| /* |
| * Copyright (C) 1999-2000 Harri Porten (porten@kde.org) |
| * Copyright (C) 2001 Peter Kelly (pmk@post.com) |
| * Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2011 Apple Inc. All rights reserved. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
| * |
| */ |
| |
| #ifndef MarkedBlock_h |
| #define MarkedBlock_h |
| |
| #include "HeapOperation.h" |
| #include "IterationStatus.h" |
| #include "WeakSet.h" |
| #include <wtf/Bitmap.h> |
| #include <wtf/DataLog.h> |
| #include <wtf/DoublyLinkedList.h> |
| #include <wtf/HashFunctions.h> |
| #include <wtf/StdLibExtras.h> |
| |
| // Set to log state transitions of blocks. |
| #define HEAP_LOG_BLOCK_STATE_TRANSITIONS 0 |
| |
| #if HEAP_LOG_BLOCK_STATE_TRANSITIONS |
| #define HEAP_LOG_BLOCK_STATE_TRANSITION(block) do { \ |
| dataLogF( \ |
| "%s:%d %s: block %s = %p, %d\n", \ |
| __FILE__, __LINE__, __FUNCTION__, \ |
| #block, (block), (block)->m_state); \ |
| } while (false) |
| #else |
| #define HEAP_LOG_BLOCK_STATE_TRANSITION(block) ((void)0) |
| #endif |
| |
| namespace JSC { |
| |
| class Heap; |
| class JSCell; |
| class MarkedAllocator; |
| |
| typedef uintptr_t Bits; |
| |
| bool isZapped(const JSCell*); |
| |
| // A marked block is a page-aligned container for heap-allocated objects. |
| // Objects are allocated within cells of the marked block. For a given |
| // marked block, all cells have the same size. Objects smaller than the |
| // cell size may be allocated in the marked block, in which case the |
| // allocation suffers from internal fragmentation: wasted space whose |
| // size is equal to the difference between the cell size and the object |
| // size. |
| |
| class MarkedBlock : public DoublyLinkedListNode<MarkedBlock> { |
| friend class WTF::DoublyLinkedListNode<MarkedBlock>; |
| friend class LLIntOffsetsExtractor; |
| friend struct VerifyMarkedOrRetired; |
| public: |
| static const size_t atomSize = 16; // bytes |
| static const size_t blockSize = 16 * KB; |
| static const size_t blockMask = ~(blockSize - 1); // blockSize must be a power of two. |
| |
| static const size_t atomsPerBlock = blockSize / atomSize; |
| |
| static_assert(!(MarkedBlock::atomSize & (MarkedBlock::atomSize - 1)), "MarkedBlock::atomSize must be a power of two."); |
| static_assert(!(MarkedBlock::blockSize & (MarkedBlock::blockSize - 1)), "MarkedBlock::blockSize must be a power of two."); |
| |
| struct FreeCell { |
| FreeCell* next; |
| }; |
| |
| struct FreeList { |
| FreeCell* head; |
| size_t bytes; |
| |
| FreeList(); |
| FreeList(FreeCell*, size_t); |
| }; |
| |
| struct VoidFunctor { |
| typedef void ReturnType; |
| void returnValue() { } |
| }; |
| |
| class CountFunctor { |
| public: |
| typedef size_t ReturnType; |
| |
| CountFunctor() : m_count(0) { } |
| void count(size_t count) { m_count += count; } |
| ReturnType returnValue() { return m_count; } |
| |
| private: |
| ReturnType m_count; |
| }; |
| |
| static MarkedBlock* create(Heap&, MarkedAllocator*, size_t capacity, size_t cellSize, bool needsDestruction); |
| static void destroy(Heap&, MarkedBlock*); |
| |
| static bool isAtomAligned(const void*); |
| static MarkedBlock* blockFor(const void*); |
| static size_t firstAtom(); |
| |
| void lastChanceToFinalize(); |
| |
| MarkedAllocator* allocator() const; |
| Heap* heap() const; |
| VM* vm() const; |
| WeakSet& weakSet(); |
| |
| enum SweepMode { SweepOnly, SweepToFreeList }; |
| FreeList sweep(SweepMode = SweepOnly); |
| |
| void shrink(); |
| |
| void visitWeakSet(HeapRootVisitor&); |
| void reapWeakSet(); |
| |
| // While allocating from a free list, MarkedBlock temporarily has bogus |
| // cell liveness data. To restore accurate cell liveness data, call one |
| // of these functions: |
| void didConsumeFreeList(); // Call this once you've allocated all the items in the free list. |
| void stopAllocating(const FreeList&); |
| FreeList resumeAllocating(); // Call this if you canonicalized a block for some non-collection related purpose. |
| |
| // Returns true if the "newly allocated" bitmap was non-null |
| // and was successfully cleared and false otherwise. |
| bool clearNewlyAllocated(); |
| void clearMarks(); |
| template <HeapOperation collectionType> |
| void clearMarksWithCollectionType(); |
| |
| size_t markCount(); |
| bool isEmpty(); |
| |
| size_t cellSize(); |
| bool needsDestruction() const; |
| |
| size_t size(); |
| size_t capacity(); |
| |
| bool isMarked(const void*); |
| bool testAndSetMarked(const void*); |
| bool isLive(const JSCell*); |
| bool isLiveCell(const void*); |
| bool isMarkedOrNewlyAllocated(const JSCell*); |
| void setMarked(const void*); |
| void clearMarked(const void*); |
| |
| bool isNewlyAllocated(const void*); |
| void setNewlyAllocated(const void*); |
| void clearNewlyAllocated(const void*); |
| |
| bool isAllocated() const; |
| bool isMarkedOrRetired() const; |
| bool needsSweeping() const; |
| void didRetireBlock(const FreeList&); |
| void willRemoveBlock(); |
| |
| template <typename Functor> IterationStatus forEachCell(Functor&); |
| template <typename Functor> IterationStatus forEachLiveCell(Functor&); |
| template <typename Functor> IterationStatus forEachDeadCell(Functor&); |
| |
| private: |
| static const size_t atomAlignmentMask = atomSize - 1; |
| |
| enum BlockState { New, FreeListed, Allocated, Marked, Retired }; |
| template<bool callDestructors> FreeList sweepHelper(SweepMode = SweepOnly); |
| |
| typedef char Atom[atomSize]; |
| |
| MarkedBlock(MarkedAllocator*, size_t capacity, size_t cellSize, bool needsDestruction); |
| Atom* atoms(); |
| size_t atomNumber(const void*); |
| void callDestructor(JSCell*); |
| template<BlockState, SweepMode, bool callDestructors> FreeList specializedSweep(); |
| |
| MarkedBlock* m_prev; |
| MarkedBlock* m_next; |
| |
| size_t m_atomsPerCell; |
| size_t m_endAtom; // This is a fuzzy end. Always test for < m_endAtom. |
| WTF::Bitmap<atomsPerBlock, WTF::BitmapAtomic, uint8_t> m_marks; |
| std::unique_ptr<WTF::Bitmap<atomsPerBlock>> m_newlyAllocated; |
| |
| size_t m_capacity; |
| bool m_needsDestruction; |
| MarkedAllocator* m_allocator; |
| BlockState m_state; |
| WeakSet m_weakSet; |
| }; |
| |
| inline MarkedBlock::FreeList::FreeList() |
| : head(0) |
| , bytes(0) |
| { |
| } |
| |
| inline MarkedBlock::FreeList::FreeList(FreeCell* head, size_t bytes) |
| : head(head) |
| , bytes(bytes) |
| { |
| } |
| |
| inline size_t MarkedBlock::firstAtom() |
| { |
| return WTF::roundUpToMultipleOf<atomSize>(sizeof(MarkedBlock)) / atomSize; |
| } |
| |
| inline MarkedBlock::Atom* MarkedBlock::atoms() |
| { |
| return reinterpret_cast<Atom*>(this); |
| } |
| |
| inline bool MarkedBlock::isAtomAligned(const void* p) |
| { |
| return !(reinterpret_cast<Bits>(p) & atomAlignmentMask); |
| } |
| |
| inline MarkedBlock* MarkedBlock::blockFor(const void* p) |
| { |
| return reinterpret_cast<MarkedBlock*>(reinterpret_cast<Bits>(p) & blockMask); |
| } |
| |
| inline MarkedAllocator* MarkedBlock::allocator() const |
| { |
| return m_allocator; |
| } |
| |
| inline Heap* MarkedBlock::heap() const |
| { |
| return m_weakSet.heap(); |
| } |
| |
| inline VM* MarkedBlock::vm() const |
| { |
| return m_weakSet.vm(); |
| } |
| |
| inline WeakSet& MarkedBlock::weakSet() |
| { |
| return m_weakSet; |
| } |
| |
| inline void MarkedBlock::shrink() |
| { |
| m_weakSet.shrink(); |
| } |
| |
| inline void MarkedBlock::visitWeakSet(HeapRootVisitor& heapRootVisitor) |
| { |
| m_weakSet.visit(heapRootVisitor); |
| } |
| |
| inline void MarkedBlock::reapWeakSet() |
| { |
| m_weakSet.reap(); |
| } |
| |
| inline void MarkedBlock::willRemoveBlock() |
| { |
| ASSERT(m_state != Retired); |
| } |
| |
| inline void MarkedBlock::didConsumeFreeList() |
| { |
| HEAP_LOG_BLOCK_STATE_TRANSITION(this); |
| |
| ASSERT(m_state == FreeListed); |
| m_state = Allocated; |
| } |
| |
| inline size_t MarkedBlock::markCount() |
| { |
| return m_marks.count(); |
| } |
| |
| inline bool MarkedBlock::isEmpty() |
| { |
| return m_marks.isEmpty() && m_weakSet.isEmpty() && (!m_newlyAllocated || m_newlyAllocated->isEmpty()); |
| } |
| |
| inline size_t MarkedBlock::cellSize() |
| { |
| return m_atomsPerCell * atomSize; |
| } |
| |
| inline bool MarkedBlock::needsDestruction() const |
| { |
| return m_needsDestruction; |
| } |
| |
| inline size_t MarkedBlock::size() |
| { |
| return markCount() * cellSize(); |
| } |
| |
| inline size_t MarkedBlock::capacity() |
| { |
| return m_capacity; |
| } |
| |
| inline size_t MarkedBlock::atomNumber(const void* p) |
| { |
| return (reinterpret_cast<Bits>(p) - reinterpret_cast<Bits>(this)) / atomSize; |
| } |
| |
| inline bool MarkedBlock::isMarked(const void* p) |
| { |
| return m_marks.get(atomNumber(p)); |
| } |
| |
| inline bool MarkedBlock::testAndSetMarked(const void* p) |
| { |
| return m_marks.concurrentTestAndSet(atomNumber(p)); |
| } |
| |
| inline void MarkedBlock::setMarked(const void* p) |
| { |
| m_marks.set(atomNumber(p)); |
| } |
| |
| inline void MarkedBlock::clearMarked(const void* p) |
| { |
| ASSERT(m_marks.get(atomNumber(p))); |
| m_marks.clear(atomNumber(p)); |
| } |
| |
| inline bool MarkedBlock::isNewlyAllocated(const void* p) |
| { |
| return m_newlyAllocated->get(atomNumber(p)); |
| } |
| |
| inline void MarkedBlock::setNewlyAllocated(const void* p) |
| { |
| m_newlyAllocated->set(atomNumber(p)); |
| } |
| |
| inline void MarkedBlock::clearNewlyAllocated(const void* p) |
| { |
| m_newlyAllocated->clear(atomNumber(p)); |
| } |
| |
| inline bool MarkedBlock::clearNewlyAllocated() |
| { |
| if (m_newlyAllocated) { |
| m_newlyAllocated = nullptr; |
| return true; |
| } |
| return false; |
| } |
| |
| inline bool MarkedBlock::isMarkedOrNewlyAllocated(const JSCell* cell) |
| { |
| ASSERT(m_state == Retired || m_state == Marked); |
| return m_marks.get(atomNumber(cell)) || (m_newlyAllocated && isNewlyAllocated(cell)); |
| } |
| |
| inline bool MarkedBlock::isLive(const JSCell* cell) |
| { |
| switch (m_state) { |
| case Allocated: |
| return true; |
| |
| case Retired: |
| case Marked: |
| return isMarkedOrNewlyAllocated(cell); |
| |
| case New: |
| case FreeListed: |
| RELEASE_ASSERT_NOT_REACHED(); |
| return false; |
| } |
| |
| RELEASE_ASSERT_NOT_REACHED(); |
| return false; |
| } |
| |
| inline bool MarkedBlock::isLiveCell(const void* p) |
| { |
| ASSERT(MarkedBlock::isAtomAligned(p)); |
| size_t atomNumber = this->atomNumber(p); |
| size_t firstAtom = this->firstAtom(); |
| if (atomNumber < firstAtom) // Filters pointers into MarkedBlock metadata. |
| return false; |
| if ((atomNumber - firstAtom) % m_atomsPerCell) // Filters pointers into cell middles. |
| return false; |
| if (atomNumber >= m_endAtom) // Filters pointers into invalid cells out of the range. |
| return false; |
| |
| return isLive(static_cast<const JSCell*>(p)); |
| } |
| |
| template <typename Functor> inline IterationStatus MarkedBlock::forEachCell(Functor& functor) |
| { |
| for (size_t i = firstAtom(); i < m_endAtom; i += m_atomsPerCell) { |
| JSCell* cell = reinterpret_cast_ptr<JSCell*>(&atoms()[i]); |
| if (functor(cell) == IterationStatus::Done) |
| return IterationStatus::Done; |
| } |
| return IterationStatus::Continue; |
| } |
| |
| template <typename Functor> inline IterationStatus MarkedBlock::forEachLiveCell(Functor& functor) |
| { |
| for (size_t i = firstAtom(); i < m_endAtom; i += m_atomsPerCell) { |
| JSCell* cell = reinterpret_cast_ptr<JSCell*>(&atoms()[i]); |
| if (!isLive(cell)) |
| continue; |
| |
| if (functor(cell) == IterationStatus::Done) |
| return IterationStatus::Done; |
| } |
| return IterationStatus::Continue; |
| } |
| |
| template <typename Functor> inline IterationStatus MarkedBlock::forEachDeadCell(Functor& functor) |
| { |
| for (size_t i = firstAtom(); i < m_endAtom; i += m_atomsPerCell) { |
| JSCell* cell = reinterpret_cast_ptr<JSCell*>(&atoms()[i]); |
| if (isLive(cell)) |
| continue; |
| |
| if (functor(cell) == IterationStatus::Done) |
| return IterationStatus::Done; |
| } |
| return IterationStatus::Continue; |
| } |
| |
| inline bool MarkedBlock::needsSweeping() const |
| { |
| return m_state == Marked; |
| } |
| |
| inline bool MarkedBlock::isAllocated() const |
| { |
| return m_state == Allocated; |
| } |
| |
| inline bool MarkedBlock::isMarkedOrRetired() const |
| { |
| return m_state == Marked || m_state == Retired; |
| } |
| |
| } // namespace JSC |
| |
| namespace WTF { |
| |
| struct MarkedBlockHash : PtrHash<JSC::MarkedBlock*> { |
| static unsigned hash(JSC::MarkedBlock* const& key) |
| { |
| // Aligned VM regions tend to be monotonically increasing integers, |
| // which is a great hash function, but we have to remove the low bits, |
| // since they're always zero, which is a terrible hash function! |
| return reinterpret_cast<JSC::Bits>(key) / JSC::MarkedBlock::blockSize; |
| } |
| }; |
| |
| template<> struct DefaultHash<JSC::MarkedBlock*> { |
| typedef MarkedBlockHash Hash; |
| }; |
| |
| } // namespace WTF |
| |
| #endif // MarkedBlock_h |