blob: 6ab390ebaa1607bc121d989685e12a147dbacb73 [file] [log] [blame]
/*
* Copyright (C) 2008, 2009, 2012-2015 Apple Inc. All rights reserved.
* Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca>
* Copyright (C) 2012 Igalia, S.L.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef BytecodeGenerator_h
#define BytecodeGenerator_h
#include "CodeBlock.h"
#include <wtf/HashTraits.h>
#include "Instruction.h"
#include "Label.h"
#include "LabelScope.h"
#include "Interpreter.h"
#include "ParserError.h"
#include "RegisterID.h"
#include "SetForScope.h"
#include "SymbolTable.h"
#include "Debugger.h"
#include "Nodes.h"
#include "StaticPropertyAnalyzer.h"
#include "TemplateRegistryKey.h"
#include "UnlinkedCodeBlock.h"
#include <functional>
#include <wtf/PassRefPtr.h>
#include <wtf/SegmentedVector.h>
#include <wtf/Vector.h>
namespace JSC {
class Identifier;
class JSTemplateRegistryKey;
enum ExpectedFunction {
NoExpectedFunction,
ExpectObjectConstructor,
ExpectArrayConstructor
};
class CallArguments {
public:
CallArguments(BytecodeGenerator&, ArgumentsNode*, unsigned additionalArguments = 0);
RegisterID* thisRegister() { return m_argv[0].get(); }
RegisterID* argumentRegister(unsigned i) { return m_argv[i + 1].get(); }
unsigned stackOffset() { return -m_argv[0]->index() + JSStack::CallFrameHeaderSize; }
unsigned argumentCountIncludingThis() { return m_argv.size() - m_padding; }
RegisterID* profileHookRegister() { return m_profileHookRegister.get(); }
ArgumentsNode* argumentsNode() { return m_argumentsNode; }
private:
RefPtr<RegisterID> m_profileHookRegister;
ArgumentsNode* m_argumentsNode;
Vector<RefPtr<RegisterID>, 8, UnsafeVectorOverflow> m_argv;
unsigned m_padding;
};
struct FinallyContext {
StatementNode* finallyBlock;
RegisterID* iterator;
ThrowableExpressionData* enumerationNode;
unsigned scopeContextStackSize;
unsigned switchContextStackSize;
unsigned forInContextStackSize;
unsigned tryContextStackSize;
unsigned labelScopesSize;
unsigned symbolTableStackSize;
int finallyDepth;
int dynamicScopeDepth;
};
struct ControlFlowContext {
bool isFinallyBlock;
FinallyContext finallyContext;
};
class ForInContext {
WTF_MAKE_FAST_ALLOCATED;
public:
ForInContext(RegisterID* localRegister)
: m_localRegister(localRegister)
, m_isValid(true)
{
}
virtual ~ForInContext()
{
}
bool isValid() const { return m_isValid; }
void invalidate() { m_isValid = false; }
enum ForInContextType {
StructureForInContextType,
IndexedForInContextType
};
virtual ForInContextType type() const = 0;
RegisterID* local() const { return m_localRegister.get(); }
private:
RefPtr<RegisterID> m_localRegister;
bool m_isValid;
};
class StructureForInContext : public ForInContext {
public:
StructureForInContext(RegisterID* localRegister, RegisterID* indexRegister, RegisterID* propertyRegister, RegisterID* enumeratorRegister)
: ForInContext(localRegister)
, m_indexRegister(indexRegister)
, m_propertyRegister(propertyRegister)
, m_enumeratorRegister(enumeratorRegister)
{
}
virtual ForInContextType type() const
{
return StructureForInContextType;
}
RegisterID* index() const { return m_indexRegister.get(); }
RegisterID* property() const { return m_propertyRegister.get(); }
RegisterID* enumerator() const { return m_enumeratorRegister.get(); }
private:
RefPtr<RegisterID> m_indexRegister;
RefPtr<RegisterID> m_propertyRegister;
RefPtr<RegisterID> m_enumeratorRegister;
};
class IndexedForInContext : public ForInContext {
public:
IndexedForInContext(RegisterID* localRegister, RegisterID* indexRegister)
: ForInContext(localRegister)
, m_indexRegister(indexRegister)
{
}
virtual ForInContextType type() const
{
return IndexedForInContextType;
}
RegisterID* index() const { return m_indexRegister.get(); }
private:
RefPtr<RegisterID> m_indexRegister;
};
struct TryData {
RefPtr<Label> target;
HandlerType handlerType;
};
struct TryContext {
RefPtr<Label> start;
TryData* tryData;
};
class Variable {
public:
enum VariableKind { NormalVariable, SpecialVariable };
Variable()
: m_offset()
, m_local(nullptr)
, m_attributes(0)
, m_kind(NormalVariable)
, m_symbolTableConstantIndex(0) // This is meaningless here for this kind of Variable.
, m_isLexicallyScoped(false)
{
}
Variable(const Identifier& ident)
: m_ident(ident)
, m_local(nullptr)
, m_attributes(0)
, m_kind(NormalVariable) // This is somewhat meaningless here for this kind of Variable.
, m_symbolTableConstantIndex(0) // This is meaningless here for this kind of Variable.
, m_isLexicallyScoped(false)
{
}
Variable(const Identifier& ident, VarOffset offset, RegisterID* local, unsigned attributes, VariableKind kind, int symbolTableConstantIndex, bool isLexicallyScoped)
: m_ident(ident)
, m_offset(offset)
, m_local(local)
, m_attributes(attributes)
, m_kind(kind)
, m_symbolTableConstantIndex(symbolTableConstantIndex)
, m_isLexicallyScoped(isLexicallyScoped)
{
}
// If it's unset, then it is a non-locally-scoped variable. If it is set, then it could be
// a stack variable, a scoped variable in a local scope, or a variable captured in the
// direct arguments object.
bool isResolved() const { return !!m_offset; }
int symbolTableConstantIndex() const { ASSERT(isResolved() && !isSpecial()); return m_symbolTableConstantIndex; }
const Identifier& ident() const { return m_ident; }
VarOffset offset() const { return m_offset; }
bool isLocal() const { return m_offset.isStack(); }
RegisterID* local() const { return m_local; }
bool isReadOnly() const { return m_attributes & ReadOnly; }
bool isSpecial() const { return m_kind != NormalVariable; }
bool isConst() const { return isReadOnly() && m_isLexicallyScoped; }
void setIsReadOnly() { m_attributes |= ReadOnly; }
private:
Identifier m_ident;
VarOffset m_offset;
RegisterID* m_local;
unsigned m_attributes;
VariableKind m_kind;
int m_symbolTableConstantIndex;
bool m_isLexicallyScoped;
};
struct TryRange {
RefPtr<Label> start;
RefPtr<Label> end;
TryData* tryData;
};
enum ProfileTypeBytecodeFlag {
ProfileTypeBytecodeClosureVar,
ProfileTypeBytecodeLocallyResolved,
ProfileTypeBytecodeDoesNotHaveGlobalID,
ProfileTypeBytecodeFunctionArgument,
ProfileTypeBytecodeFunctionReturnStatement
};
class BytecodeGenerator {
WTF_MAKE_FAST_ALLOCATED;
WTF_MAKE_NONCOPYABLE(BytecodeGenerator);
public:
typedef DeclarationStacks::FunctionStack FunctionStack;
BytecodeGenerator(VM&, ProgramNode*, UnlinkedProgramCodeBlock*, DebuggerMode, ProfilerMode, const VariableEnvironment*);
BytecodeGenerator(VM&, FunctionNode*, UnlinkedFunctionCodeBlock*, DebuggerMode, ProfilerMode, const VariableEnvironment*);
BytecodeGenerator(VM&, EvalNode*, UnlinkedEvalCodeBlock*, DebuggerMode, ProfilerMode, const VariableEnvironment*);
BytecodeGenerator(VM&, ModuleProgramNode*, UnlinkedModuleProgramCodeBlock*, DebuggerMode, ProfilerMode, const VariableEnvironment*);
~BytecodeGenerator();
VM* vm() const { return m_vm; }
ParserArena& parserArena() const { return m_scopeNode->parserArena(); }
const CommonIdentifiers& propertyNames() const { return *m_vm->propertyNames; }
bool isConstructor() const { return m_codeBlock->isConstructor(); }
ConstructorKind constructorKind() const { return m_codeBlock->constructorKind(); }
ParserError generate();
bool isArgumentNumber(const Identifier&, int);
Variable variable(const Identifier&);
enum ExistingVariableMode { VerifyExisting, IgnoreExisting };
void createVariable(const Identifier&, VarKind, SymbolTable*, ExistingVariableMode = VerifyExisting); // Creates the variable, or asserts that the already-created variable is sufficiently compatible.
// Returns the register storing "this"
RegisterID* thisRegister() { return &m_thisRegister; }
RegisterID* argumentsRegister() { return m_argumentsRegister; }
RegisterID* newTarget() { return m_newTargetRegister; }
RegisterID* scopeRegister() { return m_scopeRegister; }
// Returns the next available temporary register. Registers returned by
// newTemporary require a modified form of reference counting: any
// register with a refcount of 0 is considered "available", meaning that
// the next instruction may overwrite it.
RegisterID* newTemporary();
// The same as newTemporary(), but this function returns "suggestion" if
// "suggestion" is a temporary. This function is helpful in situations
// where you've put "suggestion" in a RefPtr, but you'd like to allow
// the next instruction to overwrite it anyway.
RegisterID* newTemporaryOr(RegisterID* suggestion) { return suggestion->isTemporary() ? suggestion : newTemporary(); }
// Functions for handling of dst register
RegisterID* ignoredResult() { return &m_ignoredResultRegister; }
// This will be allocated in the temporary region of registers, but it will
// not be marked as a temporary. This will ensure that finalDestination() does
// not overwrite a block scope variable that it mistakes as a temporary. These
// registers can be (and are) reclaimed when the lexical scope they belong to
// is no longer on the symbol table stack.
RegisterID* newBlockScopeVariable();
// Returns a place to write intermediate values of an operation
// which reuses dst if it is safe to do so.
RegisterID* tempDestination(RegisterID* dst)
{
return (dst && dst != ignoredResult() && dst->isTemporary()) ? dst : newTemporary();
}
// Returns the place to write the final output of an operation.
RegisterID* finalDestination(RegisterID* originalDst, RegisterID* tempDst = 0)
{
if (originalDst && originalDst != ignoredResult())
return originalDst;
ASSERT(tempDst != ignoredResult());
if (tempDst && tempDst->isTemporary())
return tempDst;
return newTemporary();
}
RegisterID* destinationForAssignResult(RegisterID* dst)
{
if (dst && dst != ignoredResult() && m_codeBlock->needsFullScopeChain())
return dst->isTemporary() ? dst : newTemporary();
return 0;
}
// Moves src to dst if dst is not null and is different from src, otherwise just returns src.
RegisterID* moveToDestinationIfNeeded(RegisterID* dst, RegisterID* src)
{
return dst == ignoredResult() ? 0 : (dst && dst != src) ? emitMove(dst, src) : src;
}
LabelScopePtr newLabelScope(LabelScope::Type, const Identifier* = 0);
PassRefPtr<Label> newLabel();
void emitNode(RegisterID* dst, StatementNode* n)
{
SetForScope<bool> tailPositionPoisoner(m_inTailPosition, false);
return emitNodeInTailPosition(dst, n);
}
void emitNodeInTailPosition(RegisterID* dst, StatementNode* n)
{
// Node::emitCode assumes that dst, if provided, is either a local or a referenced temporary.
ASSERT(!dst || dst == ignoredResult() || !dst->isTemporary() || dst->refCount());
if (!m_vm->isSafeToRecurse()) {
emitThrowExpressionTooDeepException();
return;
}
n->emitBytecode(*this, dst);
}
void emitNode(StatementNode* n)
{
emitNode(nullptr, n);
}
void emitNodeInTailPosition(StatementNode* n)
{
emitNodeInTailPosition(nullptr, n);
}
RegisterID* emitNode(RegisterID* dst, ExpressionNode* n)
{
SetForScope<bool> tailPositionPoisoner(m_inTailPosition, false);
return emitNodeInTailPosition(dst, n);
}
RegisterID* emitNodeInTailPosition(RegisterID* dst, ExpressionNode* n)
{
// Node::emitCode assumes that dst, if provided, is either a local or a referenced temporary.
ASSERT(!dst || dst == ignoredResult() || !dst->isTemporary() || dst->refCount());
if (!m_vm->isSafeToRecurse())
return emitThrowExpressionTooDeepException();
return n->emitBytecode(*this, dst);
}
RegisterID* emitNode(ExpressionNode* n)
{
return emitNode(nullptr, n);
}
RegisterID* emitNodeInTailPosition(ExpressionNode* n)
{
return emitNodeInTailPosition(nullptr, n);
}
void emitNodeInConditionContext(ExpressionNode* n, Label* trueTarget, Label* falseTarget, FallThroughMode fallThroughMode)
{
if (!m_vm->isSafeToRecurse()) {
emitThrowExpressionTooDeepException();
return;
}
n->emitBytecodeInConditionContext(*this, trueTarget, falseTarget, fallThroughMode);
}
void emitExpressionInfo(const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd)
{
ASSERT(divot.offset >= divotStart.offset);
ASSERT(divotEnd.offset >= divot.offset);
int sourceOffset = m_scopeNode->source().startOffset();
unsigned firstLine = m_scopeNode->source().firstLine();
int divotOffset = divot.offset - sourceOffset;
int startOffset = divot.offset - divotStart.offset;
int endOffset = divotEnd.offset - divot.offset;
unsigned line = divot.line;
ASSERT(line >= firstLine);
line -= firstLine;
int lineStart = divot.lineStartOffset;
if (lineStart > sourceOffset)
lineStart -= sourceOffset;
else
lineStart = 0;
if (divotOffset < lineStart)
return;
unsigned column = divotOffset - lineStart;
unsigned instructionOffset = instructions().size();
if (!m_isBuiltinFunction)
m_codeBlock->addExpressionInfo(instructionOffset, divotOffset, startOffset, endOffset, line, column);
}
ALWAYS_INLINE bool leftHandSideNeedsCopy(bool rightHasAssignments, bool rightIsPure)
{
return (m_codeType != FunctionCode || m_codeBlock->needsFullScopeChain() || rightHasAssignments) && !rightIsPure;
}
ALWAYS_INLINE PassRefPtr<RegisterID> emitNodeForLeftHandSide(ExpressionNode* n, bool rightHasAssignments, bool rightIsPure)
{
if (leftHandSideNeedsCopy(rightHasAssignments, rightIsPure)) {
PassRefPtr<RegisterID> dst = newTemporary();
emitNode(dst.get(), n);
return dst;
}
return emitNode(n);
}
private:
void emitTypeProfilerExpressionInfo(const JSTextPosition& startDivot, const JSTextPosition& endDivot);
public:
// This doesn't emit expression info. If using this, make sure you shouldn't be emitting text offset.
void emitProfileType(RegisterID* registerToProfile, ProfileTypeBytecodeFlag);
// These variables are associated with variables in a program. They could be Locals, LocalClosureVar, or ClosureVar.
void emitProfileType(RegisterID* registerToProfile, const Variable&, const JSTextPosition& startDivot, const JSTextPosition& endDivot);
void emitProfileType(RegisterID* registerToProfile, ProfileTypeBytecodeFlag, const JSTextPosition& startDivot, const JSTextPosition& endDivot);
// These are not associated with variables and don't have a global id.
void emitProfileType(RegisterID* registerToProfile, const JSTextPosition& startDivot, const JSTextPosition& endDivot);
void emitProfileControlFlow(int);
RegisterID* emitLoad(RegisterID* dst, bool);
RegisterID* emitLoad(RegisterID* dst, const Identifier&);
RegisterID* emitLoad(RegisterID* dst, JSValue, SourceCodeRepresentation = SourceCodeRepresentation::Other);
RegisterID* emitLoadGlobalObject(RegisterID* dst);
RegisterID* emitUnaryOp(OpcodeID, RegisterID* dst, RegisterID* src);
RegisterID* emitBinaryOp(OpcodeID, RegisterID* dst, RegisterID* src1, RegisterID* src2, OperandTypes);
RegisterID* emitEqualityOp(OpcodeID, RegisterID* dst, RegisterID* src1, RegisterID* src2);
RegisterID* emitUnaryNoDstOp(OpcodeID, RegisterID* src);
RegisterID* emitCreateThis(RegisterID* dst);
void emitTDZCheck(RegisterID* target);
bool needsTDZCheck(const Variable&);
void emitTDZCheckIfNecessary(const Variable&, RegisterID* target, RegisterID* scope);
void liftTDZCheckIfPossible(const Variable&);
RegisterID* emitNewObject(RegisterID* dst);
RegisterID* emitNewArray(RegisterID* dst, ElementNode*, unsigned length); // stops at first elision
RegisterID* emitNewArrayWithSize(RegisterID* dst, RegisterID* length);
RegisterID* emitNewFunction(RegisterID* dst, FunctionMetadataNode*);
RegisterID* emitNewFunctionInternal(RegisterID* dst, unsigned index);
RegisterID* emitNewFunctionExpression(RegisterID* dst, FuncExprNode* func);
RegisterID* emitNewDefaultConstructor(RegisterID* dst, ConstructorKind, const Identifier& name);
void emitNewFunctionCommon(RegisterID*, BaseFuncExprNode*, OpcodeID);
RegisterID* emitNewArrowFunctionExpression(RegisterID*, ArrowFuncExprNode*);
RegisterID* emitNewRegExp(RegisterID* dst, RegExp*);
RegisterID* emitMoveLinkTimeConstant(RegisterID* dst, LinkTimeConstant);
RegisterID* emitMoveEmptyValue(RegisterID* dst);
RegisterID* emitMove(RegisterID* dst, RegisterID* src);
RegisterID* emitToNumber(RegisterID* dst, RegisterID* src) { return emitUnaryOp(op_to_number, dst, src); }
RegisterID* emitToString(RegisterID* dst, RegisterID* src) { return emitUnaryOp(op_to_string, dst, src); }
RegisterID* emitInc(RegisterID* srcDst);
RegisterID* emitDec(RegisterID* srcDst);
void emitCheckHasInstance(RegisterID* dst, RegisterID* value, RegisterID* base, Label* target);
RegisterID* emitInstanceOf(RegisterID* dst, RegisterID* value, RegisterID* basePrototype);
RegisterID* emitTypeOf(RegisterID* dst, RegisterID* src) { return emitUnaryOp(op_typeof, dst, src); }
RegisterID* emitIn(RegisterID* dst, RegisterID* property, RegisterID* base) { return emitBinaryOp(op_in, dst, property, base, OperandTypes()); }
RegisterID* emitGetById(RegisterID* dst, RegisterID* base, const Identifier& property);
RegisterID* emitPutById(RegisterID* base, const Identifier& property, RegisterID* value);
RegisterID* emitDirectPutById(RegisterID* base, const Identifier& property, RegisterID* value, PropertyNode::PutType);
RegisterID* emitDeleteById(RegisterID* dst, RegisterID* base, const Identifier&);
RegisterID* emitGetByVal(RegisterID* dst, RegisterID* base, RegisterID* property);
RegisterID* emitGetArgumentByVal(RegisterID* dst, RegisterID* base, RegisterID* property);
RegisterID* emitPutByVal(RegisterID* base, RegisterID* property, RegisterID* value);
RegisterID* emitDirectPutByVal(RegisterID* base, RegisterID* property, RegisterID* value);
RegisterID* emitDeleteByVal(RegisterID* dst, RegisterID* base, RegisterID* property);
RegisterID* emitPutByIndex(RegisterID* base, unsigned index, RegisterID* value);
RegisterID* emitAssert(RegisterID* condition, int line);
void emitPutGetterById(RegisterID* base, const Identifier& property, unsigned propertyDescriptorOptions, RegisterID* getter);
void emitPutSetterById(RegisterID* base, const Identifier& property, unsigned propertyDescriptorOptions, RegisterID* setter);
void emitPutGetterSetter(RegisterID* base, const Identifier& property, unsigned attributes, RegisterID* getter, RegisterID* setter);
void emitPutGetterByVal(RegisterID* base, RegisterID* property, unsigned propertyDescriptorOptions, RegisterID* getter);
void emitPutSetterByVal(RegisterID* base, RegisterID* property, unsigned propertyDescriptorOptions, RegisterID* setter);
ExpectedFunction expectedFunctionForIdentifier(const Identifier&);
RegisterID* emitCall(RegisterID* dst, RegisterID* func, ExpectedFunction, CallArguments&, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd);
RegisterID* emitCallInTailPosition(RegisterID* dst, RegisterID* func, ExpectedFunction, CallArguments&, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd);
RegisterID* emitCallEval(RegisterID* dst, RegisterID* func, CallArguments&, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd);
RegisterID* emitCallVarargs(RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* arguments, RegisterID* firstFreeRegister, int32_t firstVarArgOffset, RegisterID* profileHookRegister, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd);
RegisterID* emitCallVarargsInTailPosition(RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* arguments, RegisterID* firstFreeRegister, int32_t firstVarArgOffset, RegisterID* profileHookRegister, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd);
enum PropertyDescriptorOption {
PropertyConfigurable = 1,
PropertyWritable = 1 << 1,
PropertyEnumerable = 1 << 2,
};
void emitCallDefineProperty(RegisterID* newObj, RegisterID* propertyNameRegister,
RegisterID* valueRegister, RegisterID* getterRegister, RegisterID* setterRegister, unsigned options, const JSTextPosition&);
void emitEnumeration(ThrowableExpressionData* enumerationNode, ExpressionNode* subjectNode, const std::function<void(BytecodeGenerator&, RegisterID*)>& callBack, VariableEnvironmentNode* = nullptr, RegisterID* forLoopSymbolTable = nullptr);
RegisterID* emitGetTemplateObject(RegisterID* dst, TaggedTemplateNode*);
RegisterID* emitReturn(RegisterID* src);
RegisterID* emitEnd(RegisterID* src) { return emitUnaryNoDstOp(op_end, src); }
RegisterID* emitConstruct(RegisterID* dst, RegisterID* func, ExpectedFunction, CallArguments&, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd);
RegisterID* emitStrcat(RegisterID* dst, RegisterID* src, int count);
void emitToPrimitive(RegisterID* dst, RegisterID* src);
ResolveType resolveType();
RegisterID* emitResolveConstantLocal(RegisterID* dst, const Variable&);
RegisterID* emitResolveScope(RegisterID* dst, const Variable&);
RegisterID* emitGetFromScope(RegisterID* dst, RegisterID* scope, const Variable&, ResolveMode);
RegisterID* emitPutToScope(RegisterID* scope, const Variable&, RegisterID* value, ResolveMode, InitializationMode);
RegisterID* initializeVariable(const Variable&, RegisterID* value);
PassRefPtr<Label> emitLabel(Label*);
void emitLoopHint();
PassRefPtr<Label> emitJump(Label* target);
PassRefPtr<Label> emitJumpIfTrue(RegisterID* cond, Label* target);
PassRefPtr<Label> emitJumpIfFalse(RegisterID* cond, Label* target);
PassRefPtr<Label> emitJumpIfNotFunctionCall(RegisterID* cond, Label* target);
PassRefPtr<Label> emitJumpIfNotFunctionApply(RegisterID* cond, Label* target);
void emitPopScopes(RegisterID* srcDst, int targetScopeDepth);
RegisterID* emitHasIndexedProperty(RegisterID* dst, RegisterID* base, RegisterID* propertyName);
RegisterID* emitHasStructureProperty(RegisterID* dst, RegisterID* base, RegisterID* propertyName, RegisterID* enumerator);
RegisterID* emitHasGenericProperty(RegisterID* dst, RegisterID* base, RegisterID* propertyName);
RegisterID* emitGetPropertyEnumerator(RegisterID* dst, RegisterID* base);
RegisterID* emitGetEnumerableLength(RegisterID* dst, RegisterID* base);
RegisterID* emitGetStructurePropertyEnumerator(RegisterID* dst, RegisterID* base, RegisterID* length);
RegisterID* emitGetGenericPropertyEnumerator(RegisterID* dst, RegisterID* base, RegisterID* length, RegisterID* structureEnumerator);
RegisterID* emitEnumeratorStructurePropertyName(RegisterID* dst, RegisterID* enumerator, RegisterID* index);
RegisterID* emitEnumeratorGenericPropertyName(RegisterID* dst, RegisterID* enumerator, RegisterID* index);
RegisterID* emitToIndexString(RegisterID* dst, RegisterID* index);
RegisterID* emitIsObject(RegisterID* dst, RegisterID* src);
RegisterID* emitIsUndefined(RegisterID* dst, RegisterID* src);
void emitRequireObjectCoercible(RegisterID* value, const String& error);
RegisterID* emitIteratorNext(RegisterID* dst, RegisterID* iterator, const ThrowableExpressionData* node);
void emitIteratorClose(RegisterID* iterator, const ThrowableExpressionData* node);
RegisterID* emitRestParameter(RegisterID* result, unsigned numParametersToSkip);
bool emitReadOnlyExceptionIfNeeded(const Variable&);
// Start a try block. 'start' must have been emitted.
TryData* pushTry(Label* start);
// End a try block. 'end' must have been emitted.
void popTryAndEmitCatch(TryData*, RegisterID* exceptionRegister, RegisterID* thrownValueRegister, Label* end, HandlerType);
void emitThrow(RegisterID* exc)
{
m_usesExceptions = true;
emitUnaryNoDstOp(op_throw, exc);
}
void emitThrowReferenceError(const String& message);
void emitThrowTypeError(const String& message);
void emitPushCatchScope(const Identifier& property, RegisterID* exceptionValue, VariableEnvironment&);
void emitPopCatchScope(VariableEnvironment&);
void emitGetScope();
RegisterID* emitPushWithScope(RegisterID* objectScope);
void emitPopWithScope();
void emitDebugHook(DebugHookID, unsigned line, unsigned charOffset, unsigned lineStart);
bool isInFinallyBlock() { return m_finallyDepth > 0; }
void pushFinallyContext(StatementNode* finallyBlock);
void popFinallyContext();
void pushIteratorCloseContext(RegisterID* iterator, ThrowableExpressionData* enumerationNode);
void popIteratorCloseContext();
void pushIndexedForInScope(RegisterID* local, RegisterID* index);
void popIndexedForInScope(RegisterID* local);
void pushStructureForInScope(RegisterID* local, RegisterID* index, RegisterID* property, RegisterID* enumerator);
void popStructureForInScope(RegisterID* local);
void invalidateForInContextForLocal(RegisterID* local);
LabelScopePtr breakTarget(const Identifier&);
LabelScopePtr continueTarget(const Identifier&);
void beginSwitch(RegisterID*, SwitchInfo::SwitchType);
void endSwitch(uint32_t clauseCount, RefPtr<Label>*, ExpressionNode**, Label* defaultLabel, int32_t min, int32_t range);
CodeType codeType() const { return m_codeType; }
bool shouldEmitProfileHooks() { return m_shouldEmitProfileHooks; }
bool shouldEmitDebugHooks() { return m_shouldEmitDebugHooks; }
bool isStrictMode() const { return m_codeBlock->isStrictMode(); }
bool isBuiltinFunction() const { return m_isBuiltinFunction; }
OpcodeID lastOpcodeID() const { return m_lastOpcodeID; }
private:
enum class TDZRequirement { UnderTDZ, NotUnderTDZ };
enum class ScopeType { CatchScope, LetConstScope, FunctionNameScope };
enum class ScopeRegisterType { Var, Block };
void pushLexicalScopeInternal(VariableEnvironment&, bool canOptimizeTDZChecks, RegisterID** constantSymbolTableResult, TDZRequirement, ScopeType, ScopeRegisterType);
void popLexicalScopeInternal(VariableEnvironment&, TDZRequirement);
template<typename LookUpVarKindFunctor>
bool instantiateLexicalVariables(const VariableEnvironment&, SymbolTable*, ScopeRegisterType, LookUpVarKindFunctor);
void emitPrefillStackTDZVariables(const VariableEnvironment&, SymbolTable*);
void emitPopScope(RegisterID* dst, RegisterID* scope);
RegisterID* emitGetParentScope(RegisterID* dst, RegisterID* scope);
void emitPushFunctionNameScope(const Identifier& property, RegisterID* value, bool isCaptured);
public:
void pushLexicalScope(VariableEnvironmentNode*, bool canOptimizeTDZChecks, RegisterID** constantSymbolTableResult = nullptr);
void popLexicalScope(VariableEnvironmentNode*);
void prepareLexicalScopeForNextForLoopIteration(VariableEnvironmentNode*, RegisterID* loopSymbolTable);
int labelScopeDepth() const;
private:
void reclaimFreeRegisters();
Variable variableForLocalEntry(const Identifier&, const SymbolTableEntry&, int symbolTableConstantIndex, bool isLexicallyScoped);
void emitOpcode(OpcodeID);
UnlinkedArrayAllocationProfile newArrayAllocationProfile();
UnlinkedObjectAllocationProfile newObjectAllocationProfile();
UnlinkedArrayProfile newArrayProfile();
UnlinkedValueProfile emitProfiledOpcode(OpcodeID);
int kill(RegisterID* dst)
{
int index = dst->index();
m_staticPropertyAnalyzer.kill(index);
return index;
}
void retrieveLastBinaryOp(int& dstIndex, int& src1Index, int& src2Index);
void retrieveLastUnaryOp(int& dstIndex, int& srcIndex);
ALWAYS_INLINE void rewindBinaryOp();
ALWAYS_INLINE void rewindUnaryOp();
void allocateCalleeSaveSpace();
void allocateAndEmitScope();
RegisterID* emitLoadArrowFunctionThis(RegisterID*);
void emitComplexPopScopes(RegisterID*, ControlFlowContext* topScope, ControlFlowContext* bottomScope);
typedef HashMap<double, JSValue> NumberMap;
typedef HashMap<UniquedStringImpl*, JSString*, IdentifierRepHash> IdentifierStringMap;
typedef HashMap<TemplateRegistryKey, JSTemplateRegistryKey*> TemplateRegistryKeyMap;
// Helper for emitCall() and emitConstruct(). This works because the set of
// expected functions have identical behavior for both call and construct
// (i.e. "Object()" is identical to "new Object()").
ExpectedFunction emitExpectedFunctionSnippet(RegisterID* dst, RegisterID* func, ExpectedFunction, CallArguments&, Label* done);
RegisterID* emitCall(OpcodeID, RegisterID* dst, RegisterID* func, ExpectedFunction, CallArguments&, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd);
RegisterID* newRegister();
// Adds an anonymous local var slot. To give this slot a name, add it to symbolTable().
RegisterID* addVar()
{
++m_codeBlock->m_numVars;
RegisterID* result = newRegister();
ASSERT(VirtualRegister(result->index()).toLocal() == m_codeBlock->m_numVars - 1);
result->ref(); // We should never free this slot.
return result;
}
// Initializes the stack form the parameter; does nothing for the symbol table.
RegisterID* initializeNextParameter();
UniquedStringImpl* visibleNameForParameter(DestructuringPatternNode*);
RegisterID& registerFor(VirtualRegister reg)
{
if (reg.isLocal())
return m_calleeRegisters[reg.toLocal()];
if (reg.offset() == JSStack::Callee)
return m_calleeRegister;
ASSERT(m_parameters.size());
return m_parameters[reg.toArgument()];
}
bool hasConstant(const Identifier&) const;
unsigned addConstant(const Identifier&);
RegisterID* addConstantValue(JSValue, SourceCodeRepresentation = SourceCodeRepresentation::Other);
RegisterID* addConstantEmptyValue();
unsigned addRegExp(RegExp*);
unsigned addConstantBuffer(unsigned length);
UnlinkedFunctionExecutable* makeFunction(FunctionMetadataNode* metadata)
{
VariableEnvironment variablesUnderTDZ;
getVariablesUnderTDZ(variablesUnderTDZ);
SourceParseMode parseMode = metadata->parseMode();
ConstructAbility constructAbility = ConstructAbility::CanConstruct;
if (parseMode == SourceParseMode::GetterMode || parseMode == SourceParseMode::SetterMode || parseMode == SourceParseMode::ArrowFunctionMode || (parseMode == SourceParseMode::MethodMode && metadata->constructorKind() == ConstructorKind::None))
constructAbility = ConstructAbility::CannotConstruct;
return UnlinkedFunctionExecutable::create(m_vm, m_scopeNode->source(), metadata, isBuiltinFunction() ? UnlinkedBuiltinFunction : UnlinkedNormalFunction, constructAbility, variablesUnderTDZ);
}
void getVariablesUnderTDZ(VariableEnvironment&);
RegisterID* emitConstructVarargs(RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* arguments, RegisterID* firstFreeRegister, int32_t firstVarArgOffset, RegisterID* profileHookRegister, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd);
RegisterID* emitCallVarargs(OpcodeID, RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* arguments, RegisterID* firstFreeRegister, int32_t firstVarArgOffset, RegisterID* profileHookRegister, const JSTextPosition& divot, const JSTextPosition& divotStart, const JSTextPosition& divotEnd);
void initializeVarLexicalEnvironment(int symbolTableConstantIndex);
void initializeDefaultParameterValuesAndSetupFunctionScopeStack(FunctionParameters&, FunctionNode*, SymbolTable*, int symbolTableConstantIndex, const std::function<bool (UniquedStringImpl*)>& captures);
public:
JSString* addStringConstant(const Identifier&);
JSTemplateRegistryKey* addTemplateRegistryKeyConstant(const TemplateRegistryKey&);
Vector<UnlinkedInstruction, 0, UnsafeVectorOverflow>& instructions() { return m_instructions; }
RegisterID* emitThrowExpressionTooDeepException();
private:
Vector<UnlinkedInstruction, 0, UnsafeVectorOverflow> m_instructions;
bool m_shouldEmitDebugHooks;
bool m_shouldEmitProfileHooks;
struct SymbolTableStackEntry {
Strong<SymbolTable> m_symbolTable;
RegisterID* m_scope;
bool m_isWithScope;
int m_symbolTableConstantIndex;
};
Vector<SymbolTableStackEntry> m_symbolTableStack;
Vector<std::pair<VariableEnvironment, bool>> m_TDZStack;
ScopeNode* const m_scopeNode;
Strong<UnlinkedCodeBlock> m_codeBlock;
// Some of these objects keep pointers to one another. They are arranged
// to ensure a sane destruction order that avoids references to freed memory.
HashSet<RefPtr<UniquedStringImpl>, IdentifierRepHash> m_functions;
RegisterID m_ignoredResultRegister;
RegisterID m_thisRegister;
RegisterID m_calleeRegister;
RegisterID* m_scopeRegister { nullptr };
RegisterID* m_topMostScope { nullptr };
RegisterID* m_argumentsRegister { nullptr };
RegisterID* m_lexicalEnvironmentRegister { nullptr };
RegisterID* m_emptyValueRegister { nullptr };
RegisterID* m_globalObjectRegister { nullptr };
RegisterID* m_newTargetRegister { nullptr };
RegisterID* m_linkTimeConstantRegisters[LinkTimeConstantCount];
SegmentedVector<RegisterID*, 16> m_localRegistersForCalleeSaveRegisters;
SegmentedVector<RegisterID, 32> m_constantPoolRegisters;
SegmentedVector<RegisterID, 32> m_calleeRegisters;
SegmentedVector<RegisterID, 32> m_parameters;
SegmentedVector<Label, 32> m_labels;
LabelScopeStore m_labelScopes;
int m_finallyDepth { 0 };
int m_localScopeDepth { 0 };
const CodeType m_codeType;
int localScopeDepth() const;
void pushScopedControlFlowContext();
void popScopedControlFlowContext();
Vector<ControlFlowContext, 0, UnsafeVectorOverflow> m_scopeContextStack;
Vector<SwitchInfo> m_switchContextStack;
Vector<std::unique_ptr<ForInContext>> m_forInContextStack;
Vector<TryContext> m_tryContextStack;
enum FunctionVariableType : uint8_t { NormalFunctionVariable, GlobalFunctionVariable };
Vector<std::pair<FunctionMetadataNode*, FunctionVariableType>> m_functionsToInitialize;
bool m_needToInitializeArguments { false };
RestParameterNode* m_restParameter { nullptr };
Vector<TryRange> m_tryRanges;
SegmentedVector<TryData, 8> m_tryData;
int m_nextConstantOffset { 0 };
typedef HashMap<FunctionMetadataNode*, unsigned> FunctionOffsetMap;
FunctionOffsetMap m_functionOffsets;
// Constant pool
IdentifierMap m_identifierMap;
typedef HashMap<EncodedJSValueWithRepresentation, unsigned, EncodedJSValueWithRepresentationHash, EncodedJSValueWithRepresentationHashTraits> JSValueMap;
JSValueMap m_jsValueMap;
IdentifierStringMap m_stringMap;
TemplateRegistryKeyMap m_templateRegistryKeyMap;
StaticPropertyAnalyzer m_staticPropertyAnalyzer { &m_instructions };
VM* m_vm;
OpcodeID m_lastOpcodeID = op_end;
#ifndef NDEBUG
size_t m_lastOpcodePosition { 0 };
#endif
bool m_usesExceptions { false };
bool m_expressionTooDeep { false };
bool m_isBuiltinFunction { false };
bool m_usesNonStrictEval { false };
bool m_inTailPosition { false };
};
}
#endif // BytecodeGenerator_h