remain! (listen on __ATMAIN__)');
assert(__ATPRERUN__.length == 0, 'cannot call main when preRun functions remain to be called');
args = args || [];
if (ENVIRONMENT_IS_WEB && preloadStartTime !== null) {
//Module.printErr('preload time: ' + (Date.now() - preloadStartTime) + ' ms');
}
ensureInitRuntime();
var argc = args.length+1;
function pad() {
for (var i = 0; i < 4-1; i++) {
argv.push(0);
}
}
var argv = [allocate(intArrayFromString("/bin/this.program"), 'i8', ALLOC_NORMAL) ];
pad();
for (var i = 0; i < argc-1; i = i + 1) {
argv.push(allocate(intArrayFromString(args[i]), 'i8', ALLOC_NORMAL));
pad();
}
argv.push(0);
argv = allocate(argv, 'i32', ALLOC_NORMAL);
initialStackTop = STACKTOP;
try {
var ret = Module['_main'](argc, argv, 0);
// if we're not running an evented main loop, it's time to exit
if (!Module['noExitRuntime']) {
exit(ret);
}
}
catch(e) {
if (e instanceof ExitStatus) {
// exit() throws this once it's done to make sure execution
// has been stopped completely
return;
} else if (e == 'SimulateInfiniteLoop') {
// running an evented main loop, don't immediately exit
Module['noExitRuntime'] = true;
return;
} else {
throw e;
}
}
}
function run(args) {
args = args || Module['arguments'];
if (preloadStartTime === null) preloadStartTime = Date.now();
if (runDependencies > 0) {
Module.printErr('run() called, but dependencies remain, so not running');
return;
}
preRun();
if (runDependencies > 0) {
// a preRun added a dependency, run will be called later
return;
}
function doRun() {
ensureInitRuntime();
preMain();
calledRun = true;
if (Module['_main'] && shouldRunNow) {
Module['callMain'](args);
}
postRun();
}
if (Module['setStatus']) {
Module['setStatus']('Running...');
setTimeout(function() {
setTimeout(function() {
Module['setStatus']('');
}, 1);
if (!ABORT) doRun();
}, 1);
} else {
doRun();
}
}
Module['run'] = Module.run = run;
function exit(status) {
ABORT = true;
EXITSTATUS = status;
STACKTOP = initialStackTop;
// exit the runtime
exitRuntime();
// throw an exception to halt the current execution
throw new ExitStatus(status);
}
Module['exit'] = Module.exit = exit;
function abort(text) {
if (text) {
Module.print(text);
Module.printErr(text);
}
ABORT = true;
EXITSTATUS = 1;
throw 'abort() at ' + (new Error().stack);
}
Module['abort'] = Module.abort = abort;
// {{PRE_RUN_ADDITIONS}}
if (Module['preInit']) {
if (typeof Module['preInit'] == 'function') Module['preInit'] = [Module['preInit']];
while (Module['preInit'].length > 0) {
Module['preInit'].pop()();
}
}
// shouldRunNow refers to calling main(), not run().
var shouldRunNow = true;
if (Module['noInitialRun']) {
shouldRunNow = false;
}
run();
if (JSRegress_outputBuffer != "hash value: 892BDB6FD3F62E863D63DA55851700FDE3ACF30204798CE9\n")
throw "Error: bad result: " + JSRegress_outputBuffer;
// {{POST_RUN_ADDITIONS}}
// {{MODULE_ADDITIONS}}