| /* |
| Copyright (C) 2012 Nokia Corporation and/or its subsidiary(-ies) |
| Copyright (C) 2012 Igalia S.L. |
| Copyright (C) 2011 Google Inc. All rights reserved. |
| |
| This library is free software; you can redistribute it and/or |
| modify it under the terms of the GNU Library General Public |
| License as published by the Free Software Foundation; either |
| version 2 of the License, or (at your option) any later version. |
| |
| This library is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Library General Public License for more details. |
| |
| You should have received a copy of the GNU Library General Public License |
| along with this library; see the file COPYING.LIB. If not, write to |
| the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, |
| Boston, MA 02110-1301, USA. |
| */ |
| |
| #include "config.h" |
| #include "TextureMapperShaderProgram.h" |
| |
| #if USE(TEXTURE_MAPPER) |
| #include "LengthFunctions.h" |
| #include "Logging.h" |
| #include "TextureMapperGL.h" |
| |
| #include <wtf/text/StringBuilder.h> |
| |
| #define STRINGIFY(...) #__VA_ARGS__ |
| |
| namespace WebCore { |
| |
| static inline bool compositingLogEnabled() |
| { |
| #if !LOG_DISABLED |
| return LogCompositing.state == WTFLogChannelOn; |
| #else |
| return false; |
| #endif |
| } |
| |
| TextureMapperShaderProgram::TextureMapperShaderProgram(PassRefPtr<GraphicsContext3D> context, const String& vertex, const String& fragment) |
| : m_context(context) |
| { |
| m_vertexShader = m_context->createShader(GraphicsContext3D::VERTEX_SHADER); |
| m_fragmentShader = m_context->createShader(GraphicsContext3D::FRAGMENT_SHADER); |
| m_context->shaderSource(m_vertexShader, vertex); |
| m_context->shaderSource(m_fragmentShader, fragment); |
| m_id = m_context->createProgram(); |
| m_context->compileShader(m_vertexShader); |
| m_context->compileShader(m_fragmentShader); |
| m_context->attachShader(m_id, m_vertexShader); |
| m_context->attachShader(m_id, m_fragmentShader); |
| m_context->linkProgram(m_id); |
| |
| if (!compositingLogEnabled()) |
| return; |
| |
| if (m_context->getError() == GraphicsContext3D::NO_ERROR) |
| return; |
| |
| String log = m_context->getShaderInfoLog(m_vertexShader); |
| LOG(Compositing, "Vertex shader log: %s\n", log.utf8().data()); |
| log = m_context->getShaderInfoLog(m_fragmentShader); |
| LOG(Compositing, "Fragment shader log: %s\n", log.utf8().data()); |
| log = m_context->getProgramInfoLog(m_id); |
| LOG(Compositing, "Program log: %s\n", log.utf8().data()); |
| } |
| |
| void TextureMapperShaderProgram::setMatrix(GC3Duint location, const TransformationMatrix& matrix) |
| { |
| GC3Dfloat matrixAsFloats[] = { |
| GC3Dfloat(matrix.m11()), GC3Dfloat(matrix.m12()), GC3Dfloat(matrix.m13()), GC3Dfloat(matrix.m14()), |
| GC3Dfloat(matrix.m21()), GC3Dfloat(matrix.m22()), GC3Dfloat(matrix.m23()), GC3Dfloat(matrix.m24()), |
| GC3Dfloat(matrix.m31()), GC3Dfloat(matrix.m32()), GC3Dfloat(matrix.m33()), GC3Dfloat(matrix.m34()), |
| GC3Dfloat(matrix.m41()), GC3Dfloat(matrix.m42()), GC3Dfloat(matrix.m43()), GC3Dfloat(matrix.m44()) |
| }; |
| |
| m_context->uniformMatrix4fv(location, 1, false, matrixAsFloats); |
| } |
| |
| GC3Duint TextureMapperShaderProgram::getLocation(const AtomicString& name, VariableType type) |
| { |
| HashMap<AtomicString, GC3Duint>::iterator it = m_variables.find(name); |
| if (it != m_variables.end()) |
| return it->value; |
| |
| GC3Duint location = 0; |
| switch (type) { |
| case UniformVariable: |
| location = m_context->getUniformLocation(m_id, name); |
| break; |
| case AttribVariable: |
| location = m_context->getAttribLocation(m_id, name); |
| break; |
| default: |
| ASSERT_NOT_REACHED(); |
| break; |
| } |
| |
| m_variables.add(name, location); |
| return location; |
| } |
| |
| TextureMapperShaderProgram::~TextureMapperShaderProgram() |
| { |
| Platform3DObject programID = m_id; |
| if (!programID) |
| return; |
| |
| m_context->detachShader(programID, m_vertexShader); |
| m_context->deleteShader(m_vertexShader); |
| m_context->detachShader(programID, m_fragmentShader); |
| m_context->deleteShader(m_fragmentShader); |
| m_context->deleteProgram(programID); |
| } |
| |
| #define GLSL_DIRECTIVE(...) "#"#__VA_ARGS__"\n" |
| static const char* vertexTemplate = |
| STRINGIFY( |
| attribute vec4 a_vertex; |
| uniform mat4 u_modelViewMatrix; |
| uniform mat4 u_projectionMatrix; |
| uniform mat4 u_textureSpaceMatrix; |
| |
| varying vec2 v_texCoord; |
| varying vec2 v_transformedTexCoord; |
| varying float v_antialias; |
| |
| void noop(inout vec2 dummyParameter) { } |
| |
| vec4 toViewportSpace(vec2 pos) { return vec4(pos, 0., 1.) * u_modelViewMatrix; } |
| |
| // This function relies on the assumption that we get edge triangles with control points, |
| // a control point being the nearest point to the coordinate that is on the edge. |
| void applyAntialiasing(inout vec2 position) |
| { |
| // We count on the fact that quad passed in is always a unit rect, |
| // and the transformation matrix applies the real rect. |
| const vec2 center = vec2(0.5, 0.5); |
| const float antialiasInflationDistance = 1.; |
| |
| // We pass the control point as the zw coordinates of the vertex. |
| // The control point is the point on the edge closest to the current position. |
| // The control point is used to compute the antialias value. |
| vec2 controlPoint = a_vertex.zw; |
| |
| // First we calculate the distance in viewport space. |
| vec4 centerInViewportCoordinates = toViewportSpace(center); |
| vec4 controlPointInViewportCoordinates = toViewportSpace(controlPoint); |
| float viewportSpaceDistance = distance(centerInViewportCoordinates, controlPointInViewportCoordinates); |
| |
| // We add the inflation distance to the computed distance, and compute the ratio. |
| float inflationRatio = (viewportSpaceDistance + antialiasInflationDistance) / viewportSpaceDistance; |
| |
| // v_antialias needs to be 0 for the outer edge and 1. for the inner edge. |
| // Since the controlPoint is equal to the position in the edge vertices, the value is always 0 for those. |
| // For the center point, the distance is always 0.5, so we normalize to 1. by multiplying by 2. |
| // By multplying by inflationRatio and dividing by (inflationRatio - 1), |
| // We make sure that the varying interpolates between 0 (outer edge), 1 (inner edge) and n > 1 (center). |
| v_antialias = distance(controlPoint, position) * 2. * inflationRatio / (inflationRatio - 1.); |
| |
| // Now inflate the actual position. By using this formula instead of inflating position directly, |
| // we ensure that the center vertex is never inflated. |
| position = center + (position - center) * inflationRatio; |
| } |
| |
| void main(void) |
| { |
| vec2 position = a_vertex.xy; |
| applyAntialiasingIfNeeded(position); |
| |
| v_texCoord = position; |
| vec4 clampedPosition = clamp(vec4(position, 0., 1.), 0., 1.); |
| v_transformedTexCoord = (u_textureSpaceMatrix * clampedPosition).xy; |
| gl_Position = u_projectionMatrix * u_modelViewMatrix * vec4(position, 0., 1.); |
| } |
| ); |
| |
| #define RECT_TEXTURE_DIRECTIVE \ |
| GLSL_DIRECTIVE(ifdef ENABLE_Rect) \ |
| GLSL_DIRECTIVE(define SamplerType sampler2DRect) \ |
| GLSL_DIRECTIVE(define SamplerFunction texture2DRect) \ |
| GLSL_DIRECTIVE(else) \ |
| GLSL_DIRECTIVE(define SamplerType sampler2D) \ |
| GLSL_DIRECTIVE(define SamplerFunction texture2D) \ |
| GLSL_DIRECTIVE(endif) |
| |
| #define ANTIALIASING_TEX_COORD_DIRECTIVE \ |
| GLSL_DIRECTIVE(if defined(ENABLE_Antialiasing) && defined(ENABLE_Texture)) \ |
| GLSL_DIRECTIVE(define transformTexCoord fragmentTransformTexCoord) \ |
| GLSL_DIRECTIVE(else) \ |
| GLSL_DIRECTIVE(define transformTexCoord vertexTransformTexCoord) \ |
| GLSL_DIRECTIVE(endif) |
| |
| #define ENABLE_APPLIER(Name) "#define ENABLE_"#Name"\n#define apply"#Name"IfNeeded apply"#Name"\n" |
| #define DISABLE_APPLIER(Name) "#define apply"#Name"IfNeeded noop\n" |
| #define BLUR_CONSTANTS \ |
| GLSL_DIRECTIVE(define GAUSSIAN_KERNEL_HALF_WIDTH 11) \ |
| GLSL_DIRECTIVE(define GAUSSIAN_KERNEL_STEP 0.2) |
| |
| |
| static const char* fragmentTemplate = |
| RECT_TEXTURE_DIRECTIVE |
| ANTIALIASING_TEX_COORD_DIRECTIVE |
| BLUR_CONSTANTS |
| STRINGIFY( |
| precision mediump float; |
| uniform SamplerType s_sampler; |
| uniform sampler2D s_contentTexture; |
| uniform float u_opacity; |
| varying float v_antialias; |
| varying vec2 v_texCoord; |
| varying vec2 v_transformedTexCoord; |
| uniform float u_filterAmount; |
| uniform vec2 u_blurRadius; |
| uniform vec2 u_shadowOffset; |
| uniform vec4 u_color; |
| uniform float u_gaussianKernel[GAUSSIAN_KERNEL_HALF_WIDTH]; |
| uniform mat4 u_textureSpaceMatrix; |
| |
| void noop(inout vec4 dummyParameter) { } |
| void noop(inout vec4 dummyParameter, vec2 texCoord) { } |
| |
| float antialias() { return smoothstep(0., 1., v_antialias); } |
| |
| vec2 fragmentTransformTexCoord() |
| { |
| vec4 clampedPosition = clamp(vec4(v_texCoord, 0., 1.), 0., 1.); |
| return (u_textureSpaceMatrix * clampedPosition).xy; |
| } |
| |
| vec2 vertexTransformTexCoord() { return v_transformedTexCoord; } |
| |
| void applyTexture(inout vec4 color, vec2 texCoord) { color = SamplerFunction(s_sampler, texCoord); } |
| void applyOpacity(inout vec4 color) { color *= u_opacity; } |
| void applyAntialiasing(inout vec4 color) { color *= antialias(); } |
| |
| void applyGrayscaleFilter(inout vec4 color) |
| { |
| float amount = 1.0 - u_filterAmount; |
| color = vec4((0.2126 + 0.7874 * amount) * color.r + (0.7152 - 0.7152 * amount) * color.g + (0.0722 - 0.0722 * amount) * color.b, |
| (0.2126 - 0.2126 * amount) * color.r + (0.7152 + 0.2848 * amount) * color.g + (0.0722 - 0.0722 * amount) * color.b, |
| (0.2126 - 0.2126 * amount) * color.r + (0.7152 - 0.7152 * amount) * color.g + (0.0722 + 0.9278 * amount) * color.b, |
| color.a); |
| } |
| |
| void applySepiaFilter(inout vec4 color) |
| { |
| float amount = 1.0 - u_filterAmount; |
| color = vec4((0.393 + 0.607 * amount) * color.r + (0.769 - 0.769 * amount) * color.g + (0.189 - 0.189 * amount) * color.b, |
| (0.349 - 0.349 * amount) * color.r + (0.686 + 0.314 * amount) * color.g + (0.168 - 0.168 * amount) * color.b, |
| (0.272 - 0.272 * amount) * color.r + (0.534 - 0.534 * amount) * color.g + (0.131 + 0.869 * amount) * color.b, |
| color.a); |
| } |
| |
| void applySaturateFilter(inout vec4 color) |
| { |
| color = vec4((0.213 + 0.787 * u_filterAmount) * color.r + (0.715 - 0.715 * u_filterAmount) * color.g + (0.072 - 0.072 * u_filterAmount) * color.b, |
| (0.213 - 0.213 * u_filterAmount) * color.r + (0.715 + 0.285 * u_filterAmount) * color.g + (0.072 - 0.072 * u_filterAmount) * color.b, |
| (0.213 - 0.213 * u_filterAmount) * color.r + (0.715 - 0.715 * u_filterAmount) * color.g + (0.072 + 0.928 * u_filterAmount) * color.b, |
| color.a); |
| } |
| |
| void applyHueRotateFilter(inout vec4 color) |
| { |
| float pi = 3.14159265358979323846; |
| float c = cos(u_filterAmount * pi / 180.0); |
| float s = sin(u_filterAmount * pi / 180.0); |
| color = vec4(color.r * (0.213 + c * 0.787 - s * 0.213) + color.g * (0.715 - c * 0.715 - s * 0.715) + color.b * (0.072 - c * 0.072 + s * 0.928), |
| color.r * (0.213 - c * 0.213 + s * 0.143) + color.g * (0.715 + c * 0.285 + s * 0.140) + color.b * (0.072 - c * 0.072 - s * 0.283), |
| color.r * (0.213 - c * 0.213 - s * 0.787) + color.g * (0.715 - c * 0.715 + s * 0.715) + color.b * (0.072 + c * 0.928 + s * 0.072), |
| color.a); |
| } |
| |
| float invert(float n) { return (1.0 - n) * u_filterAmount + n * (1.0 - u_filterAmount); } |
| void applyInvertFilter(inout vec4 color) |
| { |
| color = vec4(invert(color.r), invert(color.g), invert(color.b), color.a); |
| } |
| |
| void applyBrightnessFilter(inout vec4 color) |
| { |
| color = vec4(color.rgb * u_filterAmount, color.a); |
| } |
| |
| float contrast(float n) { return (n - 0.5) * u_filterAmount + 0.5; } |
| void applyContrastFilter(inout vec4 color) |
| { |
| color = vec4(contrast(color.r), contrast(color.g), contrast(color.b), color.a); |
| } |
| |
| void applyOpacityFilter(inout vec4 color) |
| { |
| color = vec4(color.r, color.g, color.b, color.a * u_filterAmount); |
| } |
| |
| vec4 sampleColorAtRadius(float radius, vec2 texCoord) |
| { |
| vec2 coord = texCoord + radius * u_blurRadius; |
| return SamplerFunction(s_sampler, coord) * float(coord.x > 0. && coord.y > 0. && coord.x < 1. && coord.y < 1.); |
| } |
| |
| float sampleAlphaAtRadius(float radius, vec2 texCoord) |
| { |
| vec2 coord = texCoord - u_shadowOffset + radius * u_blurRadius; |
| return SamplerFunction(s_sampler, coord).a * float(coord.x > 0. && coord.y > 0. && coord.x < 1. && coord.y < 1.); |
| } |
| |
| void applyBlurFilter(inout vec4 color, vec2 texCoord) |
| { |
| vec4 total = sampleColorAtRadius(0., texCoord) * u_gaussianKernel[0]; |
| for (int i = 1; i < GAUSSIAN_KERNEL_HALF_WIDTH; i++) { |
| total += sampleColorAtRadius(float(i) * GAUSSIAN_KERNEL_STEP, texCoord) * u_gaussianKernel[i]; |
| total += sampleColorAtRadius(float(-1 * i) * GAUSSIAN_KERNEL_STEP, texCoord) * u_gaussianKernel[i]; |
| } |
| |
| color = total; |
| } |
| |
| void applyAlphaBlur(inout vec4 color, vec2 texCoord) |
| { |
| float total = sampleAlphaAtRadius(0., texCoord) * u_gaussianKernel[0]; |
| for (int i = 1; i < GAUSSIAN_KERNEL_HALF_WIDTH; i++) { |
| total += sampleAlphaAtRadius(float(i) * GAUSSIAN_KERNEL_STEP, texCoord) * u_gaussianKernel[i]; |
| total += sampleAlphaAtRadius(float(-1 * i) * GAUSSIAN_KERNEL_STEP, texCoord) * u_gaussianKernel[i]; |
| } |
| |
| color *= total; |
| } |
| |
| vec4 sourceOver(vec4 src, vec4 dst) { return src + dst * (1. - dst.a); } |
| |
| void applyContentTexture(inout vec4 color, vec2 texCoord) |
| { |
| vec4 contentColor = texture2D(s_contentTexture, texCoord); |
| color = sourceOver(contentColor, color); |
| } |
| |
| void applySolidColor(inout vec4 color) { color *= u_color; } |
| |
| void main(void) |
| { |
| vec4 color = vec4(1., 1., 1., 1.); |
| vec2 texCoord = transformTexCoord(); |
| applyTextureIfNeeded(color, texCoord); |
| applySolidColorIfNeeded(color); |
| applyAntialiasingIfNeeded(color); |
| applyOpacityIfNeeded(color); |
| applyGrayscaleFilterIfNeeded(color); |
| applySepiaFilterIfNeeded(color); |
| applySaturateFilterIfNeeded(color); |
| applyHueRotateFilterIfNeeded(color); |
| applyInvertFilterIfNeeded(color); |
| applyBrightnessFilterIfNeeded(color); |
| applyContrastFilterIfNeeded(color); |
| applyOpacityFilterIfNeeded(color); |
| applyBlurFilterIfNeeded(color, texCoord); |
| applyAlphaBlurIfNeeded(color, texCoord); |
| applyContentTextureIfNeeded(color, texCoord); |
| gl_FragColor = color; |
| } |
| ); |
| |
| PassRefPtr<TextureMapperShaderProgram> TextureMapperShaderProgram::create(PassRefPtr<GraphicsContext3D> context, TextureMapperShaderProgram::Options options) |
| { |
| StringBuilder shaderBuilder; |
| #define SET_APPLIER_FROM_OPTIONS(Applier) \ |
| shaderBuilder.append(\ |
| (options & TextureMapperShaderProgram::Applier) ? ENABLE_APPLIER(Applier) : DISABLE_APPLIER(Applier)) |
| |
| SET_APPLIER_FROM_OPTIONS(Texture); |
| SET_APPLIER_FROM_OPTIONS(Rect); |
| SET_APPLIER_FROM_OPTIONS(SolidColor); |
| SET_APPLIER_FROM_OPTIONS(Opacity); |
| SET_APPLIER_FROM_OPTIONS(Antialiasing); |
| SET_APPLIER_FROM_OPTIONS(GrayscaleFilter); |
| SET_APPLIER_FROM_OPTIONS(SepiaFilter); |
| SET_APPLIER_FROM_OPTIONS(SaturateFilter); |
| SET_APPLIER_FROM_OPTIONS(HueRotateFilter); |
| SET_APPLIER_FROM_OPTIONS(BrightnessFilter); |
| SET_APPLIER_FROM_OPTIONS(ContrastFilter); |
| SET_APPLIER_FROM_OPTIONS(InvertFilter); |
| SET_APPLIER_FROM_OPTIONS(OpacityFilter); |
| SET_APPLIER_FROM_OPTIONS(BlurFilter); |
| SET_APPLIER_FROM_OPTIONS(AlphaBlur); |
| SET_APPLIER_FROM_OPTIONS(ContentTexture); |
| StringBuilder vertexBuilder; |
| vertexBuilder.append(shaderBuilder.toString()); |
| vertexBuilder.append(vertexTemplate); |
| shaderBuilder.append(fragmentTemplate); |
| |
| String vertexSource = vertexBuilder.toString(); |
| String fragmentSource = shaderBuilder.toString(); |
| |
| return adoptRef(new TextureMapperShaderProgram(context, vertexSource, fragmentSource)); |
| } |
| |
| } |
| #endif |