| /* |
| * Copyright (C) 2020 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS |
| * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
| * THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "SimpleRange.h" |
| |
| #include "CharacterData.h" |
| #include "Frame.h" |
| #include "HTMLFrameOwnerElement.h" |
| #include "NodeTraversal.h" |
| #include "ShadowRoot.h" |
| |
| namespace WebCore { |
| |
| SimpleRange::SimpleRange(const BoundaryPoint& start, const BoundaryPoint& end) |
| : start(start) |
| , end(end) |
| { |
| } |
| |
| SimpleRange::SimpleRange(BoundaryPoint&& start, BoundaryPoint&& end) |
| : start(WTFMove(start)) |
| , end(WTFMove(end)) |
| { |
| } |
| |
| bool operator==(const SimpleRange& a, const SimpleRange& b) |
| { |
| return a.start == b.start && a.end == b.end; |
| } |
| |
| std::optional<SimpleRange> makeRangeSelectingNode(Node& node) |
| { |
| auto parent = node.parentNode(); |
| if (!parent) |
| return std::nullopt; |
| unsigned offset = node.computeNodeIndex(); |
| return SimpleRange { { *parent, offset }, { *parent, offset + 1 } }; |
| } |
| |
| SimpleRange makeRangeSelectingNodeContents(Node& node) |
| { |
| return { makeBoundaryPointBeforeNodeContents(node), makeBoundaryPointAfterNodeContents(node) }; |
| } |
| |
| OffsetRange characterDataOffsetRange(const SimpleRange& range, const Node& node) |
| { |
| return { &node == range.start.container.ptr() ? range.start.offset : 0, |
| &node == range.end.container.ptr() ? range.end.offset : std::numeric_limits<unsigned>::max() }; |
| } |
| |
| static RefPtr<Node> firstIntersectingNode(const SimpleRange& range) |
| { |
| if (range.start.container->isCharacterDataNode()) |
| return range.start.container.ptr(); |
| if (auto child = range.start.container->traverseToChildAt(range.start.offset)) |
| return child; |
| return NodeTraversal::nextSkippingChildren(range.start.container); |
| } |
| |
| static RefPtr<Node> nodePastLastIntersectingNode(const SimpleRange& range) |
| { |
| if (range.end.container->isCharacterDataNode()) |
| return NodeTraversal::nextSkippingChildren(range.end.container); |
| if (auto child = range.end.container->traverseToChildAt(range.end.offset)) |
| return child; |
| return NodeTraversal::nextSkippingChildren(range.end.container); |
| } |
| |
| static RefPtr<Node> firstIntersectingNodeWithDeprecatedZeroOffsetStartQuirk(const SimpleRange& range) |
| { |
| if (range.start.container->isCharacterDataNode()) |
| return range.start.container.ptr(); |
| if (auto child = range.start.container->traverseToChildAt(range.start.offset)) |
| return child; |
| if (!range.start.offset) |
| return range.start.container.ptr(); |
| return NodeTraversal::nextSkippingChildren(range.start.container); |
| } |
| |
| IntersectingNodeIterator::IntersectingNodeIterator(const SimpleRange& range) |
| : m_node(firstIntersectingNode(range)) |
| , m_pastLastNode(nodePastLastIntersectingNode(range)) |
| { |
| enforceEndInvariant(); |
| } |
| |
| IntersectingNodeIterator::IntersectingNodeIterator(const SimpleRange& range, QuirkFlag) |
| : m_node(firstIntersectingNodeWithDeprecatedZeroOffsetStartQuirk(range)) |
| , m_pastLastNode(nodePastLastIntersectingNode(range)) |
| { |
| enforceEndInvariant(); |
| } |
| |
| void IntersectingNodeIterator::advance() |
| { |
| ASSERT(m_node); |
| m_node = NodeTraversal::next(*m_node); |
| enforceEndInvariant(); |
| } |
| |
| void IntersectingNodeIterator::advanceSkippingChildren() |
| { |
| ASSERT(m_node); |
| m_node = m_node->contains(m_pastLastNode.get()) ? nullptr : NodeTraversal::nextSkippingChildren(*m_node); |
| enforceEndInvariant(); |
| } |
| |
| void IntersectingNodeIterator::enforceEndInvariant() |
| { |
| if (m_node == m_pastLastNode || !m_node) { |
| m_node = nullptr; |
| m_pastLastNode = nullptr; |
| } |
| } |
| |
| template<TreeType treeType> Node* commonInclusiveAncestor(const SimpleRange& range) |
| { |
| return commonInclusiveAncestor<treeType>(range.start.container, range.end.container); |
| } |
| |
| template Node* commonInclusiveAncestor<ComposedTree>(const SimpleRange&); |
| |
| template<TreeType treeType> bool contains(const SimpleRange& range, const BoundaryPoint& point) |
| { |
| return is_lteq(treeOrder<treeType>(range.start, point)) && is_lteq(treeOrder<treeType>(point, range.end)); |
| } |
| |
| template bool contains<Tree>(const SimpleRange&, const BoundaryPoint&); |
| |
| template<TreeType treeType> bool contains(const SimpleRange& range, const std::optional<BoundaryPoint>& point) |
| { |
| return point && contains<treeType>(range, *point); |
| } |
| |
| template bool contains<ComposedTree>(const SimpleRange&, const std::optional<BoundaryPoint>&); |
| |
| bool containsForTesting(TreeType type, const SimpleRange& range, const BoundaryPoint& point) |
| { |
| switch (type) { |
| case Tree: |
| return contains<Tree>(range, point); |
| case ShadowIncludingTree: |
| return contains<ShadowIncludingTree>(range, point); |
| case ComposedTree: |
| return contains<ComposedTree>(range, point); |
| } |
| ASSERT_NOT_REACHED(); |
| return false; |
| } |
| |
| template<TreeType treeType> PartialOrdering treeOrder(const SimpleRange& range, const BoundaryPoint& point) |
| { |
| if (auto order = treeOrder<treeType>(range.start, point); !is_lt(order)) |
| return order; |
| if (auto order = treeOrder<treeType>(range.end, point); !is_gt(order)) |
| return order; |
| return PartialOrdering::equivalent; |
| } |
| |
| template<TreeType treeType> PartialOrdering treeOrder(const BoundaryPoint& point, const SimpleRange& range) |
| { |
| if (auto order = treeOrder<treeType>(point, range.start); !is_gt(order)) |
| return order; |
| if (auto order = treeOrder<treeType>(point, range.end); !is_lt(order)) |
| return order; |
| return PartialOrdering::equivalent; |
| } |
| |
| template PartialOrdering treeOrder<Tree>(const SimpleRange&, const BoundaryPoint&); |
| template PartialOrdering treeOrder<Tree>(const BoundaryPoint&, const SimpleRange&); |
| |
| template<TreeType treeType> bool contains(const SimpleRange& outerRange, const SimpleRange& innerRange) |
| { |
| return is_lteq(treeOrder<treeType>(outerRange.start, innerRange.start)) && is_gteq(treeOrder<treeType>(outerRange.end, innerRange.end)); |
| } |
| |
| template bool contains<Tree>(const SimpleRange&, const SimpleRange&); |
| template bool contains<ComposedTree>(const SimpleRange&, const SimpleRange&); |
| |
| bool containsForTesting(TreeType type, const SimpleRange& outerRange, const SimpleRange& innerRange) |
| { |
| switch (type) { |
| case Tree: |
| return contains<Tree>(outerRange, innerRange); |
| case ShadowIncludingTree: |
| return contains<ShadowIncludingTree>(outerRange, innerRange); |
| case ComposedTree: |
| return contains<ComposedTree>(outerRange, innerRange); |
| } |
| ASSERT_NOT_REACHED(); |
| return false; |
| } |
| |
| template<TreeType treeType> bool intersects(const SimpleRange& a, const SimpleRange& b) |
| { |
| return is_lteq(treeOrder<treeType>(a.start, b.end)) && is_lteq(treeOrder<treeType>(b.start, a.end)); |
| } |
| |
| template bool intersects<Tree>(const SimpleRange&, const SimpleRange&); |
| template bool intersects<ComposedTree>(const SimpleRange&, const SimpleRange&); |
| |
| bool intersectsForTesting(TreeType type, const SimpleRange& a, const SimpleRange& b) |
| { |
| switch (type) { |
| case Tree: |
| return intersects<Tree>(a, b); |
| case ShadowIncludingTree: |
| return intersects<ShadowIncludingTree>(a, b); |
| case ComposedTree: |
| return intersects<ComposedTree>(a, b); |
| } |
| ASSERT_NOT_REACHED(); |
| return false; |
| } |
| |
| static bool compareByComposedTreeOrder(const BoundaryPoint& a, const BoundaryPoint& b) |
| { |
| return is_lt(treeOrder<ComposedTree>(a, b)); |
| } |
| |
| SimpleRange unionRange(const SimpleRange& a, const SimpleRange& b) |
| { |
| return { std::min(a.start, b.start, compareByComposedTreeOrder), std::max(a.end, b.end, compareByComposedTreeOrder) }; |
| } |
| |
| std::optional<SimpleRange> intersection(const std::optional<SimpleRange>& a, const std::optional<SimpleRange>& b) |
| { |
| // FIXME: Can this be done more efficiently, with fewer calls to treeOrder? |
| if (!a || !b || !intersects<ComposedTree>(*a, *b)) |
| return std::nullopt; |
| return { { std::max(a->start, b->start, compareByComposedTreeOrder), std::min(a->end, b->end, compareByComposedTreeOrder) } }; |
| } |
| |
| template<TreeType treeType> bool contains(const SimpleRange& range, const Node& node) |
| { |
| // FIXME: Consider a more efficient algorithm that avoids always computing the node index. |
| // FIXME: Does this const_cast point to a design problem? |
| auto nodeRange = makeRangeSelectingNode(const_cast<Node&>(node)); |
| return nodeRange && contains<treeType>(range, *nodeRange); |
| } |
| |
| template bool contains<Tree>(const SimpleRange&, const Node&); |
| template bool contains<ComposedTree>(const SimpleRange&, const Node&); |
| |
| bool containsForTesting(TreeType type, const SimpleRange& range, const Node& node) |
| { |
| switch (type) { |
| case Tree: |
| return contains<Tree>(range, node); |
| case ShadowIncludingTree: |
| return contains<ShadowIncludingTree>(range, node); |
| case ComposedTree: |
| return contains<ComposedTree>(range, node); |
| } |
| ASSERT_NOT_REACHED(); |
| return false; |
| } |
| |
| template<TreeType treeType> bool contains(const Node& outer, const Node& inner) |
| { |
| for (auto inclusiveAncestor = &inner; inclusiveAncestor; inclusiveAncestor = parent<treeType>(*inclusiveAncestor)) { |
| if (inclusiveAncestor == &outer) |
| return true; |
| } |
| return false; |
| } |
| |
| template<> bool contains<Tree>(const Node& outer, const Node& inner) |
| { |
| // We specialize here because we want to take advantage of optimizations in Node::isDescendantOf. |
| return outer.contains(inner); |
| } |
| |
| template<TreeType treeType> bool intersects(const SimpleRange& range, const Node& node) |
| { |
| // FIXME: Consider a more efficient algorithm that avoids always computing the node index. |
| // FIXME: Does this const_cast point to a design problem? |
| auto nodeRange = makeRangeSelectingNode(const_cast<Node&>(node)); |
| if (!nodeRange) |
| return contains<treeType>(node, range.start.container); |
| return is_lt(treeOrder<treeType>(nodeRange->start, range.end)) && is_lt(treeOrder<treeType>(range.start, nodeRange->end)); |
| } |
| |
| template bool intersects<Tree>(const SimpleRange&, const Node&); |
| template bool intersects<ComposedTree>(const SimpleRange&, const Node&); |
| |
| bool intersectsForTesting(TreeType type, const SimpleRange& range, const Node& node) |
| { |
| switch (type) { |
| case Tree: |
| return intersects<Tree>(range, node); |
| case ShadowIncludingTree: |
| return intersects<ShadowIncludingTree>(range, node); |
| case ComposedTree: |
| return intersects<ComposedTree>(range, node); |
| } |
| ASSERT_NOT_REACHED(); |
| return false; |
| } |
| |
| bool containsCrossingDocumentBoundaries(const SimpleRange& range, Node& node) |
| { |
| auto* ancestor = &node; |
| while (&range.start.document() != &ancestor->document()) { |
| ancestor = ancestor->document().ownerElement(); |
| if (!ancestor) |
| return false; |
| } |
| return contains<ComposedTree>(range, *ancestor); |
| } |
| |
| } |