| /* |
| * Copyright (C) 2011, 2022 Apple Inc. All rights reserved. |
| * Copyright (C) 2013-2017 Igalia S.L. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "RenderGrid.h" |
| |
| #include "GridArea.h" |
| #include "GridLayoutFunctions.h" |
| #include "GridPositionsResolver.h" |
| #include "GridTrackSizingAlgorithm.h" |
| #include "InspectorInstrumentation.h" |
| #include "LayoutRepainter.h" |
| #include "RenderChildIterator.h" |
| #include "RenderLayer.h" |
| #include "RenderLayoutState.h" |
| #include "RenderTreeBuilder.h" |
| #include "RenderView.h" |
| #include <cstdlib> |
| #include <wtf/IsoMallocInlines.h> |
| |
| namespace WebCore { |
| |
| WTF_MAKE_ISO_ALLOCATED_IMPL(RenderGrid); |
| |
| enum TrackSizeRestriction { |
| AllowInfinity, |
| ForbidInfinity, |
| }; |
| |
| RenderGrid::RenderGrid(Element& element, RenderStyle&& style) |
| : RenderBlock(element, WTFMove(style), 0) |
| , m_grid(*this) |
| , m_trackSizingAlgorithm(this, m_grid) |
| { |
| // All of our children must be block level. |
| setChildrenInline(false); |
| |
| InspectorInstrumentation::nodeLayoutContextChanged(element, this); |
| } |
| |
| RenderGrid::~RenderGrid() |
| { |
| InspectorInstrumentation::nodeLayoutContextChanged(element(), nullptr); |
| } |
| |
| StyleSelfAlignmentData RenderGrid::selfAlignmentForChild(GridAxis axis, const RenderBox& child, const RenderStyle* gridStyle) const |
| { |
| return axis == GridRowAxis ? justifySelfForChild(child, StretchingMode::Any, gridStyle) : alignSelfForChild(child, StretchingMode::Any, gridStyle); |
| } |
| |
| bool RenderGrid::selfAlignmentChangedToStretch(GridAxis axis, const RenderStyle& oldStyle, const RenderStyle& newStyle, const RenderBox& child) const |
| { |
| return selfAlignmentForChild(axis, child, &oldStyle).position() != ItemPosition::Stretch |
| && selfAlignmentForChild(axis, child, &newStyle).position() == ItemPosition::Stretch; |
| } |
| |
| bool RenderGrid::selfAlignmentChangedFromStretch(GridAxis axis, const RenderStyle& oldStyle, const RenderStyle& newStyle, const RenderBox& child) const |
| { |
| return selfAlignmentForChild(axis, child, &oldStyle).position() == ItemPosition::Stretch |
| && selfAlignmentForChild(axis, child, &newStyle).position() != ItemPosition::Stretch; |
| } |
| |
| void RenderGrid::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle) |
| { |
| RenderBlock::styleDidChange(diff, oldStyle); |
| if (!oldStyle || diff != StyleDifference::Layout) |
| return; |
| |
| const RenderStyle& newStyle = this->style(); |
| if (oldStyle->resolvedAlignItems(selfAlignmentNormalBehavior(this)).position() == ItemPosition::Stretch) { |
| // Style changes on the grid container implying stretching (to-stretch) or |
| // shrinking (from-stretch) require the affected items to be laid out again. |
| // These logic only applies to 'stretch' since the rest of the alignment |
| // values don't change the size of the box. |
| // In any case, the items' overrideSize will be cleared and recomputed (if |
| // necessary) as part of the Grid layout logic, triggered by this style |
| // change. |
| for (auto& child : childrenOfType<RenderBox>(*this)) { |
| if (child.isOutOfFlowPositioned()) |
| continue; |
| if (selfAlignmentChangedToStretch(GridRowAxis, *oldStyle, newStyle, child) |
| || selfAlignmentChangedFromStretch(GridRowAxis, *oldStyle, newStyle, child) |
| || selfAlignmentChangedToStretch(GridColumnAxis, *oldStyle, newStyle, child) |
| || selfAlignmentChangedFromStretch(GridColumnAxis, *oldStyle, newStyle, child)) { |
| child.setNeedsLayout(); |
| } |
| } |
| } |
| |
| if (explicitGridDidResize(*oldStyle) || namedGridLinesDefinitionDidChange(*oldStyle) || implicitGridLinesDefinitionDidChange(*oldStyle) || oldStyle->gridAutoFlow() != style().gridAutoFlow() |
| || (style().gridAutoRepeatColumns().size() || style().gridAutoRepeatRows().size())) |
| dirtyGrid(); |
| } |
| |
| bool RenderGrid::explicitGridDidResize(const RenderStyle& oldStyle) const |
| { |
| return oldStyle.gridColumns().size() != style().gridColumns().size() |
| || oldStyle.gridRows().size() != style().gridRows().size() |
| || oldStyle.namedGridAreaColumnCount() != style().namedGridAreaColumnCount() |
| || oldStyle.namedGridAreaRowCount() != style().namedGridAreaRowCount() |
| || oldStyle.gridAutoRepeatColumns().size() != style().gridAutoRepeatColumns().size() |
| || oldStyle.gridAutoRepeatRows().size() != style().gridAutoRepeatRows().size(); |
| } |
| |
| bool RenderGrid::namedGridLinesDefinitionDidChange(const RenderStyle& oldStyle) const |
| { |
| return oldStyle.namedGridRowLines() != style().namedGridRowLines() |
| || oldStyle.namedGridColumnLines() != style().namedGridColumnLines(); |
| } |
| |
| bool RenderGrid::implicitGridLinesDefinitionDidChange(const RenderStyle& oldStyle) const |
| { |
| return oldStyle.implicitNamedGridRowLines() != style().implicitNamedGridRowLines() |
| || oldStyle.implicitNamedGridColumnLines() != style().implicitNamedGridColumnLines(); |
| } |
| |
| // This method optimizes the gutters computation by skiping the available size |
| // call if gaps are fixed size (it's only needed for percentages). |
| std::optional<LayoutUnit> RenderGrid::availableSpaceForGutters(GridTrackSizingDirection direction) const |
| { |
| bool isRowAxis = direction == ForColumns; |
| const GapLength& gapLength = isRowAxis ? style().columnGap() : style().rowGap(); |
| if (gapLength.isNormal() || !gapLength.length().isPercentOrCalculated()) |
| return std::nullopt; |
| |
| return isRowAxis ? availableLogicalWidth() : contentLogicalHeight(); |
| } |
| |
| void RenderGrid::computeTrackSizesForDefiniteSize(GridTrackSizingDirection direction, LayoutUnit availableSpace) |
| { |
| m_trackSizingAlgorithm.setup(direction, numTracks(direction, m_grid), TrackSizing, availableSpace); |
| m_trackSizingAlgorithm.run(); |
| |
| ASSERT(m_trackSizingAlgorithm.tracksAreWiderThanMinTrackBreadth()); |
| } |
| |
| void RenderGrid::repeatTracksSizingIfNeeded(LayoutUnit availableSpaceForColumns, LayoutUnit availableSpaceForRows) |
| { |
| // In orthogonal flow cases column track's size is determined by using the computed |
| // row track's size, which it was estimated during the first cycle of the sizing |
| // algorithm. Hence we need to repeat computeUsedBreadthOfGridTracks for both, |
| // columns and rows, to determine the final values. |
| // TODO (lajava): orthogonal flows is just one of the cases which may require |
| // a new cycle of the sizing algorithm; there may be more. In addition, not all the |
| // cases with orthogonal flows require this extra cycle; we need a more specific |
| // condition to detect whether child's min-content contribution has changed or not. |
| // The complication with repeating the track sizing algorithm for flex max-sizing is that |
| // it might change a grid item's status of participating in Baseline Alignment for |
| // a cyclic sizing dependncy case, which should be definitively excluded. See |
| // https://github.com/w3c/csswg-drafts/issues/3046 for details. |
| // FIXME: we are avoiding repeating the track sizing algorithm for grid item with baseline alignment |
| // here in the case of using flex max-sizing functions. We probably also need to investigate whether |
| // it is applicable for the case of percent-sized rows with indefinite height as well. |
| if (m_hasAnyOrthogonalItem || m_trackSizingAlgorithm.hasAnyPercentSizedRowsIndefiniteHeight() || (m_trackSizingAlgorithm.hasAnyFlexibleMaxTrackBreadth() && !m_trackSizingAlgorithm.hasAnyBaselineAlignmentItem()) || m_hasAspectRatioBlockSizeDependentItem) { |
| computeTrackSizesForDefiniteSize(ForColumns, availableSpaceForColumns); |
| computeContentPositionAndDistributionOffset(ForColumns, m_trackSizingAlgorithm.freeSpace(ForColumns).value(), nonCollapsedTracks(ForColumns)); |
| computeTrackSizesForDefiniteSize(ForRows, availableSpaceForRows); |
| computeContentPositionAndDistributionOffset(ForRows, m_trackSizingAlgorithm.freeSpace(ForRows).value(), nonCollapsedTracks(ForRows)); |
| } |
| } |
| |
| bool RenderGrid::canPerformSimplifiedLayout() const |
| { |
| // We cannot perform a simplified layout if we need to position the items and we have some |
| // positioned items to be laid out. |
| if (m_grid.needsItemsPlacement() && posChildNeedsLayout()) |
| return false; |
| |
| return RenderBlock::canPerformSimplifiedLayout(); |
| } |
| |
| template<typename F> |
| static void cacheBaselineAlignedChildren(const RenderGrid& grid, GridTrackSizingAlgorithm& algorithm, uint32_t axes, F& callback) |
| { |
| for (auto* child = grid.firstChildBox(); child; child = child->nextSiblingBox()) { |
| if (child->isOutOfFlowPositioned() || child->isLegend()) |
| continue; |
| |
| callback(child); |
| |
| // We keep a cache of items with baseline as alignment values so that we only compute the baseline shims for |
| // such items. This cache is needed for performance related reasons due to the cost of evaluating the item's |
| // participation in a baseline context during the track sizing algorithm. |
| uint32_t innerAxes = 0; |
| RenderGrid* inner = is<RenderGrid>(child) ? downcast<RenderGrid>(child) : nullptr; |
| |
| if (axes & GridColumnAxis) { |
| if (inner && inner->isSubgridInParentDirection(ForRows)) |
| innerAxes |= GridLayoutFunctions::isOrthogonalChild(grid, *child) ? GridRowAxis : GridColumnAxis; |
| else if (grid.isBaselineAlignmentForChild(*child, GridColumnAxis)) |
| algorithm.cacheBaselineAlignedItem(*child, GridColumnAxis); |
| } |
| |
| if (axes & GridRowAxis) { |
| if (inner && inner->isSubgridInParentDirection(ForColumns)) |
| innerAxes |= GridLayoutFunctions::isOrthogonalChild(grid, *child) ? GridColumnAxis : GridRowAxis; |
| else if (grid.isBaselineAlignmentForChild(*child, GridRowAxis)) |
| algorithm.cacheBaselineAlignedItem(*child, GridRowAxis); |
| } |
| |
| if (innerAxes) |
| cacheBaselineAlignedChildren(*inner, algorithm, innerAxes, callback); |
| } |
| } |
| |
| Vector<RenderBox*> RenderGrid::computeAspectRatioDependentAndBaselineItems() |
| { |
| Vector<RenderBox*> dependentGridItems; |
| |
| m_baselineItemsCached = true; |
| m_hasAnyOrthogonalItem = false; |
| m_hasAspectRatioBlockSizeDependentItem = false; |
| |
| auto computeOrthogonalAndDependentItems = [&](RenderBox* child) { |
| // Grid's layout logic controls the grid item's override height, hence we need to |
| // clear any override height set previously, so it doesn't interfere in current layout |
| // execution. Grid never uses the override width, that's why we don't need to clear it. |
| child->clearOverridingLogicalHeight(); |
| |
| // We may need to repeat the track sizing in case of any grid item was orthogonal. |
| if (GridLayoutFunctions::isOrthogonalChild(*this, *child)) |
| m_hasAnyOrthogonalItem = true; |
| |
| // For a grid item that has an aspect-ratio and block-constraints such as the relative logical height, |
| // when the grid width is auto, we may need get the real grid width before laying out the item. |
| if (GridLayoutFunctions::isAspectRatioBlockSizeDependentChild(*child) && (style().logicalWidth().isAuto() || style().logicalWidth().isMinContent() || style().logicalWidth().isMaxContent())) { |
| dependentGridItems.append(child); |
| m_hasAspectRatioBlockSizeDependentItem = true; |
| } |
| }; |
| |
| cacheBaselineAlignedChildren(*this, m_trackSizingAlgorithm, GridRowAxis | GridColumnAxis, computeOrthogonalAndDependentItems); |
| return dependentGridItems; |
| } |
| |
| |
| void RenderGrid::layoutBlock(bool relayoutChildren, LayoutUnit) |
| { |
| ASSERT(needsLayout()); |
| |
| if (!relayoutChildren && simplifiedLayout()) |
| return; |
| |
| LayoutRepainter repainter(*this, checkForRepaintDuringLayout()); |
| { |
| LayoutStateMaintainer statePusher(*this, locationOffset(), hasTransform() || hasReflection() || style().isFlippedBlocksWritingMode()); |
| |
| preparePaginationBeforeBlockLayout(relayoutChildren); |
| beginUpdateScrollInfoAfterLayoutTransaction(); |
| |
| LayoutSize previousSize = size(); |
| |
| // FIXME: We should use RenderBlock::hasDefiniteLogicalHeight() only but it does not work for positioned stuff. |
| // FIXME: Consider caching the hasDefiniteLogicalHeight value throughout the layout. |
| // FIXME: We might need to cache the hasDefiniteLogicalHeight if the call of RenderBlock::hasDefiniteLogicalHeight() causes a relevant performance regression. |
| bool hasDefiniteLogicalHeight = RenderBlock::hasDefiniteLogicalHeight() || hasOverridingLogicalHeight() || computeContentLogicalHeight(MainOrPreferredSize, style().logicalHeight(), std::nullopt); |
| |
| auto aspectRatioBlockSizeDependentGridItems = computeAspectRatioDependentAndBaselineItems(); |
| |
| resetLogicalHeightBeforeLayoutIfNeeded(); |
| |
| updateLogicalWidth(); |
| |
| // Fieldsets need to find their legend and position it inside the border of the object. |
| // The legend then gets skipped during normal layout. The same is true for ruby text. |
| // It doesn't get included in the normal layout process but is instead skipped. |
| layoutExcludedChildren(relayoutChildren); |
| |
| LayoutUnit availableSpaceForColumns = availableLogicalWidth(); |
| placeItemsOnGrid(m_trackSizingAlgorithm, availableSpaceForColumns); |
| |
| m_trackSizingAlgorithm.setAvailableSpace(ForColumns, availableSpaceForColumns); |
| performGridItemsPreLayout(m_trackSizingAlgorithm); |
| |
| // 1- First, the track sizing algorithm is used to resolve the sizes of the grid columns. At this point the |
| // logical width is always definite as the above call to updateLogicalWidth() properly resolves intrinsic |
| // sizes. We cannot do the same for heights though because many code paths inside updateLogicalHeight() require |
| // a previous call to setLogicalHeight() to resolve heights properly (like for positioned items for example). |
| auto shouldIgnoreGridItemContentForLogicalWidth = shouldApplySizeOrStyleContainment({ Containment::Size, Containment::InlineSize }); |
| if (shouldIgnoreGridItemContentForLogicalWidth) |
| computeTrackSizesForIndefiniteSize(m_trackSizingAlgorithm, ForColumns); |
| else |
| computeTrackSizesForDefiniteSize(ForColumns, availableSpaceForColumns); |
| |
| m_minContentSize = m_trackSizingAlgorithm.minContentSize(); |
| m_maxContentSize = m_trackSizingAlgorithm.maxContentSize(); |
| if (shouldIgnoreGridItemContentForLogicalWidth) |
| computeTrackSizesForDefiniteSize(ForColumns, availableSpaceForColumns); |
| |
| // 1.5- Compute Content Distribution offsets for column tracks |
| computeContentPositionAndDistributionOffset(ForColumns, m_trackSizingAlgorithm.freeSpace(ForColumns).value(), nonCollapsedTracks(ForColumns)); |
| |
| // 2- Next, the track sizing algorithm resolves the sizes of the grid rows, |
| // using the grid column sizes calculated in the previous step. |
| bool shouldRecomputeHeight = false; |
| if (!hasDefiniteLogicalHeight) { |
| computeTrackSizesForIndefiniteSize(m_trackSizingAlgorithm, ForRows); |
| if (shouldApplySizeContainment()) |
| shouldRecomputeHeight = true; |
| } else |
| computeTrackSizesForDefiniteSize(ForRows, availableLogicalHeight(ExcludeMarginBorderPadding)); |
| LayoutUnit trackBasedLogicalHeight = m_trackSizingAlgorithm.computeTrackBasedSize() + borderAndPaddingLogicalHeight() + scrollbarLogicalHeight(); |
| if (shouldRecomputeHeight) |
| computeTrackSizesForDefiniteSize(ForRows, trackBasedLogicalHeight); |
| |
| setLogicalHeight(trackBasedLogicalHeight); |
| |
| updateLogicalHeight(); |
| |
| // Once grid's indefinite height is resolved, we can compute the |
| // available free space for Content Alignment. |
| if (!hasDefiniteLogicalHeight) |
| m_trackSizingAlgorithm.setFreeSpace(ForRows, logicalHeight() - trackBasedLogicalHeight); |
| |
| // 2.5- Compute Content Distribution offsets for rows tracks |
| computeContentPositionAndDistributionOffset(ForRows, m_trackSizingAlgorithm.freeSpace(ForRows).value(), nonCollapsedTracks(ForRows)); |
| |
| if (!aspectRatioBlockSizeDependentGridItems.isEmpty()) { |
| updateGridAreaForAspectRatioItems(aspectRatioBlockSizeDependentGridItems); |
| updateLogicalWidth(); |
| } |
| |
| // 3- If the min-content contribution of any grid items have changed based on the row |
| // sizes calculated in step 2, steps 1 and 2 are repeated with the new min-content |
| // contribution (once only). |
| repeatTracksSizingIfNeeded(availableSpaceForColumns, contentLogicalHeight()); |
| |
| // Grid container should have the minimum height of a line if it's editable. That does not affect track sizing though. |
| if (hasLineIfEmpty()) { |
| LayoutUnit minHeightForEmptyLine = borderAndPaddingLogicalHeight() |
| + lineHeight(true, isHorizontalWritingMode() ? HorizontalLine : VerticalLine, PositionOfInteriorLineBoxes) |
| + scrollbarLogicalHeight(); |
| setLogicalHeight(std::max(logicalHeight(), minHeightForEmptyLine)); |
| } |
| |
| layoutGridItems(); |
| |
| endAndCommitUpdateScrollInfoAfterLayoutTransaction(); |
| |
| if (size() != previousSize) |
| relayoutChildren = true; |
| |
| m_outOfFlowItemColumn.clear(); |
| m_outOfFlowItemRow.clear(); |
| |
| layoutPositionedObjects(relayoutChildren || isDocumentElementRenderer()); |
| m_trackSizingAlgorithm.reset(); |
| |
| computeOverflow(layoutOverflowLogicalBottom(*this)); |
| } |
| |
| updateLayerTransform(); |
| |
| // Update our scroll information if we're overflow:auto/scroll/hidden now that we know if |
| // we overflow or not. |
| updateScrollInfoAfterLayout(); |
| |
| repainter.repaintAfterLayout(); |
| |
| clearNeedsLayout(); |
| |
| m_trackSizingAlgorithm.clearBaselineItemsCache(); |
| m_baselineItemsCached = false; |
| } |
| |
| LayoutUnit RenderGrid::gridGap(GridTrackSizingDirection direction, std::optional<LayoutUnit> availableSize) const |
| { |
| ASSERT(!availableSize || *availableSize >= 0); |
| const GapLength& gapLength = direction == ForColumns? style().columnGap() : style().rowGap(); |
| if (gapLength.isNormal()) { |
| if (!isSubgrid(direction)) |
| return 0_lu; |
| |
| GridTrackSizingDirection parentDirection = GridLayoutFunctions::flowAwareDirectionForParent(*this, *parent(), direction); |
| if (!availableSize) |
| return downcast<RenderGrid>(parent())->gridGap(parentDirection, std::nullopt); |
| return downcast<RenderGrid>(parent())->gridGap(parentDirection); |
| } |
| |
| return valueForLength(gapLength.length(), availableSize.value_or(0)); |
| } |
| |
| LayoutUnit RenderGrid::gridGap(GridTrackSizingDirection direction) const |
| { |
| return gridGap(direction, availableSpaceForGutters(direction)); |
| } |
| |
| LayoutUnit RenderGrid::gridItemOffset(GridTrackSizingDirection direction) const |
| { |
| return direction == ForRows ? m_offsetBetweenRows.distributionOffset : m_offsetBetweenColumns.distributionOffset; |
| } |
| |
| LayoutUnit RenderGrid::guttersSize(const Grid& grid, GridTrackSizingDirection direction, unsigned startLine, unsigned span, std::optional<LayoutUnit> availableSize) const |
| { |
| if (span <= 1) |
| return { }; |
| |
| LayoutUnit gap = gridGap(direction, availableSize); |
| |
| // Fast path, no collapsing tracks. |
| if (!grid.hasAutoRepeatEmptyTracks(direction)) |
| return gap * (span - 1); |
| |
| // If there are collapsing tracks we need to be sure that gutters are properly collapsed. Apart |
| // from that, if we have a collapsed track in the edges of the span we're considering, we need |
| // to move forward (or backwards) in order to know whether the collapsed tracks reach the end of |
| // the grid (so the gap becomes 0) or there is a non empty track before that. |
| |
| LayoutUnit gapAccumulator; |
| unsigned endLine = startLine + span; |
| |
| for (unsigned line = startLine; line < endLine - 1; ++line) { |
| if (!grid.isEmptyAutoRepeatTrack(direction, line)) |
| gapAccumulator += gap; |
| } |
| |
| // The above loop adds one extra gap for trailing collapsed tracks. |
| if (gapAccumulator && grid.isEmptyAutoRepeatTrack(direction, endLine - 1)) { |
| ASSERT(gapAccumulator >= gap); |
| gapAccumulator -= gap; |
| } |
| |
| // If the startLine is the start line of a collapsed track we need to go backwards till we reach |
| // a non collapsed track. If we find a non collapsed track we need to add that gap. |
| size_t nonEmptyTracksBeforeStartLine = 0; |
| if (startLine && grid.isEmptyAutoRepeatTrack(direction, startLine)) { |
| nonEmptyTracksBeforeStartLine = startLine; |
| auto begin = grid.autoRepeatEmptyTracks(direction)->begin(); |
| for (auto it = begin; *it != startLine; ++it) { |
| ASSERT(nonEmptyTracksBeforeStartLine); |
| --nonEmptyTracksBeforeStartLine; |
| } |
| if (nonEmptyTracksBeforeStartLine) |
| gapAccumulator += gap; |
| } |
| |
| // If the endLine is the end line of a collapsed track we need to go forward till we reach a non |
| // collapsed track. If we find a non collapsed track we need to add that gap. |
| if (grid.isEmptyAutoRepeatTrack(direction, endLine - 1)) { |
| unsigned nonEmptyTracksAfterEndLine = grid.numTracks(direction) - endLine; |
| auto currentEmptyTrack = grid.autoRepeatEmptyTracks(direction)->find(endLine - 1); |
| auto endEmptyTrack = grid.autoRepeatEmptyTracks(direction)->end(); |
| // HashSet iterators do not implement operator- so we have to manually iterate to know the number of remaining empty tracks. |
| for (auto it = ++currentEmptyTrack; it != endEmptyTrack; ++it) { |
| ASSERT(nonEmptyTracksAfterEndLine >= 1); |
| --nonEmptyTracksAfterEndLine; |
| } |
| if (nonEmptyTracksAfterEndLine) { |
| // We shouldn't count the gap twice if the span starts and ends in a collapsed track bewtween two non-empty tracks. |
| if (!nonEmptyTracksBeforeStartLine) |
| gapAccumulator += gap; |
| } else if (nonEmptyTracksBeforeStartLine) { |
| // We shouldn't count the gap if the the span starts and ends in a collapsed but there isn't non-empty tracks afterwards (it's at the end of the grid). |
| gapAccumulator -= gap; |
| } |
| } |
| |
| return gapAccumulator; |
| } |
| |
| void RenderGrid::computeIntrinsicLogicalWidths(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth) const |
| { |
| LayoutUnit childMinWidth; |
| LayoutUnit childMaxWidth; |
| bool hadExcludedChildren = computePreferredWidthsForExcludedChildren(childMinWidth, childMaxWidth); |
| |
| if (needsLayout()) { |
| GridTrackSizingAlgorithm algorithm(this, const_cast<Grid&>(m_grid)); |
| placeItemsOnGrid(algorithm, std::nullopt); |
| |
| performGridItemsPreLayout(algorithm); |
| |
| if (m_baselineItemsCached) |
| algorithm.copyBaselineItemsCache(m_trackSizingAlgorithm, GridRowAxis); |
| else { |
| auto emptyCallback = [](RenderBox*) { }; |
| cacheBaselineAlignedChildren(*this, algorithm, GridRowAxis, emptyCallback); |
| } |
| |
| computeTrackSizesForIndefiniteSize(algorithm, ForColumns, &minLogicalWidth, &maxLogicalWidth); |
| } else { |
| LayoutUnit totalGuttersSize = guttersSize(m_grid, ForColumns, 0, numTracks(ForColumns), std::nullopt); |
| minLogicalWidth = *m_minContentSize + totalGuttersSize; |
| maxLogicalWidth = *m_maxContentSize + totalGuttersSize; |
| } |
| |
| if (hadExcludedChildren) { |
| minLogicalWidth = std::max(minLogicalWidth, childMinWidth); |
| maxLogicalWidth = std::max(maxLogicalWidth, childMaxWidth); |
| } |
| |
| LayoutUnit scrollbarWidth = intrinsicScrollbarLogicalWidth(); |
| minLogicalWidth += scrollbarWidth; |
| maxLogicalWidth += scrollbarWidth; |
| } |
| |
| void RenderGrid::computeTrackSizesForIndefiniteSize(GridTrackSizingAlgorithm& algorithm, GridTrackSizingDirection direction, LayoutUnit* minIntrinsicSize, LayoutUnit* maxIntrinsicSize) const |
| { |
| const Grid& grid = algorithm.grid(); |
| algorithm.setup(direction, numTracks(direction, grid), IntrinsicSizeComputation, std::nullopt); |
| algorithm.run(); |
| |
| size_t numberOfTracks = algorithm.tracks(direction).size(); |
| LayoutUnit totalGuttersSize = guttersSize(grid, direction, 0, numberOfTracks, std::nullopt); |
| |
| if (minIntrinsicSize) |
| *minIntrinsicSize = algorithm.minContentSize() + totalGuttersSize; |
| if (maxIntrinsicSize) |
| *maxIntrinsicSize = algorithm.maxContentSize() + totalGuttersSize; |
| |
| ASSERT(algorithm.tracksAreWiderThanMinTrackBreadth()); |
| } |
| |
| unsigned RenderGrid::computeAutoRepeatTracksCount(GridTrackSizingDirection direction, std::optional<LayoutUnit> availableSize) const |
| { |
| ASSERT(!availableSize || availableSize.value() != -1); |
| bool isRowAxis = direction == ForColumns; |
| if (isSubgrid(direction)) |
| return 0; |
| |
| const auto& autoRepeatTracks = isRowAxis ? style().gridAutoRepeatColumns() : style().gridAutoRepeatRows(); |
| unsigned autoRepeatTrackListLength = autoRepeatTracks.size(); |
| |
| if (!autoRepeatTrackListLength) |
| return 0; |
| |
| bool needsToFulfillMinimumSize = false; |
| if (!availableSize) { |
| const Length& maxSize = isRowAxis ? style().logicalMaxWidth() : style().logicalMaxHeight(); |
| std::optional<LayoutUnit> containingBlockAvailableSize; |
| std::optional<LayoutUnit> availableMaxSize; |
| if (maxSize.isSpecified()) { |
| if (maxSize.isPercentOrCalculated()) |
| containingBlockAvailableSize = isRowAxis ? containingBlockLogicalWidthForContent() : containingBlockLogicalHeightForContent(ExcludeMarginBorderPadding); |
| LayoutUnit maxSizeValue = valueForLength(maxSize, valueOrDefault(containingBlockAvailableSize)); |
| availableMaxSize = isRowAxis ? adjustContentBoxLogicalWidthForBoxSizing(maxSizeValue, maxSize.type()) : adjustContentBoxLogicalHeightForBoxSizing(maxSizeValue); |
| } |
| |
| const Length& minSize = isRowAxis ? style().logicalMinWidth() : style().logicalMinHeight(); |
| const auto& minSizeForOrthogonalAxis = isRowAxis ? style().logicalMinHeight() : style().logicalMinWidth(); |
| bool shouldComputeMinSizeFromAspectRatio = minSizeForOrthogonalAxis.isSpecified() && !shouldIgnoreAspectRatio(); |
| |
| if (!availableMaxSize && !minSize.isSpecified() && !shouldComputeMinSizeFromAspectRatio) |
| return autoRepeatTrackListLength; |
| |
| std::optional<LayoutUnit> availableMinSize; |
| if (minSize.isSpecified()) { |
| if (!containingBlockAvailableSize && minSize.isPercentOrCalculated()) |
| containingBlockAvailableSize = isRowAxis ? containingBlockLogicalWidthForContent() : containingBlockLogicalHeightForContent(ExcludeMarginBorderPadding); |
| LayoutUnit minSizeValue = valueForLength(minSize, valueOrDefault(containingBlockAvailableSize)); |
| availableMinSize = isRowAxis ? adjustContentBoxLogicalWidthForBoxSizing(minSizeValue, minSize.type()) : adjustContentBoxLogicalHeightForBoxSizing(minSizeValue); |
| } else if (shouldComputeMinSizeFromAspectRatio) { |
| auto [logicalMinWidth, logicalMaxWidth] = computeMinMaxLogicalWidthFromAspectRatio(); |
| availableMinSize = logicalMinWidth; |
| } |
| if (!maxSize.isSpecified()) |
| needsToFulfillMinimumSize = true; |
| |
| availableSize = std::max(valueOrDefault(availableMinSize), valueOrDefault(availableMaxSize)); |
| } |
| |
| LayoutUnit autoRepeatTracksSize; |
| for (auto& autoTrackSize : autoRepeatTracks) { |
| ASSERT(autoTrackSize.minTrackBreadth().isLength()); |
| ASSERT(!autoTrackSize.minTrackBreadth().isFlex()); |
| bool hasDefiniteMaxTrackSizingFunction = autoTrackSize.maxTrackBreadth().isLength() && !autoTrackSize.maxTrackBreadth().isContentSized(); |
| auto trackLength = hasDefiniteMaxTrackSizingFunction ? autoTrackSize.maxTrackBreadth().length() : autoTrackSize.minTrackBreadth().length(); |
| bool hasDefiniteMinTrackSizingFunction = autoTrackSize.minTrackBreadth().isLength() && !autoTrackSize.minTrackBreadth().isContentSized(); |
| if (hasDefiniteMinTrackSizingFunction && (trackLength.value() < autoTrackSize.minTrackBreadth().length().value())) |
| trackLength = autoTrackSize.minTrackBreadth().length(); |
| autoRepeatTracksSize += valueForLength(trackLength, availableSize.value()); |
| } |
| // For the purpose of finding the number of auto-repeated tracks, the UA must floor the track size to a UA-specified |
| // value to avoid division by zero. It is suggested that this floor be 1px. |
| autoRepeatTracksSize = std::max<LayoutUnit>(1_lu, autoRepeatTracksSize); |
| |
| // There will be always at least 1 auto-repeat track, so take it already into account when computing the total track size. |
| LayoutUnit tracksSize = autoRepeatTracksSize; |
| auto& trackSizes = isRowAxis ? style().gridColumns() : style().gridRows(); |
| |
| for (const auto& track : trackSizes) { |
| bool hasDefiniteMaxTrackBreadth = track.maxTrackBreadth().isLength() && !track.maxTrackBreadth().isContentSized(); |
| ASSERT(hasDefiniteMaxTrackBreadth || (track.minTrackBreadth().isLength() && !track.minTrackBreadth().isContentSized())); |
| tracksSize += valueForLength(hasDefiniteMaxTrackBreadth ? track.maxTrackBreadth().length() : track.minTrackBreadth().length(), availableSize.value()); |
| } |
| |
| // Add gutters as if auto repeat tracks were only repeated once. Gaps between different repetitions will be added later when |
| // computing the number of repetitions of the auto repeat(). |
| LayoutUnit gapSize = gridGap(direction, availableSize); |
| tracksSize += gapSize * (trackSizes.size() + autoRepeatTrackListLength - 1); |
| |
| LayoutUnit freeSpace = availableSize.value() - tracksSize; |
| if (freeSpace <= 0) |
| return autoRepeatTrackListLength; |
| |
| LayoutUnit autoRepeatSizeWithGap = autoRepeatTracksSize + gapSize * autoRepeatTrackListLength; |
| unsigned repetitions = 1 + (freeSpace / autoRepeatSizeWithGap).toUnsigned(); |
| freeSpace -= autoRepeatSizeWithGap * (repetitions - 1); |
| ASSERT(freeSpace >= 0); |
| |
| // Provided the grid container does not have a definite size or max-size in the relevant axis, |
| // if the min size is definite then the number of repetitions is the largest possible positive |
| // integer that fulfills that minimum requirement. |
| if (needsToFulfillMinimumSize && freeSpace) |
| ++repetitions; |
| |
| return repetitions * autoRepeatTrackListLength; |
| } |
| |
| |
| std::unique_ptr<OrderedTrackIndexSet> RenderGrid::computeEmptyTracksForAutoRepeat(Grid& grid, GridTrackSizingDirection direction) const |
| { |
| bool isRowAxis = direction == ForColumns; |
| if ((isRowAxis && style().gridAutoRepeatColumnsType() != AutoRepeatType::Fit) |
| || (!isRowAxis && style().gridAutoRepeatRowsType() != AutoRepeatType::Fit)) |
| return nullptr; |
| |
| std::unique_ptr<OrderedTrackIndexSet> emptyTrackIndexes; |
| unsigned insertionPoint = isRowAxis ? style().gridAutoRepeatColumnsInsertionPoint() : style().gridAutoRepeatRowsInsertionPoint(); |
| unsigned firstAutoRepeatTrack = insertionPoint + grid.explicitGridStart(direction); |
| unsigned lastAutoRepeatTrack = firstAutoRepeatTrack + grid.autoRepeatTracks(direction); |
| |
| if (!grid.hasGridItems() || shouldApplySizeOrStyleContainment({ Containment::Size, Containment::InlineSize })) { |
| emptyTrackIndexes = makeUnique<OrderedTrackIndexSet>(); |
| for (unsigned trackIndex = firstAutoRepeatTrack; trackIndex < lastAutoRepeatTrack; ++trackIndex) |
| emptyTrackIndexes->add(trackIndex); |
| } else { |
| for (unsigned trackIndex = firstAutoRepeatTrack; trackIndex < lastAutoRepeatTrack; ++trackIndex) { |
| GridIterator iterator(grid, direction, trackIndex); |
| if (!iterator.nextGridItem()) { |
| if (!emptyTrackIndexes) |
| emptyTrackIndexes = makeUnique<OrderedTrackIndexSet>(); |
| emptyTrackIndexes->add(trackIndex); |
| } |
| } |
| } |
| return emptyTrackIndexes; |
| } |
| |
| unsigned RenderGrid::clampAutoRepeatTracks(GridTrackSizingDirection direction, unsigned autoRepeatTracks) const |
| { |
| if (!autoRepeatTracks) |
| return 0; |
| |
| unsigned insertionPoint = direction == ForColumns ? style().gridAutoRepeatColumnsInsertionPoint() : style().gridAutoRepeatRowsInsertionPoint(); |
| unsigned maxTracks = static_cast<unsigned>(GridPosition::max()); |
| |
| if (!insertionPoint) |
| return std::min(autoRepeatTracks, maxTracks); |
| |
| if (insertionPoint >= maxTracks) |
| return 0; |
| |
| return std::min(autoRepeatTracks, maxTracks - insertionPoint); |
| } |
| |
| void RenderGrid::placeItems() |
| { |
| updateLogicalWidth(); |
| |
| LayoutUnit availableSpaceForColumns = availableLogicalWidth(); |
| placeItemsOnGrid(m_trackSizingAlgorithm, availableSpaceForColumns); |
| } |
| |
| static GridArea insertIntoGrid(Grid& grid, RenderBox& child, const GridArea& area) |
| { |
| GridArea clamped = grid.insert(child, area); |
| if (!is<RenderGrid>(child)) |
| return clamped; |
| |
| RenderGrid& renderGrid = downcast<RenderGrid>(child); |
| if (renderGrid.isSubgridRows() || renderGrid.isSubgridColumns()) |
| renderGrid.placeItems(); |
| return clamped; |
| } |
| |
| // FIXME: We shouldn't have to pass the available logical width as argument. The problem is that |
| // availableLogicalWidth() does always return a value even if we cannot resolve it like when |
| // computing the intrinsic size (preferred widths). That's why we pass the responsibility to the |
| // caller who does know whether the available logical width is indefinite or not. |
| void RenderGrid::placeItemsOnGrid(GridTrackSizingAlgorithm& algorithm, std::optional<LayoutUnit> availableLogicalWidth) const |
| { |
| Grid& grid = algorithm.mutableGrid(); |
| unsigned autoRepeatColumns = computeAutoRepeatTracksCount(ForColumns, availableLogicalWidth); |
| unsigned autoRepeatRows = computeAutoRepeatTracksCount(ForRows, availableLogicalHeightForPercentageComputation()); |
| autoRepeatRows = clampAutoRepeatTracks(ForRows, autoRepeatRows); |
| autoRepeatColumns = clampAutoRepeatTracks(ForColumns, autoRepeatColumns); |
| |
| if (autoRepeatColumns != grid.autoRepeatTracks(ForColumns) || autoRepeatRows != grid.autoRepeatTracks(ForRows)) { |
| grid.setNeedsItemsPlacement(true); |
| grid.setAutoRepeatTracks(autoRepeatRows, autoRepeatColumns); |
| } |
| |
| if (!grid.needsItemsPlacement()) |
| return; |
| |
| ASSERT(!grid.hasGridItems()); |
| populateExplicitGridAndOrderIterator(grid); |
| |
| Vector<RenderBox*> autoMajorAxisAutoGridItems; |
| Vector<RenderBox*> specifiedMajorAxisAutoGridItems; |
| for (auto* child = grid.orderIterator().first(); child; child = grid.orderIterator().next()) { |
| if (grid.orderIterator().shouldSkipChild(*child)) |
| continue; |
| |
| // Grid items should use the grid area sizes instead of the containing block (grid container) |
| // sizes, we initialize the overrides here if needed to ensure it. |
| if (!child->hasOverridingContainingBlockContentLogicalWidth()) |
| child->setOverridingContainingBlockContentLogicalWidth(LayoutUnit()); |
| if (!child->hasOverridingContainingBlockContentLogicalHeight()) |
| child->setOverridingContainingBlockContentLogicalHeight(std::nullopt); |
| |
| GridArea area = grid.gridItemArea(*child); |
| grid.clampAreaToSubgridIfNeeded(area); |
| if (!area.rows.isIndefinite()) |
| area.rows.translate(grid.explicitGridStart(ForRows)); |
| if (!area.columns.isIndefinite()) |
| area.columns.translate(grid.explicitGridStart(ForColumns)); |
| |
| if (area.rows.isIndefinite() || area.columns.isIndefinite()) { |
| grid.setGridItemArea(*child, area); |
| bool majorAxisDirectionIsForColumns = autoPlacementMajorAxisDirection() == ForColumns; |
| if ((majorAxisDirectionIsForColumns && area.columns.isIndefinite()) |
| || (!majorAxisDirectionIsForColumns && area.rows.isIndefinite())) |
| autoMajorAxisAutoGridItems.append(child); |
| else |
| specifiedMajorAxisAutoGridItems.append(child); |
| continue; |
| } |
| insertIntoGrid(grid, *child, { area.rows, area.columns }); |
| } |
| |
| #if ASSERT_ENABLED |
| if (grid.hasGridItems()) { |
| ASSERT(grid.numTracks(ForRows) >= GridPositionsResolver::explicitGridRowCount(*this)); |
| ASSERT(grid.numTracks(ForColumns) >= GridPositionsResolver::explicitGridColumnCount(*this)); |
| } |
| #endif |
| |
| placeSpecifiedMajorAxisItemsOnGrid(grid, specifiedMajorAxisAutoGridItems); |
| placeAutoMajorAxisItemsOnGrid(grid, autoMajorAxisAutoGridItems); |
| |
| // Compute collapsible tracks for auto-fit. |
| grid.setAutoRepeatEmptyColumns(computeEmptyTracksForAutoRepeat(grid, ForColumns)); |
| grid.setAutoRepeatEmptyRows(computeEmptyTracksForAutoRepeat(grid, ForRows)); |
| |
| grid.setNeedsItemsPlacement(false); |
| |
| #if ASSERT_ENABLED |
| for (auto* child = grid.orderIterator().first(); child; child = grid.orderIterator().next()) { |
| if (grid.orderIterator().shouldSkipChild(*child)) |
| continue; |
| |
| GridArea area = grid.gridItemArea(*child); |
| ASSERT(area.rows.isTranslatedDefinite() && area.columns.isTranslatedDefinite()); |
| } |
| #endif |
| } |
| |
| void RenderGrid::performGridItemsPreLayout(const GridTrackSizingAlgorithm& algorithm) const |
| { |
| ASSERT(!algorithm.grid().needsItemsPlacement()); |
| // FIXME: We need a way when we are calling this during intrinsic size compuation before performing |
| // the layout. Maybe using the PreLayout phase ? |
| for (auto* child = firstChildBox(); child; child = child->nextSiblingBox()) { |
| if (child->isOutOfFlowPositioned()) |
| continue; |
| // Orthogonal items should be laid out in order to properly compute content-sized tracks that may depend on item's intrinsic size. |
| // We also need to properly estimate its grid area size, since it may affect to the baseline shims if such item particiaptes in baseline alignment. |
| if (GridLayoutFunctions::isOrthogonalChild(*this, *child)) { |
| updateGridAreaLogicalSize(*child, algorithm.estimatedGridAreaBreadthForChild(*child, ForColumns), algorithm.estimatedGridAreaBreadthForChild(*child, ForRows)); |
| child->layoutIfNeeded(); |
| continue; |
| } |
| // We need to layout the item to know whether it must synthesize its |
| // baseline or not, which may imply a cyclic sizing dependency. |
| // FIXME: Can we avoid it ? |
| // FIXME: We also want to layout baseline aligned items within subgrids, but |
| // we don't currently have a way to do that here. |
| if (isBaselineAlignmentForChild(*child)) { |
| updateGridAreaLogicalSize(*child, algorithm.estimatedGridAreaBreadthForChild(*child, ForColumns), algorithm.estimatedGridAreaBreadthForChild(*child, ForRows)); |
| child->layoutIfNeeded(); |
| } |
| } |
| } |
| |
| void RenderGrid::populateExplicitGridAndOrderIterator(Grid& grid) const |
| { |
| OrderIteratorPopulator populator(grid.orderIterator()); |
| unsigned explicitRowStart = 0; |
| unsigned explicitColumnStart = 0; |
| unsigned maximumRowIndex = GridPositionsResolver::explicitGridRowCount(*this); |
| unsigned maximumColumnIndex = GridPositionsResolver::explicitGridColumnCount(*this); |
| |
| for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) { |
| if (!populator.collectChild(*child)) |
| continue; |
| |
| GridSpan rowPositions = GridPositionsResolver::resolveGridPositionsFromStyle(*this, *child, ForRows); |
| if (!isSubgridRows()) { |
| if (!rowPositions.isIndefinite()) { |
| explicitRowStart = std::max<int>(explicitRowStart, -rowPositions.untranslatedStartLine()); |
| maximumRowIndex = std::max<int>(maximumRowIndex, rowPositions.untranslatedEndLine()); |
| } else { |
| // Grow the grid for items with a definite row span, getting the largest such span. |
| unsigned spanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(*child, ForRows); |
| maximumRowIndex = std::max(maximumRowIndex, spanSize); |
| } |
| } |
| |
| GridSpan columnPositions = GridPositionsResolver::resolveGridPositionsFromStyle(*this, *child, ForColumns); |
| if (!isSubgridColumns()) { |
| if (!columnPositions.isIndefinite()) { |
| explicitColumnStart = std::max<int>(explicitColumnStart, -columnPositions.untranslatedStartLine()); |
| maximumColumnIndex = std::max<int>(maximumColumnIndex, columnPositions.untranslatedEndLine()); |
| } else { |
| // Grow the grid for items with a definite column span, getting the largest such span. |
| unsigned spanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(*child, ForColumns); |
| maximumColumnIndex = std::max(maximumColumnIndex, spanSize); |
| } |
| } |
| |
| grid.setGridItemArea(*child, { rowPositions, columnPositions }); |
| } |
| |
| grid.setExplicitGridStart(explicitRowStart, explicitColumnStart); |
| grid.ensureGridSize(maximumRowIndex + explicitRowStart, maximumColumnIndex + explicitColumnStart); |
| grid.setClampingForSubgrid(isSubgridRows() ? maximumRowIndex : 0, isSubgridColumns() ? maximumColumnIndex : 0); |
| } |
| |
| std::unique_ptr<GridArea> RenderGrid::createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(Grid& grid, const RenderBox& gridItem, GridTrackSizingDirection specifiedDirection, const GridSpan& specifiedPositions) const |
| { |
| GridTrackSizingDirection crossDirection = specifiedDirection == ForColumns ? ForRows : ForColumns; |
| const unsigned endOfCrossDirection = grid.numTracks(crossDirection); |
| unsigned crossDirectionSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(gridItem, crossDirection); |
| GridSpan crossDirectionPositions = GridSpan::translatedDefiniteGridSpan(endOfCrossDirection, endOfCrossDirection + crossDirectionSpanSize); |
| return makeUnique<GridArea>(specifiedDirection == ForColumns ? crossDirectionPositions : specifiedPositions, specifiedDirection == ForColumns ? specifiedPositions : crossDirectionPositions); |
| } |
| |
| void RenderGrid::placeSpecifiedMajorAxisItemsOnGrid(Grid& grid, const Vector<RenderBox*>& autoGridItems) const |
| { |
| bool isForColumns = autoPlacementMajorAxisDirection() == ForColumns; |
| bool isGridAutoFlowDense = style().isGridAutoFlowAlgorithmDense(); |
| |
| // Mapping between the major axis tracks (rows or columns) and the last auto-placed item's position inserted on |
| // that track. This is needed to implement "sparse" packing for items locked to a given track. |
| // See http://dev.w3.org/csswg/css-grid/#auto-placement-algorithm |
| HashMap<unsigned, unsigned, DefaultHash<unsigned>, WTF::UnsignedWithZeroKeyHashTraits<unsigned>> minorAxisCursors; |
| |
| for (auto& autoGridItem : autoGridItems) { |
| GridSpan majorAxisPositions = grid.gridItemSpan(*autoGridItem, autoPlacementMajorAxisDirection()); |
| ASSERT(majorAxisPositions.isTranslatedDefinite()); |
| ASSERT(grid.gridItemSpan(*autoGridItem, autoPlacementMinorAxisDirection()).isIndefinite()); |
| unsigned minorAxisSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(*autoGridItem, autoPlacementMinorAxisDirection()); |
| unsigned majorAxisInitialPosition = majorAxisPositions.startLine(); |
| |
| GridIterator iterator(grid, autoPlacementMajorAxisDirection(), majorAxisPositions.startLine(), isGridAutoFlowDense ? 0 : minorAxisCursors.get(majorAxisInitialPosition)); |
| std::unique_ptr<GridArea> emptyGridArea = iterator.nextEmptyGridArea(majorAxisPositions.integerSpan(), minorAxisSpanSize); |
| if (!emptyGridArea) |
| emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(grid, *autoGridItem, autoPlacementMajorAxisDirection(), majorAxisPositions); |
| |
| *emptyGridArea = insertIntoGrid(grid, *autoGridItem, *emptyGridArea); |
| |
| if (!isGridAutoFlowDense) |
| minorAxisCursors.set(majorAxisInitialPosition, isForColumns ? emptyGridArea->rows.startLine() : emptyGridArea->columns.startLine()); |
| } |
| } |
| |
| void RenderGrid::placeAutoMajorAxisItemsOnGrid(Grid& grid, const Vector<RenderBox*>& autoGridItems) const |
| { |
| AutoPlacementCursor autoPlacementCursor = {0, 0}; |
| bool isGridAutoFlowDense = style().isGridAutoFlowAlgorithmDense(); |
| |
| for (auto& autoGridItem : autoGridItems) { |
| placeAutoMajorAxisItemOnGrid(grid, *autoGridItem, autoPlacementCursor); |
| |
| if (isGridAutoFlowDense) { |
| autoPlacementCursor.first = 0; |
| autoPlacementCursor.second = 0; |
| } |
| } |
| } |
| |
| void RenderGrid::placeAutoMajorAxisItemOnGrid(Grid& grid, RenderBox& gridItem, AutoPlacementCursor& autoPlacementCursor) const |
| { |
| ASSERT(grid.gridItemSpan(gridItem, autoPlacementMajorAxisDirection()).isIndefinite()); |
| unsigned majorAxisSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(gridItem, autoPlacementMajorAxisDirection()); |
| |
| const unsigned endOfMajorAxis = grid.numTracks(autoPlacementMajorAxisDirection()); |
| unsigned majorAxisAutoPlacementCursor = autoPlacementMajorAxisDirection() == ForColumns ? autoPlacementCursor.second : autoPlacementCursor.first; |
| unsigned minorAxisAutoPlacementCursor = autoPlacementMajorAxisDirection() == ForColumns ? autoPlacementCursor.first : autoPlacementCursor.second; |
| |
| std::unique_ptr<GridArea> emptyGridArea; |
| GridSpan minorAxisPositions = grid.gridItemSpan(gridItem, autoPlacementMinorAxisDirection()); |
| if (minorAxisPositions.isTranslatedDefinite()) { |
| // Move to the next track in major axis if initial position in minor axis is before auto-placement cursor. |
| if (minorAxisPositions.startLine() < minorAxisAutoPlacementCursor) |
| majorAxisAutoPlacementCursor++; |
| |
| if (majorAxisAutoPlacementCursor < endOfMajorAxis) { |
| GridIterator iterator(grid, autoPlacementMinorAxisDirection(), minorAxisPositions.startLine(), majorAxisAutoPlacementCursor); |
| emptyGridArea = iterator.nextEmptyGridArea(minorAxisPositions.integerSpan(), majorAxisSpanSize); |
| } |
| |
| if (!emptyGridArea) |
| emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(grid, gridItem, autoPlacementMinorAxisDirection(), minorAxisPositions); |
| } else { |
| unsigned minorAxisSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(gridItem, autoPlacementMinorAxisDirection()); |
| |
| for (unsigned majorAxisIndex = majorAxisAutoPlacementCursor; majorAxisIndex < endOfMajorAxis; ++majorAxisIndex) { |
| GridIterator iterator(grid, autoPlacementMajorAxisDirection(), majorAxisIndex, minorAxisAutoPlacementCursor); |
| emptyGridArea = iterator.nextEmptyGridArea(majorAxisSpanSize, minorAxisSpanSize); |
| |
| if (emptyGridArea) { |
| // Check that it fits in the minor axis direction, as we shouldn't grow in that direction here (it was already managed in populateExplicitGridAndOrderIterator()). |
| unsigned minorAxisFinalPositionIndex = autoPlacementMinorAxisDirection() == ForColumns ? emptyGridArea->columns.endLine() : emptyGridArea->rows.endLine(); |
| const unsigned endOfMinorAxis = grid.numTracks(autoPlacementMinorAxisDirection()); |
| if (minorAxisFinalPositionIndex <= endOfMinorAxis) |
| break; |
| |
| // Discard empty grid area as it does not fit in the minor axis direction. |
| // We don't need to create a new empty grid area yet as we might find a valid one in the next iteration. |
| emptyGridArea = nullptr; |
| } |
| |
| // As we're moving to the next track in the major axis we should reset the auto-placement cursor in the minor axis. |
| minorAxisAutoPlacementCursor = 0; |
| } |
| |
| if (!emptyGridArea) |
| emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(grid, gridItem, autoPlacementMinorAxisDirection(), GridSpan::translatedDefiniteGridSpan(0, minorAxisSpanSize)); |
| } |
| |
| *emptyGridArea = insertIntoGrid(grid, gridItem, *emptyGridArea); |
| autoPlacementCursor.first = emptyGridArea->rows.startLine(); |
| autoPlacementCursor.second = emptyGridArea->columns.startLine(); |
| } |
| |
| GridTrackSizingDirection RenderGrid::autoPlacementMajorAxisDirection() const |
| { |
| return style().isGridAutoFlowDirectionColumn() ? ForColumns : ForRows; |
| } |
| |
| GridTrackSizingDirection RenderGrid::autoPlacementMinorAxisDirection() const |
| { |
| return style().isGridAutoFlowDirectionColumn() ? ForRows : ForColumns; |
| } |
| |
| void RenderGrid::dirtyGrid() |
| { |
| if (m_grid.needsItemsPlacement()) |
| return; |
| |
| m_grid.setNeedsItemsPlacement(true); |
| } |
| |
| Vector<LayoutUnit> RenderGrid::trackSizesForComputedStyle(GridTrackSizingDirection direction) const |
| { |
| bool isRowAxis = direction == ForColumns; |
| auto& positions = isRowAxis ? m_columnPositions : m_rowPositions; |
| size_t numPositions = positions.size(); |
| LayoutUnit offsetBetweenTracks = isRowAxis ? m_offsetBetweenColumns.distributionOffset : m_offsetBetweenRows.distributionOffset; |
| |
| Vector<LayoutUnit> tracks; |
| if (numPositions < 2) |
| return tracks; |
| |
| ASSERT(!m_grid.needsItemsPlacement()); |
| bool hasCollapsedTracks = m_grid.hasAutoRepeatEmptyTracks(direction); |
| LayoutUnit gap = !hasCollapsedTracks ? gridGap(direction) : 0_lu; |
| tracks.reserveInitialCapacity(numPositions - 1); |
| for (size_t i = 0; i < numPositions - 2; ++i) |
| tracks.uncheckedAppend(positions[i + 1] - positions[i] - offsetBetweenTracks - gap); |
| tracks.uncheckedAppend(positions[numPositions - 1] - positions[numPositions - 2]); |
| |
| if (!hasCollapsedTracks) |
| return tracks; |
| |
| size_t remainingEmptyTracks = m_grid.autoRepeatEmptyTracks(direction)->size(); |
| size_t lastLine = tracks.size(); |
| gap = gridGap(direction); |
| for (size_t i = 1; i < lastLine; ++i) { |
| if (m_grid.isEmptyAutoRepeatTrack(direction, i - 1)) |
| --remainingEmptyTracks; |
| else { |
| // Remove the gap between consecutive non empty tracks. Remove it also just once for an |
| // arbitrary number of empty tracks between two non empty ones. |
| bool allRemainingTracksAreEmpty = remainingEmptyTracks == (lastLine - i); |
| if (!allRemainingTracksAreEmpty || !m_grid.isEmptyAutoRepeatTrack(direction, i)) |
| tracks[i - 1] -= gap; |
| } |
| } |
| |
| return tracks; |
| } |
| |
| static const StyleContentAlignmentData& contentAlignmentNormalBehaviorGrid() |
| { |
| static const StyleContentAlignmentData normalBehavior = {ContentPosition::Normal, ContentDistribution::Stretch}; |
| return normalBehavior; |
| } |
| |
| static bool overrideSizeChanged(const RenderBox& child, GridTrackSizingDirection direction, std::optional<LayoutUnit> width, std::optional<LayoutUnit> height) |
| { |
| if (direction == ForColumns) |
| return !child.hasOverridingContainingBlockContentLogicalWidth() || child.overridingContainingBlockContentLogicalWidth() != width; |
| return !child.hasOverridingContainingBlockContentLogicalHeight() || child.overridingContainingBlockContentLogicalHeight() != height; |
| } |
| |
| static bool hasRelativeBlockAxisSize(const RenderGrid& grid, const RenderBox& child) |
| { |
| return GridLayoutFunctions::isOrthogonalChild(grid, child) ? child.hasRelativeLogicalWidth() || child.style().logicalWidth().isAuto() : child.hasRelativeLogicalHeight(); |
| } |
| |
| void RenderGrid::updateGridAreaLogicalSize(RenderBox& child, std::optional<LayoutUnit> width, std::optional<LayoutUnit> height) const |
| { |
| // Because the grid area cannot be styled, we don't need to adjust |
| // the grid breadth to account for 'box-sizing'. |
| bool gridAreaWidthChanged = overrideSizeChanged(child, ForColumns, width, height); |
| bool gridAreaHeightChanged = overrideSizeChanged(child, ForRows, width, height); |
| if (gridAreaWidthChanged || (gridAreaHeightChanged && hasRelativeBlockAxisSize(*this, child))) |
| child.setNeedsLayout(MarkOnlyThis); |
| |
| child.setOverridingContainingBlockContentLogicalWidth(width); |
| child.setOverridingContainingBlockContentLogicalHeight(height); |
| } |
| |
| void RenderGrid::updateGridAreaForAspectRatioItems(const Vector<RenderBox*>& autoGridItems) |
| { |
| populateGridPositionsForDirection(ForColumns); |
| populateGridPositionsForDirection(ForRows); |
| |
| for (auto& autoGridItem : autoGridItems) { |
| updateGridAreaLogicalSize(*autoGridItem, gridAreaBreadthForChildIncludingAlignmentOffsets(*autoGridItem, ForColumns), gridAreaBreadthForChildIncludingAlignmentOffsets(*autoGridItem, ForRows)); |
| // For an item wtih aspect-ratio, if it has stretch alignment that stretches to the definite row, we also need to transfer the size before laying out the grid item. |
| if (autoGridItem->hasStretchedLogicalHeight()) |
| applyStretchAlignmentToChildIfNeeded(*autoGridItem); |
| } |
| } |
| |
| void RenderGrid::layoutGridItems() |
| { |
| populateGridPositionsForDirection(ForColumns); |
| populateGridPositionsForDirection(ForRows); |
| |
| for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) { |
| if (m_grid.orderIterator().shouldSkipChild(*child)) { |
| if (child->isOutOfFlowPositioned()) |
| prepareChildForPositionedLayout(*child); |
| continue; |
| } |
| |
| if (is<RenderGrid>(child) && (downcast<RenderGrid>(child)->isSubgridColumns() || downcast<RenderGrid>(child)->isSubgridRows())) |
| child->setNeedsLayout(MarkOnlyThis); |
| |
| // Setting the definite grid area's sizes. It may imply that the |
| // item must perform a layout if its area differs from the one |
| // used during the track sizing algorithm. |
| updateGridAreaLogicalSize(*child, gridAreaBreadthForChildIncludingAlignmentOffsets(*child, ForColumns), gridAreaBreadthForChildIncludingAlignmentOffsets(*child, ForRows)); |
| |
| LayoutRect oldChildRect = child->frameRect(); |
| |
| // Stretching logic might force a child layout, so we need to run it before the layoutIfNeeded |
| // call to avoid unnecessary relayouts. This might imply that child margins, needed to correctly |
| // determine the available space before stretching, are not set yet. |
| applyStretchAlignmentToChildIfNeeded(*child); |
| applySubgridStretchAlignmentToChildIfNeeded(*child); |
| |
| child->layoutIfNeeded(); |
| |
| // We need pending layouts to be done in order to compute auto-margins properly. |
| updateAutoMarginsInColumnAxisIfNeeded(*child); |
| updateAutoMarginsInRowAxisIfNeeded(*child); |
| |
| setLogicalPositionForChild(*child); |
| |
| // If the child moved, we have to repaint it as well as any floating/positioned |
| // descendants. An exception is if we need a layout. In this case, we know we're going to |
| // repaint ourselves (and the child) anyway. |
| if (!selfNeedsLayout() && child->checkForRepaintDuringLayout()) |
| child->repaintDuringLayoutIfMoved(oldChildRect); |
| } |
| } |
| |
| void RenderGrid::prepareChildForPositionedLayout(RenderBox& child) |
| { |
| ASSERT(child.isOutOfFlowPositioned()); |
| child.containingBlock()->insertPositionedObject(child); |
| |
| RenderLayer* childLayer = child.layer(); |
| // Static position of a positioned child should use the content-box (https://drafts.csswg.org/css-grid/#static-position). |
| childLayer->setStaticInlinePosition(borderAndPaddingStart()); |
| childLayer->setStaticBlockPosition(borderAndPaddingBefore()); |
| } |
| |
| bool RenderGrid::hasStaticPositionForChild(const RenderBox& child, GridTrackSizingDirection direction) const |
| { |
| return direction == ForColumns ? child.style().hasStaticInlinePosition(isHorizontalWritingMode()) : child.style().hasStaticBlockPosition(isHorizontalWritingMode()); |
| } |
| |
| void RenderGrid::layoutPositionedObject(RenderBox& child, bool relayoutChildren, bool fixedPositionObjectsOnly) |
| { |
| LayoutUnit columnBreadth = gridAreaBreadthForOutOfFlowChild(child, ForColumns); |
| LayoutUnit rowBreadth = gridAreaBreadthForOutOfFlowChild(child, ForRows); |
| |
| child.setOverridingContainingBlockContentLogicalWidth(columnBreadth); |
| child.setOverridingContainingBlockContentLogicalHeight(rowBreadth); |
| |
| // Mark for layout as we're resetting the position before and we relay in generic layout logic |
| // for positioned items in order to get the offsets properly resolved. |
| child.setChildNeedsLayout(MarkOnlyThis); |
| |
| RenderBlock::layoutPositionedObject(child, relayoutChildren, fixedPositionObjectsOnly); |
| |
| setLogicalOffsetForChild(child, ForColumns); |
| setLogicalOffsetForChild(child, ForRows); |
| } |
| |
| LayoutUnit RenderGrid::gridAreaBreadthForChildIncludingAlignmentOffsets(const RenderBox& child, GridTrackSizingDirection direction) const |
| { |
| // We need the cached value when available because Content Distribution alignment properties |
| // may have some influence in the final grid area breadth. |
| const auto& tracks = m_trackSizingAlgorithm.tracks(direction); |
| const auto& span = m_grid.gridItemSpan(child, direction); |
| const auto& linePositions = (direction == ForColumns) ? m_columnPositions : m_rowPositions; |
| |
| LayoutUnit initialTrackPosition = linePositions[span.startLine()]; |
| LayoutUnit finalTrackPosition = linePositions[span.endLine() - 1]; |
| |
| // Track Positions vector stores the 'start' grid line of each track, so we have to add last track's baseSize. |
| return finalTrackPosition - initialTrackPosition + tracks[span.endLine() - 1].baseSize(); |
| } |
| |
| void RenderGrid::populateGridPositionsForDirection(GridTrackSizingDirection direction) |
| { |
| // Since we add alignment offsets and track gutters, grid lines are not always adjacent. Hence we will have to |
| // assume from now on that we just store positions of the initial grid lines of each track, |
| // except the last one, which is the only one considered as a final grid line of a track. |
| |
| // The grid container's frame elements (border, padding and <content-position> offset) are sensible to the |
| // inline-axis flow direction. However, column lines positions are 'direction' unaware. This simplification |
| // allows us to use the same indexes to identify the columns independently on the inline-axis direction. |
| bool isRowAxis = direction == ForColumns; |
| auto& tracks = m_trackSizingAlgorithm.tracks(direction); |
| unsigned numberOfTracks = tracks.size(); |
| unsigned numberOfLines = numberOfTracks + 1; |
| unsigned lastLine = numberOfLines - 1; |
| bool hasCollapsedTracks = m_grid.hasAutoRepeatEmptyTracks(direction); |
| size_t numberOfCollapsedTracks = hasCollapsedTracks ? m_grid.autoRepeatEmptyTracks(direction)->size() : 0; |
| const auto& offset = direction == ForColumns ? m_offsetBetweenColumns : m_offsetBetweenRows; |
| auto& positions = isRowAxis ? m_columnPositions : m_rowPositions; |
| positions.resize(numberOfLines); |
| |
| auto borderAndPadding = isRowAxis ? borderAndPaddingStart() : borderAndPaddingBefore(); |
| |
| positions[0] = borderAndPadding + offset.positionOffset; |
| if (numberOfLines > 1) { |
| // If we have collapsed tracks we just ignore gaps here and add them later as we might not |
| // compute the gap between two consecutive tracks without examining the surrounding ones. |
| LayoutUnit gap = !hasCollapsedTracks ? gridGap(direction) : 0_lu; |
| unsigned nextToLastLine = numberOfLines - 2; |
| |
| for (unsigned i = 0; i < nextToLastLine; ++i) |
| positions[i + 1] = positions[i] + offset.distributionOffset + tracks[i].baseSize() + gap; |
| positions[lastLine] = positions[nextToLastLine] + tracks[nextToLastLine].baseSize(); |
| |
| // Adjust collapsed gaps. Collapsed tracks cause the surrounding gutters to collapse (they |
| // coincide exactly) except on the edges of the grid where they become 0. |
| if (hasCollapsedTracks) { |
| gap = gridGap(direction); |
| unsigned remainingEmptyTracks = numberOfCollapsedTracks; |
| LayoutUnit offsetAccumulator; |
| LayoutUnit gapAccumulator; |
| for (unsigned i = 1; i < lastLine; ++i) { |
| if (m_grid.isEmptyAutoRepeatTrack(direction, i - 1)) { |
| --remainingEmptyTracks; |
| offsetAccumulator += offset.distributionOffset; |
| } else { |
| // Add gap between consecutive non empty tracks. Add it also just once for an |
| // arbitrary number of empty tracks between two non empty ones. |
| bool allRemainingTracksAreEmpty = remainingEmptyTracks == (lastLine - i); |
| if (!allRemainingTracksAreEmpty || !m_grid.isEmptyAutoRepeatTrack(direction, i)) |
| gapAccumulator += gap; |
| } |
| positions[i] += gapAccumulator - offsetAccumulator; |
| } |
| positions[lastLine] += gapAccumulator - offsetAccumulator; |
| } |
| } |
| } |
| |
| static LayoutUnit computeOverflowAlignmentOffset(OverflowAlignment overflow, LayoutUnit trackSize, LayoutUnit childSize) |
| { |
| LayoutUnit offset = trackSize - childSize; |
| switch (overflow) { |
| case OverflowAlignment::Safe: |
| // If overflow is 'safe', we have to make sure we don't overflow the 'start' |
| // edge (potentially cause some data loss as the overflow is unreachable). |
| return std::max<LayoutUnit>(0, offset); |
| case OverflowAlignment::Unsafe: |
| case OverflowAlignment::Default: |
| // If we overflow our alignment container and overflow is 'true' (default), we |
| // ignore the overflow and just return the value regardless (which may cause data |
| // loss as we overflow the 'start' edge). |
| return offset; |
| } |
| |
| ASSERT_NOT_REACHED(); |
| return 0; |
| } |
| |
| LayoutUnit RenderGrid::availableAlignmentSpaceForChildBeforeStretching(LayoutUnit gridAreaBreadthForChild, const RenderBox& child, GridTrackSizingDirection direction) const |
| { |
| // Because we want to avoid multiple layouts, stretching logic might be performed before |
| // children are laid out, so we can't use the child cached values. Hence, we need to |
| // compute margins in order to determine the available height before stretching. |
| auto childFlowDirection = GridLayoutFunctions::flowAwareDirectionForChild(*this, child, direction); |
| return std::max(0_lu, gridAreaBreadthForChild - GridLayoutFunctions::marginLogicalSizeForChild(*this, childFlowDirection, child)); |
| } |
| |
| StyleSelfAlignmentData RenderGrid::alignSelfForChild(const RenderBox& child, StretchingMode stretchingMode, const RenderStyle* gridStyle) const |
| { |
| if (is<RenderGrid>(child) && downcast<RenderGrid>(child).isSubgridInParentDirection(ForRows)) |
| return { ItemPosition::Stretch, OverflowAlignment::Default }; |
| if (!gridStyle) |
| gridStyle = &style(); |
| auto normalBehavior = stretchingMode == StretchingMode::Any ? selfAlignmentNormalBehavior(&child) : ItemPosition::Normal; |
| return child.style().resolvedAlignSelf(gridStyle, normalBehavior); |
| } |
| |
| StyleSelfAlignmentData RenderGrid::justifySelfForChild(const RenderBox& child, StretchingMode stretchingMode, const RenderStyle* gridStyle) const |
| { |
| if (is<RenderGrid>(child) && downcast<RenderGrid>(child).isSubgridInParentDirection(ForColumns)) |
| return { ItemPosition::Stretch, OverflowAlignment::Default }; |
| if (!gridStyle) |
| gridStyle = &style(); |
| auto normalBehavior = stretchingMode == StretchingMode::Any ? selfAlignmentNormalBehavior(&child) : ItemPosition::Normal; |
| return child.style().resolvedJustifySelf(gridStyle, normalBehavior); |
| } |
| |
| bool RenderGrid::aspectRatioPrefersInline(const RenderBox& child, bool blockFlowIsColumnAxis) |
| { |
| if (!child.style().hasAspectRatio()) |
| return false; |
| bool hasExplicitInlineStretch = justifySelfForChild(child, StretchingMode::Explicit).position() == ItemPosition::Stretch; |
| bool hasExplicitBlockStretch = alignSelfForChild(child, StretchingMode::Explicit).position() == ItemPosition::Stretch; |
| if (!blockFlowIsColumnAxis) |
| std::swap(hasExplicitInlineStretch, hasExplicitBlockStretch); |
| return !hasExplicitBlockStretch; |
| } |
| |
| // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. |
| void RenderGrid::applyStretchAlignmentToChildIfNeeded(RenderBox& child) |
| { |
| ASSERT(child.overridingContainingBlockContentLogicalHeight()); |
| ASSERT(child.overridingContainingBlockContentLogicalWidth()); |
| |
| // We clear height and width override values because we will decide now whether it's allowed or |
| // not, evaluating the conditions which might have changed since the old values were set. |
| child.clearOverridingLogicalHeight(); |
| child.clearOverridingLogicalWidth(); |
| |
| GridTrackSizingDirection childBlockDirection = GridLayoutFunctions::flowAwareDirectionForChild(*this, child, ForRows); |
| GridTrackSizingDirection childInlineDirection = GridLayoutFunctions::flowAwareDirectionForChild(*this, child, ForColumns); |
| bool blockFlowIsColumnAxis = childBlockDirection == ForRows; |
| bool allowedToStretchChildBlockSize = blockFlowIsColumnAxis ? allowedToStretchChildAlongColumnAxis(child) : allowedToStretchChildAlongRowAxis(child); |
| if (allowedToStretchChildBlockSize && !aspectRatioPrefersInline(child, blockFlowIsColumnAxis)) { |
| LayoutUnit stretchedLogicalHeight = availableAlignmentSpaceForChildBeforeStretching(GridLayoutFunctions::overridingContainingBlockContentSizeForChild(child, childBlockDirection).value(), child, ForRows); |
| LayoutUnit desiredLogicalHeight = child.constrainLogicalHeightByMinMax(stretchedLogicalHeight, std::nullopt); |
| child.setOverridingLogicalHeight(desiredLogicalHeight); |
| |
| // Checking the logical-height of a child isn't enough. Setting an override logical-height |
| // changes the definiteness, resulting in percentages to resolve differently. |
| // |
| // FIXME: Can avoid laying out here in some cases. See https://webkit.org/b/87905. |
| if (desiredLogicalHeight != child.logicalHeight() || (is<RenderBlock>(child) && downcast<RenderBlock>(child).hasPercentHeightDescendants())) { |
| child.setLogicalHeight(0_lu); |
| child.setNeedsLayout(MarkOnlyThis); |
| } |
| } else if (!allowedToStretchChildBlockSize && allowedToStretchChildAlongRowAxis(child)) { |
| LayoutUnit stretchedLogicalWidth = availableAlignmentSpaceForChildBeforeStretching(GridLayoutFunctions::overridingContainingBlockContentSizeForChild(child, childInlineDirection).value(), child, ForColumns); |
| LayoutUnit desiredLogicalWidth = child.constrainLogicalWidthInFragmentByMinMax(stretchedLogicalWidth, contentWidth(), *this, nullptr); |
| child.setOverridingLogicalWidth(desiredLogicalWidth); |
| if (desiredLogicalWidth != child.logicalWidth()) |
| child.setNeedsLayout(MarkOnlyThis); |
| } |
| } |
| |
| void RenderGrid::applySubgridStretchAlignmentToChildIfNeeded(RenderBox& child) |
| { |
| if (!is<RenderGrid>(child)) |
| return; |
| |
| if (downcast<RenderGrid>(child).isSubgrid(ForRows)) { |
| auto childBlockDirection = GridLayoutFunctions::flowAwareDirectionForChild(*this, child, ForRows); |
| auto stretchedLogicalHeight = availableAlignmentSpaceForChildBeforeStretching(GridLayoutFunctions::overridingContainingBlockContentSizeForChild(child, childBlockDirection).value(), child, ForRows); |
| child.setOverridingLogicalHeight(stretchedLogicalHeight); |
| } |
| |
| if (downcast<RenderGrid>(child).isSubgrid(ForColumns)) { |
| auto childInlineDirection = GridLayoutFunctions::flowAwareDirectionForChild(*this, child, ForColumns); |
| auto stretchedLogicalWidth = availableAlignmentSpaceForChildBeforeStretching(GridLayoutFunctions::overridingContainingBlockContentSizeForChild(child, childInlineDirection).value(), child, ForColumns); |
| child.setOverridingLogicalWidth(stretchedLogicalWidth); |
| } |
| } |
| |
| // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. |
| bool RenderGrid::hasAutoMarginsInColumnAxis(const RenderBox& child) const |
| { |
| if (isHorizontalWritingMode()) |
| return child.style().marginTop().isAuto() || child.style().marginBottom().isAuto(); |
| return child.style().marginLeft().isAuto() || child.style().marginRight().isAuto(); |
| } |
| |
| // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. |
| bool RenderGrid::hasAutoMarginsInRowAxis(const RenderBox& child) const |
| { |
| if (isHorizontalWritingMode()) |
| return child.style().marginLeft().isAuto() || child.style().marginRight().isAuto(); |
| return child.style().marginTop().isAuto() || child.style().marginBottom().isAuto(); |
| } |
| |
| // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. |
| void RenderGrid::updateAutoMarginsInRowAxisIfNeeded(RenderBox& child) |
| { |
| ASSERT(!child.isOutOfFlowPositioned()); |
| |
| const RenderStyle& parentStyle = style(); |
| Length marginStart = child.style().marginStartUsing(&parentStyle); |
| Length marginEnd = child.style().marginEndUsing(&parentStyle); |
| LayoutUnit marginLogicalWidth; |
| // We should only consider computed margins if their specified value isn't |
| // 'auto', since such computed value may come from a previous layout and may |
| // be incorrect now. |
| if (!marginStart.isAuto()) |
| marginLogicalWidth += child.marginStart(); |
| if (!marginEnd.isAuto()) |
| marginLogicalWidth += child.marginEnd(); |
| |
| LayoutUnit availableAlignmentSpace = child.overridingContainingBlockContentLogicalWidth().value() - child.logicalWidth() - marginLogicalWidth; |
| if (availableAlignmentSpace <= 0) |
| return; |
| |
| if (marginStart.isAuto() && marginEnd.isAuto()) { |
| child.setMarginStart(availableAlignmentSpace / 2, &parentStyle); |
| child.setMarginEnd(availableAlignmentSpace / 2, &parentStyle); |
| } else if (marginStart.isAuto()) { |
| child.setMarginStart(availableAlignmentSpace, &parentStyle); |
| } else if (marginEnd.isAuto()) { |
| child.setMarginEnd(availableAlignmentSpace, &parentStyle); |
| } |
| } |
| |
| // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. |
| void RenderGrid::updateAutoMarginsInColumnAxisIfNeeded(RenderBox& child) |
| { |
| ASSERT(!child.isOutOfFlowPositioned()); |
| |
| const RenderStyle& parentStyle = style(); |
| Length marginBefore = child.style().marginBeforeUsing(&parentStyle); |
| Length marginAfter = child.style().marginAfterUsing(&parentStyle); |
| LayoutUnit marginLogicalHeight; |
| // We should only consider computed margins if their specified value isn't |
| // 'auto', since such computed value may come from a previous layout and may |
| // be incorrect now. |
| if (!marginBefore.isAuto()) |
| marginLogicalHeight += child.marginBefore(); |
| if (!marginAfter.isAuto()) |
| marginLogicalHeight += child.marginAfter(); |
| |
| LayoutUnit availableAlignmentSpace = child.overridingContainingBlockContentLogicalHeight().value() - child.logicalHeight() - marginLogicalHeight; |
| if (availableAlignmentSpace <= 0) |
| return; |
| |
| if (marginBefore.isAuto() && marginAfter.isAuto()) { |
| child.setMarginBefore(availableAlignmentSpace / 2, &parentStyle); |
| child.setMarginAfter(availableAlignmentSpace / 2, &parentStyle); |
| } else if (marginBefore.isAuto()) { |
| child.setMarginBefore(availableAlignmentSpace, &parentStyle); |
| } else if (marginAfter.isAuto()) { |
| child.setMarginAfter(availableAlignmentSpace, &parentStyle); |
| } |
| } |
| |
| bool RenderGrid::isBaselineAlignmentForChild(const RenderBox& child) const |
| { |
| return isBaselineAlignmentForChild(child, GridRowAxis) || isBaselineAlignmentForChild(child, GridColumnAxis); |
| } |
| |
| bool RenderGrid::isBaselineAlignmentForChild(const RenderBox& child, GridAxis baselineAxis, AllowedBaseLine allowed) const |
| { |
| if (child.isOutOfFlowPositioned()) |
| return false; |
| ItemPosition align = selfAlignmentForChild(baselineAxis, child).position(); |
| bool hasAutoMargins = baselineAxis == GridColumnAxis ? hasAutoMarginsInColumnAxis(child) : hasAutoMarginsInRowAxis(child); |
| bool isBaseline = allowed == FirstLine ? isFirstBaselinePosition(align) : isBaselinePosition(align); |
| return isBaseline && !hasAutoMargins; |
| } |
| |
| // FIXME: This logic is shared by RenderFlexibleBox, so it might be refactored somehow. |
| LayoutUnit RenderGrid::baselinePosition(FontBaseline, bool, LineDirectionMode direction, LinePositionMode mode) const |
| { |
| ASSERT_UNUSED(mode, mode == PositionOnContainingLine); |
| auto baseline = firstLineBaseline(); |
| if (!baseline) |
| return synthesizedBaselineFromBorderBox(*this, direction) + marginLogicalHeight(); |
| |
| return baseline.value() + (direction == HorizontalLine ? marginTop() : marginRight()).toInt(); |
| } |
| |
| std::optional<LayoutUnit> RenderGrid::firstLineBaseline() const |
| { |
| if (isWritingModeRoot() || !m_grid.hasGridItems() || shouldApplyLayoutContainment()) |
| return std::nullopt; |
| |
| const RenderBox* baselineChild = nullptr; |
| // Finding the first grid item in grid order. |
| unsigned numColumns = m_grid.numTracks(ForColumns); |
| for (size_t column = 0; column < numColumns; column++) { |
| for (auto& child : m_grid.cell(0, column)) { |
| ASSERT(child.get()); |
| // If an item participates in baseline alignment, we select such item. |
| if (isBaselineAlignmentForChild(*child, GridColumnAxis, FirstLine)) { |
| // FIXME: self-baseline and content-baseline alignment not implemented yet. |
| baselineChild = child.get(); |
| break; |
| } |
| if (!baselineChild) |
| baselineChild = child.get(); |
| } |
| } |
| |
| if (!baselineChild) |
| return std::nullopt; |
| |
| auto baseline = GridLayoutFunctions::isOrthogonalChild(*this, *baselineChild) ? std::nullopt : baselineChild->firstLineBaseline(); |
| // We take border-box's bottom if no valid baseline. |
| if (!baseline) { |
| // FIXME: We should pass |direction| into firstLineBaseline and stop bailing out if we're a writing |
| // mode root. This would also fix some cases where the grid is orthogonal to its container. |
| LineDirectionMode direction = isHorizontalWritingMode() ? HorizontalLine : VerticalLine; |
| return synthesizedBaselineFromBorderBox(*baselineChild, direction) + logicalTopForChild(*baselineChild); |
| } |
| return baseline.value() + baselineChild->logicalTop().toInt(); |
| } |
| |
| std::optional<LayoutUnit> RenderGrid::inlineBlockBaseline(LineDirectionMode) const |
| { |
| return firstLineBaseline(); |
| } |
| |
| LayoutUnit RenderGrid::columnAxisBaselineOffsetForChild(const RenderBox& child) const |
| { |
| if (isSubgridRows()) { |
| RenderGrid* outer = downcast<RenderGrid>(parent()); |
| if (GridLayoutFunctions::isOrthogonalChild(*outer, *this)) |
| return outer->rowAxisBaselineOffsetForChild(child); |
| return outer->columnAxisBaselineOffsetForChild(child); |
| } |
| return m_trackSizingAlgorithm.baselineOffsetForChild(child, GridColumnAxis); |
| } |
| |
| LayoutUnit RenderGrid::rowAxisBaselineOffsetForChild(const RenderBox& child) const |
| { |
| if (isSubgridColumns()) { |
| RenderGrid* outer = downcast<RenderGrid>(parent()); |
| if (GridLayoutFunctions::isOrthogonalChild(*outer, *this)) |
| return outer->columnAxisBaselineOffsetForChild(child); |
| return outer->rowAxisBaselineOffsetForChild(child); |
| } |
| return m_trackSizingAlgorithm.baselineOffsetForChild(child, GridRowAxis); |
| } |
| |
| GridAxisPosition RenderGrid::columnAxisPositionForChild(const RenderBox& child) const |
| { |
| bool hasSameWritingMode = child.style().writingMode() == style().writingMode(); |
| bool childIsLTR = child.style().isLeftToRightDirection(); |
| if (child.isOutOfFlowPositioned() && !hasStaticPositionForChild(child, ForRows)) |
| return GridAxisStart; |
| |
| switch (alignSelfForChild(child).position()) { |
| case ItemPosition::SelfStart: |
| // FIXME: Should we implement this logic in a generic utility function ? |
| // Aligns the alignment subject to be flush with the edge of the alignment container |
| // corresponding to the alignment subject's 'start' side in the column axis. |
| if (GridLayoutFunctions::isOrthogonalChild(*this, child)) { |
| // If orthogonal writing-modes, self-start will be based on the child's inline-axis |
| // direction (inline-start), because it's the one parallel to the column axis. |
| if (style().isFlippedBlocksWritingMode()) |
| return childIsLTR ? GridAxisEnd : GridAxisStart; |
| return childIsLTR ? GridAxisStart : GridAxisEnd; |
| } |
| // self-start is based on the child's block-flow direction. That's why we need to check against the grid container's block-flow direction. |
| return hasSameWritingMode ? GridAxisStart : GridAxisEnd; |
| case ItemPosition::SelfEnd: |
| // FIXME: Should we implement this logic in a generic utility function ? |
| // Aligns the alignment subject to be flush with the edge of the alignment container |
| // corresponding to the alignment subject's 'end' side in the column axis. |
| if (GridLayoutFunctions::isOrthogonalChild(*this, child)) { |
| // If orthogonal writing-modes, self-end will be based on the child's inline-axis |
| // direction, (inline-end) because it's the one parallel to the column axis. |
| if (style().isFlippedBlocksWritingMode()) |
| return childIsLTR ? GridAxisStart : GridAxisEnd; |
| return childIsLTR ? GridAxisEnd : GridAxisStart; |
| } |
| // self-end is based on the child's block-flow direction. That's why we need to check against the grid container's block-flow direction. |
| return hasSameWritingMode ? GridAxisEnd : GridAxisStart; |
| case ItemPosition::Left: |
| // Aligns the alignment subject to be flush with the alignment container's 'line-left' edge. |
| // The alignment axis (column axis) is always orthogonal to the inline axis, hence this value behaves as 'start'. |
| return GridAxisStart; |
| case ItemPosition::Right: |
| // Aligns the alignment subject to be flush with the alignment container's 'line-right' edge. |
| // The alignment axis (column axis) is always orthogonal to the inline axis, hence this value behaves as 'start'. |
| return GridAxisStart; |
| case ItemPosition::Center: |
| return GridAxisCenter; |
| case ItemPosition::FlexStart: // Only used in flex layout, otherwise equivalent to 'start'. |
| // Aligns the alignment subject to be flush with the alignment container's 'start' edge (block-start) in the column axis. |
| case ItemPosition::Start: |
| return GridAxisStart; |
| case ItemPosition::FlexEnd: // Only used in flex layout, otherwise equivalent to 'end'. |
| // Aligns the alignment subject to be flush with the alignment container's 'end' edge (block-end) in the column axis. |
| case ItemPosition::End: |
| return GridAxisEnd; |
| case ItemPosition::Stretch: |
| return GridAxisStart; |
| case ItemPosition::Baseline: |
| case ItemPosition::LastBaseline: |
| // FIXME: Implement the previous values. For now, we always 'start' align the child. |
| return GridAxisStart; |
| case ItemPosition::Legacy: |
| case ItemPosition::Auto: |
| case ItemPosition::Normal: |
| break; |
| } |
| |
| ASSERT_NOT_REACHED(); |
| return GridAxisStart; |
| } |
| |
| GridAxisPosition RenderGrid::rowAxisPositionForChild(const RenderBox& child) const |
| { |
| bool hasSameDirection = child.style().direction() == style().direction(); |
| bool gridIsLTR = style().isLeftToRightDirection(); |
| if (child.isOutOfFlowPositioned() && !hasStaticPositionForChild(child, ForColumns)) |
| return GridAxisStart; |
| |
| switch (justifySelfForChild(child).position()) { |
| case ItemPosition::SelfStart: |
| // FIXME: Should we implement this logic in a generic utility function ? |
| // Aligns the alignment subject to be flush with the edge of the alignment container |
| // corresponding to the alignment subject's 'start' side in the row axis. |
| if (GridLayoutFunctions::isOrthogonalChild(*this, child)) { |
| // If orthogonal writing-modes, self-start will be based on the child's block-axis |
| // direction, because it's the one parallel to the row axis. |
| if (child.style().isFlippedBlocksWritingMode()) |
| return gridIsLTR ? GridAxisEnd : GridAxisStart; |
| return gridIsLTR ? GridAxisStart : GridAxisEnd; |
| } |
| // self-start is based on the child's inline-flow direction. That's why we need to check against the grid container's direction. |
| return hasSameDirection ? GridAxisStart : GridAxisEnd; |
| case ItemPosition::SelfEnd: |
| // FIXME: Should we implement this logic in a generic utility function ? |
| // Aligns the alignment subject to be flush with the edge of the alignment container |
| // corresponding to the alignment subject's 'end' side in the row axis. |
| if (GridLayoutFunctions::isOrthogonalChild(*this, child)) { |
| // If orthogonal writing-modes, self-end will be based on the child's block-axis |
| // direction, because it's the one parallel to the row axis. |
| if (child.style().isFlippedBlocksWritingMode()) |
| return gridIsLTR ? GridAxisStart : GridAxisEnd; |
| return gridIsLTR ? GridAxisEnd : GridAxisStart; |
| } |
| // self-end is based on the child's inline-flow direction. That's why we need to check against the grid container's direction. |
| return hasSameDirection ? GridAxisEnd : GridAxisStart; |
| case ItemPosition::Left: |
| // Aligns the alignment subject to be flush with the alignment container's 'line-left' edge. |
| // We want the physical 'left' side, so we have to take account, container's inline-flow direction. |
| return gridIsLTR ? GridAxisStart : GridAxisEnd; |
| case ItemPosition::Right: |
| // Aligns the alignment subject to be flush with the alignment container's 'line-right' edge. |
| // We want the physical 'right' side, so we have to take account, container's inline-flow direction. |
| return gridIsLTR ? GridAxisEnd : GridAxisStart; |
| case ItemPosition::Center: |
| return GridAxisCenter; |
| case ItemPosition::FlexStart: // Only used in flex layout, otherwise equivalent to 'start'. |
| // Aligns the alignment subject to be flush with the alignment container's 'start' edge (inline-start) in the row axis. |
| case ItemPosition::Start: |
| return GridAxisStart; |
| case ItemPosition::FlexEnd: // Only used in flex layout, otherwise equivalent to 'end'. |
| // Aligns the alignment subject to be flush with the alignment container's 'end' edge (inline-end) in the row axis. |
| case ItemPosition::End: |
| return GridAxisEnd; |
| case ItemPosition::Stretch: |
| return GridAxisStart; |
| case ItemPosition::Baseline: |
| case ItemPosition::LastBaseline: |
| // FIXME: Implement the previous values. For now, we always 'start' align the child. |
| return GridAxisStart; |
| case ItemPosition::Legacy: |
| case ItemPosition::Auto: |
| case ItemPosition::Normal: |
| break; |
| } |
| |
| ASSERT_NOT_REACHED(); |
| return GridAxisStart; |
| } |
| |
| LayoutUnit RenderGrid::columnAxisOffsetForChild(const RenderBox& child) const |
| { |
| LayoutUnit startOfRow; |
| LayoutUnit endOfRow; |
| gridAreaPositionForChild(child, ForRows, startOfRow, endOfRow); |
| LayoutUnit startPosition = startOfRow + marginBeforeForChild(child); |
| if (hasAutoMarginsInColumnAxis(child)) |
| return startPosition; |
| GridAxisPosition axisPosition = columnAxisPositionForChild(child); |
| switch (axisPosition) { |
| case GridAxisStart: |
| return startPosition + columnAxisBaselineOffsetForChild(child); |
| case GridAxisEnd: |
| case GridAxisCenter: { |
| LayoutUnit columnAxisChildSize = GridLayoutFunctions::isOrthogonalChild(*this, child) ? child.logicalWidth() + child.marginLogicalWidth() : child.logicalHeight() + child.marginLogicalHeight(); |
| auto overflow = alignSelfForChild(child).overflow(); |
| LayoutUnit offsetFromStartPosition = computeOverflowAlignmentOffset(overflow, endOfRow - startOfRow, columnAxisChildSize); |
| return startPosition + (axisPosition == GridAxisEnd ? offsetFromStartPosition : offsetFromStartPosition / 2); |
| } |
| } |
| |
| ASSERT_NOT_REACHED(); |
| return 0; |
| } |
| |
| LayoutUnit RenderGrid::rowAxisOffsetForChild(const RenderBox& child) const |
| { |
| LayoutUnit startOfColumn; |
| LayoutUnit endOfColumn; |
| gridAreaPositionForChild(child, ForColumns, startOfColumn, endOfColumn); |
| LayoutUnit startPosition = startOfColumn + marginStartForChild(child); |
| if (hasAutoMarginsInRowAxis(child)) |
| return startPosition; |
| GridAxisPosition axisPosition = rowAxisPositionForChild(child); |
| switch (axisPosition) { |
| case GridAxisStart: |
| return startPosition + rowAxisBaselineOffsetForChild(child); |
| case GridAxisEnd: |
| case GridAxisCenter: { |
| LayoutUnit rowAxisChildSize = GridLayoutFunctions::isOrthogonalChild(*this, child) ? child.logicalHeight() + child.marginLogicalHeight() : child.logicalWidth() + child.marginLogicalWidth(); |
| auto overflow = justifySelfForChild(child).overflow(); |
| LayoutUnit offsetFromStartPosition = computeOverflowAlignmentOffset(overflow, endOfColumn - startOfColumn, rowAxisChildSize); |
| return startPosition + (axisPosition == GridAxisEnd ? offsetFromStartPosition : offsetFromStartPosition / 2); |
| } |
| } |
| |
| ASSERT_NOT_REACHED(); |
| return 0; |
| } |
| |
| bool RenderGrid::isSubgrid(GridTrackSizingDirection direction) const |
| { |
| // If the grid container is forced to establish an independent formatting |
| // context (like contain layout, or position:absolute), then the used value |
| // of grid-template-rows/columns is 'none' and the container is not a subgrid. |
| // https://drafts.csswg.org/css-grid-2/#subgrid-listing |
| if (RenderElement::establishesIndependentFormattingContext()) |
| return false; |
| if (direction == ForColumns ? !style().gridSubgridColumns() : !style().gridSubgridRows()) |
| return false; |
| if (!is<RenderGrid>(parent())) |
| return false; |
| return true; |
| } |
| |
| bool RenderGrid::isSubgridInParentDirection(GridTrackSizingDirection parentDirection) const |
| { |
| if (!is<RenderGrid>(parent())) |
| return false; |
| GridTrackSizingDirection direction = GridLayoutFunctions::flowAwareDirectionForChild(*downcast<RenderGrid>(parent()), *this, parentDirection); |
| return isSubgrid(direction); |
| } |
| |
| bool RenderGrid::isSubgridOf(GridTrackSizingDirection direction, const RenderGrid& ancestor) |
| { |
| if (!isSubgrid(direction)) |
| return false; |
| if (parent() == &ancestor) |
| return true; |
| |
| auto& parentGrid = *downcast<RenderGrid>(parent()); |
| GridTrackSizingDirection parentDirection = GridLayoutFunctions::flowAwareDirectionForParent(parentGrid, *this, direction); |
| return parentGrid.isSubgridOf(parentDirection, ancestor); |
| } |
| |
| LayoutUnit RenderGrid::gridAreaBreadthForOutOfFlowChild(const RenderBox& child, GridTrackSizingDirection direction) |
| { |
| ASSERT(child.isOutOfFlowPositioned()); |
| bool isRowAxis = direction == ForColumns; |
| int lastLine = numTracks(direction, m_grid); |
| |
| int startLine, endLine; |
| bool startIsAuto, endIsAuto; |
| if (!computeGridPositionsForOutOfFlowChild(child, direction, startLine, startIsAuto, endLine, endIsAuto)) |
| return isRowAxis ? clientLogicalWidth() : clientLogicalHeight(); |
| |
| if (startIsAuto && endIsAuto) |
| return isRowAxis ? clientLogicalWidth() : clientLogicalHeight(); |
| |
| LayoutUnit start; |
| LayoutUnit end; |
| auto& positions = isRowAxis ? m_columnPositions : m_rowPositions; |
| auto& outOfFlowItemLine = isRowAxis ? m_outOfFlowItemColumn : m_outOfFlowItemRow; |
| LayoutUnit borderEdge = isRowAxis ? borderStart() : borderBefore(); |
| if (startIsAuto) |
| start = borderEdge; |
| else { |
| outOfFlowItemLine.set(&child, startLine); |
| start = positions[startLine]; |
| } |
| if (endIsAuto) |
| end = ((direction == ForRows) ? clientLogicalHeight() : clientLogicalWidth()) + borderEdge; |
| else { |
| end = positions[endLine]; |
| // These vectors store line positions including gaps, but we shouldn't consider them for the edges of the grid. |
| std::optional<LayoutUnit> availableSizeForGutters = availableSpaceForGutters(direction); |
| if (endLine > 0 && endLine < lastLine) { |
| ASSERT(!m_grid.needsItemsPlacement()); |
| end -= guttersSize(m_grid, direction, endLine - 1, 2, availableSizeForGutters); |
| end -= isRowAxis ? m_offsetBetweenColumns.distributionOffset : m_offsetBetweenRows.distributionOffset; |
| } |
| } |
| return std::max(end - start, 0_lu); |
| } |
| |
| LayoutUnit RenderGrid::logicalOffsetForOutOfFlowChild(const RenderBox& child, GridTrackSizingDirection direction, LayoutUnit trackBreadth) const |
| { |
| ASSERT(child.isOutOfFlowPositioned()); |
| if (hasStaticPositionForChild(child, direction)) |
| return 0_lu; |
| |
| bool isRowAxis = direction == ForColumns; |
| bool isFlowAwareRowAxis = GridLayoutFunctions::flowAwareDirectionForChild(*this, child, direction) == ForColumns; |
| LayoutUnit childPosition = isFlowAwareRowAxis ? child.logicalLeft() : child.logicalTop(); |
| LayoutUnit gridBorder = isRowAxis ? borderLogicalLeft() : borderBefore(); |
| LayoutUnit childMargin = isRowAxis ? child.marginLogicalLeft(&style()) : child.marginBefore(&style()); |
| LayoutUnit offset = childPosition - gridBorder - childMargin; |
| if (!isRowAxis || style().isLeftToRightDirection()) |
| return offset; |
| |
| LayoutUnit childBreadth = isFlowAwareRowAxis ? child.logicalWidth() + child.marginLogicalWidth() : child.logicalHeight() + child.marginLogicalHeight(); |
| return trackBreadth - offset - childBreadth; |
| } |
| |
| void RenderGrid::gridAreaPositionForOutOfFlowChild(const RenderBox& child, GridTrackSizingDirection direction, LayoutUnit& start, LayoutUnit& end) const |
| { |
| ASSERT(child.isOutOfFlowPositioned()); |
| ASSERT(GridLayoutFunctions::hasOverridingContainingBlockContentSizeForChild(child, direction)); |
| LayoutUnit trackBreadth = GridLayoutFunctions::overridingContainingBlockContentSizeForChild(child, direction).value(); |
| bool isRowAxis = direction == ForColumns; |
| auto& outOfFlowItemLine = isRowAxis ? m_outOfFlowItemColumn : m_outOfFlowItemRow; |
| start = isRowAxis ? borderStart() : borderBefore(); |
| if (auto line = outOfFlowItemLine.get(&child)) { |
| auto& positions = isRowAxis ? m_columnPositions : m_rowPositions; |
| start = positions[line.value()]; |
| } |
| start += logicalOffsetForOutOfFlowChild(child, direction, trackBreadth); |
| end = start + trackBreadth; |
| } |
| |
| void RenderGrid::gridAreaPositionForInFlowChild(const RenderBox& child, GridTrackSizingDirection direction, LayoutUnit& start, LayoutUnit& end) const |
| { |
| ASSERT(!child.isOutOfFlowPositioned()); |
| const GridSpan& span = m_grid.gridItemSpan(child, direction); |
| // FIXME (lajava): This is a common pattern, why not defining a function like |
| // positions(direction) ? |
| auto& positions = direction == ForColumns ? m_columnPositions : m_rowPositions; |
| start = positions[span.startLine()]; |
| end = positions[span.endLine()]; |
| // The 'positions' vector includes distribution offset (because of content |
| // alignment) and gutters so we need to subtract them to get the actual |
| // end position for a given track (this does not have to be done for the |
| // last track as there are no more positions's elements after it, nor for |
| // collapsed tracks). |
| if (span.endLine() < positions.size() - 1 |
| && !(m_grid.hasAutoRepeatEmptyTracks(direction) |
| && m_grid.isEmptyAutoRepeatTrack(direction, span.endLine()))) { |
| end -= gridGap(direction) + gridItemOffset(direction); |
| } |
| } |
| |
| void RenderGrid::gridAreaPositionForChild(const RenderBox& child, GridTrackSizingDirection direction, LayoutUnit& start, LayoutUnit& end) const |
| { |
| if (child.isOutOfFlowPositioned()) |
| gridAreaPositionForOutOfFlowChild(child, direction, start, end); |
| else |
| gridAreaPositionForInFlowChild(child, direction, start, end); |
| } |
| |
| ContentPosition static resolveContentDistributionFallback(ContentDistribution distribution) |
| { |
| switch (distribution) { |
| case ContentDistribution::SpaceBetween: |
| return ContentPosition::Start; |
| case ContentDistribution::SpaceAround: |
| return ContentPosition::Center; |
| case ContentDistribution::SpaceEvenly: |
| return ContentPosition::Center; |
| case ContentDistribution::Stretch: |
| return ContentPosition::Start; |
| case ContentDistribution::Default: |
| return ContentPosition::Normal; |
| } |
| |
| ASSERT_NOT_REACHED(); |
| return ContentPosition::Normal; |
| } |
| |
| static void contentDistributionOffset(ContentAlignmentData& offset, const LayoutUnit& availableFreeSpace, ContentPosition& fallbackPosition, ContentDistribution distribution, unsigned numberOfGridTracks) |
| { |
| if (distribution != ContentDistribution::Default && fallbackPosition == ContentPosition::Normal) |
| fallbackPosition = resolveContentDistributionFallback(distribution); |
| |
| // Initialize to an invalid offset. |
| offset.positionOffset = -1_lu; |
| offset.distributionOffset = -1_lu; |
| if (availableFreeSpace <= 0) |
| return; |
| |
| LayoutUnit positionOffset; |
| LayoutUnit distributionOffset; |
| switch (distribution) { |
| case ContentDistribution::SpaceBetween: |
| if (numberOfGridTracks < 2) |
| return; |
| distributionOffset = availableFreeSpace / (numberOfGridTracks - 1); |
| positionOffset = 0_lu; |
| break; |
| case ContentDistribution::SpaceAround: |
| if (numberOfGridTracks < 1) |
| return; |
| distributionOffset = availableFreeSpace / numberOfGridTracks; |
| positionOffset = distributionOffset / 2; |
| break; |
| case ContentDistribution::SpaceEvenly: |
| distributionOffset = availableFreeSpace / (numberOfGridTracks + 1); |
| positionOffset = distributionOffset; |
| break; |
| case ContentDistribution::Stretch: |
| case ContentDistribution::Default: |
| return; |
| default: |
| ASSERT_NOT_REACHED(); |
| return; |
| } |
| |
| offset.positionOffset = positionOffset; |
| offset.distributionOffset = distributionOffset; |
| } |
| |
| StyleContentAlignmentData RenderGrid::contentAlignment(GridTrackSizingDirection direction) const |
| { |
| return direction == ForColumns ? style().resolvedJustifyContent(contentAlignmentNormalBehaviorGrid()) : style().resolvedAlignContent(contentAlignmentNormalBehaviorGrid()); |
| } |
| |
| void RenderGrid::computeContentPositionAndDistributionOffset(GridTrackSizingDirection direction, const LayoutUnit& availableFreeSpace, unsigned numberOfGridTracks) |
| { |
| bool isRowAxis = direction == ForColumns; |
| auto& offset = |
| isRowAxis ? m_offsetBetweenColumns : m_offsetBetweenRows; |
| if (isRowAxis ? isSubgridColumns() : isSubgridRows()) { |
| offset.positionOffset = 0_lu; |
| offset.distributionOffset = 0_lu; |
| return; |
| } |
| auto contentAlignmentData = contentAlignment(direction); |
| auto position = contentAlignmentData.position(); |
| // If <content-distribution> value can't be applied, 'position' will become the associated |
| // <content-position> fallback value. |
| contentDistributionOffset(offset, availableFreeSpace, position, contentAlignmentData.distribution(), numberOfGridTracks); |
| if (offset.isValid()) |
| return; |
| |
| if (availableFreeSpace <= 0 && contentAlignmentData.overflow() == OverflowAlignment::Safe) { |
| offset.positionOffset = 0_lu; |
| offset.distributionOffset = 0_lu; |
| return; |
| } |
| |
| LayoutUnit positionOffset; |
| switch (position) { |
| case ContentPosition::Left: |
| ASSERT(isRowAxis); |
| positionOffset = style().isLeftToRightDirection() ? 0_lu : availableFreeSpace; |
| break; |
| case ContentPosition::Right: |
| ASSERT(isRowAxis); |
| positionOffset = style().isLeftToRightDirection() ? availableFreeSpace : 0_lu; |
| break; |
| case ContentPosition::Center: |
| positionOffset = availableFreeSpace / 2; |
| break; |
| case ContentPosition::FlexEnd: // Only used in flex layout, for other layout, it's equivalent to 'end'. |
| case ContentPosition::End: |
| positionOffset = availableFreeSpace; |
| break; |
| case ContentPosition::FlexStart: // Only used in flex layout, for other layout, it's equivalent to 'start'. |
| case ContentPosition::Start: |
| if (isRowAxis) |
| positionOffset = 0_lu; |
| break; |
| case ContentPosition::Baseline: |
| case ContentPosition::LastBaseline: |
| // FIXME: Implement the previous values. For now, we always 'start' align. |
| // http://webkit.org/b/145566 |
| if (isRowAxis) |
| positionOffset = 0_lu; |
| break; |
| case ContentPosition::Normal: |
| default: |
| ASSERT_NOT_REACHED(); |
| return; |
| } |
| |
| offset.positionOffset = positionOffset; |
| offset.distributionOffset = 0_lu; |
| } |
| |
| LayoutUnit RenderGrid::translateRTLCoordinate(LayoutUnit coordinate) const |
| { |
| LayoutUnit width = borderLogicalLeft() + borderLogicalRight() + clientLogicalWidth(); |
| |
| #if !PLATFORM(IOS_FAMILY) |
| // FIXME: Ideally scrollbarLogicalWidth() should return zero in iOS so we don't need this |
| // (see bug https://webkit.org/b/191857). |
| // If we are in horizontal writing mode and RTL direction the scrollbar is painted on the left, |
| // so we need to take into account when computing the position of the columns. |
| if (style().isHorizontalWritingMode()) |
| width += scrollbarLogicalWidth(); |
| #endif |
| |
| return width - coordinate; |
| } |
| |
| // FIXME: SetLogicalPositionForChild has only one caller, consider its refactoring in the future. |
| void RenderGrid::setLogicalPositionForChild(RenderBox& child) const |
| { |
| // "In the positioning phase [...] calculations are performed according to the writing mode of the containing block of the box establishing the |
| // orthogonal flow." However, 'setLogicalLocation' will only take into account the child's writing-mode, so the position may need to be transposed. |
| LayoutPoint childLocation(logicalOffsetForChild(child, ForColumns), logicalOffsetForChild(child, ForRows)); |
| child.setLogicalLocation(GridLayoutFunctions::isOrthogonalChild(*this, child) ? childLocation.transposedPoint() : childLocation); |
| } |
| |
| void RenderGrid::setLogicalOffsetForChild(RenderBox& child, GridTrackSizingDirection direction) const |
| { |
| if (child.parent() != this && hasStaticPositionForChild(child, direction)) |
| return; |
| // 'setLogicalLeft' and 'setLogicalTop' only take into account the child's writing-mode, that's why 'flowAwareDirectionForChild' is needed. |
| if (GridLayoutFunctions::flowAwareDirectionForChild(*this, child, direction) == ForColumns) |
| child.setLogicalLeft(logicalOffsetForChild(child, direction)); |
| else |
| child.setLogicalTop(logicalOffsetForChild(child, direction)); |
| } |
| |
| LayoutUnit RenderGrid::logicalOffsetForChild(const RenderBox& child, GridTrackSizingDirection direction) const |
| { |
| if (direction == ForRows) |
| return columnAxisOffsetForChild(child); |
| LayoutUnit rowAxisOffset = rowAxisOffsetForChild(child); |
| // We stored m_columnPositions's data ignoring the direction, hence we might need now |
| // to translate positions from RTL to LTR, as it's more convenient for painting. |
| if (!style().isLeftToRightDirection()) |
| rowAxisOffset = translateRTLCoordinate(rowAxisOffset) - (GridLayoutFunctions::isOrthogonalChild(*this, child) ? child.logicalHeight() : child.logicalWidth()); |
| return rowAxisOffset; |
| } |
| |
| unsigned RenderGrid::nonCollapsedTracks(GridTrackSizingDirection direction) const |
| { |
| auto& tracks = m_trackSizingAlgorithm.tracks(direction); |
| size_t numberOfTracks = tracks.size(); |
| bool hasCollapsedTracks = m_grid.hasAutoRepeatEmptyTracks(direction); |
| size_t numberOfCollapsedTracks = hasCollapsedTracks ? m_grid.autoRepeatEmptyTracks(direction)->size() : 0; |
| return numberOfTracks - numberOfCollapsedTracks; |
| } |
| |
| unsigned RenderGrid::numTracks(GridTrackSizingDirection direction, const Grid& grid) const |
| { |
| // Due to limitations in our internal representation, we cannot know the number of columns from |
| // m_grid *if* there is no row (because m_grid would be empty). That's why in that case we need |
| // to get it from the style. Note that we know for sure that there are't any implicit tracks, |
| // because not having rows implies that there are no "normal" children (out-of-flow children are |
| // not stored in m_grid). |
| ASSERT(!grid.needsItemsPlacement()); |
| if (direction == ForRows) |
| return grid.numTracks(ForRows); |
| |
| // FIXME: This still requires knowledge about m_grid internals. |
| return grid.numTracks(ForRows) ? grid.numTracks(ForColumns) : GridPositionsResolver::explicitGridColumnCount(*this); |
| } |
| |
| void RenderGrid::paintChildren(PaintInfo& paintInfo, const LayoutPoint& paintOffset, PaintInfo& forChild, bool usePrintRect) |
| { |
| ASSERT(!m_grid.needsItemsPlacement()); |
| for (RenderBox* child = m_grid.orderIterator().first(); child; child = m_grid.orderIterator().next()) |
| paintChild(*child, paintInfo, paintOffset, forChild, usePrintRect, PaintAsInlineBlock); |
| } |
| |
| ASCIILiteral RenderGrid::renderName() const |
| { |
| if (isFloating()) |
| return "RenderGrid (floating)"_s; |
| if (isOutOfFlowPositioned()) |
| return "RenderGrid (positioned)"_s; |
| if (isAnonymous()) |
| return "RenderGrid (generated)"_s; |
| if (isRelativelyPositioned()) |
| return "RenderGrid (relative positioned)"_s; |
| return "RenderGrid"_s; |
| } |
| |
| bool RenderGrid::hasAutoSizeInColumnAxis(const RenderBox& child) const |
| { |
| if (child.style().hasAspectRatio()) { |
| // FIXME: should align-items + align-self: auto/justify-items + justify-self: auto be taken into account? |
| if (isHorizontalWritingMode() == child.isHorizontalWritingMode() && child.style().alignSelf().position() != ItemPosition::Stretch) { |
| // A non-auto inline size means the same for block size (column axis size) because of the aspect ratio. |
| if (!child.style().logicalWidth().isAuto()) |
| return false; |
| } else if (child.style().justifySelf().position() != ItemPosition::Stretch) { |
| const Length& logicalHeight = child.style().logicalHeight(); |
| if (logicalHeight.isFixed() || (logicalHeight.isPercentOrCalculated() && child.percentageLogicalHeightIsResolvable())) |
| return false; |
| } |
| } |
| return isHorizontalWritingMode() ? child.style().height().isAuto() : child.style().width().isAuto(); |
| } |
| |
| bool RenderGrid::hasAutoSizeInRowAxis(const RenderBox& child) const |
| { |
| if (child.style().hasAspectRatio()) { |
| // FIXME: should align-items + align-self: auto/justify-items + justify-self: auto be taken into account? |
| if (isHorizontalWritingMode() == child.isHorizontalWritingMode() && child.style().justifySelf().position() != ItemPosition::Stretch) { |
| // A non-auto block size means the same for inline size (row axis size) because of the aspect ratio. |
| const Length& logicalHeight = child.style().logicalHeight(); |
| if (logicalHeight.isFixed() || (logicalHeight.isPercentOrCalculated() && child.percentageLogicalHeightIsResolvable())) |
| return false; |
| } else if (child.style().alignSelf().position() != ItemPosition::Stretch) { |
| if (!child.style().logicalWidth().isAuto()) |
| return false; |
| } |
| } |
| return isHorizontalWritingMode() ? child.style().width().isAuto() : child.style().height().isAuto(); |
| } |
| |
| bool RenderGrid::computeGridPositionsForOutOfFlowChild(const RenderBox& child, GridTrackSizingDirection direction, int& startLine, bool& startIsAuto, int& endLine, bool& endIsAuto) const |
| { |
| ASSERT(child.isOutOfFlowPositioned()); |
| int lastLine = numTracks(direction, m_grid); |
| GridSpan span = GridPositionsResolver::resolveGridPositionsFromStyle(*this, child, direction); |
| if (span.isIndefinite()) |
| return false; |
| |
| unsigned explicitStart = m_grid.explicitGridStart(direction); |
| startLine = span.untranslatedStartLine() + explicitStart; |
| endLine = span.untranslatedEndLine() + explicitStart; |
| |
| GridPosition startPosition = direction == ForColumns ? child.style().gridItemColumnStart() : child.style().gridItemRowStart(); |
| GridPosition endPosition = direction == ForColumns ? child.style().gridItemColumnEnd() : child.style().gridItemRowEnd(); |
| |
| startIsAuto = startPosition.isAuto() || startLine < 0 || startLine > lastLine; |
| endIsAuto = endPosition.isAuto() || endLine < 0 || endLine > lastLine; |
| return true; |
| } |
| |
| GridSpan RenderGrid::gridSpanForOutOfFlowChild(const RenderBox& child, GridTrackSizingDirection direction) const |
| { |
| int lastLine = numTracks(direction, m_grid); |
| int startLine, endLine; |
| bool startIsAuto, endIsAuto; |
| if (!computeGridPositionsForOutOfFlowChild(child, direction, startLine, startIsAuto, endLine, endIsAuto)) |
| return GridSpan::translatedDefiniteGridSpan(0, lastLine); |
| return GridSpan::translatedDefiniteGridSpan(startIsAuto ? 0 : startLine, endIsAuto ? lastLine : endLine); |
| } |
| |
| GridSpan RenderGrid::gridSpanForChild(const RenderBox& child, GridTrackSizingDirection direction) const |
| { |
| ASSERT(is<RenderGrid>(child.parent())); |
| |
| RenderGrid* renderGrid = downcast<RenderGrid>(child.parent()); |
| // |direction| is specified relative to this grid, switch it if |child|'s direct parent grid |
| // is using a different writing mode. |
| direction = GridLayoutFunctions::flowAwareDirectionForChild(*this, *renderGrid, direction); |
| GridSpan span = child.isOutOfFlowPositioned() ? renderGrid->gridSpanForOutOfFlowChild(child, direction) : renderGrid->currentGrid().gridItemSpan(child, direction); |
| |
| while (renderGrid != this) { |
| ASSERT(is<RenderGrid>(renderGrid->parent())); |
| RenderGrid* parent = downcast<RenderGrid>(renderGrid->parent()); |
| |
| bool isSubgrid = renderGrid->isSubgrid(direction); |
| |
| direction = GridLayoutFunctions::flowAwareDirectionForChild(*parent, *renderGrid, direction); |
| |
| GridSpan parentSpan = renderGrid->isOutOfFlowPositioned() ? parent->gridSpanForOutOfFlowChild(*renderGrid, direction) : parent->currentGrid().gridItemSpan(*renderGrid, direction); |
| if (isSubgrid) |
| span.translateTo(parentSpan, GridLayoutFunctions::isSubgridReversedDirection(*parent, direction, *renderGrid)); |
| else |
| span = parentSpan; |
| renderGrid = parent; |
| } |
| return span; |
| } |
| |
| bool RenderGrid::establishesIndependentFormattingContext() const |
| { |
| // Grid items establish a new independent formatting context, unless |
| // they're a subgrid |
| // https://drafts.csswg.org/css-grid-2/#grid-item-display |
| if (isGridItem()) { |
| if (!isSubgridRows() && !isSubgridColumns()) |
| return true; |
| } |
| return RenderElement::establishesIndependentFormattingContext(); |
| } |
| |
| } // namespace WebCore |