blob: ec6f377f984ee32e68582272eb082de2c829acda [file] [log] [blame]
//
// Copyright 2002 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Shader.cpp: Implements the gl::Shader class and its derived classes
// VertexShader and FragmentShader. Implements GL shader objects and related
// functionality. [OpenGL ES 2.0.24] section 2.10 page 24 and section 3.8 page 84.
#include "libANGLE/Shader.h"
#include <functional>
#include <sstream>
#include "GLSLANG/ShaderLang.h"
#include "common/utilities.h"
#include "libANGLE/Caps.h"
#include "libANGLE/Compiler.h"
#include "libANGLE/Constants.h"
#include "libANGLE/Context.h"
#include "libANGLE/ResourceManager.h"
#include "libANGLE/renderer/GLImplFactory.h"
#include "libANGLE/renderer/ShaderImpl.h"
#include "platform/FrontendFeatures.h"
namespace gl
{
namespace
{
template <typename VarT>
std::vector<VarT> GetActiveShaderVariables(const std::vector<VarT> *variableList)
{
ASSERT(variableList);
std::vector<VarT> result;
for (size_t varIndex = 0; varIndex < variableList->size(); varIndex++)
{
const VarT &var = variableList->at(varIndex);
if (var.active)
{
result.push_back(var);
}
}
return result;
}
template <typename VarT>
const std::vector<VarT> &GetShaderVariables(const std::vector<VarT> *variableList)
{
ASSERT(variableList);
return *variableList;
}
} // anonymous namespace
// true if varying x has a higher priority in packing than y
bool CompareShaderVar(const sh::ShaderVariable &x, const sh::ShaderVariable &y)
{
if (x.type == y.type)
{
return x.getArraySizeProduct() > y.getArraySizeProduct();
}
// Special case for handling structs: we sort these to the end of the list
if (x.type == GL_NONE)
{
return false;
}
if (y.type == GL_NONE)
{
return true;
}
return gl::VariableSortOrder(x.type) < gl::VariableSortOrder(y.type);
}
const char *GetShaderTypeString(ShaderType type)
{
switch (type)
{
case ShaderType::Vertex:
return "VERTEX";
case ShaderType::Fragment:
return "FRAGMENT";
case ShaderType::Compute:
return "COMPUTE";
case ShaderType::Geometry:
return "GEOMETRY";
case ShaderType::TessControl:
return "TESS_CONTROL";
case ShaderType::TessEvaluation:
return "TESS_EVALUATION";
default:
UNREACHABLE();
return "";
}
}
class ScopedExit final : angle::NonCopyable
{
public:
ScopedExit(std::function<void()> exit) : mExit(exit) {}
~ScopedExit() { mExit(); }
private:
std::function<void()> mExit;
};
struct Shader::CompilingState
{
std::shared_ptr<rx::WaitableCompileEvent> compileEvent;
ShCompilerInstance shCompilerInstance;
};
ShaderState::ShaderState(ShaderType shaderType)
: mLabel(),
mShaderType(shaderType),
mShaderVersion(100),
mNumViews(-1),
mGeometryShaderInvocations(1),
mCompileStatus(CompileStatus::NOT_COMPILED)
{
mLocalSize.fill(-1);
}
ShaderState::~ShaderState() {}
Shader::Shader(ShaderProgramManager *manager,
rx::GLImplFactory *implFactory,
const gl::Limitations &rendererLimitations,
ShaderType type,
ShaderProgramID handle)
: mState(type),
mImplementation(implFactory->createShader(mState)),
mRendererLimitations(rendererLimitations),
mHandle(handle),
mType(type),
mRefCount(0),
mDeleteStatus(false),
mResourceManager(manager),
mCurrentMaxComputeWorkGroupInvocations(0u)
{
ASSERT(mImplementation);
}
void Shader::onDestroy(const gl::Context *context)
{
resolveCompile();
mImplementation->destroy();
mBoundCompiler.set(context, nullptr);
mImplementation.reset(nullptr);
delete this;
}
Shader::~Shader()
{
ASSERT(!mImplementation);
}
void Shader::setLabel(const Context *context, const std::string &label)
{
mState.mLabel = label;
}
const std::string &Shader::getLabel() const
{
return mState.mLabel;
}
ShaderProgramID Shader::getHandle() const
{
return mHandle;
}
void Shader::setSource(GLsizei count, const char *const *string, const GLint *length)
{
std::ostringstream stream;
for (int i = 0; i < count; i++)
{
if (length == nullptr || length[i] < 0)
{
stream.write(string[i], strlen(string[i]));
}
else
{
stream.write(string[i], length[i]);
}
}
mState.mSource = stream.str();
}
int Shader::getInfoLogLength()
{
resolveCompile();
if (mInfoLog.empty())
{
return 0;
}
return (static_cast<int>(mInfoLog.length()) + 1);
}
void Shader::getInfoLog(GLsizei bufSize, GLsizei *length, char *infoLog)
{
resolveCompile();
int index = 0;
if (bufSize > 0)
{
index = std::min(bufSize - 1, static_cast<GLsizei>(mInfoLog.length()));
memcpy(infoLog, mInfoLog.c_str(), index);
infoLog[index] = '\0';
}
if (length)
{
*length = index;
}
}
int Shader::getSourceLength() const
{
return mState.mSource.empty() ? 0 : (static_cast<int>(mState.mSource.length()) + 1);
}
int Shader::getTranslatedSourceLength()
{
resolveCompile();
if (mState.mTranslatedSource.empty())
{
return 0;
}
return (static_cast<int>(mState.mTranslatedSource.length()) + 1);
}
int Shader::getTranslatedSourceWithDebugInfoLength()
{
resolveCompile();
const std::string &debugInfo = mImplementation->getDebugInfo();
if (debugInfo.empty())
{
return 0;
}
return (static_cast<int>(debugInfo.length()) + 1);
}
// static
void Shader::GetSourceImpl(const std::string &source,
GLsizei bufSize,
GLsizei *length,
char *buffer)
{
int index = 0;
if (bufSize > 0)
{
index = std::min(bufSize - 1, static_cast<GLsizei>(source.length()));
memcpy(buffer, source.c_str(), index);
buffer[index] = '\0';
}
if (length)
{
*length = index;
}
}
void Shader::getSource(GLsizei bufSize, GLsizei *length, char *buffer) const
{
GetSourceImpl(mState.mSource, bufSize, length, buffer);
}
void Shader::getTranslatedSource(GLsizei bufSize, GLsizei *length, char *buffer)
{
GetSourceImpl(getTranslatedSource(), bufSize, length, buffer);
}
const std::string &Shader::getTranslatedSource()
{
resolveCompile();
return mState.mTranslatedSource;
}
const sh::BinaryBlob &Shader::getCompiledBinary()
{
resolveCompile();
return mState.mCompiledBinary;
}
void Shader::getTranslatedSourceWithDebugInfo(GLsizei bufSize, GLsizei *length, char *buffer)
{
resolveCompile();
const std::string &debugInfo = mImplementation->getDebugInfo();
GetSourceImpl(debugInfo, bufSize, length, buffer);
}
void Shader::compile(const Context *context)
{
resolveCompile();
mState.mTranslatedSource.clear();
mState.mCompiledBinary.clear();
mInfoLog.clear();
mState.mShaderVersion = 100;
mState.mInputVaryings.clear();
mState.mOutputVaryings.clear();
mState.mUniforms.clear();
mState.mUniformBlocks.clear();
mState.mShaderStorageBlocks.clear();
mState.mActiveAttributes.clear();
mState.mActiveOutputVariables.clear();
mState.mNumViews = -1;
mState.mGeometryShaderInputPrimitiveType.reset();
mState.mGeometryShaderOutputPrimitiveType.reset();
mState.mGeometryShaderMaxVertices.reset();
mState.mGeometryShaderInvocations = 1;
mState.mTessControlShaderVertices = 0;
mState.mTessGenMode = 0;
mState.mTessGenSpacing = 0;
mState.mTessGenVertexOrder = 0;
mState.mTessGenPointMode = 0;
mState.mEarlyFragmentTestsOptimization = false;
mState.mSpecConstUsageBits.reset();
mState.mCompileStatus = CompileStatus::COMPILE_REQUESTED;
mBoundCompiler.set(context, context->getCompiler());
ShCompileOptions options = (SH_OBJECT_CODE | SH_VARIABLES | SH_EMULATE_GL_DRAW_ID);
// Add default options to WebGL shaders to prevent unexpected behavior during
// compilation.
if (context->isWebGL())
{
options |= SH_INIT_GL_POSITION;
options |= SH_LIMIT_CALL_STACK_DEPTH;
options |= SH_LIMIT_EXPRESSION_COMPLEXITY;
options |= SH_ENFORCE_PACKING_RESTRICTIONS;
options |= SH_INIT_SHARED_VARIABLES;
}
else
{
// Per https://github.com/KhronosGroup/WebGL/pull/3278 gl_BaseVertex/gl_BaseInstance are
// removed from WebGL
options |= SH_EMULATE_GL_BASE_VERTEX_BASE_INSTANCE;
}
// Some targets (e.g. D3D11 Feature Level 9_3 and below) do not support non-constant loop
// indexes in fragment shaders. Shader compilation will fail. To provide a better error
// message we can instruct the compiler to pre-validate.
if (mRendererLimitations.shadersRequireIndexedLoopValidation)
{
options |= SH_VALIDATE_LOOP_INDEXING;
}
if (context->getFrontendFeatures().scalarizeVecAndMatConstructorArgs.enabled)
{
options |= SH_SCALARIZE_VEC_AND_MAT_CONSTRUCTOR_ARGS;
}
if (context->getFrontendFeatures().forceInitShaderVariables.enabled)
{
options |= SH_INIT_OUTPUT_VARIABLES;
options |= SH_INITIALIZE_UNINITIALIZED_LOCALS;
}
mCurrentMaxComputeWorkGroupInvocations =
static_cast<GLuint>(context->getCaps().maxComputeWorkGroupInvocations);
mMaxComputeSharedMemory = context->getCaps().maxComputeSharedMemorySize;
ASSERT(mBoundCompiler.get());
ShCompilerInstance compilerInstance = mBoundCompiler->getInstance(mState.mShaderType);
ShHandle compilerHandle = compilerInstance.getHandle();
ASSERT(compilerHandle);
mCompilerResourcesString = compilerInstance.getBuiltinResourcesString();
mCompilingState.reset(new CompilingState());
mCompilingState->shCompilerInstance = std::move(compilerInstance);
mCompilingState->compileEvent =
mImplementation->compile(context, &(mCompilingState->shCompilerInstance), options);
}
void Shader::resolveCompile()
{
if (!mState.compilePending())
{
return;
}
ASSERT(mCompilingState.get());
mCompilingState->compileEvent->wait();
mInfoLog += mCompilingState->compileEvent->getInfoLog();
ScopedExit exit([this]() {
mBoundCompiler->putInstance(std::move(mCompilingState->shCompilerInstance));
mCompilingState->compileEvent.reset();
mCompilingState.reset();
});
ShHandle compilerHandle = mCompilingState->shCompilerInstance.getHandle();
if (!mCompilingState->compileEvent->getResult())
{
mInfoLog += sh::GetInfoLog(compilerHandle);
INFO() << std::endl << mInfoLog;
mState.mCompileStatus = CompileStatus::NOT_COMPILED;
return;
}
const ShShaderOutput outputType = mCompilingState->shCompilerInstance.getShaderOutputType();
const bool isBinaryOutput =
outputType == SH_SPIRV_VULKAN_OUTPUT || outputType == SH_SPIRV_METAL_OUTPUT;
if (isBinaryOutput)
{
mState.mCompiledBinary = sh::GetObjectBinaryBlob(compilerHandle);
}
else
{
mState.mTranslatedSource = sh::GetObjectCode(compilerHandle);
#if !defined(NDEBUG)
// Prefix translated shader with commented out un-translated shader.
// Useful in diagnostics tools which capture the shader source.
std::ostringstream shaderStream;
shaderStream << "// GLSL\n";
shaderStream << "//\n";
std::istringstream inputSourceStream(mState.mSource);
std::string line;
while (std::getline(inputSourceStream, line))
{
// Remove null characters from the source line
line.erase(std::remove(line.begin(), line.end(), '\0'), line.end());
shaderStream << "// " << line;
// glslang complains if a comment ends with backslash
if (!line.empty() && line.back() == '\\')
{
shaderStream << "\\";
}
shaderStream << std::endl;
}
shaderStream << "\n\n";
shaderStream << mState.mTranslatedSource;
mState.mTranslatedSource = shaderStream.str();
#endif // !defined(NDEBUG)
}
// Gather the shader information
mState.mShaderVersion = sh::GetShaderVersion(compilerHandle);
mState.mUniforms = GetShaderVariables(sh::GetUniforms(compilerHandle));
mState.mUniformBlocks = GetShaderVariables(sh::GetUniformBlocks(compilerHandle));
mState.mShaderStorageBlocks = GetShaderVariables(sh::GetShaderStorageBlocks(compilerHandle));
mState.mSpecConstUsageBits =
rx::SpecConstUsageBits(sh::GetShaderSpecConstUsageBits(compilerHandle));
switch (mState.mShaderType)
{
case ShaderType::Compute:
{
mState.mAllAttributes = GetShaderVariables(sh::GetAttributes(compilerHandle));
mState.mActiveAttributes = GetActiveShaderVariables(&mState.mAllAttributes);
mState.mLocalSize = sh::GetComputeShaderLocalGroupSize(compilerHandle);
if (mState.mLocalSize.isDeclared())
{
angle::CheckedNumeric<uint32_t> checked_local_size_product(mState.mLocalSize[0]);
checked_local_size_product *= mState.mLocalSize[1];
checked_local_size_product *= mState.mLocalSize[2];
if (!checked_local_size_product.IsValid())
{
WARN() << std::endl
<< "Integer overflow when computing the product of local_size_x, "
<< "local_size_y and local_size_z.";
mState.mCompileStatus = CompileStatus::NOT_COMPILED;
return;
}
if (checked_local_size_product.ValueOrDie() >
mCurrentMaxComputeWorkGroupInvocations)
{
WARN() << std::endl
<< "The total number of invocations within a work group exceeds "
<< "MAX_COMPUTE_WORK_GROUP_INVOCATIONS.";
mState.mCompileStatus = CompileStatus::NOT_COMPILED;
return;
}
}
unsigned int sharedMemSize = sh::GetShaderSharedMemorySize(compilerHandle);
if (sharedMemSize > mMaxComputeSharedMemory)
{
WARN() << std::endl << "Exceeded maximum shared memory size";
mState.mCompileStatus = CompileStatus::NOT_COMPILED;
return;
}
break;
}
case ShaderType::Vertex:
{
mState.mOutputVaryings = GetShaderVariables(sh::GetOutputVaryings(compilerHandle));
mState.mAllAttributes = GetShaderVariables(sh::GetAttributes(compilerHandle));
mState.mActiveAttributes = GetActiveShaderVariables(&mState.mAllAttributes);
mState.mNumViews = sh::GetVertexShaderNumViews(compilerHandle);
break;
}
case ShaderType::Fragment:
{
mState.mAllAttributes = GetShaderVariables(sh::GetAttributes(compilerHandle));
mState.mActiveAttributes = GetActiveShaderVariables(&mState.mAllAttributes);
mState.mInputVaryings = GetShaderVariables(sh::GetInputVaryings(compilerHandle));
// TODO(jmadill): Figure out why we only sort in the FS, and if we need to.
std::sort(mState.mInputVaryings.begin(), mState.mInputVaryings.end(), CompareShaderVar);
mState.mActiveOutputVariables =
GetActiveShaderVariables(sh::GetOutputVariables(compilerHandle));
mState.mEarlyFragmentTestsOptimization =
sh::HasEarlyFragmentTestsOptimization(compilerHandle);
break;
}
case ShaderType::Geometry:
{
mState.mInputVaryings = GetShaderVariables(sh::GetInputVaryings(compilerHandle));
mState.mOutputVaryings = GetShaderVariables(sh::GetOutputVaryings(compilerHandle));
if (sh::HasValidGeometryShaderInputPrimitiveType(compilerHandle))
{
mState.mGeometryShaderInputPrimitiveType = FromGLenum<PrimitiveMode>(
sh::GetGeometryShaderInputPrimitiveType(compilerHandle));
}
if (sh::HasValidGeometryShaderOutputPrimitiveType(compilerHandle))
{
mState.mGeometryShaderOutputPrimitiveType = FromGLenum<PrimitiveMode>(
sh::GetGeometryShaderOutputPrimitiveType(compilerHandle));
}
if (sh::HasValidGeometryShaderMaxVertices(compilerHandle))
{
mState.mGeometryShaderMaxVertices =
sh::GetGeometryShaderMaxVertices(compilerHandle);
}
mState.mGeometryShaderInvocations = sh::GetGeometryShaderInvocations(compilerHandle);
break;
}
case ShaderType::TessControl:
{
mState.mInputVaryings = GetShaderVariables(sh::GetInputVaryings(compilerHandle));
mState.mOutputVaryings = GetShaderVariables(sh::GetOutputVaryings(compilerHandle));
mState.mTessControlShaderVertices = sh::GetTessControlShaderVertices(compilerHandle);
break;
}
case ShaderType::TessEvaluation:
{
mState.mInputVaryings = GetShaderVariables(sh::GetInputVaryings(compilerHandle));
mState.mOutputVaryings = GetShaderVariables(sh::GetOutputVaryings(compilerHandle));
if (sh::HasValidTessGenMode(compilerHandle))
{
mState.mTessGenMode = sh::GetTessGenMode(compilerHandle);
}
if (sh::HasValidTessGenSpacing(compilerHandle))
{
mState.mTessGenSpacing = sh::GetTessGenSpacing(compilerHandle);
}
if (sh::HasValidTessGenVertexOrder(compilerHandle))
{
mState.mTessGenVertexOrder = sh::GetTessGenVertexOrder(compilerHandle);
}
if (sh::HasValidTessGenPointMode(compilerHandle))
{
mState.mTessGenPointMode = sh::GetTessGenPointMode(compilerHandle);
}
break;
}
default:
UNREACHABLE();
}
ASSERT(!mState.mTranslatedSource.empty() || !mState.mCompiledBinary.empty());
bool success = mCompilingState->compileEvent->postTranslate(&mInfoLog);
mState.mCompileStatus = success ? CompileStatus::COMPILED : CompileStatus::NOT_COMPILED;
}
void Shader::addRef()
{
mRefCount++;
}
void Shader::release(const Context *context)
{
mRefCount--;
if (mRefCount == 0 && mDeleteStatus)
{
mResourceManager->deleteShader(context, mHandle);
}
}
unsigned int Shader::getRefCount() const
{
return mRefCount;
}
bool Shader::isFlaggedForDeletion() const
{
return mDeleteStatus;
}
void Shader::flagForDeletion()
{
mDeleteStatus = true;
}
bool Shader::isCompiled()
{
resolveCompile();
return mState.mCompileStatus == CompileStatus::COMPILED;
}
bool Shader::isCompleted()
{
return (!mState.compilePending() || mCompilingState->compileEvent->isReady());
}
int Shader::getShaderVersion()
{
resolveCompile();
return mState.mShaderVersion;
}
const std::vector<sh::ShaderVariable> &Shader::getInputVaryings()
{
resolveCompile();
return mState.getInputVaryings();
}
const std::vector<sh::ShaderVariable> &Shader::getOutputVaryings()
{
resolveCompile();
return mState.getOutputVaryings();
}
const std::vector<sh::ShaderVariable> &Shader::getUniforms()
{
resolveCompile();
return mState.getUniforms();
}
const std::vector<sh::InterfaceBlock> &Shader::getUniformBlocks()
{
resolveCompile();
return mState.getUniformBlocks();
}
const std::vector<sh::InterfaceBlock> &Shader::getShaderStorageBlocks()
{
resolveCompile();
return mState.getShaderStorageBlocks();
}
const std::vector<sh::ShaderVariable> &Shader::getActiveAttributes()
{
resolveCompile();
return mState.getActiveAttributes();
}
const std::vector<sh::ShaderVariable> &Shader::getAllAttributes()
{
resolveCompile();
return mState.getAllAttributes();
}
const std::vector<sh::ShaderVariable> &Shader::getActiveOutputVariables()
{
resolveCompile();
return mState.getActiveOutputVariables();
}
std::string Shader::getTransformFeedbackVaryingMappedName(const std::string &tfVaryingName)
{
ASSERT(mState.getShaderType() != ShaderType::Fragment &&
mState.getShaderType() != ShaderType::Compute);
const auto &varyings = getOutputVaryings();
auto bracketPos = tfVaryingName.find("[");
if (bracketPos != std::string::npos)
{
auto tfVaryingBaseName = tfVaryingName.substr(0, bracketPos);
for (const auto &varying : varyings)
{
if (varying.name == tfVaryingBaseName)
{
std::string mappedNameWithArrayIndex =
varying.mappedName + tfVaryingName.substr(bracketPos);
return mappedNameWithArrayIndex;
}
}
}
else
{
for (const auto &varying : varyings)
{
if (varying.name == tfVaryingName)
{
return varying.mappedName;
}
else if (varying.isStruct())
{
GLuint fieldIndex = 0;
const auto *field = varying.findField(tfVaryingName, &fieldIndex);
if (field == nullptr)
{
continue;
}
ASSERT(field != nullptr && !field->isStruct() &&
(!field->isArray() || varying.isShaderIOBlock));
std::string mappedName;
// If it's an I/O block without an instance name, don't include the block name.
if (!varying.isShaderIOBlock || !varying.name.empty())
{
mappedName = varying.isShaderIOBlock ? varying.mappedStructOrBlockName
: varying.mappedName;
mappedName += '.';
}
return mappedName + field->mappedName;
}
}
}
UNREACHABLE();
return std::string();
}
const sh::WorkGroupSize &Shader::getWorkGroupSize()
{
resolveCompile();
return mState.mLocalSize;
}
int Shader::getNumViews()
{
resolveCompile();
return mState.mNumViews;
}
Optional<PrimitiveMode> Shader::getGeometryShaderInputPrimitiveType()
{
resolveCompile();
return mState.mGeometryShaderInputPrimitiveType;
}
Optional<PrimitiveMode> Shader::getGeometryShaderOutputPrimitiveType()
{
resolveCompile();
return mState.mGeometryShaderOutputPrimitiveType;
}
int Shader::getGeometryShaderInvocations()
{
resolveCompile();
return mState.mGeometryShaderInvocations;
}
Optional<GLint> Shader::getGeometryShaderMaxVertices()
{
resolveCompile();
return mState.mGeometryShaderMaxVertices;
}
int Shader::getTessControlShaderVertices()
{
resolveCompile();
return mState.mTessControlShaderVertices;
}
GLenum Shader::getTessGenMode()
{
resolveCompile();
return mState.mTessGenMode;
}
GLenum Shader::getTessGenSpacing()
{
resolveCompile();
return mState.mTessGenSpacing;
}
GLenum Shader::getTessGenVertexOrder()
{
resolveCompile();
return mState.mTessGenVertexOrder;
}
GLenum Shader::getTessGenPointMode()
{
resolveCompile();
return mState.mTessGenPointMode;
}
const std::string &Shader::getCompilerResourcesString() const
{
return mCompilerResourcesString;
}
} // namespace gl