| /* |
| * Copyright (C) 1999-2000 Harri Porten (porten@kde.org) |
| * Copyright (C) 2006, 2007 Apple Inc. All rights reserved. |
| * |
| * The Original Code is Mozilla Communicator client code, released |
| * March 31, 1998. |
| * |
| * The Initial Developer of the Original Code is |
| * Netscape Communications Corporation. |
| * Portions created by the Initial Developer are Copyright (C) 1998 |
| * the Initial Developer. All Rights Reserved. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| * |
| * Alternatively, the contents of this file may be used under the terms |
| * of either the Mozilla Public License Version 1.1, found at |
| * http://www.mozilla.org/MPL/ (the "MPL") or the GNU General Public |
| * License Version 2.0, found at http://www.fsf.org/copyleft/gpl.html |
| * (the "GPL"), in which case the provisions of the MPL or the GPL are |
| * applicable instead of those above. If you wish to allow use of your |
| * version of this file only under the terms of one of those two |
| * licenses (the MPL or the GPL) and not to allow others to use your |
| * version of this file under the LGPL, indicate your decision by |
| * deletingthe provisions above and replace them with the notice and |
| * other provisions required by the MPL or the GPL, as the case may be. |
| * If you do not delete the provisions above, a recipient may use your |
| * version of this file under any of the LGPL, the MPL or the GPL. |
| */ |
| |
| #include "config.h" |
| #include "DateMath.h" |
| |
| #include <math.h> |
| #include <stdint.h> |
| #include <value.h> |
| |
| #include <wtf/Assertions.h> |
| |
| #if PLATFORM(DARWIN) |
| #include <notify.h> |
| #endif |
| |
| #if HAVE(SYS_TIME_H) |
| #include <sys/time.h> |
| #endif |
| |
| #if HAVE(SYS_TIMEB_H) |
| #include <sys/timeb.h> |
| #endif |
| |
| #if PLATFORM(WIN_OS) |
| #include <windows.h> |
| #endif |
| |
| namespace KJS { |
| |
| /* Constants */ |
| |
| static const double minutesPerDay = 24.0 * 60.0; |
| static const double secondsPerDay = 24.0 * 60.0 * 60.0; |
| static const double secondsPerYear = 24.0 * 60.0 * 60.0 * 365.0; |
| |
| static const double usecPerSec = 1000000.0; |
| |
| static const double maxUnixTime = 2145859200.0; // 12/31/2037 |
| |
| // Day of year for the first day of each month, where index 0 is January, and day 0 is January 1. |
| // First for non-leap years, then for leap years. |
| static const int firstDayOfMonth[2][12] = { |
| {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334}, |
| {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335} |
| }; |
| |
| static inline bool isLeapYear(int year) |
| { |
| if (year % 4 != 0) |
| return false; |
| if (year % 400 == 0) |
| return true; |
| if (year % 100 == 0) |
| return false; |
| return true; |
| } |
| |
| static inline int daysInYear(int year) |
| { |
| return 365 + isLeapYear(year); |
| } |
| |
| static inline double daysFrom1970ToYear(int year) |
| { |
| // The Gregorian Calendar rules for leap years: |
| // Every fourth year is a leap year. 2004, 2008, and 2012 are leap years. |
| // However, every hundredth year is not a leap year. 1900 and 2100 are not leap years. |
| // Every four hundred years, there's a leap year after all. 2000 and 2400 are leap years. |
| |
| static const int leapDaysBefore1971By4Rule = 1970 / 4; |
| static const int excludedLeapDaysBefore1971By100Rule = 1970 / 100; |
| static const int leapDaysBefore1971By400Rule = 1970 / 400; |
| |
| const double yearMinusOne = year - 1; |
| const double yearsToAddBy4Rule = floor(yearMinusOne / 4.0) - leapDaysBefore1971By4Rule; |
| const double yearsToExcludeBy100Rule = floor(yearMinusOne / 100.0) - excludedLeapDaysBefore1971By100Rule; |
| const double yearsToAddBy400Rule = floor(yearMinusOne / 400.0) - leapDaysBefore1971By400Rule; |
| |
| return 365.0 * (year - 1970) + yearsToAddBy4Rule - yearsToExcludeBy100Rule + yearsToAddBy400Rule; |
| } |
| |
| static inline double msToDays(double ms) |
| { |
| return floor(ms / msPerDay); |
| } |
| |
| static inline int msToYear(double ms) |
| { |
| int approxYear = static_cast<int>(floor(ms / (msPerDay * 365.2425)) + 1970); |
| double msFromApproxYearTo1970 = msPerDay * daysFrom1970ToYear(approxYear); |
| if (msFromApproxYearTo1970 > ms) |
| return approxYear - 1; |
| if (msFromApproxYearTo1970 + msPerDay * daysInYear(approxYear) <= ms) |
| return approxYear + 1; |
| return approxYear; |
| } |
| |
| static inline int dayInYear(double ms, int year) |
| { |
| return static_cast<int>(msToDays(ms) - daysFrom1970ToYear(year)); |
| } |
| |
| static inline double msToMilliseconds(double ms) |
| { |
| double result = fmod(ms, msPerDay); |
| if (result < 0) |
| result += msPerDay; |
| return result; |
| } |
| |
| // 0: Sunday, 1: Monday, etc. |
| static inline int msToWeekDay(double ms) |
| { |
| int wd = (static_cast<int>(msToDays(ms)) + 4) % 7; |
| if (wd < 0) |
| wd += 7; |
| return wd; |
| } |
| |
| static inline int msToSeconds(double ms) |
| { |
| double result = fmod(floor(ms / msPerSecond), secondsPerMinute); |
| if (result < 0) |
| result += secondsPerMinute; |
| return static_cast<int>(result); |
| } |
| |
| static inline int msToMinutes(double ms) |
| { |
| double result = fmod(floor(ms / msPerMinute), minutesPerHour); |
| if (result < 0) |
| result += minutesPerHour; |
| return static_cast<int>(result); |
| } |
| |
| static inline int msToHours(double ms) |
| { |
| double result = fmod(floor(ms/msPerHour), hoursPerDay); |
| if (result < 0) |
| result += hoursPerDay; |
| return static_cast<int>(result); |
| } |
| |
| static inline int monthFromDayInYear(int dayInYear, bool leapYear) |
| { |
| const int d = dayInYear; |
| int step; |
| |
| if (d < (step = 31)) |
| return 0; |
| step += (leapYear ? 29 : 28); |
| if (d < step) |
| return 1; |
| if (d < (step += 31)) |
| return 2; |
| if (d < (step += 30)) |
| return 3; |
| if (d < (step += 31)) |
| return 4; |
| if (d < (step += 30)) |
| return 5; |
| if (d < (step += 31)) |
| return 6; |
| if (d < (step += 31)) |
| return 7; |
| if (d < (step += 30)) |
| return 8; |
| if (d < (step += 31)) |
| return 9; |
| if (d < (step += 30)) |
| return 10; |
| return 11; |
| } |
| |
| static inline bool checkMonth(int dayInYear, int& startDayOfThisMonth, int& startDayOfNextMonth, int daysInThisMonth) |
| { |
| startDayOfThisMonth = startDayOfNextMonth; |
| startDayOfNextMonth += daysInThisMonth; |
| return (dayInYear <= startDayOfNextMonth); |
| } |
| |
| static inline int dayInMonthFromDayInYear(int dayInYear, bool leapYear) |
| { |
| const int d = dayInYear; |
| int step; |
| int next = 30; |
| |
| if (d <= next) |
| return d + 1; |
| const int daysInFeb = (leapYear ? 29 : 28); |
| if (checkMonth(d, step, next, daysInFeb)) |
| return d - step; |
| if (checkMonth(d, step, next, 31)) |
| return d - step; |
| if (checkMonth(d, step, next, 30)) |
| return d - step; |
| if (checkMonth(d, step, next, 31)) |
| return d - step; |
| if (checkMonth(d, step, next, 30)) |
| return d - step; |
| if (checkMonth(d, step, next, 31)) |
| return d - step; |
| if (checkMonth(d, step, next, 31)) |
| return d - step; |
| if (checkMonth(d, step, next, 30)) |
| return d - step; |
| if (checkMonth(d, step, next, 31)) |
| return d - step; |
| if (checkMonth(d, step, next, 30)) |
| return d - step; |
| step = next; |
| return d - step; |
| } |
| |
| static inline int monthToDayInYear(int month, bool isLeapYear) |
| { |
| return firstDayOfMonth[isLeapYear][month]; |
| } |
| |
| static inline double timeToMS(double hour, double min, double sec, double ms) |
| { |
| return (((hour * minutesPerHour + min) * secondsPerMinute + sec) * msPerSecond + ms); |
| } |
| |
| static int dateToDayInYear(int year, int month, int day) |
| { |
| year += month / 12; |
| |
| month %= 12; |
| if (month < 0) { |
| month += 12; |
| --year; |
| } |
| |
| int yearday = static_cast<int>(floor(daysFrom1970ToYear(year))); |
| int monthday = monthToDayInYear(month, isLeapYear(year)); |
| |
| return yearday + monthday + day - 1; |
| } |
| |
| #if PLATFORM(WIN_OS) |
| |
| static LARGE_INTEGER qpcFrequency; |
| static bool syncedTime; |
| |
| static double highResUpTime() |
| { |
| // We use QPC, but only after sanity checking its result, due to bugs: |
| // http://support.microsoft.com/kb/274323 |
| // http://support.microsoft.com/kb/895980 |
| // http://msdn.microsoft.com/en-us/library/ms644904.aspx ("...you can get different results on different processors due to bugs in the basic input/output system (BIOS) or the hardware abstraction layer (HAL)." |
| |
| static LARGE_INTEGER qpcLast; |
| static DWORD tickCountLast; |
| static bool inited; |
| |
| LARGE_INTEGER qpc; |
| QueryPerformanceCounter(&qpc); |
| DWORD tickCount = GetTickCount(); |
| |
| if (inited) { |
| __int64 qpcElapsed = ((qpc.QuadPart - qpcLast.QuadPart) * 1000) / qpcFrequency.QuadPart; |
| __int64 tickCountElapsed; |
| if (tickCount >= tickCountLast) |
| tickCountElapsed = (tickCount - tickCountLast); |
| else { |
| __int64 tickCountLarge = tickCount + 0x100000000I64; |
| tickCountElapsed = tickCountLarge - tickCountLast; |
| } |
| |
| // force a re-sync if QueryPerformanceCounter differs from GetTickCount by more than 500ms. |
| // (500ms value is from http://support.microsoft.com/kb/274323) |
| __int64 diff = tickCountElapsed - qpcElapsed; |
| if (diff > 500 || diff < -500) |
| syncedTime = false; |
| } else |
| inited = true; |
| |
| qpcLast = qpc; |
| tickCountLast = tickCount; |
| |
| return (1000.0 * qpc.QuadPart) / static_cast<double>(qpcFrequency.QuadPart);; |
| } |
| |
| static double lowResUTCTime() |
| { |
| struct _timeb timebuffer; |
| _ftime(&timebuffer); |
| return timebuffer.time * msPerSecond + timebuffer.millitm; |
| } |
| |
| static bool qpcAvailable() |
| { |
| static bool available; |
| static bool checked; |
| |
| if (checked) |
| return available; |
| |
| available = QueryPerformanceFrequency(&qpcFrequency); |
| checked = true; |
| return available; |
| } |
| |
| #endif |
| |
| double getCurrentUTCTime() |
| { |
| #if PLATFORM(WIN_OS) |
| // Use a combination of ftime and QueryPerformanceCounter. |
| // ftime returns the information we want, but doesn't have sufficient resolution. |
| // QueryPerformanceCounter has high resolution, but is only usable to measure time intervals. |
| // To combine them, we call ftime and QueryPerformanceCounter initially. Later calls will use QueryPerformanceCounter |
| // by itself, adding the delta to the saved ftime. We periodically re-sync to correct for drift. |
| static bool started; |
| static double syncLowResUTCTime; |
| static double syncHighResUpTime; |
| static double lastUTCTime; |
| |
| double lowResTime = lowResUTCTime(); |
| |
| if (!qpcAvailable()) |
| return lowResTime; |
| |
| double highResTime = highResUpTime(); |
| |
| if (!syncedTime) { |
| timeBeginPeriod(1); // increase time resolution around low-res time getter |
| syncLowResUTCTime = lowResTime = lowResUTCTime(); |
| timeEndPeriod(1); // restore time resolution |
| syncHighResUpTime = highResTime; |
| syncedTime = true; |
| } |
| |
| double highResElapsed = highResTime - syncHighResUpTime; |
| double utc = syncLowResUTCTime + highResElapsed; |
| |
| // force a clock re-sync if we've drifted |
| double lowResElapsed = lowResTime - syncLowResUTCTime; |
| const double maximumAllowedDriftMsec = 15.625 * 2.0; // 2x the typical low-res accuracy |
| if (fabs(highResElapsed - lowResElapsed) > maximumAllowedDriftMsec) |
| syncedTime = false; |
| |
| // make sure time doesn't run backwards (only correct if difference is < 2 seconds, since DST or clock changes could occur) |
| const double backwardTimeLimit = 2000.0; |
| if (utc < lastUTCTime && (lastUTCTime - utc) < backwardTimeLimit) |
| return lastUTCTime; |
| lastUTCTime = utc; |
| #else |
| struct timeval tv; |
| gettimeofday(&tv, 0); |
| double utc = floor(tv.tv_sec * msPerSecond + tv.tv_usec / 1000); |
| #endif |
| return utc; |
| } |
| |
| // There is a hard limit at 2038 that we currently do not have a workaround |
| // for (rdar://problem/5052975). |
| static inline int maximumYearForDST() |
| { |
| return 2037; |
| } |
| |
| // It is ok if the cached year is not the current year (e.g. Dec 31st) |
| // so long as the rules for DST did not change between the two years, if it does |
| // the app would need to be restarted. |
| static int mimimumYearForDST() |
| { |
| // Because of the 2038 issue (see maximumYearForDST) if the current year is |
| // greater than the max year minus 27 (2010), we want to use the max year |
| // minus 27 instead, to ensure there is a range of 28 years that all years |
| // can map to. |
| static int minYear = std::min(msToYear(getCurrentUTCTime()), maximumYearForDST() - 27) ; |
| return minYear; |
| } |
| |
| /* |
| * Find an equivalent year for the one given, where equivalence is deterined by |
| * the two years having the same leapness and the first day of the year, falling |
| * on the same day of the week. |
| * |
| * This function returns a year between this current year and 2037, however this |
| * function will potentially return incorrect results if the current year is after |
| * 2010, (rdar://problem/5052975), if the year passed in is before 1900 or after |
| * 2100, (rdar://problem/5055038). |
| */ |
| int equivalentYearForDST(int year) |
| { |
| static int minYear = mimimumYearForDST(); |
| static int maxYear = maximumYearForDST(); |
| |
| int difference; |
| if (year > maxYear) |
| difference = minYear - year; |
| else if (year < minYear) |
| difference = maxYear - year; |
| else |
| return year; |
| |
| int quotient = difference / 28; |
| int product = (quotient) * 28; |
| |
| year += product; |
| ASSERT((year >= minYear && year <= maxYear) || (product - year == static_cast<int>(NaN))); |
| return year; |
| } |
| |
| /* |
| * Get the difference in milliseconds between this time zone and UTC (GMT) |
| * NOT including DST. |
| */ |
| double getUTCOffset() |
| { |
| #if PLATFORM(DARWIN) |
| // Register for a notification whenever the time zone changes. |
| static bool triedToRegister = false; |
| static bool haveNotificationToken = false; |
| static int notificationToken; |
| if (!triedToRegister) { |
| triedToRegister = true; |
| uint32_t status = notify_register_check("com.apple.system.timezone", ¬ificationToken); |
| if (status == NOTIFY_STATUS_OK) |
| haveNotificationToken = true; |
| } |
| |
| // If we can verify that we have not received a time zone notification, |
| // then use the cached offset from the last time this function was called. |
| static bool haveCachedOffset = false; |
| static double cachedOffset; |
| if (haveNotificationToken && haveCachedOffset) { |
| int notified; |
| uint32_t status = notify_check(notificationToken, ¬ified); |
| if (status == NOTIFY_STATUS_OK && !notified) |
| return cachedOffset; |
| } |
| #endif |
| |
| tm localt; |
| |
| memset(&localt, 0, sizeof(localt)); |
| |
| // get the difference between this time zone and UTC on Jan 01, 2000 12:00:00 AM |
| localt.tm_mday = 1; |
| localt.tm_year = 100; |
| double utcOffset = 946684800.0 - mktime(&localt); |
| |
| utcOffset *= msPerSecond; |
| |
| #if PLATFORM(DARWIN) |
| haveCachedOffset = true; |
| cachedOffset = utcOffset; |
| #endif |
| |
| return utcOffset; |
| } |
| |
| /* |
| * Get the DST offset for the time passed in. Takes |
| * seconds (not milliseconds) and cannot handle dates before 1970 |
| * on some OS' |
| */ |
| static double getDSTOffsetSimple(double localTimeSeconds, double utcOffset) |
| { |
| if (localTimeSeconds > maxUnixTime) |
| localTimeSeconds = maxUnixTime; |
| else if (localTimeSeconds < 0) // Go ahead a day to make localtime work (does not work with 0) |
| localTimeSeconds += secondsPerDay; |
| |
| //input is UTC so we have to shift back to local time to determine DST thus the + getUTCOffset() |
| double offsetTime = (localTimeSeconds * msPerSecond) + utcOffset; |
| |
| // Offset from UTC but doesn't include DST obviously |
| int offsetHour = msToHours(offsetTime); |
| int offsetMinute = msToMinutes(offsetTime); |
| |
| // FIXME: time_t has a potential problem in 2038 |
| time_t localTime = static_cast<time_t>(localTimeSeconds); |
| |
| tm localTM; |
| #if PLATFORM(QT) |
| // ### this is not threadsafe but we don't use multiple threads anyway |
| // in the Qt build |
| #if USE(MULTIPLE_THREADS) |
| #error Mulitple threads are currently not supported in the Qt/mingw build |
| #endif |
| localTM = *localtime(&localTime); |
| #elif PLATFORM(WIN_OS) |
| #if COMPILER(MSVC7) |
| localTM = *localtime(&localTime); |
| #else |
| localtime_s(&localTM, &localTime); |
| #endif |
| #else |
| localtime_r(&localTime, &localTM); |
| #endif |
| |
| double diff = ((localTM.tm_hour - offsetHour) * secondsPerHour) + ((localTM.tm_min - offsetMinute) * 60); |
| |
| if (diff < 0) |
| diff += secondsPerDay; |
| |
| return (diff * msPerSecond); |
| } |
| |
| // Get the DST offset, given a time in UTC |
| static double getDSTOffset(double ms, double utcOffset) |
| { |
| // On Mac OS X, the call to localtime (see getDSTOffsetSimple) will return historically accurate |
| // DST information (e.g. New Zealand did not have DST from 1946 to 1974) however the JavaScript |
| // standard explicitly dictates that historical information should not be considered when |
| // determining DST. For this reason we shift away from years that localtime can handle but would |
| // return historically accurate information. |
| int year = msToYear(ms); |
| int equivalentYear = equivalentYearForDST(year); |
| if (year != equivalentYear) { |
| bool leapYear = isLeapYear(year); |
| int dayInYearLocal = dayInYear(ms, year); |
| int dayInMonth = dayInMonthFromDayInYear(dayInYearLocal, leapYear); |
| int month = monthFromDayInYear(dayInYearLocal, leapYear); |
| int day = dateToDayInYear(equivalentYear, month, dayInMonth); |
| ms = (day * msPerDay) + msToMilliseconds(ms); |
| } |
| |
| return getDSTOffsetSimple(ms / msPerSecond, utcOffset); |
| } |
| |
| double gregorianDateTimeToMS(const GregorianDateTime& t, double milliSeconds, bool inputIsUTC) |
| { |
| int day = dateToDayInYear(t.year + 1900, t.month, t.monthDay); |
| double ms = timeToMS(t.hour, t.minute, t.second, milliSeconds); |
| double result = (day * msPerDay) + ms; |
| |
| if (!inputIsUTC) { // convert to UTC |
| double utcOffset = getUTCOffset(); |
| result -= utcOffset; |
| result -= getDSTOffset(result, utcOffset); |
| } |
| |
| return result; |
| } |
| |
| void msToGregorianDateTime(double ms, bool outputIsUTC, GregorianDateTime& tm) |
| { |
| // input is UTC |
| double dstOff = 0.0; |
| const double utcOff = getUTCOffset(); |
| |
| if (!outputIsUTC) { // convert to local time |
| dstOff = getDSTOffset(ms, utcOff); |
| ms += dstOff + utcOff; |
| } |
| |
| const int year = msToYear(ms); |
| tm.second = msToSeconds(ms); |
| tm.minute = msToMinutes(ms); |
| tm.hour = msToHours(ms); |
| tm.weekDay = msToWeekDay(ms); |
| tm.yearDay = dayInYear(ms, year); |
| tm.monthDay = dayInMonthFromDayInYear(tm.yearDay, isLeapYear(year)); |
| tm.month = monthFromDayInYear(tm.yearDay, isLeapYear(year)); |
| tm.year = year - 1900; |
| tm.isDST = dstOff != 0.0; |
| |
| tm.utcOffset = static_cast<long>((dstOff + utcOff) / msPerSecond); |
| tm.timeZone = NULL; |
| } |
| |
| } // namespace KJS |