blob: 0b242ef71a200731a6c46f59f5c88923a569a2fc [file] [log] [blame]
//
// Copyright 2016 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// RendererVk.cpp:
// Implements the class methods for RendererVk.
//
#include "libANGLE/renderer/vulkan/RendererVk.h"
// Placing this first seems to solve an intellisense bug.
#include "libANGLE/renderer/vulkan/vk_utils.h"
#include <EGL/eglext.h>
#include "common/debug.h"
#include "common/platform.h"
#include "common/system_utils.h"
#include "common/vulkan/vk_google_filtering_precision.h"
#include "common/vulkan/vulkan_icd.h"
#include "gpu_info_util/SystemInfo.h"
#include "libANGLE/Context.h"
#include "libANGLE/Display.h"
#include "libANGLE/renderer/driver_utils.h"
#include "libANGLE/renderer/glslang_wrapper_utils.h"
#include "libANGLE/renderer/vulkan/CompilerVk.h"
#include "libANGLE/renderer/vulkan/ContextVk.h"
#include "libANGLE/renderer/vulkan/DisplayVk.h"
#include "libANGLE/renderer/vulkan/FramebufferVk.h"
#include "libANGLE/renderer/vulkan/ProgramVk.h"
#include "libANGLE/renderer/vulkan/ResourceVk.h"
#include "libANGLE/renderer/vulkan/VertexArrayVk.h"
#include "libANGLE/renderer/vulkan/vk_caps_utils.h"
#include "libANGLE/renderer/vulkan/vk_format_utils.h"
#include "libANGLE/trace.h"
#include "platform/PlatformMethods.h"
// Consts
namespace
{
constexpr VkFormatFeatureFlags kInvalidFormatFeatureFlags = static_cast<VkFormatFeatureFlags>(-1);
} // anonymous namespace
namespace rx
{
namespace
{
constexpr uint32_t kMinDefaultUniformBufferSize = 16 * 1024u;
// This size is picked based on experience. Majority of devices support 64K
// maxUniformBufferSize. Since this is per context buffer, a bigger buffer size reduces the
// number of descriptor set allocations, so we picked the maxUniformBufferSize that most
// devices supports. It may needs further tuning based on specific device needs and balance
// between performance and memory usage.
constexpr uint32_t kPreferredDefaultUniformBufferSize = 64 * 1024u;
// Update the pipeline cache every this many swaps.
constexpr uint32_t kPipelineCacheVkUpdatePeriod = 60;
// Per the Vulkan specification, as long as Vulkan 1.1+ is returned by vkEnumerateInstanceVersion,
// ANGLE must indicate the highest version of Vulkan functionality that it uses. The Vulkan
// validation layers will issue messages for any core functionality that requires a higher version.
// This value must be increased whenever ANGLE starts using functionality from a newer core
// version of Vulkan.
constexpr uint32_t kPreferredVulkanAPIVersion = VK_API_VERSION_1_1;
constexpr bool kOutputVmaStatsString = false;
angle::vk::ICD ChooseICDFromAttribs(const egl::AttributeMap &attribs)
{
#if !defined(ANGLE_PLATFORM_ANDROID)
// Mock ICD does not currently run on Android
EGLAttrib deviceType = attribs.get(EGL_PLATFORM_ANGLE_DEVICE_TYPE_ANGLE,
EGL_PLATFORM_ANGLE_DEVICE_TYPE_HARDWARE_ANGLE);
switch (deviceType)
{
case EGL_PLATFORM_ANGLE_DEVICE_TYPE_HARDWARE_ANGLE:
break;
case EGL_PLATFORM_ANGLE_DEVICE_TYPE_NULL_ANGLE:
return angle::vk::ICD::Mock;
case EGL_PLATFORM_ANGLE_DEVICE_TYPE_SWIFTSHADER_ANGLE:
return angle::vk::ICD::SwiftShader;
default:
UNREACHABLE();
break;
}
#endif // !defined(ANGLE_PLATFORM_ANDROID)
return angle::vk::ICD::Default;
}
bool StrLess(const char *a, const char *b)
{
return strcmp(a, b) < 0;
}
bool ExtensionFound(const char *needle, const vk::ExtensionNameList &haystack)
{
// NOTE: The list must be sorted.
return std::binary_search(haystack.begin(), haystack.end(), needle, StrLess);
}
VkResult VerifyExtensionsPresent(const vk::ExtensionNameList &haystack,
const vk::ExtensionNameList &needles)
{
// NOTE: The lists must be sorted.
if (std::includes(haystack.begin(), haystack.end(), needles.begin(), needles.end(), StrLess))
{
return VK_SUCCESS;
}
for (const char *needle : needles)
{
if (!ExtensionFound(needle, haystack))
{
ERR() << "Extension not supported: " << needle;
}
}
return VK_ERROR_EXTENSION_NOT_PRESENT;
}
// Array of Validation error/warning messages that will be ignored, should include bugID
constexpr const char *kSkippedMessages[] = {
// http://anglebug.com/2866
"UNASSIGNED-CoreValidation-Shader-OutputNotConsumed",
// http://anglebug.com/4883
"UNASSIGNED-CoreValidation-Shader-InputNotProduced",
// http://anglebug.com/2796
"UNASSIGNED-CoreValidation-Shader-PointSizeMissing",
// http://anglebug.com/3832
"VUID-VkPipelineInputAssemblyStateCreateInfo-topology-00428",
// http://anglebug.com/4063
"VUID-VkDeviceCreateInfo-pNext-pNext",
"VUID-VkPipelineRasterizationStateCreateInfo-pNext-pNext", "VUID_Undefined",
// https://issuetracker.google.com/issues/159493191
"VUID-vkCmdDraw-None-02690", "VUID-vkCmdDrawIndexed-None-02690",
// http://anglebug.com/4975
"VUID-vkCmdDraw-None-02687", "VUID-vkCmdDrawIndexed-None-02687",
// Best Practices Skips https://issuetracker.google.com/issues/166641492
// https://issuetracker.google.com/issues/166793850
"UNASSIGNED-BestPractices-vkCreateCommandPool-command-buffer-reset",
"UNASSIGNED-BestPractices-pipeline-stage-flags", "UNASSIGNED-BestPractices-Error-Result",
"UNASSIGNED-BestPractices-vkAllocateMemory-small-allocation",
"UNASSIGNED-BestPractices-vkBindMemory-small-dedicated-allocation",
"UNASSIGNED-BestPractices-vkAllocateMemory-too-many-objects",
"UNASSIGNED-BestPractices-vkCreateDevice-deprecated-extension",
"UNASSIGNED-BestPractices-vkCreateRenderPass-image-requires-memory",
"UNASSIGNED-BestPractices-vkCreateGraphicsPipelines-too-many-instanced-vertex-buffers",
"UNASSIGNED-BestPractices-DrawState-ClearCmdBeforeDraw",
"UNASSIGNED-BestPractices-vkCmdClearAttachments-clear-after-load",
// http://anglebug.com/4928
"VUID-vkMapMemory-memory-00683",
// http://anglebug.com/5027
"UNASSIGNED-CoreValidation-Shader-PushConstantOutOfRange",
// http://anglebug.com/5304
"VUID-vkCmdDraw-magFilter-04553", "VUID-vkCmdDrawIndexed-magFilter-04553",
// http://anglebug.com/5309
"VUID-VkImageViewCreateInfo-usage-02652",
// http://anglebug.com/5336
"UNASSIGNED-BestPractices-vkCreateDevice-specialuse-extension"};
// Suppress validation errors that are known
// return "true" if given code/prefix/message is known, else return "false"
bool IsIgnoredDebugMessage(const char *message)
{
if (!message)
{
return false;
}
for (const char *msg : kSkippedMessages)
{
if (strstr(message, msg) != nullptr)
{
return true;
}
}
return false;
}
const char *GetVkObjectTypeName(VkObjectType type)
{
switch (type)
{
case VK_OBJECT_TYPE_UNKNOWN:
return "Unknown";
case VK_OBJECT_TYPE_INSTANCE:
return "Instance";
case VK_OBJECT_TYPE_PHYSICAL_DEVICE:
return "Physical Device";
case VK_OBJECT_TYPE_DEVICE:
return "Device";
case VK_OBJECT_TYPE_QUEUE:
return "Queue";
case VK_OBJECT_TYPE_SEMAPHORE:
return "Semaphore";
case VK_OBJECT_TYPE_COMMAND_BUFFER:
return "Command Buffer";
case VK_OBJECT_TYPE_FENCE:
return "Fence";
case VK_OBJECT_TYPE_DEVICE_MEMORY:
return "Device Memory";
case VK_OBJECT_TYPE_BUFFER:
return "Buffer";
case VK_OBJECT_TYPE_IMAGE:
return "Image";
case VK_OBJECT_TYPE_EVENT:
return "Event";
case VK_OBJECT_TYPE_QUERY_POOL:
return "Query Pool";
case VK_OBJECT_TYPE_BUFFER_VIEW:
return "Buffer View";
case VK_OBJECT_TYPE_IMAGE_VIEW:
return "Image View";
case VK_OBJECT_TYPE_SHADER_MODULE:
return "Shader Module";
case VK_OBJECT_TYPE_PIPELINE_CACHE:
return "Pipeline Cache";
case VK_OBJECT_TYPE_PIPELINE_LAYOUT:
return "Pipeline Layout";
case VK_OBJECT_TYPE_RENDER_PASS:
return "Render Pass";
case VK_OBJECT_TYPE_PIPELINE:
return "Pipeline";
case VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT:
return "Descriptor Set Layout";
case VK_OBJECT_TYPE_SAMPLER:
return "Sampler";
case VK_OBJECT_TYPE_DESCRIPTOR_POOL:
return "Descriptor Pool";
case VK_OBJECT_TYPE_DESCRIPTOR_SET:
return "Descriptor Set";
case VK_OBJECT_TYPE_FRAMEBUFFER:
return "Framebuffer";
case VK_OBJECT_TYPE_COMMAND_POOL:
return "Command Pool";
case VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION:
return "Sampler YCbCr Conversion";
case VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE:
return "Descriptor Update Template";
case VK_OBJECT_TYPE_SURFACE_KHR:
return "Surface";
case VK_OBJECT_TYPE_SWAPCHAIN_KHR:
return "Swapchain";
case VK_OBJECT_TYPE_DISPLAY_KHR:
return "Display";
case VK_OBJECT_TYPE_DISPLAY_MODE_KHR:
return "Display Mode";
case VK_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT:
return "Debug Report Callback";
case VK_OBJECT_TYPE_INDIRECT_COMMANDS_LAYOUT_NV:
return "Indirect Commands Layout";
case VK_OBJECT_TYPE_DEBUG_UTILS_MESSENGER_EXT:
return "Debug Utils Messenger";
case VK_OBJECT_TYPE_VALIDATION_CACHE_EXT:
return "Validation Cache";
case VK_OBJECT_TYPE_ACCELERATION_STRUCTURE_NV:
return "Acceleration Structure";
default:
return "<Unrecognized>";
}
}
VKAPI_ATTR VkBool32 VKAPI_CALL
DebugUtilsMessenger(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity,
VkDebugUtilsMessageTypeFlagsEXT messageTypes,
const VkDebugUtilsMessengerCallbackDataEXT *callbackData,
void *userData)
{
// See if it's an issue we are aware of and don't want to be spammed about.
if (IsIgnoredDebugMessage(callbackData->pMessageIdName))
{
return VK_FALSE;
}
std::ostringstream log;
if (callbackData->pMessageIdName)
{
log << "[ " << callbackData->pMessageIdName << " ] ";
}
log << callbackData->pMessage << std::endl;
// Aesthetic value based on length of the function name, line number, etc.
constexpr size_t kStartIndent = 28;
// Output the debug marker hierarchy under which this error has occured.
size_t indent = kStartIndent;
if (callbackData->queueLabelCount > 0)
{
log << std::string(indent++, ' ') << "<Queue Label Hierarchy:>" << std::endl;
for (uint32_t i = 0; i < callbackData->queueLabelCount; ++i)
{
log << std::string(indent++, ' ') << callbackData->pQueueLabels[i].pLabelName
<< std::endl;
}
}
if (callbackData->cmdBufLabelCount > 0)
{
log << std::string(indent++, ' ') << "<Command Buffer Label Hierarchy:>" << std::endl;
for (uint32_t i = 0; i < callbackData->cmdBufLabelCount; ++i)
{
log << std::string(indent++, ' ') << callbackData->pCmdBufLabels[i].pLabelName
<< std::endl;
}
}
// Output the objects involved in this error message.
if (callbackData->objectCount > 0)
{
for (uint32_t i = 0; i < callbackData->objectCount; ++i)
{
const char *objectName = callbackData->pObjects[i].pObjectName;
const char *objectType = GetVkObjectTypeName(callbackData->pObjects[i].objectType);
uint64_t objectHandle = callbackData->pObjects[i].objectHandle;
log << std::string(indent, ' ') << "Object: ";
if (objectHandle == 0)
{
log << "VK_NULL_HANDLE";
}
else
{
log << "0x" << std::hex << objectHandle << std::dec;
}
log << " (type = " << objectType << "(" << callbackData->pObjects[i].objectType << "))";
if (objectName)
{
log << " [" << objectName << "]";
}
log << std::endl;
}
}
bool isError = (messageSeverity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT) != 0;
std::string msg = log.str();
RendererVk *rendererVk = static_cast<RendererVk *>(userData);
rendererVk->onNewValidationMessage(msg);
if (isError)
{
ERR() << msg;
}
else
{
WARN() << msg;
}
return VK_FALSE;
}
VKAPI_ATTR VkBool32 VKAPI_CALL DebugReportCallback(VkDebugReportFlagsEXT flags,
VkDebugReportObjectTypeEXT objectType,
uint64_t object,
size_t location,
int32_t messageCode,
const char *layerPrefix,
const char *message,
void *userData)
{
if (IsIgnoredDebugMessage(message))
{
return VK_FALSE;
}
if ((flags & VK_DEBUG_REPORT_ERROR_BIT_EXT) != 0)
{
ERR() << message;
#if !defined(NDEBUG)
// Abort the call in Debug builds.
return VK_TRUE;
#endif
}
else if ((flags & VK_DEBUG_REPORT_WARNING_BIT_EXT) != 0)
{
WARN() << message;
}
else
{
// Uncomment this if you want Vulkan spam.
// WARN() << message;
}
return VK_FALSE;
}
bool ShouldUseValidationLayers(const egl::AttributeMap &attribs)
{
#if defined(ANGLE_ENABLE_VULKAN_VALIDATION_LAYERS_BY_DEFAULT)
return ShouldUseDebugLayers(attribs);
#else
EGLAttrib debugSetting =
attribs.get(EGL_PLATFORM_ANGLE_DEBUG_LAYERS_ENABLED_ANGLE, EGL_DONT_CARE);
return debugSetting == EGL_TRUE;
#endif // defined(ANGLE_ENABLE_VULKAN_VALIDATION_LAYERS_BY_DEFAULT)
}
gl::Version LimitVersionTo(const gl::Version &current, const gl::Version &lower)
{
return std::min(current, lower);
}
ANGLE_MAYBE_UNUSED bool FencePropertiesCompatibleWithAndroid(
const VkExternalFenceProperties &externalFenceProperties)
{
// handleType here is the external fence type -
// we want type compatible with creating and export/dup() Android FD
// Imported handleType that can be exported - need for vkGetFenceFdKHR()
if ((externalFenceProperties.exportFromImportedHandleTypes &
VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT_KHR) == 0)
{
return false;
}
// HandleTypes which can be specified at creating a fence
if ((externalFenceProperties.compatibleHandleTypes &
VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT_KHR) == 0)
{
return false;
}
constexpr VkExternalFenceFeatureFlags kFeatureFlags =
(VK_EXTERNAL_FENCE_FEATURE_IMPORTABLE_BIT_KHR |
VK_EXTERNAL_FENCE_FEATURE_EXPORTABLE_BIT_KHR);
if ((externalFenceProperties.externalFenceFeatures & kFeatureFlags) != kFeatureFlags)
{
return false;
}
return true;
}
ANGLE_MAYBE_UNUSED bool SemaphorePropertiesCompatibleWithAndroid(
const VkExternalSemaphoreProperties &externalSemaphoreProperties)
{
// handleType here is the external semaphore type -
// we want type compatible with importing an Android FD
constexpr VkExternalSemaphoreFeatureFlags kFeatureFlags =
(VK_EXTERNAL_SEMAPHORE_FEATURE_IMPORTABLE_BIT_KHR);
if ((externalSemaphoreProperties.externalSemaphoreFeatures & kFeatureFlags) != kFeatureFlags)
{
return false;
}
return true;
}
// Environment variable (and associated Android property) to enable Vulkan debug-utils markers
constexpr char kEnableDebugMarkersVarName[] = "ANGLE_ENABLE_DEBUG_MARKERS";
constexpr char kEnableDebugMarkersPropertyName[] = "debug.angle.markers";
} // namespace
// RendererVk implementation.
RendererVk::RendererVk()
: mDisplay(nullptr),
mCapsInitialized(false),
mInstance(VK_NULL_HANDLE),
mEnableValidationLayers(false),
mEnableDebugUtils(false),
mEnabledICD(angle::vk::ICD::Default),
mDebugUtilsMessenger(VK_NULL_HANDLE),
mDebugReportCallback(VK_NULL_HANDLE),
mPhysicalDevice(VK_NULL_HANDLE),
mCurrentQueueFamilyIndex(std::numeric_limits<uint32_t>::max()),
mMaxVertexAttribDivisor(1),
mMaxVertexAttribStride(0),
mMinImportedHostPointerAlignment(1),
mDefaultUniformBufferSize(kPreferredDefaultUniformBufferSize),
mDevice(VK_NULL_HANDLE),
mLastCompletedQueueSerial(mQueueSerialFactory.generate()),
mCurrentQueueSerial(mQueueSerialFactory.generate()),
mDeviceLost(false),
mPipelineCacheVkUpdateTimeout(kPipelineCacheVkUpdatePeriod),
mPipelineCacheDirty(false),
mPipelineCacheInitialized(false),
mCommandProcessor(this),
mGlslangInitialized(false)
{
VkFormatProperties invalid = {0, 0, kInvalidFormatFeatureFlags};
mFormatProperties.fill(invalid);
// We currently don't have any big-endian devices in the list of supported platforms. There are
// a number of places in the Vulkan backend that make this assumption. This assertion is made
// early to fail immediately on big-endian platforms.
ASSERT(IsLittleEndian());
}
RendererVk::~RendererVk()
{
mAllocator.release();
mPipelineCache.release();
ASSERT(!hasSharedGarbage());
}
bool RendererVk::hasSharedGarbage()
{
std::lock_guard<std::mutex> lock(mGarbageMutex);
return !mSharedGarbage.empty();
}
void RendererVk::releaseSharedResources(vk::ResourceUseList *resourceList)
{
// resource list may access same resources referenced by garbage collection so need to protect
// that access with a lock.
std::lock_guard<std::mutex> lock(mGarbageMutex);
resourceList->releaseResourceUses();
}
void RendererVk::onDestroy()
{
if (getFeatures().commandProcessor.enabled)
{
// Shutdown worker thread
mCommandProcessor.shutdown(&mCommandProcessorThread);
}
// Force all commands to finish by flushing all queues.
for (VkQueue queue : mQueues)
{
if (queue != VK_NULL_HANDLE)
{
vkQueueWaitIdle(queue);
}
}
// Then assign an infinite "last completed" serial to force garbage to delete.
{
std::lock_guard<std::mutex> lock(mQueueSerialMutex);
mLastCompletedQueueSerial = Serial::Infinite();
}
(void)cleanupGarbage(true);
ASSERT(!hasSharedGarbage());
for (PendingOneOffCommands &pending : mPendingOneOffCommands)
{
pending.commandBuffer.releaseHandle();
}
mOneOffCommandPool.destroy(mDevice);
{
std::lock_guard<std::mutex> lock(mFenceRecyclerMutex);
mFenceRecycler.destroy(mDevice);
}
{
std::lock_guard<decltype(mNextSubmitFenceMutex)> lock(mNextSubmitFenceMutex);
mNextSubmitFence.reset(mDevice);
}
mPipelineCache.destroy(mDevice);
mSamplerCache.destroy(this);
mYuvConversionCache.destroy(this);
mAllocator.destroy();
if (mGlslangInitialized)
{
GlslangRelease();
mGlslangInitialized = false;
}
if (mDevice)
{
vkDestroyDevice(mDevice, nullptr);
mDevice = VK_NULL_HANDLE;
}
if (mDebugUtilsMessenger)
{
vkDestroyDebugUtilsMessengerEXT(mInstance, mDebugUtilsMessenger, nullptr);
ASSERT(mDebugReportCallback == VK_NULL_HANDLE);
}
else if (mDebugReportCallback)
{
vkDestroyDebugReportCallbackEXT(mInstance, mDebugReportCallback, nullptr);
}
if (mInstance)
{
vkDestroyInstance(mInstance, nullptr);
mInstance = VK_NULL_HANDLE;
}
mMemoryProperties.destroy();
mPhysicalDevice = VK_NULL_HANDLE;
}
void RendererVk::notifyDeviceLost()
{
{
std::lock_guard<std::mutex> lock(mQueueSerialMutex);
mLastCompletedQueueSerial = getLastSubmittedQueueSerial();
}
mDeviceLost = true;
mDisplay->notifyDeviceLost();
}
bool RendererVk::isDeviceLost() const
{
return mDeviceLost;
}
angle::Result RendererVk::initialize(DisplayVk *displayVk,
egl::Display *display,
const char *wsiExtension,
const char *wsiLayer)
{
#if defined(ANGLE_SHARED_LIBVULKAN)
// Set all vk* function ptrs
ANGLE_VK_TRY(displayVk, volkInitialize());
#endif // defined(ANGLE_SHARED_LIBVULKAN)
mDisplay = display;
const egl::AttributeMap &attribs = mDisplay->getAttributeMap();
angle::vk::ScopedVkLoaderEnvironment scopedEnvironment(ShouldUseValidationLayers(attribs),
ChooseICDFromAttribs(attribs));
mEnableValidationLayers = scopedEnvironment.canEnableValidationLayers();
mEnabledICD = scopedEnvironment.getEnabledICD();
// Gather global layer properties.
uint32_t instanceLayerCount = 0;
ANGLE_VK_TRY(displayVk, vkEnumerateInstanceLayerProperties(&instanceLayerCount, nullptr));
std::vector<VkLayerProperties> instanceLayerProps(instanceLayerCount);
if (instanceLayerCount > 0)
{
ANGLE_VK_TRY(displayVk, vkEnumerateInstanceLayerProperties(&instanceLayerCount,
instanceLayerProps.data()));
}
VulkanLayerVector enabledInstanceLayerNames;
if (mEnableValidationLayers)
{
bool layersRequested =
(attribs.get(EGL_PLATFORM_ANGLE_DEBUG_LAYERS_ENABLED_ANGLE, EGL_DONT_CARE) == EGL_TRUE);
mEnableValidationLayers = GetAvailableValidationLayers(instanceLayerProps, layersRequested,
&enabledInstanceLayerNames);
}
if (wsiLayer)
{
enabledInstanceLayerNames.push_back(wsiLayer);
}
// Enumerate instance extensions that are provided by the vulkan
// implementation and implicit layers.
uint32_t instanceExtensionCount = 0;
ANGLE_VK_TRY(displayVk,
vkEnumerateInstanceExtensionProperties(nullptr, &instanceExtensionCount, nullptr));
std::vector<VkExtensionProperties> instanceExtensionProps(instanceExtensionCount);
if (instanceExtensionCount > 0)
{
ANGLE_VK_TRY(displayVk,
vkEnumerateInstanceExtensionProperties(nullptr, &instanceExtensionCount,
instanceExtensionProps.data()));
}
// Enumerate instance extensions that are provided by explicit layers.
for (const char *layerName : enabledInstanceLayerNames)
{
uint32_t previousExtensionCount = static_cast<uint32_t>(instanceExtensionProps.size());
uint32_t instanceLayerExtensionCount = 0;
ANGLE_VK_TRY(displayVk, vkEnumerateInstanceExtensionProperties(
layerName, &instanceLayerExtensionCount, nullptr));
instanceExtensionProps.resize(previousExtensionCount + instanceLayerExtensionCount);
ANGLE_VK_TRY(displayVk, vkEnumerateInstanceExtensionProperties(
layerName, &instanceLayerExtensionCount,
instanceExtensionProps.data() + previousExtensionCount));
}
vk::ExtensionNameList instanceExtensionNames;
if (!instanceExtensionProps.empty())
{
for (const VkExtensionProperties &i : instanceExtensionProps)
{
instanceExtensionNames.push_back(i.extensionName);
}
std::sort(instanceExtensionNames.begin(), instanceExtensionNames.end(), StrLess);
}
vk::ExtensionNameList enabledInstanceExtensions;
enabledInstanceExtensions.push_back(VK_KHR_SURFACE_EXTENSION_NAME);
enabledInstanceExtensions.push_back(wsiExtension);
mEnableDebugUtils = mEnableValidationLayers &&
ExtensionFound(VK_EXT_DEBUG_UTILS_EXTENSION_NAME, instanceExtensionNames);
bool enableDebugReport =
mEnableValidationLayers && !mEnableDebugUtils &&
ExtensionFound(VK_EXT_DEBUG_REPORT_EXTENSION_NAME, instanceExtensionNames);
if (mEnableDebugUtils)
{
enabledInstanceExtensions.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME);
}
else if (enableDebugReport)
{
enabledInstanceExtensions.push_back(VK_EXT_DEBUG_REPORT_EXTENSION_NAME);
}
if (ExtensionFound(VK_EXT_SWAPCHAIN_COLOR_SPACE_EXTENSION_NAME, instanceExtensionNames))
{
enabledInstanceExtensions.push_back(VK_EXT_SWAPCHAIN_COLOR_SPACE_EXTENSION_NAME);
ANGLE_FEATURE_CONDITION(&mFeatures, supportsSwapchainColorspace, true);
}
// Verify the required extensions are in the extension names set. Fail if not.
std::sort(enabledInstanceExtensions.begin(), enabledInstanceExtensions.end(), StrLess);
ANGLE_VK_TRY(displayVk,
VerifyExtensionsPresent(instanceExtensionNames, enabledInstanceExtensions));
// Enable VK_KHR_get_physical_device_properties_2 if available.
if (ExtensionFound(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME,
instanceExtensionNames))
{
enabledInstanceExtensions.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
VkApplicationInfo applicationInfo = {};
applicationInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
std::string appName = angle::GetExecutableName();
applicationInfo.pApplicationName = appName.c_str();
applicationInfo.applicationVersion = 1;
applicationInfo.pEngineName = "ANGLE";
applicationInfo.engineVersion = 1;
auto enumerateInstanceVersion = reinterpret_cast<PFN_vkEnumerateInstanceVersion>(
vkGetInstanceProcAddr(mInstance, "vkEnumerateInstanceVersion"));
if (!enumerateInstanceVersion)
{
applicationInfo.apiVersion = VK_API_VERSION_1_0;
}
else
{
uint32_t apiVersion = VK_API_VERSION_1_0;
ANGLE_VK_TRY(displayVk, enumerateInstanceVersion(&apiVersion));
if ((VK_VERSION_MAJOR(apiVersion) > 1) || (VK_VERSION_MINOR(apiVersion) >= 1))
{
// This is the highest version of core Vulkan functionality that ANGLE uses.
applicationInfo.apiVersion = kPreferredVulkanAPIVersion;
}
else
{
// Since only 1.0 instance-level functionality is available, this must set to 1.0.
applicationInfo.apiVersion = VK_API_VERSION_1_0;
}
}
VkInstanceCreateInfo instanceInfo = {};
instanceInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
instanceInfo.flags = 0;
instanceInfo.pApplicationInfo = &applicationInfo;
// Enable requested layers and extensions.
instanceInfo.enabledExtensionCount = static_cast<uint32_t>(enabledInstanceExtensions.size());
instanceInfo.ppEnabledExtensionNames =
enabledInstanceExtensions.empty() ? nullptr : enabledInstanceExtensions.data();
instanceInfo.enabledLayerCount = static_cast<uint32_t>(enabledInstanceLayerNames.size());
instanceInfo.ppEnabledLayerNames = enabledInstanceLayerNames.data();
VkValidationFeatureEnableEXT enabledFeatures[] = {
VK_VALIDATION_FEATURE_ENABLE_BEST_PRACTICES_EXT};
VkValidationFeaturesEXT validationFeatures = {};
validationFeatures.sType = VK_STRUCTURE_TYPE_VALIDATION_FEATURES_EXT;
validationFeatures.enabledValidationFeatureCount = 1;
validationFeatures.pEnabledValidationFeatures = enabledFeatures;
if (mEnableValidationLayers)
{
// Enable best practices output which includes perfdoc layer
vk::AddToPNextChain(&instanceInfo, &validationFeatures);
}
ANGLE_VK_TRY(displayVk, vkCreateInstance(&instanceInfo, nullptr, &mInstance));
#if defined(ANGLE_SHARED_LIBVULKAN)
// Load volk if we are linking dynamically
volkLoadInstance(mInstance);
#endif // defined(ANGLE_SHARED_LIBVULKAN)
if (mEnableDebugUtils)
{
// Use the newer EXT_debug_utils if it exists.
#if !defined(ANGLE_SHARED_LIBVULKAN)
InitDebugUtilsEXTFunctions(mInstance);
#endif // !defined(ANGLE_SHARED_LIBVULKAN)
// Create the messenger callback.
VkDebugUtilsMessengerCreateInfoEXT messengerInfo = {};
constexpr VkDebugUtilsMessageSeverityFlagsEXT kSeveritiesToLog =
VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT;
constexpr VkDebugUtilsMessageTypeFlagsEXT kMessagesToLog =
VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT;
messengerInfo.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT;
messengerInfo.messageSeverity = kSeveritiesToLog;
messengerInfo.messageType = kMessagesToLog;
messengerInfo.pfnUserCallback = &DebugUtilsMessenger;
messengerInfo.pUserData = this;
ANGLE_VK_TRY(displayVk, vkCreateDebugUtilsMessengerEXT(mInstance, &messengerInfo, nullptr,
&mDebugUtilsMessenger));
}
else if (enableDebugReport)
{
// Fallback to EXT_debug_report.
#if !defined(ANGLE_SHARED_LIBVULKAN)
InitDebugReportEXTFunctions(mInstance);
#endif // !defined(ANGLE_SHARED_LIBVULKAN)
VkDebugReportCallbackCreateInfoEXT debugReportInfo = {};
debugReportInfo.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT;
debugReportInfo.flags = VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT;
debugReportInfo.pfnCallback = &DebugReportCallback;
debugReportInfo.pUserData = this;
ANGLE_VK_TRY(displayVk, vkCreateDebugReportCallbackEXT(mInstance, &debugReportInfo, nullptr,
&mDebugReportCallback));
}
if (std::find(enabledInstanceExtensions.begin(), enabledInstanceExtensions.end(),
VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME) !=
enabledInstanceExtensions.end())
{
#if !defined(ANGLE_SHARED_LIBVULKAN)
InitGetPhysicalDeviceProperties2KHRFunctions(mInstance);
#endif // !defined(ANGLE_SHARED_LIBVULKAN)
ASSERT(vkGetPhysicalDeviceProperties2KHR);
}
uint32_t physicalDeviceCount = 0;
ANGLE_VK_TRY(displayVk, vkEnumeratePhysicalDevices(mInstance, &physicalDeviceCount, nullptr));
ANGLE_VK_CHECK(displayVk, physicalDeviceCount > 0, VK_ERROR_INITIALIZATION_FAILED);
// TODO(jmadill): Handle multiple physical devices. For now, use the first device.
std::vector<VkPhysicalDevice> physicalDevices(physicalDeviceCount);
ANGLE_VK_TRY(displayVk, vkEnumeratePhysicalDevices(mInstance, &physicalDeviceCount,
physicalDevices.data()));
ChoosePhysicalDevice(physicalDevices, mEnabledICD, &mPhysicalDevice,
&mPhysicalDeviceProperties);
mGarbageCollectionFlushThreshold =
static_cast<uint32_t>(mPhysicalDeviceProperties.limits.maxMemoryAllocationCount *
kPercentMaxMemoryAllocationCount);
vkGetPhysicalDeviceFeatures(mPhysicalDevice, &mPhysicalDeviceFeatures);
// Ensure we can find a graphics queue family.
uint32_t queueCount = 0;
vkGetPhysicalDeviceQueueFamilyProperties(mPhysicalDevice, &queueCount, nullptr);
ANGLE_VK_CHECK(displayVk, queueCount > 0, VK_ERROR_INITIALIZATION_FAILED);
mQueueFamilyProperties.resize(queueCount);
vkGetPhysicalDeviceQueueFamilyProperties(mPhysicalDevice, &queueCount,
mQueueFamilyProperties.data());
size_t graphicsQueueFamilyCount = false;
uint32_t firstGraphicsQueueFamily = 0;
constexpr VkQueueFlags kGraphicsAndCompute = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT;
for (uint32_t familyIndex = 0; familyIndex < queueCount; ++familyIndex)
{
const auto &queueInfo = mQueueFamilyProperties[familyIndex];
if ((queueInfo.queueFlags & kGraphicsAndCompute) == kGraphicsAndCompute)
{
ASSERT(queueInfo.queueCount > 0);
graphicsQueueFamilyCount++;
if (firstGraphicsQueueFamily == 0)
{
firstGraphicsQueueFamily = familyIndex;
}
break;
}
}
ANGLE_VK_CHECK(displayVk, graphicsQueueFamilyCount > 0, VK_ERROR_INITIALIZATION_FAILED);
// If only one queue family, go ahead and initialize the device. If there is more than one
// queue, we'll have to wait until we see a WindowSurface to know which supports present.
if (graphicsQueueFamilyCount == 1)
{
ANGLE_TRY(initializeDevice(displayVk, firstGraphicsQueueFamily));
}
VkDeviceSize preferredLargeHeapBlockSize = 0;
if (mFeatures.preferredLargeHeapBlockSize4MB.enabled)
{
// This number matches Chromium and was picked by looking at memory usage of
// Android apps. The allocator will start making blocks at 1/8 the max size
// and builds up block size as needed before capping at the max set here.
preferredLargeHeapBlockSize = 4 * 1024 * 1024;
}
// Create VMA allocator
ANGLE_VK_TRY(displayVk,
mAllocator.init(mPhysicalDevice, mDevice, mInstance, applicationInfo.apiVersion,
preferredLargeHeapBlockSize));
// Store the physical device memory properties so we can find the right memory pools.
mMemoryProperties.init(mPhysicalDevice);
if (!mGlslangInitialized)
{
GlslangInitialize();
mGlslangInitialized = true;
}
// Initialize the format table.
mFormatTable.initialize(this, &mNativeTextureCaps, &mNativeCaps.compressedTextureFormats);
setGlobalDebugAnnotator();
if (getFeatures().commandProcessor.enabled)
{
if (getFeatures().asynchronousCommandProcessing.enabled)
{
ASSERT(getFeatures().commandProcessor.enabled);
mCommandProcessorThread =
std::thread(&vk::CommandProcessor::processTasks, &mCommandProcessor);
waitForCommandProcessorIdle(displayVk);
}
else
{
ANGLE_TRY(mCommandProcessor.initTaskProcessor(displayVk));
}
}
return angle::Result::Continue;
}
void RendererVk::queryDeviceExtensionFeatures(const vk::ExtensionNameList &deviceExtensionNames)
{
// Default initialize all extension features to false.
mLineRasterizationFeatures = {};
mLineRasterizationFeatures.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT;
mProvokingVertexFeatures = {};
mProvokingVertexFeatures.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_FEATURES_EXT;
mVertexAttributeDivisorFeatures = {};
mVertexAttributeDivisorFeatures.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT;
mVertexAttributeDivisorProperties = {};
mVertexAttributeDivisorProperties.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT;
mTransformFeedbackFeatures = {};
mTransformFeedbackFeatures.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_TRANSFORM_FEEDBACK_FEATURES_EXT;
mIndexTypeUint8Features = {};
mIndexTypeUint8Features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_INDEX_TYPE_UINT8_FEATURES_EXT;
mSubgroupProperties = {};
mSubgroupProperties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES;
mExternalMemoryHostProperties = {};
mExternalMemoryHostProperties.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_MEMORY_HOST_PROPERTIES_EXT;
mShaderFloat16Int8Features = {};
mShaderFloat16Int8Features.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_FLOAT16_INT8_FEATURES;
mShaderAtomicFloatFeature = {};
mShaderAtomicFloatFeature.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SHADER_ATOMIC_FLOAT_FEATURES_EXT;
mDepthStencilResolveProperties = {};
mDepthStencilResolveProperties.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DEPTH_STENCIL_RESOLVE_PROPERTIES;
mExternalFenceProperties = {};
mExternalFenceProperties.sType = VK_STRUCTURE_TYPE_EXTERNAL_FENCE_PROPERTIES;
mExternalSemaphoreProperties = {};
mExternalSemaphoreProperties.sType = VK_STRUCTURE_TYPE_EXTERNAL_SEMAPHORE_PROPERTIES;
mSamplerYcbcrConversionFeatures = {};
mSamplerYcbcrConversionFeatures.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES;
if (!vkGetPhysicalDeviceProperties2KHR || !vkGetPhysicalDeviceFeatures2KHR)
{
return;
}
// Query features and properties.
VkPhysicalDeviceFeatures2KHR deviceFeatures = {};
deviceFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
VkPhysicalDeviceProperties2 deviceProperties = {};
deviceProperties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
// Query line rasterization features
if (ExtensionFound(VK_EXT_LINE_RASTERIZATION_EXTENSION_NAME, deviceExtensionNames))
{
vk::AddToPNextChain(&deviceFeatures, &mLineRasterizationFeatures);
}
// Query provoking vertex features
if (ExtensionFound(VK_EXT_PROVOKING_VERTEX_EXTENSION_NAME, deviceExtensionNames))
{
vk::AddToPNextChain(&deviceFeatures, &mProvokingVertexFeatures);
}
// Query attribute divisor features and properties
if (ExtensionFound(VK_EXT_VERTEX_ATTRIBUTE_DIVISOR_EXTENSION_NAME, deviceExtensionNames))
{
vk::AddToPNextChain(&deviceFeatures, &mVertexAttributeDivisorFeatures);
vk::AddToPNextChain(&deviceProperties, &mVertexAttributeDivisorProperties);
}
// Query transform feedback features
if (ExtensionFound(VK_EXT_TRANSFORM_FEEDBACK_EXTENSION_NAME, deviceExtensionNames))
{
vk::AddToPNextChain(&deviceFeatures, &mTransformFeedbackFeatures);
}
// Query uint8 index type features
if (ExtensionFound(VK_EXT_INDEX_TYPE_UINT8_EXTENSION_NAME, deviceExtensionNames))
{
vk::AddToPNextChain(&deviceFeatures, &mIndexTypeUint8Features);
}
// Query external memory host properties
if (ExtensionFound(VK_EXT_EXTERNAL_MEMORY_HOST_EXTENSION_NAME, deviceExtensionNames))
{
vk::AddToPNextChain(&deviceProperties, &mExternalMemoryHostProperties);
}
// Query Ycbcr conversion properties
if (ExtensionFound(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME, deviceExtensionNames))
{
vk::AddToPNextChain(&deviceFeatures, &mSamplerYcbcrConversionFeatures);
}
// Query float16/int8 features
if (ExtensionFound(VK_KHR_SHADER_FLOAT16_INT8_EXTENSION_NAME, deviceExtensionNames))
{
vk::AddToPNextChain(&deviceFeatures, &mShaderFloat16Int8Features);
}
// Query shader atomic float features
if (ExtensionFound(VK_EXT_SHADER_ATOMIC_FLOAT_EXTENSION_NAME, deviceExtensionNames))
{
vk::AddToPNextChain(&deviceFeatures, &mShaderAtomicFloatFeature);
}
// Query depth/stencil resolve properties
if (ExtensionFound(VK_KHR_DEPTH_STENCIL_RESOLVE_EXTENSION_NAME, deviceExtensionNames))
{
vk::AddToPNextChain(&deviceProperties, &mDepthStencilResolveProperties);
}
// Query subgroup properties
vk::AddToPNextChain(&deviceProperties, &mSubgroupProperties);
vkGetPhysicalDeviceFeatures2KHR(mPhysicalDevice, &deviceFeatures);
vkGetPhysicalDeviceProperties2KHR(mPhysicalDevice, &deviceProperties);
// Fence properties
if (mFeatures.supportsExternalFenceCapabilities.enabled)
{
VkPhysicalDeviceExternalFenceInfo externalFenceInfo = {};
externalFenceInfo.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_FENCE_INFO;
externalFenceInfo.handleType = VK_EXTERNAL_FENCE_HANDLE_TYPE_SYNC_FD_BIT_KHR;
vkGetPhysicalDeviceExternalFencePropertiesKHR(mPhysicalDevice, &externalFenceInfo,
&mExternalFenceProperties);
}
// Semaphore properties
if (mFeatures.supportsExternalSemaphoreCapabilities.enabled)
{
VkPhysicalDeviceExternalSemaphoreInfo externalSemaphoreInfo = {};
externalSemaphoreInfo.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_EXTERNAL_SEMAPHORE_INFO;
externalSemaphoreInfo.handleType = VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_SYNC_FD_BIT_KHR;
vkGetPhysicalDeviceExternalSemaphorePropertiesKHR(mPhysicalDevice, &externalSemaphoreInfo,
&mExternalSemaphoreProperties);
}
// Clean up pNext chains
mLineRasterizationFeatures.pNext = nullptr;
mProvokingVertexFeatures.pNext = nullptr;
mVertexAttributeDivisorFeatures.pNext = nullptr;
mVertexAttributeDivisorProperties.pNext = nullptr;
mTransformFeedbackFeatures.pNext = nullptr;
mIndexTypeUint8Features.pNext = nullptr;
mSubgroupProperties.pNext = nullptr;
mExternalMemoryHostProperties.pNext = nullptr;
mShaderFloat16Int8Features.pNext = nullptr;
mShaderAtomicFloatFeature.pNext = nullptr;
mDepthStencilResolveProperties.pNext = nullptr;
mSamplerYcbcrConversionFeatures.pNext = nullptr;
}
angle::Result RendererVk::initializeDevice(DisplayVk *displayVk, uint32_t queueFamilyIndex)
{
uint32_t deviceLayerCount = 0;
ANGLE_VK_TRY(displayVk,
vkEnumerateDeviceLayerProperties(mPhysicalDevice, &deviceLayerCount, nullptr));
std::vector<VkLayerProperties> deviceLayerProps(deviceLayerCount);
if (deviceLayerCount > 0)
{
ANGLE_VK_TRY(displayVk, vkEnumerateDeviceLayerProperties(mPhysicalDevice, &deviceLayerCount,
deviceLayerProps.data()));
}
VulkanLayerVector enabledDeviceLayerNames;
if (mEnableValidationLayers)
{
mEnableValidationLayers =
GetAvailableValidationLayers(deviceLayerProps, false, &enabledDeviceLayerNames);
}
const char *wsiLayer = displayVk->getWSILayer();
if (wsiLayer)
{
enabledDeviceLayerNames.push_back(wsiLayer);
}
// Enumerate device extensions that are provided by the vulkan
// implementation and implicit layers.
uint32_t deviceExtensionCount = 0;
ANGLE_VK_TRY(displayVk, vkEnumerateDeviceExtensionProperties(mPhysicalDevice, nullptr,
&deviceExtensionCount, nullptr));
std::vector<VkExtensionProperties> deviceExtensionProps(deviceExtensionCount);
if (deviceExtensionCount > 0)
{
ANGLE_VK_TRY(displayVk, vkEnumerateDeviceExtensionProperties(mPhysicalDevice, nullptr,
&deviceExtensionCount,
deviceExtensionProps.data()));
}
// Enumerate device extensions that are provided by explicit layers.
for (const char *layerName : enabledDeviceLayerNames)
{
uint32_t previousExtensionCount = static_cast<uint32_t>(deviceExtensionProps.size());
uint32_t deviceLayerExtensionCount = 0;
ANGLE_VK_TRY(displayVk,
vkEnumerateDeviceExtensionProperties(mPhysicalDevice, layerName,
&deviceLayerExtensionCount, nullptr));
deviceExtensionProps.resize(previousExtensionCount + deviceLayerExtensionCount);
ANGLE_VK_TRY(displayVk, vkEnumerateDeviceExtensionProperties(
mPhysicalDevice, layerName, &deviceLayerExtensionCount,
deviceExtensionProps.data() + previousExtensionCount));
}
vk::ExtensionNameList deviceExtensionNames;
if (!deviceExtensionProps.empty())
{
ASSERT(deviceExtensionNames.size() <= deviceExtensionProps.size());
for (const VkExtensionProperties &prop : deviceExtensionProps)
{
deviceExtensionNames.push_back(prop.extensionName);
}
std::sort(deviceExtensionNames.begin(), deviceExtensionNames.end(), StrLess);
}
vk::ExtensionNameList enabledDeviceExtensions;
enabledDeviceExtensions.push_back(VK_KHR_SWAPCHAIN_EXTENSION_NAME);
// Queues: map low, med, high priority to whatever is supported up to 3 queues
uint32_t queueCount = std::min(mQueueFamilyProperties[queueFamilyIndex].queueCount,
static_cast<uint32_t>(egl::ContextPriority::EnumCount));
constexpr float kVulkanQueuePriorityLow = 0.0;
constexpr float kVulkanQueuePriorityMedium = 0.4;
constexpr float kVulkanQueuePriorityHigh = 1.0;
// Index order: Low, High, Medium - so no need to rearrange according to count:
// If we have 1 queue - all same, if 2 - Low and High, if 3 Low, High and Medium.
constexpr uint32_t kQueueIndexLow = 0;
constexpr uint32_t kQueueIndexHigh = 1;
constexpr uint32_t kQueueIndexMedium = 2;
constexpr float queuePriorities[static_cast<uint32_t>(egl::ContextPriority::EnumCount)] = {
kVulkanQueuePriorityMedium, kVulkanQueuePriorityHigh, kVulkanQueuePriorityLow};
VkDeviceQueueCreateInfo queueCreateInfo = {};
queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueCreateInfo.flags = 0;
queueCreateInfo.queueFamilyIndex = queueFamilyIndex;
queueCreateInfo.queueCount = queueCount;
queueCreateInfo.pQueuePriorities = queuePriorities;
// Query extensions and their features.
queryDeviceExtensionFeatures(deviceExtensionNames);
// Initialize features and workarounds.
initFeatures(displayVk, deviceExtensionNames);
// Enable VK_KHR_get_memory_requirements2, if supported
if (ExtensionFound(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME, deviceExtensionNames))
{
enabledDeviceExtensions.push_back(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME);
}
// Enable VK_KHR_bind_memory2, if supported
if (ExtensionFound(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME, deviceExtensionNames))
{
enabledDeviceExtensions.push_back(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME);
}
// Enable KHR_MAINTENANCE1 to support viewport flipping.
if (mPhysicalDeviceProperties.apiVersion < VK_MAKE_VERSION(1, 1, 0))
{
enabledDeviceExtensions.push_back(VK_KHR_MAINTENANCE1_EXTENSION_NAME);
}
if (getFeatures().supportsRenderpass2.enabled)
{
enabledDeviceExtensions.push_back(VK_KHR_CREATE_RENDERPASS_2_EXTENSION_NAME);
}
if (getFeatures().supportsIncrementalPresent.enabled)
{
enabledDeviceExtensions.push_back(VK_KHR_INCREMENTAL_PRESENT_EXTENSION_NAME);
}
#if defined(ANGLE_PLATFORM_ANDROID)
if (getFeatures().supportsAndroidHardwareBuffer.enabled)
{
enabledDeviceExtensions.push_back(VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME);
enabledDeviceExtensions.push_back(
VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME);
# if !defined(ANGLE_SHARED_LIBVULKAN)
InitExternalMemoryHardwareBufferANDROIDFunctions(mInstance);
# endif // !defined(ANGLE_SHARED_LIBVULKAN)
}
#else
ASSERT(!getFeatures().supportsAndroidHardwareBuffer.enabled);
#endif
#if defined(ANGLE_PLATFORM_GGP)
if (getFeatures().supportsGGPFrameToken.enabled)
{
enabledDeviceExtensions.push_back(VK_GGP_FRAME_TOKEN_EXTENSION_NAME);
}
ANGLE_VK_CHECK(displayVk, getFeatures().supportsGGPFrameToken.enabled,
VK_ERROR_EXTENSION_NOT_PRESENT);
#else
ASSERT(!getFeatures().supportsGGPFrameToken.enabled);
#endif
if (getFeatures().supportsAndroidHardwareBuffer.enabled ||
getFeatures().supportsExternalMemoryFd.enabled ||
getFeatures().supportsExternalMemoryFuchsia.enabled)
{
enabledDeviceExtensions.push_back(VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME);
}
if (getFeatures().supportsExternalMemoryFd.enabled)
{
enabledDeviceExtensions.push_back(VK_KHR_EXTERNAL_MEMORY_FD_EXTENSION_NAME);
}
if (getFeatures().supportsExternalMemoryFuchsia.enabled)
{
enabledDeviceExtensions.push_back(VK_FUCHSIA_EXTERNAL_MEMORY_EXTENSION_NAME);
}
if (getFeatures().supportsExternalSemaphoreFd.enabled ||
getFeatures().supportsExternalSemaphoreFuchsia.enabled)
{
enabledDeviceExtensions.push_back(VK_KHR_EXTERNAL_SEMAPHORE_EXTENSION_NAME);
#if !defined(ANGLE_SHARED_LIBVULKAN)
InitExternalSemaphoreFdFunctions(mInstance);
#endif // !defined(ANGLE_SHARED_LIBVULKAN)
}
if (getFeatures().supportsExternalSemaphoreCapabilities.enabled)
{
enabledDeviceExtensions.push_back(VK_KHR_EXTERNAL_SEMAPHORE_CAPABILITIES_EXTENSION_NAME);
}
if (getFeatures().supportsExternalFenceCapabilities.enabled)
{
enabledDeviceExtensions.push_back(VK_KHR_EXTERNAL_FENCE_CAPABILITIES_EXTENSION_NAME);
}
if (getFeatures().supportsExternalSemaphoreFd.enabled)
{
enabledDeviceExtensions.push_back(VK_KHR_EXTERNAL_SEMAPHORE_FD_EXTENSION_NAME);
}
if (getFeatures().supportsExternalSemaphoreCapabilities.enabled)
{
enabledDeviceExtensions.push_back(VK_KHR_EXTERNAL_SEMAPHORE_CAPABILITIES_EXTENSION_NAME);
#if !defined(ANGLE_SHARED_LIBVULKAN)
InitExternalSemaphoreCapabilitiesFunctions(mInstance);
#endif // !defined(ANGLE_SHARED_LIBVULKAN)
}
if (getFeatures().supportsExternalFenceFd.enabled)
{
enabledDeviceExtensions.push_back(VK_KHR_EXTERNAL_FENCE_FD_EXTENSION_NAME);
#if !defined(ANGLE_SHARED_LIBVULKAN)
InitExternalFenceFdFunctions(mInstance);
#endif // !defined(ANGLE_SHARED_LIBVULKAN)
}
if (getFeatures().supportsExternalFenceCapabilities.enabled)
{
enabledDeviceExtensions.push_back(VK_KHR_EXTERNAL_FENCE_CAPABILITIES_EXTENSION_NAME);
#if !defined(ANGLE_SHARED_LIBVULKAN)
InitExternalFenceCapabilitiesFunctions(mInstance);
#endif // !defined(ANGLE_SHARED_LIBVULKAN)
}
if (getFeatures().supportsExternalSemaphoreFuchsia.enabled)
{
enabledDeviceExtensions.push_back(VK_FUCHSIA_EXTERNAL_SEMAPHORE_EXTENSION_NAME);
}
if (getFeatures().supportsShaderStencilExport.enabled)
{
enabledDeviceExtensions.push_back(VK_EXT_SHADER_STENCIL_EXPORT_EXTENSION_NAME);
}
if (getFeatures().supportsRenderPassStoreOpNoneQCOM.enabled)
{
enabledDeviceExtensions.push_back(VK_QCOM_render_pass_store_ops_EXTENSION_NAME);
}
if (getFeatures().supportsImageFormatList.enabled)
{
enabledDeviceExtensions.push_back(VK_KHR_IMAGE_FORMAT_LIST_EXTENSION_NAME);
}
std::sort(enabledDeviceExtensions.begin(), enabledDeviceExtensions.end(), StrLess);
ANGLE_VK_TRY(displayVk, VerifyExtensionsPresent(deviceExtensionNames, enabledDeviceExtensions));
// Select additional features to be enabled.
VkPhysicalDeviceFeatures2KHR enabledFeatures = {};
enabledFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
// Used to support cubemap array:
enabledFeatures.features.imageCubeArray = getFeatures().supportsImageCubeArray.enabled;
// Used to support framebuffers with multiple attachments:
enabledFeatures.features.independentBlend = mPhysicalDeviceFeatures.independentBlend;
// Used to support robust buffer access:
enabledFeatures.features.robustBufferAccess = mPhysicalDeviceFeatures.robustBufferAccess;
// Used to support Anisotropic filtering:
enabledFeatures.features.samplerAnisotropy = mPhysicalDeviceFeatures.samplerAnisotropy;
// Used to support wide lines:
enabledFeatures.features.wideLines = mPhysicalDeviceFeatures.wideLines;
// Used to emulate transform feedback:
enabledFeatures.features.vertexPipelineStoresAndAtomics =
mPhysicalDeviceFeatures.vertexPipelineStoresAndAtomics;
// Used to implement storage buffers and images in the fragment shader:
enabledFeatures.features.fragmentStoresAndAtomics =
mPhysicalDeviceFeatures.fragmentStoresAndAtomics;
// Used to support geometry shaders:
enabledFeatures.features.geometryShader = mPhysicalDeviceFeatures.geometryShader;
// Used to support EXT_gpu_shader5:
enabledFeatures.features.shaderImageGatherExtended =
mPhysicalDeviceFeatures.shaderImageGatherExtended;
// Used to support EXT_gpu_shader5:
enabledFeatures.features.shaderUniformBufferArrayDynamicIndexing =
mPhysicalDeviceFeatures.shaderUniformBufferArrayDynamicIndexing;
// Used to support EXT_gpu_shader5 and sampler array of array emulation:
enabledFeatures.features.shaderSampledImageArrayDynamicIndexing =
mPhysicalDeviceFeatures.shaderSampledImageArrayDynamicIndexing;
// Used to support atomic counter emulation:
enabledFeatures.features.shaderStorageBufferArrayDynamicIndexing =
mPhysicalDeviceFeatures.shaderStorageBufferArrayDynamicIndexing;
// Used to support APPLE_clip_distance
enabledFeatures.features.shaderClipDistance = mPhysicalDeviceFeatures.shaderClipDistance;
// Used to support OES_sample_shading
enabledFeatures.features.sampleRateShading = mPhysicalDeviceFeatures.sampleRateShading;
// Used to support depth clears through draw calls.
enabledFeatures.features.depthClamp = mPhysicalDeviceFeatures.depthClamp;
if (!vk::CommandBuffer::ExecutesInline())
{
enabledFeatures.features.inheritedQueries = mPhysicalDeviceFeatures.inheritedQueries;
}
// Setup device initialization struct
VkDeviceCreateInfo createInfo = {};
// Based on available extension features, decide on which extensions and features to enable.
if (mLineRasterizationFeatures.bresenhamLines)
{
enabledDeviceExtensions.push_back(VK_EXT_LINE_RASTERIZATION_EXTENSION_NAME);
vk::AddToPNextChain(&createInfo, &mLineRasterizationFeatures);
}
if (mProvokingVertexFeatures.provokingVertexLast)
{
enabledDeviceExtensions.push_back(VK_EXT_PROVOKING_VERTEX_EXTENSION_NAME);
vk::AddToPNextChain(&createInfo, &mProvokingVertexFeatures);
}
if (mVertexAttributeDivisorFeatures.vertexAttributeInstanceRateDivisor)
{
enabledDeviceExtensions.push_back(VK_EXT_VERTEX_ATTRIBUTE_DIVISOR_EXTENSION_NAME);
vk::AddToPNextChain(&createInfo, &mVertexAttributeDivisorFeatures);
// We only store 8 bit divisor in GraphicsPipelineDesc so capping value & we emulate if
// exceeded
mMaxVertexAttribDivisor =
std::min(mVertexAttributeDivisorProperties.maxVertexAttribDivisor,
static_cast<uint32_t>(std::numeric_limits<uint8_t>::max()));
}
if (getFeatures().supportsTransformFeedbackExtension.enabled)
{
enabledDeviceExtensions.push_back(VK_EXT_TRANSFORM_FEEDBACK_EXTENSION_NAME);
vk::AddToPNextChain(&createInfo, &mTransformFeedbackFeatures);
}
if (getFeatures().supportsIndexTypeUint8.enabled)
{
enabledDeviceExtensions.push_back(VK_EXT_INDEX_TYPE_UINT8_EXTENSION_NAME);
vk::AddToPNextChain(&createInfo, &mIndexTypeUint8Features);
}
if (getFeatures().supportsDepthStencilResolve.enabled)
{
enabledDeviceExtensions.push_back(VK_KHR_DEPTH_STENCIL_RESOLVE_EXTENSION_NAME);
}
if (getFeatures().supportsExternalMemoryHost.enabled)
{
enabledDeviceExtensions.push_back(VK_EXT_EXTERNAL_MEMORY_HOST_EXTENSION_NAME);
mMinImportedHostPointerAlignment =
mExternalMemoryHostProperties.minImportedHostPointerAlignment;
#if !defined(ANGLE_SHARED_LIBVULKAN)
InitExternalMemoryHostFunctions(mInstance);
#endif // !defined(ANGLE_SHARED_LIBVULKAN)
}
if (getFeatures().supportsYUVSamplerConversion.enabled)
{
enabledDeviceExtensions.push_back(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME);
vk::AddToPNextChain(&createInfo, &mSamplerYcbcrConversionFeatures);
}
if (getFeatures().supportsShaderFloat16.enabled)
{
enabledDeviceExtensions.push_back(VK_KHR_SHADER_FLOAT16_INT8_EXTENSION_NAME);
vk::AddToPNextChain(&createInfo, &mShaderFloat16Int8Features);
}
if (getFeatures().supportsShaderImageFloat32Atomics.enabled)
{
enabledDeviceExtensions.push_back(VK_EXT_SHADER_ATOMIC_FLOAT_EXTENSION_NAME);
vk::AddToPNextChain(&createInfo, &mShaderAtomicFloatFeature);
}
createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
createInfo.flags = 0;
createInfo.queueCreateInfoCount = 1;
createInfo.pQueueCreateInfos = &queueCreateInfo;
createInfo.enabledLayerCount = static_cast<uint32_t>(enabledDeviceLayerNames.size());
createInfo.ppEnabledLayerNames = enabledDeviceLayerNames.data();
createInfo.enabledExtensionCount = static_cast<uint32_t>(enabledDeviceExtensions.size());
createInfo.ppEnabledExtensionNames =
enabledDeviceExtensions.empty() ? nullptr : enabledDeviceExtensions.data();
// Enable core features without assuming VkPhysicalDeviceFeatures2KHR is accepted in the pNext
// chain of VkDeviceCreateInfo.
createInfo.pEnabledFeatures = &enabledFeatures.features;
ANGLE_VK_TRY(displayVk, vkCreateDevice(mPhysicalDevice, &createInfo, nullptr, &mDevice));
#if defined(ANGLE_SHARED_LIBVULKAN)
// Load volk if we are loading dynamically
volkLoadDevice(mDevice);
#endif // defined(ANGLE_SHARED_LIBVULKAN)
mCurrentQueueFamilyIndex = queueFamilyIndex;
// When only 1 Queue, use same for all, Low index. Identify as Medium, since it's default.
VkQueue queue;
vkGetDeviceQueue(mDevice, mCurrentQueueFamilyIndex, kQueueIndexLow, &queue);
mQueues[egl::ContextPriority::Low] = queue;
mQueues[egl::ContextPriority::Medium] = queue;
mQueues[egl::ContextPriority::High] = queue;
mPriorities[egl::ContextPriority::Low] = egl::ContextPriority::Medium;
mPriorities[egl::ContextPriority::Medium] = egl::ContextPriority::Medium;
mPriorities[egl::ContextPriority::High] = egl::ContextPriority::Medium;
// If at least 2 queues, High has its own queue
if (queueCount > 1)
{
vkGetDeviceQueue(mDevice, mCurrentQueueFamilyIndex, kQueueIndexHigh,
&mQueues[egl::ContextPriority::High]);
mPriorities[egl::ContextPriority::High] = egl::ContextPriority::High;
}
// If at least 3 queues, Medium has its own queue. Adjust Low priority.
if (queueCount > 2)
{
vkGetDeviceQueue(mDevice, mCurrentQueueFamilyIndex, kQueueIndexMedium,
&mQueues[egl::ContextPriority::Medium]);
mPriorities[egl::ContextPriority::Low] = egl::ContextPriority::Low;
}
#if !defined(ANGLE_SHARED_LIBVULKAN)
if (getFeatures().supportsTransformFeedbackExtension.enabled)
{
InitTransformFeedbackEXTFunctions(mDevice);
}
if (getFeatures().supportsYUVSamplerConversion.enabled)
{
InitSamplerYcbcrKHRFunctions(mDevice);
}
if (getFeatures().supportsRenderpass2.enabled)
{
InitRenderPass2KHRFunctions(mDevice);
}
#endif // !defined(ANGLE_SHARED_LIBVULKAN)
if (getFeatures().forceMaxUniformBufferSize16KB.enabled)
{
mDefaultUniformBufferSize = kMinDefaultUniformBufferSize;
}
// Cap it with the driver limit
mDefaultUniformBufferSize = std::min(
mDefaultUniformBufferSize, getPhysicalDeviceProperties().limits.maxUniformBufferRange);
// Initialize the vulkan pipeline cache.
bool success = false;
{
std::lock_guard<std::mutex> lock(mPipelineCacheMutex);
ANGLE_TRY(initPipelineCache(displayVk, &mPipelineCache, &success));
}
return angle::Result::Continue;
}
angle::Result RendererVk::selectPresentQueueForSurface(DisplayVk *displayVk,
VkSurfaceKHR surface,
uint32_t *presentQueueOut)
{
// We've already initialized a device, and can't re-create it unless it's never been used.
// TODO(jmadill): Handle the re-creation case if necessary.
if (mDevice != VK_NULL_HANDLE)
{
ASSERT(mCurrentQueueFamilyIndex != std::numeric_limits<uint32_t>::max());
// Check if the current device supports present on this surface.
VkBool32 supportsPresent = VK_FALSE;
ANGLE_VK_TRY(displayVk,
vkGetPhysicalDeviceSurfaceSupportKHR(mPhysicalDevice, mCurrentQueueFamilyIndex,
surface, &supportsPresent));
if (supportsPresent == VK_TRUE)
{
*presentQueueOut = mCurrentQueueFamilyIndex;
return angle::Result::Continue;
}
}
// Find a graphics and present queue.
Optional<uint32_t> newPresentQueue;
uint32_t queueCount = static_cast<uint32_t>(mQueueFamilyProperties.size());
constexpr VkQueueFlags kGraphicsAndCompute = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT;
for (uint32_t queueIndex = 0; queueIndex < queueCount; ++queueIndex)
{
const auto &queueInfo = mQueueFamilyProperties[queueIndex];
if ((queueInfo.queueFlags & kGraphicsAndCompute) == kGraphicsAndCompute)
{
VkBool32 supportsPresent = VK_FALSE;
ANGLE_VK_TRY(displayVk, vkGetPhysicalDeviceSurfaceSupportKHR(
mPhysicalDevice, queueIndex, surface, &supportsPresent));
if (supportsPresent == VK_TRUE)
{
newPresentQueue = queueIndex;
break;
}
}
}
ANGLE_VK_CHECK(displayVk, newPresentQueue.valid(), VK_ERROR_INITIALIZATION_FAILED);
ANGLE_TRY(initializeDevice(displayVk, newPresentQueue.value()));
*presentQueueOut = newPresentQueue.value();
return angle::Result::Continue;
}
std::string RendererVk::getVendorString() const
{
return GetVendorString(mPhysicalDeviceProperties.vendorID);
}
std::string RendererVk::getRendererDescription() const
{
std::stringstream strstr;
uint32_t apiVersion = mPhysicalDeviceProperties.apiVersion;
strstr << "Vulkan ";
strstr << VK_VERSION_MAJOR(apiVersion) << ".";
strstr << VK_VERSION_MINOR(apiVersion) << ".";
strstr << VK_VERSION_PATCH(apiVersion);
strstr << "(";
// In the case of NVIDIA, deviceName does not necessarily contain "NVIDIA". Add "NVIDIA" so that
// Vulkan end2end tests can be selectively disabled on NVIDIA. TODO(jmadill): should not be
// needed after http://anglebug.com/1874 is fixed and end2end_tests use more sophisticated
// driver detection.
if (mPhysicalDeviceProperties.vendorID == VENDOR_ID_NVIDIA)
{
strstr << GetVendorString(mPhysicalDeviceProperties.vendorID) << " ";
}
strstr << mPhysicalDeviceProperties.deviceName;
strstr << " (" << gl::FmtHex(mPhysicalDeviceProperties.deviceID) << ")";
strstr << ")";
return strstr.str();
}
gl::Version RendererVk::getMaxSupportedESVersion() const
{
// Current highest supported version
gl::Version maxVersion = gl::Version(3, 1);
// Early out without downgrading ES version if mock ICD enabled.
// Mock ICD doesn't expose sufficient capabilities yet.
// https://github.com/KhronosGroup/Vulkan-Tools/issues/84
if (isMockICDEnabled())
{
return maxVersion;
}
// Limit to ES3.1 if there are any blockers for 3.2.
if (!vk::CanSupportGPUShader5EXT(mPhysicalDeviceFeatures))
{
maxVersion = LimitVersionTo(maxVersion, {3, 1});
}
// Limit to ES3.0 if there are any blockers for 3.1.
// ES3.1 requires at least one atomic counter buffer and four storage buffers in compute.
// Atomic counter buffers are emulated with storage buffers. For simplicity, we always support
// either none or IMPLEMENTATION_MAX_ATOMIC_COUNTER_BUFFERS atomic counter buffers. So if
// Vulkan doesn't support at least that many storage buffers in compute, we don't support 3.1.
const uint32_t kMinimumStorageBuffersForES31 =
gl::limits::kMinimumComputeStorageBuffers + gl::IMPLEMENTATION_MAX_ATOMIC_COUNTER_BUFFERS;
if (mPhysicalDeviceProperties.limits.maxPerStageDescriptorStorageBuffers <
kMinimumStorageBuffersForES31)
{
maxVersion = LimitVersionTo(maxVersion, {3, 0});
}
// ES3.1 requires at least a maximum offset of at least 2047.
// If the Vulkan implementation can't support that, we cannot support 3.1.
if (mPhysicalDeviceProperties.limits.maxVertexInputAttributeOffset < 2047)
{
maxVersion = LimitVersionTo(maxVersion, {3, 0});
}
// Limit to ES2.0 if there are any blockers for 3.0.
// TODO: http://anglebug.com/3972 Limit to GLES 2.0 if flat shading can't be emulated
// Multisample textures (ES3.1) and multisample renderbuffers (ES3.0) require the Vulkan driver
// to support the standard sample locations (in order to pass dEQP tests that check these
// locations). If the Vulkan implementation can't support that, we cannot support 3.0/3.1.
if (mPhysicalDeviceProperties.limits.standardSampleLocations != VK_TRUE)
{
maxVersion = LimitVersionTo(maxVersion, {2, 0});
}
// If the command buffer doesn't support queries, we can't support ES3.
if (!vk::CommandBuffer::SupportsQueries(mPhysicalDeviceFeatures))
{
maxVersion = LimitVersionTo(maxVersion, {2, 0});
}
// If independentBlend is not supported, we can't have a mix of has-alpha and emulated-alpha
// render targets in a framebuffer. We also cannot perform masked clears of multiple render
// targets.
if (!mPhysicalDeviceFeatures.independentBlend)
{
maxVersion = LimitVersionTo(maxVersion, {2, 0});
}
// If the Vulkan transform feedback extension is not present, we use an emulation path that
// requires the vertexPipelineStoresAndAtomics feature. Without the extension or this feature,
// we can't currently support transform feedback.
if (!mFeatures.supportsTransformFeedbackExtension.enabled &&
!mFeatures.emulateTransformFeedback.enabled)
{
maxVersion = LimitVersionTo(maxVersion, {2, 0});
}
// Limit to GLES 2.0 if maxPerStageDescriptorUniformBuffers is too low.
// Table 6.31 MAX_VERTEX_UNIFORM_BLOCKS minimum value = 12
// Table 6.32 MAX_FRAGMENT_UNIFORM_BLOCKS minimum value = 12
// NOTE: We reserve some uniform buffers for emulation, so use the NativeCaps which takes this
// into account, rather than the physical device maxPerStageDescriptorUniformBuffers limits.
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
if (static_cast<GLuint>(getNativeCaps().maxShaderUniformBlocks[shaderType]) <
gl::limits::kMinimumShaderUniformBlocks)
{
maxVersion = LimitVersionTo(maxVersion, {2, 0});
}
}
// Limit to GLES 2.0 if maxVertexOutputComponents is too low.
// Table 6.31 MAX VERTEX OUTPUT COMPONENTS minimum value = 64
// NOTE: We reserve some vertex output components for emulation, so use the NativeCaps which
// takes this into account, rather than the physical device maxVertexOutputComponents limits.
if (static_cast<GLuint>(getNativeCaps().maxVertexOutputComponents) <
gl::limits::kMinimumVertexOutputComponents)
{
maxVersion = LimitVersionTo(maxVersion, {2, 0});
}
return maxVersion;
}
gl::Version RendererVk::getMaxConformantESVersion() const
{
return LimitVersionTo(getMaxSupportedESVersion(), {3, 1});
}
void RendererVk::initFeatures(DisplayVk *displayVk,
const vk::ExtensionNameList &deviceExtensionNames)
{
if (displayVk->getState().featuresAllDisabled)
{
ApplyFeatureOverrides(&mFeatures, displayVk->getState());
return;
}
constexpr uint32_t kPixel2DriverWithRelaxedPrecision = 0x801EA000;
bool isAMD = IsAMD(mPhysicalDeviceProperties.vendorID);
bool isIntel = IsIntel(mPhysicalDeviceProperties.vendorID);
bool isNvidia = IsNvidia(mPhysicalDeviceProperties.vendorID);
bool isQualcomm = IsQualcomm(mPhysicalDeviceProperties.vendorID);
bool isARM = IsARM(mPhysicalDeviceProperties.vendorID);
bool isPowerVR = IsPowerVR(mPhysicalDeviceProperties.vendorID);
bool isSwiftShader =
IsSwiftshader(mPhysicalDeviceProperties.vendorID, mPhysicalDeviceProperties.deviceID);
if (mLineRasterizationFeatures.bresenhamLines == VK_TRUE)
{
ASSERT(mLineRasterizationFeatures.sType ==
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT);
ANGLE_FEATURE_CONDITION(&mFeatures, bresenhamLineRasterization, true);
}
else
{
// Use OpenGL line rasterization rules if extension not available by default.
// TODO(jmadill): Fix Android support. http://anglebug.com/2830
ANGLE_FEATURE_CONDITION(&mFeatures, basicGLLineRasterization, !IsAndroid() && !isPowerVR);
}
if (mProvokingVertexFeatures.provokingVertexLast == VK_TRUE)
{
ASSERT(mProvokingVertexFeatures.sType ==
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_FEATURES_EXT);
ANGLE_FEATURE_CONDITION(&mFeatures, provokingVertex, true);
}
// http://anglebug.com/2838
ANGLE_FEATURE_CONDITION(&mFeatures, extraCopyBufferRegion, IsWindows() && isIntel);
// http://anglebug.com/3055
ANGLE_FEATURE_CONDITION(&mFeatures, forceCPUPathForCubeMapCopy, IsWindows() && isIntel);
// Work around incorrect NVIDIA point size range clamping.
// http://anglebug.com/2970#c10
// Clamp if driver version is:
// < 430 on Windows
// < 421 otherwise
angle::VersionInfo nvidiaVersion;
if (isNvidia)
{
nvidiaVersion =
angle::ParseNvidiaDriverVersion(this->mPhysicalDeviceProperties.driverVersion);
}
ANGLE_FEATURE_CONDITION(&mFeatures, clampPointSize,
isNvidia && nvidiaVersion.major < uint32_t(IsWindows() ? 430 : 421));
// Work around ineffective compute-graphics barriers on Nexus 5X.
// TODO(syoussefi): Figure out which other vendors and driver versions are affected.
// http://anglebug.com/3019
ANGLE_FEATURE_CONDITION(&mFeatures, flushAfterVertexConversion,
IsAndroid() && IsNexus5X(mPhysicalDeviceProperties.vendorID,
mPhysicalDeviceProperties.deviceID));
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsRenderpass2,
ExtensionFound(VK_KHR_CREATE_RENDERPASS_2_EXTENSION_NAME, deviceExtensionNames));
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsIncrementalPresent,
ExtensionFound(VK_KHR_INCREMENTAL_PRESENT_EXTENSION_NAME, deviceExtensionNames));
#if defined(ANGLE_PLATFORM_ANDROID)
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsAndroidHardwareBuffer,
IsAndroid() &&
ExtensionFound(VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME,
deviceExtensionNames) &&
ExtensionFound(VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME, deviceExtensionNames));
#endif
#if defined(ANGLE_PLATFORM_GGP)
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsGGPFrameToken,
ExtensionFound(VK_GGP_FRAME_TOKEN_EXTENSION_NAME, deviceExtensionNames));
#endif
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsExternalMemoryFd,
ExtensionFound(VK_KHR_EXTERNAL_MEMORY_FD_EXTENSION_NAME, deviceExtensionNames));
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsExternalMemoryFuchsia,
ExtensionFound(VK_FUCHSIA_EXTERNAL_MEMORY_EXTENSION_NAME, deviceExtensionNames));
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsFilteringPrecision,
ExtensionFound(VK_GOOGLE_SAMPLER_FILTERING_PRECISION_EXTENSION_NAME, deviceExtensionNames));
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsExternalFenceCapabilities,
ExtensionFound(VK_KHR_EXTERNAL_FENCE_CAPABILITIES_EXTENSION_NAME, deviceExtensionNames));
ANGLE_FEATURE_CONDITION(&mFeatures, supportsExternalSemaphoreCapabilities,
ExtensionFound(VK_KHR_EXTERNAL_SEMAPHORE_CAPABILITIES_EXTENSION_NAME,
deviceExtensionNames));
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsExternalSemaphoreFd,
ExtensionFound(VK_KHR_EXTERNAL_SEMAPHORE_FD_EXTENSION_NAME, deviceExtensionNames));
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsExternalSemaphoreFuchsia,
ExtensionFound(VK_FUCHSIA_EXTERNAL_SEMAPHORE_EXTENSION_NAME, deviceExtensionNames));
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsExternalFenceFd,
ExtensionFound(VK_KHR_EXTERNAL_FENCE_FD_EXTENSION_NAME, deviceExtensionNames));
#if defined(ANGLE_PLATFORM_ANDROID)
if (mFeatures.supportsExternalFenceCapabilities.enabled &&
mFeatures.supportsExternalSemaphoreCapabilities.enabled)
{
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsAndroidNativeFenceSync,
(mFeatures.supportsExternalFenceFd.enabled &&
FencePropertiesCompatibleWithAndroid(mExternalFenceProperties) &&
mFeatures.supportsExternalSemaphoreFd.enabled &&
SemaphorePropertiesCompatibleWithAndroid(mExternalSemaphoreProperties)));
}
else
{
ANGLE_FEATURE_CONDITION(&mFeatures, supportsAndroidNativeFenceSync,
(mFeatures.supportsExternalFenceFd.enabled &&
mFeatures.supportsExternalSemaphoreFd.enabled));
}
#endif // defined(ANGLE_PLATFORM_ANDROID)
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsShaderStencilExport,
ExtensionFound(VK_EXT_SHADER_STENCIL_EXPORT_EXTENSION_NAME, deviceExtensionNames));
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsRenderPassStoreOpNoneQCOM,
ExtensionFound(VK_QCOM_render_pass_store_ops_EXTENSION_NAME, deviceExtensionNames));
ANGLE_FEATURE_CONDITION(&mFeatures, supportsTransformFeedbackExtension,
mTransformFeedbackFeatures.transformFeedback == VK_TRUE);
ANGLE_FEATURE_CONDITION(&mFeatures, supportsIndexTypeUint8,
mIndexTypeUint8Features.indexTypeUint8 == VK_TRUE);
ANGLE_FEATURE_CONDITION(&mFeatures, supportsDepthStencilResolve,
mFeatures.supportsRenderpass2.enabled &&
mDepthStencilResolveProperties.independentResolveNone == VK_TRUE);
ANGLE_FEATURE_CONDITION(&mFeatures, emulateTransformFeedback,
(!mFeatures.supportsTransformFeedbackExtension.enabled &&
mPhysicalDeviceFeatures.vertexPipelineStoresAndAtomics == VK_TRUE));
ANGLE_FEATURE_CONDITION(&mFeatures, disableFifoPresentMode, IsLinux() && isIntel);
ANGLE_FEATURE_CONDITION(&mFeatures, bindEmptyForUnusedDescriptorSets,
IsAndroid() && isQualcomm);
ANGLE_FEATURE_CONDITION(
&mFeatures, forceOldRewriteStructSamplers,
!mPhysicalDeviceFeatures.shaderSampledImageArrayDynamicIndexing || isQualcomm);
ANGLE_FEATURE_CONDITION(&mFeatures, perFrameWindowSizeQuery,
isIntel || (IsWindows() && isAMD) || IsFuchsia());
// Disabled on AMD/windows due to buggy behavior.
ANGLE_FEATURE_CONDITION(&mFeatures, disallowSeamfulCubeMapEmulation, IsWindows() && isAMD);
ANGLE_FEATURE_CONDITION(&mFeatures, padBuffersToMaxVertexAttribStride, isAMD);
mMaxVertexAttribStride = std::min(static_cast<uint32_t>(gl::limits::kMaxVertexAttribStride),
mPhysicalDeviceProperties.limits.maxVertexInputBindingStride);
ANGLE_FEATURE_CONDITION(&mFeatures, forceD16TexFilter, IsAndroid() && isQualcomm);
ANGLE_FEATURE_CONDITION(&mFeatures, disableFlippingBlitWithCommand, IsAndroid() && isQualcomm);
// Allocation sanitization disabled by default because of a heaveyweight implementation
// that can cause OOM and timeouts.
ANGLE_FEATURE_CONDITION(&mFeatures, allocateNonZeroMemory, false);
ANGLE_FEATURE_CONDITION(&mFeatures, shadowBuffers, true);
ANGLE_FEATURE_CONDITION(&mFeatures, persistentlyMappedBuffers, true);
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsExternalMemoryHost,
ExtensionFound(VK_EXT_EXTERNAL_MEMORY_HOST_EXTENSION_NAME, deviceExtensionNames));
// Android pre-rotation support can be disabled.
ANGLE_FEATURE_CONDITION(&mFeatures, enablePreRotateSurfaces, IsAndroid());
// Currently disable FramebufferVk cache on Apple: http://anglebug.com/4442
ANGLE_FEATURE_CONDITION(&mFeatures, enableFramebufferVkCache, !IsApple());
// Currently disabled by default: http://anglebug.com/3078
ANGLE_FEATURE_CONDITION(
&mFeatures, enablePrecisionQualifiers,
!(IsPixel2(mPhysicalDeviceProperties.vendorID, mPhysicalDeviceProperties.deviceID) &&
(mPhysicalDeviceProperties.driverVersion < kPixel2DriverWithRelaxedPrecision)));
ANGLE_FEATURE_CONDITION(&mFeatures, preferAggregateBarrierCalls, isNvidia || isAMD || isIntel);
// Currently disabled by default: http://anglebug.com/4324
ANGLE_FEATURE_CONDITION(&mFeatures, commandProcessor, false);
// Currently disabled by default: http://anglebug.com/4324
ANGLE_FEATURE_CONDITION(&mFeatures, asynchronousCommandProcessing, false);
ANGLE_FEATURE_CONDITION(&mFeatures, supportsYUVSamplerConversion,
mSamplerYcbcrConversionFeatures.samplerYcbcrConversion != VK_FALSE);
ANGLE_FEATURE_CONDITION(&mFeatures, supportsShaderFloat16,
mShaderFloat16Int8Features.shaderFloat16 == VK_TRUE);
ANGLE_FEATURE_CONDITION(&mFeatures, supportsShaderImageFloat32Atomics,
mShaderAtomicFloatFeature.shaderImageFloat32Atomics == VK_TRUE);
// The compute shader used to generate mipmaps uses a 256-wide workgroup. This path is only
// enabled on devices that meet this minimum requirement. Furthermore,
// VK_IMAGE_USAGE_STORAGE_BIT is detrimental to performance on many platforms, on which this
// path is not enabled. Platforms that are known to have better performance with this path are:
//
// - Nvidia
// - AMD
//
// Additionally, this path is disabled on buggy drivers:
//
// - AMD/Windows: Unfortunately the trybots use ancient AMD cards and drivers.
const uint32_t maxComputeWorkGroupInvocations =
mPhysicalDeviceProperties.limits.maxComputeWorkGroupInvocations;
ANGLE_FEATURE_CONDITION(
&mFeatures, allowGenerateMipmapWithCompute,
maxComputeWorkGroupInvocations >= 256 && (isNvidia || (isAMD && !IsWindows())));
bool isAdreno540 = mPhysicalDeviceProperties.deviceID == angle::kDeviceID_Adreno540;
ANGLE_FEATURE_CONDITION(&mFeatures, forceMaxUniformBufferSize16KB, isQualcomm && isAdreno540);
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsImageFormatList,
(ExtensionFound(VK_KHR_IMAGE_FORMAT_LIST_EXTENSION_NAME, deviceExtensionNames)) && isAMD);
// Feature disabled due to driver bugs:
//
// - Swiftshader on mac: http://anglebug.com/4937
// - Intel on windows: http://anglebug.com/5032
// - AMD on windows: http://crbug.com/1132366
ANGLE_FEATURE_CONDITION(&mFeatures, enableMultisampledRenderToTexture,
!(IsApple() && isSwiftShader) && !(IsWindows() && (isIntel || isAMD)));
// Feature disabled due to driver bugs:
//
// - Swiftshader: http://anglebug.com/5142
// - Qualcomm: http://anglebug.com/5143
ANGLE_FEATURE_CONDITION(
&mFeatures, supportsImageCubeArray,
mPhysicalDeviceFeatures.imageCubeArray == VK_TRUE && !isSwiftShader && !isQualcomm);
ANGLE_FEATURE_CONDITION(&mFeatures, preferredLargeHeapBlockSize4MB, !isQualcomm);
// Defer glFLush call causes manhattan 3.0 perf regression. Let Qualcomm driver opt out from
// this optimization.
ANGLE_FEATURE_CONDITION(&mFeatures, deferFlushUntilEndRenderPass, !isQualcomm);
// Android mistakenly destroys the old swapchain when creating a new one.
ANGLE_FEATURE_CONDITION(&mFeatures, waitIdleBeforeSwapchainRecreation, IsAndroid() && isARM);
ANGLE_FEATURE_CONDITION(
&mFeatures, preferDrawClearOverVkCmdClearAttachments,
IsPixel2(mPhysicalDeviceProperties.vendorID, mPhysicalDeviceProperties.deviceID));
angle::PlatformMethods *platform = ANGLEPlatformCurrent();
platform->overrideFeaturesVk(platform, &mFeatures);
ApplyFeatureOverrides(&mFeatures, displayVk->getState());
}
void RendererVk::initPipelineCacheVkKey()
{
std::ostringstream hashStream("ANGLE Pipeline Cache: ", std::ios_base::ate);
// Add the pipeline cache UUID to make sure the blob cache always gives a compatible pipeline
// cache. It's not particularly necessary to write it as a hex number as done here, so long as
// there is no '\0' in the result.
for (const uint32_t c : mPhysicalDeviceProperties.pipelineCacheUUID)
{
hashStream << std::hex << c;
}
// Add the vendor and device id too for good measure.
hashStream << std::hex << mPhysicalDeviceProperties.vendorID;
hashStream << std::hex << mPhysicalDeviceProperties.deviceID;
const std::string &hashString = hashStream.str();
angle::base::SHA1HashBytes(reinterpret_cast<const unsigned char *>(hashString.c_str()),
hashString.length(), mPipelineCacheVkBlobKey.data());
}
angle::Result RendererVk::initPipelineCache(DisplayVk *display,
vk::PipelineCache *pipelineCache,
bool *success)
{
initPipelineCacheVkKey();
egl::BlobCache::Value initialData;
size_t dataSize = 0;
*success = display->getBlobCache()->get(display->getScratchBuffer(), mPipelineCacheVkBlobKey,
&initialData, &dataSize);
VkPipelineCacheCreateInfo pipelineCacheCreateInfo = {};
pipelineCacheCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
pipelineCacheCreateInfo.flags = 0;
pipelineCacheCreateInfo.initialDataSize = *success ? dataSize : 0;
pipelineCacheCreateInfo.pInitialData = *success ? initialData.data() : nullptr;
ANGLE_VK_TRY(display, pipelineCache->init(mDevice, pipelineCacheCreateInfo));
return angle::Result::Continue;
}
angle::Result RendererVk::getPipelineCache(vk::PipelineCache **pipelineCache)
{
// Note that unless external synchronization is specifically requested the pipeline cache
// is internally synchronized. See VK_EXT_pipeline_creation_cache_control. We might want
// to investigate controlling synchronization manually in ANGLE at some point for perf.
std::lock_guard<std::mutex> lock(mPipelineCacheMutex);
if (mPipelineCacheInitialized)
{
*pipelineCache = &mPipelineCache;
return angle::Result::Continue;
}
// We should now recreate the pipeline cache with the blob cache pipeline data.
vk::PipelineCache pCache;
bool success = false;
ANGLE_TRY(initPipelineCache(vk::GetImpl(mDisplay), &pCache, &success));
if (success)
{
// Merge the newly created pipeline cache into the existing one.
mPipelineCache.merge(mDevice, mPipelineCache.getHandle(), 1, pCache.ptr());
}
mPipelineCacheInitialized = true;
pCache.destroy(mDevice);
*pipelineCache = &mPipelineCache;
return angle::Result::Continue;
}
const gl::Caps &RendererVk::getNativeCaps() const
{
ensureCapsInitialized();
return mNativeCaps;
}
const gl::TextureCapsMap &RendererVk::getNativeTextureCaps() const
{
ensureCapsInitialized();
return mNativeTextureCaps;
}
const gl::Extensions &RendererVk::getNativeExtensions() const
{
ensureCapsInitialized();
return mNativeExtensions;
}
const gl::Limitations &RendererVk::getNativeLimitations() const
{
ensureCapsInitialized();
return mNativeLimitations;
}
angle::Result RendererVk::getPipelineCacheSize(DisplayVk *displayVk, size_t *pipelineCacheSizeOut)
{
VkResult result = mPipelineCache.getCacheData(mDevice, pipelineCacheSizeOut, nullptr);
ANGLE_VK_TRY(displayVk, result);
return angle::Result::Continue;
}
angle::Result RendererVk::syncPipelineCacheVk(DisplayVk *displayVk)
{
// TODO: Synchronize access to the pipeline/blob caches?
ASSERT(mPipelineCache.valid());
if (--mPipelineCacheVkUpdateTimeout > 0)
{
return angle::Result::Continue;
}
if (!mPipelineCacheDirty)
{
mPipelineCacheVkUpdateTimeout = kPipelineCacheVkUpdatePeriod;
return angle::Result::Continue;
}
mPipelineCacheVkUpdateTimeout = kPipelineCacheVkUpdatePeriod;
size_t pipelineCacheSize = 0;
ANGLE_TRY(getPipelineCacheSize(displayVk, &pipelineCacheSize));
// Make sure we will receive enough data to hold the pipeline cache header
// Table 7. Layout for pipeline cache header version VK_PIPELINE_CACHE_HEADER_VERSION_ONE
const size_t kPipelineCacheHeaderSize = 16 + VK_UUID_SIZE;
if (pipelineCacheSize < kPipelineCacheHeaderSize)
{
// No pipeline cache data to read, so return
return angle::Result::Continue;
}
angle::MemoryBuffer *pipelineCacheData = nullptr;
ANGLE_VK_CHECK_ALLOC(displayVk,
displayVk->getScratchBuffer(pipelineCacheSize, &pipelineCacheData));
size_t oldPipelineCacheSize = pipelineCacheSize;
VkResult result =
mPipelineCache.getCacheData(mDevice, &pipelineCacheSize, pipelineCacheData->data());
// We don't need all of the cache data, so just make sure we at least got the header
// Vulkan Spec 9.6. Pipeline Cache
// https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/chap9.html#pipelines-cache
// If pDataSize is less than what is necessary to store this header, nothing will be written to
// pData and zero will be written to pDataSize.
// Any data written to pData is valid and can be provided as the pInitialData member of the
// VkPipelineCacheCreateInfo structure passed to vkCreatePipelineCache.
if (ANGLE_UNLIKELY(pipelineCacheSize < kPipelineCacheHeaderSize))
{
WARN() << "Not enough pipeline cache data read.";
return angle::Result::Continue;
}
else if (ANGLE_UNLIKELY(result == VK_INCOMPLETE))
{
WARN() << "Received VK_INCOMPLETE: Old: " << oldPipelineCacheSize
<< ", New: " << pipelineCacheSize;
}
else
{
ANGLE_VK_TRY(displayVk, result);
}
// If vkGetPipelineCacheData ends up writing fewer bytes than requested, zero out the rest of
// the buffer to avoid leaking garbage memory.
ASSERT(pipelineCacheSize <= pipelineCacheData->size());
if (pipelineCacheSize < pipelineCacheData->size())
{
memset(pipelineCacheData->data() + pipelineCacheSize, 0,
pipelineCacheData->size() - pipelineCacheSize);
}
displayVk->getBlobCache()->putApplication(mPipelineCacheVkBlobKey, *pipelineCacheData);
mPipelineCacheDirty = false;
return angle::Result::Continue;
}
Serial RendererVk::issueShaderSerial()
{
return mShaderSerialFactory.generate();
}
// These functions look at the mandatory format for support, and fallback to querying the device (if
// necessary) to test the availability of the bits.
bool RendererVk::hasLinearImageFormatFeatureBits(VkFormat format,
const VkFormatFeatureFlags featureBits) const
{
return hasFormatFeatureBits<&VkFormatProperties::linearTilingFeatures>(format, featureBits);
}
VkFormatFeatureFlags RendererVk::getImageFormatFeatureBits(
VkFormat format,
const VkFormatFeatureFlags featureBits) const
{
return getFormatFeatureBits<&VkFormatProperties::optimalTilingFeatures>(format, featureBits);
}
bool RendererVk::hasImageFormatFeatureBits(VkFormat format,
const VkFormatFeatureFlags featureBits) const
{
return hasFormatFeatureBits<&VkFormatProperties::optimalTilingFeatures>(format, featureBits);
}
bool RendererVk::hasBufferFormatFeatureBits(VkFormat format,
const VkFormatFeatureFlags featureBits) const
{
return hasFormatFeatureBits<&VkFormatProperties::bufferFeatures>(format, featureBits);
}
void RendererVk::outputVmaStatString()
{
// Output the VMA stats string
// This JSON string can be passed to VmaDumpVis.py to generate a visualization of the
// allocations the VMA has performed.
char *statsString;
mAllocator.buildStatsString(&statsString, true);
INFO() << std::endl << statsString << std::endl;
mAllocator.freeStatsString(statsString);
}
angle::Result RendererVk::queueSubmit(vk::Context *context,
egl::ContextPriority priority,
const VkSubmitInfo &submitInfo,
vk::ResourceUseList *resourceList,
const vk::Fence *fence,
Serial *serialOut)
{
if (kOutputVmaStatsString)
{
outputVmaStatString();
}
ASSERT(!getFeatures().commandProcessor.enabled);
{
std::lock_guard<decltype(mQueueMutex)> lock(mQueueMutex);
std::lock_guard<std::mutex> serialLock(mQueueSerialMutex);
VkFence handle = fence ? fence->getHandle() : VK_NULL_HANDLE;
ANGLE_VK_TRY(context, vkQueueSubmit(mQueues[priority], 1, &submitInfo, handle));
if (resourceList)
{
resourceList->releaseResourceUsesAndUpdateSerials(mCurrentQueueSerial);
}
*serialOut = mCurrentQueueSerial;
mLastSubmittedQueueSerial = mCurrentQueueSerial;
mCurrentQueueSerial = mQueueSerialFactory.generate();
}
ANGLE_TRY(cleanupGarbage(false));
return angle::Result::Continue;
}
angle::Result RendererVk::queueSubmitOneOff(vk::Context *context,
vk::PrimaryCommandBuffer &&primary,
egl::ContextPriority priority,
const vk::Fence *fence,
Serial *serialOut)
{
ANGLE_TRACE_EVENT0("gpu.angle", "RendererVk::queueSubmitOneOff");
if (getFeatures().commandProcessor.enabled)
{
vk::CommandProcessorTask oneOffQueueSubmit;
oneOffQueueSubmit.initOneOffQueueSubmit(primary.getHandle(), priority, fence);
queueCommand(context, &oneOffQueueSubmit);
// TODO: https://issuetracker.google.com/170312581 - should go away with improved fence
// management
if (getFeatures().asynchronousCommandProcessing.enabled)
{
waitForCommandProcessorIdle(context);
}
*serialOut = getLastSubmittedQueueSerial();
}
else
{
VkSubmitInfo submitInfo = {};
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = primary.ptr();
ANGLE_TRY(queueSubmit(context, priority, submitInfo, nullptr, fence, serialOut));
}
mPendingOneOffCommands.push_back({*serialOut, std::move(primary)});
return angle::Result::Continue;
}
angle::Result RendererVk::queueWaitIdle(vk::Context *context, egl::ContextPriority priority)
{
ANGLE_TRACE_EVENT0("gpu.angle", "RendererVk::queueWaitIdle");
if (getFeatures().asynchronousCommandProcessing.enabled)
{
// Wait for all pending commands to get sent before issuing vkQueueWaitIdle
waitForCommandProcessorIdle(context);
}
{
std::lock_guard<decltype(mQueueMutex)> lock(mQueueMutex);
ANGLE_VK_TRY(context, vkQueueWaitIdle(mQueues[priority]));
}
ANGLE_TRY(cleanupGarbage(false));
return angle::Result::Continue;
}
angle::Result RendererVk::deviceWaitIdle(vk::Context *context)
{
ANGLE_TRACE_EVENT0("gpu.angle", "RendererVk::deviceWaitIdle");
if (getFeatures().asynchronousCommandProcessing.enabled)
{
// Wait for all pending commands to get sent before issuing vkQueueWaitIdle
waitForCommandProcessorIdle(context);
}
{
std::lock_guard<decltype(mQueueMutex)> lock(mQueueMutex);
ANGLE_VK_TRY(context, vkDeviceWaitIdle(mDevice));
}
ANGLE_TRY(cleanupGarbage(false));
return angle::Result::Continue;
}
VkResult RendererVk::queuePresent(egl::ContextPriority priority,
const VkPresentInfoKHR &presentInfo)
{
ANGLE_TRACE_EVENT0("gpu.angle", "RendererVk::queuePresent");
ASSERT(!getFeatures().commandProcessor.enabled);
std::lock_guard<decltype(mQueueMutex)> lock(mQueueMutex);
{
ANGLE_TRACE_EVENT0("gpu.angle", "vkQueuePresentKHR");
return vkQueuePresentKHR(mQueues[priority], &presentInfo);
}
}
angle::Result RendererVk::newSharedFence(vk::Context *context,
vk::Shared<vk::Fence> *sharedFenceOut)
{
bool gotRecycledFence = false;
vk::Fence fence;
{
std::lock_guard<std::mutex> lock(mFenceRecyclerMutex);
if (!mFenceRecycler.empty())
{
mFenceRecycler.fetch(&fence);
gotRecycledFence = true;
}
}
if (gotRecycledFence)
{
ANGLE_VK_TRY(context, fence.reset(mDevice));
}
else
{
VkFenceCreateInfo fenceCreateInfo = {};
fenceCreateInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
fenceCreateInfo.flags = 0;
ANGLE_VK_TRY(context, fence.init(mDevice, fenceCreateInfo));
}
sharedFenceOut->assign(mDevice, std::move(fence));
return angle::Result::Continue;
}
// Return a shared fence to be used for the next submit
// Fence may be shared with a Sync object.
// reset indicates that nextSubmitFence should be reset before returning. This ensures that the next
// request for a submit fence gets a fresh fence.
// TODO: https://issuetracker.google.com/issues/170312581 - move to CommandProcessor as part of
// fence ownership follow-up task.
angle::Result RendererVk::getNextSubmitFence(vk::Shared<vk::Fence> *sharedFenceOut, bool reset)
{
std::lock_guard<decltype(mNextSubmitFenceMutex)> lock(mNextSubmitFenceMutex);
if (!mNextSubmitFence.isReferenced())
{
ANGLE_TRY(newSharedFence(&mCommandProcessor, &mNextSubmitFence));
}
ASSERT(!sharedFenceOut->isReferenced());
sharedFenceOut->copy(getDevice(), mNextSubmitFence);
if (reset)
{
resetSharedFence(&mNextSubmitFence);
}
return angle::Result::Continue;
}
template <VkFormatFeatureFlags VkFormatProperties::*features>
VkFormatFeatureFlags RendererVk::getFormatFeatureBits(VkFormat format,
const VkFormatFeatureFlags featureBits) const
{
ASSERT(static_cast<uint32_t>(format) < vk::kNumVkFormats);
VkFormatProperties &deviceProperties = mFormatProperties[format];
if (deviceProperties.bufferFeatures == kInvalidFormatFeatureFlags)
{
// If we don't have the actual device features, see if the requested features are mandatory.
// If so, there's no need to query the device.
const VkFormatProperties &mandatoryProperties = vk::GetMandatoryFormatSupport(format);
if (IsMaskFlagSet(mandatoryProperties.*features, featureBits))
{
return featureBits;
}
// Otherwise query the format features and cache it.
vkGetPhysicalDeviceFormatProperties(mPhysicalDevice, format, &deviceProperties);
// Workaround for some Android devices that don't indicate filtering
// support on D16_UNORM and they should.
if (mFeatures.forceD16TexFilter.enabled && format == VK_FORMAT_D16_UNORM)
{
deviceProperties.*features |= VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT;
}
}
return deviceProperties.*features & featureBits;
}
template <VkFormatFeatureFlags VkFormatProperties::*features>
bool RendererVk::hasFormatFeatureBits(VkFormat format, const VkFormatFeatureFlags featureBits) const
{
return IsMaskFlagSet(getFormatFeatureBits<features>(format, featureBits), featureBits);
}
angle::Result RendererVk::cleanupGarbage(bool block)
{
Serial lastCompletedQueueSerial = getLastCompletedQueueSerial();
std::lock_guard<std::mutex> lock(mGarbageMutex);
for (auto garbageIter = mSharedGarbage.begin(); garbageIter != mSharedGarbage.end();)
{
// Possibly 'counter' should be always zero when we add the object to garbage.
vk::SharedGarbage &garbage = *garbageIter;
if (garbage.destroyIfComplete(this, lastCompletedQueueSerial))
{
garbageIter = mSharedGarbage.erase(garbageIter);
}
else
{
garbageIter++;
}
}
return angle::Result::Continue;
}
void RendererVk::onNewValidationMessage(const std::string &message)
{
mLastValidationMessage = message;
++mValidationMessageCount;
}
std::string RendererVk::getAndClearLastValidationMessage(uint32_t *countSinceLastClear)
{
*countSinceLastClear = mValidationMessageCount;
mValidationMessageCount = 0;
return std::move(mLastValidationMessage);
}
uint64_t RendererVk::getMaxFenceWaitTimeNs() const
{
constexpr uint64_t kMaxFenceWaitTimeNs = 120'000'000'000llu;
return kMaxFenceWaitTimeNs;
}
void RendererVk::onCompletedSerial(Serial serial)
{
std::lock_guard<std::mutex> lock(mQueueSerialMutex);
if (serial > mLastCompletedQueueSerial)
{
mLastCompletedQueueSerial = serial;
}
}
void RendererVk::setGlobalDebugAnnotator()
{
// If the vkCmd*DebugUtilsLabelEXT functions exist, and if the kEnableDebugMarkersVarName
// environment variable is set, initialize DebugAnnotatorVk to log the OpenGL ES commands that
// are used, for debuggers (e.g. AGI). Otherwise, uninitialize the global DebugAnnotator
// pointer so that applications run full speed.
bool enableDebugAnnotatorVk = false;
if (vkCmdBeginDebugUtilsLabelEXT)
{
std::string enabled = angle::GetEnvironmentVarOrAndroidProperty(
kEnableDebugMarkersVarName, kEnableDebugMarkersPropertyName);
if (!enabled.empty() && enabled.compare("0") != 0)
{
enableDebugAnnotatorVk = true;
}
}
#if defined(ANGLE_ENABLE_TRACE_ANDROID_LOGCAT)
// This will log all API commands to Android's logcat as well as create Vulkan debug markers.
enableDebugAnnotatorVk = true;
#endif
if (enableDebugAnnotatorVk)
{
// Install DebugAnnotatorVk so that GLES API commands will generate Vulkan debug markers
gl::InitializeDebugAnnotations(&mAnnotator);
}
else
{
// Install LoggingAnnotator so that other debug functionality will still work (e.g. Vulkan
// validation errors will cause dEQP tests to fail).
mDisplay->setGlobalDebugAnnotator();
}
}
void RendererVk::reloadVolkIfNeeded() const
{
#if defined(ANGLE_SHARED_LIBVULKAN)
if ((mInstance != VK_NULL_HANDLE) && (volkGetLoadedInstance() != mInstance))
{
volkLoadInstance(mInstance);
}
if ((mDevice != VK_NULL_HANDLE) && (volkGetLoadedDevice() != mDevice))
{
volkLoadDevice(mDevice);
}
#endif // defined(ANGLE_SHARED_LIBVULKAN)
}
angle::Result RendererVk::getCommandBufferOneOff(vk::Context *context,
vk::PrimaryCommandBuffer *commandBufferOut)
{
if (!mOneOffCommandPool.valid())
{
VkCommandPoolCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
createInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
ANGLE_VK_TRY(context, mOneOffCommandPool.init(mDevice, createInfo));
}
if (!mPendingOneOffCommands.empty() &&
mPendingOneOffCommands.front().serial < getLastCompletedQueueSerial())
{
*commandBufferOut = std::move(mPendingOneOffCommands.front().commandBuffer);
mPendingOneOffCommands.pop_front();
ANGLE_VK_TRY(context, commandBufferOut->reset());
}
else
{
VkCommandBufferAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
allocInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
allocInfo.commandBufferCount = 1;
allocInfo.commandPool = mOneOffCommandPool.getHandle();
ANGLE_VK_TRY(context, commandBufferOut->init(context->getDevice(), allocInfo));
}
VkCommandBufferBeginInfo beginInfo = {};
beginInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
beginInfo.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT;
beginInfo.pInheritanceInfo = nullptr;
ANGLE_VK_TRY(context, commandBufferOut->begin(beginInfo));
return angle::Result::Continue;
}
} // namespace rx