| /* |
| * Copyright (C) 2011 Apple Inc. All rights reserved. |
| * Copyright (C) 2013, 2014 Igalia S.L. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "RenderGrid.h" |
| |
| #if ENABLE(CSS_GRID_LAYOUT) |
| |
| #include "GridArea.h" |
| #include "GridPositionsResolver.h" |
| #include "LayoutRepainter.h" |
| #include "RenderLayer.h" |
| #include "RenderView.h" |
| #include <cstdlib> |
| |
| namespace WebCore { |
| |
| static const int infinity = -1; |
| static constexpr ItemPosition selfAlignmentNormalBehavior = ItemPositionStretch; |
| |
| enum TrackSizeRestriction { |
| AllowInfinity, |
| ForbidInfinity, |
| }; |
| |
| void RenderGrid::Grid::ensureGridSize(unsigned maximumRowSize, unsigned maximumColumnSize) |
| { |
| const size_t oldColumnSize = numColumns(); |
| const size_t oldRowSize = numRows(); |
| if (maximumRowSize > oldRowSize) { |
| m_grid.grow(maximumRowSize); |
| for (size_t row = oldRowSize; row < maximumRowSize; ++row) |
| m_grid[row].grow(oldColumnSize); |
| } |
| |
| if (maximumColumnSize > oldColumnSize) { |
| for (size_t row = 0; row < numRows(); ++row) |
| m_grid[row].grow(maximumColumnSize); |
| } |
| } |
| |
| void RenderGrid::Grid::insert(RenderBox& child, const GridArea& area) |
| { |
| ASSERT(area.rows.isTranslatedDefinite() && area.columns.isTranslatedDefinite()); |
| ensureGridSize(area.rows.endLine(), area.columns.endLine()); |
| |
| for (const auto& row : area.rows) { |
| for (const auto& column : area.columns) |
| m_grid[row][column].append(&child); |
| } |
| } |
| |
| void RenderGrid::Grid::clear() |
| { |
| m_grid.resize(0); |
| } |
| |
| class GridTrack { |
| public: |
| GridTrack() {} |
| |
| const LayoutUnit& baseSize() const |
| { |
| ASSERT(isGrowthLimitBiggerThanBaseSize()); |
| return m_baseSize; |
| } |
| |
| const LayoutUnit& growthLimit() const |
| { |
| ASSERT(isGrowthLimitBiggerThanBaseSize()); |
| ASSERT(!m_growthLimitCap || m_growthLimitCap.value() >= m_growthLimit || m_baseSize >= m_growthLimitCap.value()); |
| return m_growthLimit; |
| } |
| |
| void setBaseSize(LayoutUnit baseSize) |
| { |
| m_baseSize = baseSize; |
| ensureGrowthLimitIsBiggerThanBaseSize(); |
| } |
| |
| void setGrowthLimit(LayoutUnit growthLimit) |
| { |
| m_growthLimit = growthLimit == infinity ? growthLimit : std::min(growthLimit, m_growthLimitCap.value_or(growthLimit)); |
| ensureGrowthLimitIsBiggerThanBaseSize(); |
| } |
| |
| bool infiniteGrowthPotential() const { return growthLimitIsInfinite() || m_infinitelyGrowable; } |
| |
| const LayoutUnit& growthLimitIfNotInfinite() const |
| { |
| ASSERT(isGrowthLimitBiggerThanBaseSize()); |
| return (m_growthLimit == infinity) ? m_baseSize : m_growthLimit; |
| } |
| |
| const LayoutUnit& plannedSize() const { return m_plannedSize; } |
| |
| void setPlannedSize(LayoutUnit plannedSize) |
| { |
| m_plannedSize = plannedSize; |
| } |
| |
| const LayoutUnit& tempSize() const { return m_tempSize; } |
| |
| void setTempSize(const LayoutUnit& tempSize) |
| { |
| ASSERT(tempSize >= 0); |
| ASSERT(growthLimitIsInfinite() || growthLimit() >= tempSize); |
| m_tempSize = tempSize; |
| } |
| |
| void growTempSize(const LayoutUnit& tempSize) |
| { |
| ASSERT(tempSize >= 0); |
| m_tempSize += tempSize; |
| } |
| |
| bool infinitelyGrowable() const { return m_infinitelyGrowable; } |
| void setInfinitelyGrowable(bool infinitelyGrowable) { m_infinitelyGrowable = infinitelyGrowable; } |
| |
| void setGrowthLimitCap(std::optional<LayoutUnit> growthLimitCap) |
| { |
| ASSERT(!growthLimitCap || growthLimitCap.value() >= 0); |
| m_growthLimitCap = growthLimitCap; |
| } |
| |
| std::optional<LayoutUnit> growthLimitCap() const { return m_growthLimitCap; } |
| |
| private: |
| bool growthLimitIsInfinite() const { return m_growthLimit == infinity; } |
| bool isGrowthLimitBiggerThanBaseSize() const { return growthLimitIsInfinite() || m_growthLimit >= m_baseSize; } |
| |
| void ensureGrowthLimitIsBiggerThanBaseSize() |
| { |
| if (m_growthLimit != infinity && m_growthLimit < m_baseSize) |
| m_growthLimit = m_baseSize; |
| } |
| |
| LayoutUnit m_baseSize { 0 }; |
| LayoutUnit m_growthLimit { 0 }; |
| LayoutUnit m_plannedSize { 0 }; |
| LayoutUnit m_tempSize { 0 }; |
| std::optional<LayoutUnit> m_growthLimitCap; |
| bool m_infinitelyGrowable { false }; |
| }; |
| |
| struct ContentAlignmentData { |
| WTF_MAKE_FAST_ALLOCATED; |
| public: |
| bool isValid() { return positionOffset >= 0 && distributionOffset >= 0; } |
| static ContentAlignmentData defaultOffsets() { return {-1, -1}; } |
| |
| LayoutUnit positionOffset; |
| LayoutUnit distributionOffset; |
| }; |
| |
| class RenderGrid::GridIterator { |
| WTF_MAKE_NONCOPYABLE(GridIterator); |
| public: |
| // |direction| is the direction that is fixed to |fixedTrackIndex| so e.g |
| // GridIterator(m_grid, ForColumns, 1) will walk over the rows of the 2nd column. |
| GridIterator(const Grid& grid, GridTrackSizingDirection direction, unsigned fixedTrackIndex, unsigned varyingTrackIndex = 0) |
| : m_grid(grid.m_grid) |
| , m_direction(direction) |
| , m_rowIndex((direction == ForColumns) ? varyingTrackIndex : fixedTrackIndex) |
| , m_columnIndex((direction == ForColumns) ? fixedTrackIndex : varyingTrackIndex) |
| , m_childIndex(0) |
| { |
| ASSERT(!m_grid.isEmpty()); |
| ASSERT(!m_grid[0].isEmpty()); |
| ASSERT(m_rowIndex < m_grid.size()); |
| ASSERT(m_columnIndex < m_grid[0].size()); |
| } |
| |
| RenderBox* nextGridItem() |
| { |
| ASSERT(!m_grid.isEmpty()); |
| ASSERT(!m_grid[0].isEmpty()); |
| |
| unsigned& varyingTrackIndex = (m_direction == ForColumns) ? m_rowIndex : m_columnIndex; |
| const unsigned endOfVaryingTrackIndex = (m_direction == ForColumns) ? m_grid.size() : m_grid[0].size(); |
| for (; varyingTrackIndex < endOfVaryingTrackIndex; ++varyingTrackIndex) { |
| const auto& children = m_grid[m_rowIndex][m_columnIndex]; |
| if (m_childIndex < children.size()) |
| return children[m_childIndex++]; |
| |
| m_childIndex = 0; |
| } |
| return 0; |
| } |
| |
| bool isEmptyAreaEnough(unsigned rowSpan, unsigned columnSpan) const |
| { |
| ASSERT(!m_grid.isEmpty()); |
| ASSERT(!m_grid[0].isEmpty()); |
| |
| // Ignore cells outside current grid as we will grow it later if needed. |
| unsigned maxRows = std::min<unsigned>(m_rowIndex + rowSpan, m_grid.size()); |
| unsigned maxColumns = std::min<unsigned>(m_columnIndex + columnSpan, m_grid[0].size()); |
| |
| // This adds a O(N^2) behavior that shouldn't be a big deal as we expect spanning areas to be small. |
| for (unsigned row = m_rowIndex; row < maxRows; ++row) { |
| for (unsigned column = m_columnIndex; column < maxColumns; ++column) { |
| auto& children = m_grid[row][column]; |
| if (!children.isEmpty()) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| std::unique_ptr<GridArea> nextEmptyGridArea(unsigned fixedTrackSpan, unsigned varyingTrackSpan) |
| { |
| ASSERT(!m_grid.isEmpty()); |
| ASSERT(!m_grid[0].isEmpty()); |
| ASSERT(fixedTrackSpan >= 1); |
| ASSERT(varyingTrackSpan >= 1); |
| |
| if (m_grid.isEmpty()) |
| return nullptr; |
| |
| unsigned rowSpan = (m_direction == ForColumns) ? varyingTrackSpan : fixedTrackSpan; |
| unsigned columnSpan = (m_direction == ForColumns) ? fixedTrackSpan : varyingTrackSpan; |
| |
| unsigned& varyingTrackIndex = (m_direction == ForColumns) ? m_rowIndex : m_columnIndex; |
| const unsigned endOfVaryingTrackIndex = (m_direction == ForColumns) ? m_grid.size() : m_grid[0].size(); |
| for (; varyingTrackIndex < endOfVaryingTrackIndex; ++varyingTrackIndex) { |
| if (isEmptyAreaEnough(rowSpan, columnSpan)) { |
| std::unique_ptr<GridArea> result = std::make_unique<GridArea>(GridSpan::translatedDefiniteGridSpan(m_rowIndex, m_rowIndex + rowSpan), GridSpan::translatedDefiniteGridSpan(m_columnIndex, m_columnIndex + columnSpan)); |
| // Advance the iterator to avoid an infinite loop where we would return the same grid area over and over. |
| ++varyingTrackIndex; |
| return result; |
| } |
| } |
| return nullptr; |
| } |
| |
| private: |
| const GridAsMatrix& m_grid; |
| GridTrackSizingDirection m_direction; |
| unsigned m_rowIndex; |
| unsigned m_columnIndex; |
| unsigned m_childIndex; |
| }; |
| |
| class RenderGrid::GridSizingData { |
| WTF_MAKE_NONCOPYABLE(GridSizingData); |
| public: |
| GridSizingData(unsigned gridColumnCount, unsigned gridRowCount) |
| : columnTracks(gridColumnCount) |
| , rowTracks(gridRowCount) |
| { |
| } |
| |
| Vector<GridTrack> columnTracks; |
| Vector<GridTrack> rowTracks; |
| Vector<unsigned> contentSizedTracksIndex; |
| |
| // Performance optimization: hold onto these Vectors until the end of Layout to avoid repeated malloc / free. |
| Vector<GridTrack*> filteredTracks; |
| Vector<GridTrack*> growBeyondGrowthLimitsTracks; |
| Vector<GridItemWithSpan> itemsSortedByIncreasingSpan; |
| |
| std::optional<LayoutUnit> freeSpace(GridTrackSizingDirection direction) { return direction == ForColumns ? freeSpaceForColumns : freeSpaceForRows; } |
| void setFreeSpace(GridTrackSizingDirection, std::optional<LayoutUnit> freeSpace); |
| |
| std::optional<LayoutUnit> availableSpace() const { return m_availableSpace; } |
| void setAvailableSpace(std::optional<LayoutUnit> availableSpace) { m_availableSpace = availableSpace; } |
| |
| SizingOperation sizingOperation { TrackSizing }; |
| |
| enum SizingState { ColumnSizingFirstIteration, RowSizingFirstIteration, ColumnSizingSecondIteration, RowSizingSecondIteration}; |
| SizingState sizingState { ColumnSizingFirstIteration }; |
| void advanceNextState() |
| { |
| switch (sizingState) { |
| case ColumnSizingFirstIteration: |
| sizingState = RowSizingFirstIteration; |
| return; |
| case RowSizingFirstIteration: |
| sizingState = ColumnSizingSecondIteration; |
| return; |
| case ColumnSizingSecondIteration: |
| sizingState = RowSizingSecondIteration; |
| return; |
| case RowSizingSecondIteration: |
| sizingState = ColumnSizingFirstIteration; |
| return; |
| } |
| ASSERT_NOT_REACHED(); |
| sizingState = ColumnSizingFirstIteration; |
| } |
| bool isValidTransition(GridTrackSizingDirection direction) const |
| { |
| switch (sizingState) { |
| case ColumnSizingFirstIteration: |
| case ColumnSizingSecondIteration: |
| return direction == ForColumns; |
| case RowSizingFirstIteration: |
| case RowSizingSecondIteration: |
| return direction == ForRows; |
| } |
| ASSERT_NOT_REACHED(); |
| return false; |
| } |
| |
| private: |
| std::optional<LayoutUnit> freeSpaceForColumns; |
| std::optional<LayoutUnit> freeSpaceForRows; |
| // No need to store one per direction as it will be only used for computations during each axis |
| // track sizing. It's cached here because we need it to compute relative sizes. |
| std::optional<LayoutUnit> m_availableSpace; |
| }; |
| |
| void RenderGrid::GridSizingData::setFreeSpace(GridTrackSizingDirection direction, std::optional<LayoutUnit> freeSpace) |
| { |
| if (direction == ForColumns) |
| freeSpaceForColumns = freeSpace; |
| else |
| freeSpaceForRows = freeSpace; |
| } |
| |
| RenderGrid::RenderGrid(Element& element, RenderStyle&& style) |
| : RenderBlock(element, WTFMove(style), 0) |
| , m_orderIterator(*this) |
| { |
| // All of our children must be block level. |
| setChildrenInline(false); |
| } |
| |
| RenderGrid::~RenderGrid() |
| { |
| } |
| |
| static inline bool defaultAlignmentIsStretch(ItemPosition position) |
| { |
| return position == ItemPositionStretch || position == ItemPositionAuto; |
| } |
| |
| static inline bool defaultAlignmentChangedToStretchInRowAxis(const RenderStyle& oldStyle, const RenderStyle& newStyle) |
| { |
| return !defaultAlignmentIsStretch(oldStyle.justifyItems().position()) && defaultAlignmentIsStretch(newStyle.justifyItems().position()); |
| } |
| |
| static inline bool defaultAlignmentChangedFromStretchInRowAxis(const RenderStyle& oldStyle, const RenderStyle& newStyle) |
| { |
| return defaultAlignmentIsStretch(oldStyle.justifyItems().position()) && !defaultAlignmentIsStretch(newStyle.justifyItems().position()); |
| } |
| |
| static inline bool defaultAlignmentChangedFromStretchInColumnAxis(const RenderStyle& oldStyle, const RenderStyle& newStyle) |
| { |
| return defaultAlignmentIsStretch(oldStyle.alignItems().position()) && !defaultAlignmentIsStretch(newStyle.alignItems().position()); |
| } |
| |
| static inline bool selfAlignmentChangedToStretchInRowAxis(const RenderStyle& oldStyle, const RenderStyle& newStyle, const RenderStyle& childStyle) |
| { |
| return childStyle.resolvedJustifySelf(oldStyle, selfAlignmentNormalBehavior).position() != ItemPositionStretch |
| && childStyle.resolvedJustifySelf(newStyle, selfAlignmentNormalBehavior).position() == ItemPositionStretch; |
| } |
| |
| static inline bool selfAlignmentChangedFromStretchInRowAxis(const RenderStyle& oldStyle, const RenderStyle& newStyle, const RenderStyle& childStyle) |
| { |
| return childStyle.resolvedJustifySelf(oldStyle, selfAlignmentNormalBehavior).position() == ItemPositionStretch |
| && childStyle.resolvedJustifySelf(newStyle, selfAlignmentNormalBehavior).position() != ItemPositionStretch; |
| } |
| |
| static inline bool selfAlignmentChangedFromStretchInColumnAxis(const RenderStyle& oldStyle, const RenderStyle& newStyle, const RenderStyle& childStyle) |
| { |
| return childStyle.resolvedAlignSelf(oldStyle, selfAlignmentNormalBehavior).position() == ItemPositionStretch |
| && childStyle.resolvedAlignSelf(newStyle, selfAlignmentNormalBehavior).position() != ItemPositionStretch; |
| } |
| |
| void RenderGrid::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle) |
| { |
| RenderBlock::styleDidChange(diff, oldStyle); |
| if (!oldStyle || diff != StyleDifferenceLayout) |
| return; |
| |
| const RenderStyle& newStyle = style(); |
| if (defaultAlignmentChangedToStretchInRowAxis(*oldStyle, newStyle) || defaultAlignmentChangedFromStretchInRowAxis(*oldStyle, newStyle) |
| || defaultAlignmentChangedFromStretchInColumnAxis(*oldStyle, newStyle)) { |
| // Grid items that were not previously stretched in row-axis need to be relayed out so we can compute new available space. |
| // Grid items that were previously stretching in column-axis need to be relayed out so we can compute new available space. |
| // This is only necessary for stretching since other alignment values don't change the size of the box. |
| for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) { |
| if (child->isOutOfFlowPositioned()) |
| continue; |
| if (selfAlignmentChangedToStretchInRowAxis(*oldStyle, newStyle, child->style()) || selfAlignmentChangedFromStretchInRowAxis(*oldStyle, newStyle, child->style()) |
| || selfAlignmentChangedFromStretchInColumnAxis(*oldStyle, newStyle, child->style())) { |
| child->setChildNeedsLayout(MarkOnlyThis); |
| } |
| } |
| } |
| } |
| |
| unsigned RenderGrid::gridColumnCount() const |
| { |
| ASSERT(!m_gridIsDirty); |
| return m_grid.numColumns(); |
| } |
| |
| unsigned RenderGrid::gridRowCount() const |
| { |
| ASSERT(!m_gridIsDirty); |
| return m_grid.numRows(); |
| } |
| |
| LayoutUnit RenderGrid::computeTrackBasedLogicalHeight(const GridSizingData& sizingData) const |
| { |
| LayoutUnit logicalHeight; |
| |
| for (const auto& row : sizingData.rowTracks) |
| logicalHeight += row.baseSize(); |
| |
| logicalHeight += guttersSize(ForRows, 0, sizingData.rowTracks.size()); |
| |
| return logicalHeight; |
| } |
| |
| void RenderGrid::computeTrackSizesForDirection(GridTrackSizingDirection direction, GridSizingData& sizingData, LayoutUnit availableSpace) |
| { |
| ASSERT(sizingData.isValidTransition(direction)); |
| LayoutUnit totalGuttersSize = guttersSize(direction, 0, direction == ForRows ? gridRowCount() : gridColumnCount()); |
| sizingData.setAvailableSpace(availableSpace); |
| sizingData.setFreeSpace(direction, availableSpace - totalGuttersSize); |
| sizingData.sizingOperation = TrackSizing; |
| |
| LayoutUnit baseSizes, growthLimits; |
| computeUsedBreadthOfGridTracks(direction, sizingData, baseSizes, growthLimits); |
| ASSERT(tracksAreWiderThanMinTrackBreadth(direction, sizingData)); |
| sizingData.advanceNextState(); |
| } |
| |
| void RenderGrid::repeatTracksSizingIfNeeded(GridSizingData& sizingData, LayoutUnit availableSpaceForColumns, LayoutUnit availableSpaceForRows) |
| { |
| ASSERT(!m_gridIsDirty); |
| ASSERT(sizingData.sizingState > GridSizingData::RowSizingFirstIteration); |
| |
| // In orthogonal flow cases column track's size is determined by using the computed |
| // row track's size, which it was estimated during the first cycle of the sizing |
| // algorithm. Hence we need to repeat computeUsedBreadthOfGridTracks for both, |
| // columns and rows, to determine the final values. |
| // TODO (lajava): orthogonal flows is just one of the cases which may require |
| // a new cycle of the sizing algorithm; there may be more. In addition, not all the |
| // cases with orthogonal flows require this extra cycle; we need a more specific |
| // condition to detect whether child's min-content contribution has changed or not. |
| if (m_hasAnyOrthogonalChild) { |
| computeTrackSizesForDirection(ForColumns, sizingData, availableSpaceForColumns); |
| computeTrackSizesForDirection(ForRows, sizingData, availableSpaceForRows); |
| } |
| } |
| |
| bool RenderGrid::canPerformSimplifiedLayout() const |
| { |
| // We cannot perform a simplified layout if the grid is dirty and we have |
| // some positioned items to be laid out. |
| if (m_gridIsDirty && posChildNeedsLayout()) |
| return false; |
| |
| return RenderBlock::canPerformSimplifiedLayout(); |
| } |
| |
| void RenderGrid::layoutBlock(bool relayoutChildren, LayoutUnit) |
| { |
| ASSERT(needsLayout()); |
| |
| if (!relayoutChildren && simplifiedLayout()) |
| return; |
| |
| LayoutRepainter repainter(*this, checkForRepaintDuringLayout()); |
| LayoutStateMaintainer statePusher(view(), *this, locationOffset(), hasTransform() || hasReflection() || style().isFlippedBlocksWritingMode()); |
| |
| preparePaginationBeforeBlockLayout(relayoutChildren); |
| |
| LayoutSize previousSize = size(); |
| |
| // We need to clear both own and containingBlock override sizes of orthogonal items to ensure we get the |
| // same result when grid's intrinsic size is computed again in the updateLogicalWidth call bellow. |
| if (sizesLogicalWidthToFitContent(MaxSize) || style().logicalWidth().isIntrinsicOrAuto()) { |
| for (auto* child = firstChildBox(); child; child = child->nextSiblingBox()) { |
| if (child->isOutOfFlowPositioned() || !isOrthogonalChild(*child)) |
| continue; |
| child->clearOverrideSize(); |
| child->clearContainingBlockOverrideSize(); |
| child->setNeedsLayout(); |
| child->layoutIfNeeded(); |
| } |
| } |
| |
| setLogicalHeight(0); |
| updateLogicalWidth(); |
| |
| placeItemsOnGrid(TrackSizing); |
| |
| GridSizingData sizingData(numTracks(ForColumns), numTracks(ForRows)); |
| |
| // At this point the logical width is always definite as the above call to updateLogicalWidth() |
| // properly resolves intrinsic sizes. We cannot do the same for heights though because many code |
| // paths inside updateLogicalHeight() require a previous call to setLogicalHeight() to resolve |
| // heights properly (like for positioned items for example). |
| LayoutUnit availableSpaceForColumns = availableLogicalWidth(); |
| computeTrackSizesForDirection(ForColumns, sizingData, availableSpaceForColumns); |
| |
| // FIXME: We should use RenderBlock::hasDefiniteLogicalHeight() but it does not work for positioned stuff. |
| // FIXME: Consider caching the hasDefiniteLogicalHeight value throughout the layout. |
| bool hasDefiniteLogicalHeight = hasOverrideLogicalContentHeight() || computeContentLogicalHeight(MainOrPreferredSize, style().logicalHeight(), std::nullopt); |
| if (!hasDefiniteLogicalHeight) |
| computeIntrinsicLogicalHeight(sizingData); |
| else |
| computeTrackSizesForDirection(ForRows, sizingData, availableLogicalHeight(ExcludeMarginBorderPadding)); |
| LayoutUnit trackBasedLogicalHeight = computeTrackBasedLogicalHeight(sizingData) + borderAndPaddingLogicalHeight() + scrollbarLogicalHeight(); |
| setLogicalHeight(trackBasedLogicalHeight); |
| |
| LayoutUnit oldClientAfterEdge = clientLogicalBottom(); |
| updateLogicalHeight(); |
| |
| // Once grid's indefinite height is resolved, we can compute the |
| // available free space for Content Alignment. |
| if (!hasDefiniteLogicalHeight) |
| sizingData.setFreeSpace(ForRows, logicalHeight() - trackBasedLogicalHeight); |
| |
| // 3- If the min-content contribution of any grid items have changed based on the row |
| // sizes calculated in step 2, steps 1 and 2 are repeated with the new min-content |
| // contribution (once only). |
| repeatTracksSizingIfNeeded(sizingData, availableSpaceForColumns, contentLogicalHeight()); |
| |
| // Grid container should have the minimum height of a line if it's editable. That does not affect track sizing though. |
| if (hasLineIfEmpty()) { |
| LayoutUnit minHeightForEmptyLine = borderAndPaddingLogicalHeight() |
| + lineHeight(true, isHorizontalWritingMode() ? HorizontalLine : VerticalLine, PositionOfInteriorLineBoxes) |
| + scrollbarLogicalHeight(); |
| setLogicalHeight(std::max(logicalHeight(), minHeightForEmptyLine)); |
| } |
| |
| applyStretchAlignmentToTracksIfNeeded(ForColumns, sizingData); |
| applyStretchAlignmentToTracksIfNeeded(ForRows, sizingData); |
| |
| layoutGridItems(sizingData); |
| |
| if (size() != previousSize) |
| relayoutChildren = true; |
| |
| layoutPositionedObjects(relayoutChildren || isDocumentElementRenderer()); |
| |
| clearGrid(); |
| |
| computeOverflow(oldClientAfterEdge); |
| statePusher.pop(); |
| |
| updateLayerTransform(); |
| |
| // Update our scroll information if we're overflow:auto/scroll/hidden now that we know if |
| // we overflow or not. |
| updateScrollInfoAfterLayout(); |
| |
| repainter.repaintAfterLayout(); |
| |
| clearNeedsLayout(); |
| } |
| |
| bool RenderGrid::hasAutoRepeatEmptyTracks(GridTrackSizingDirection direction) const |
| { |
| return direction == ForColumns ? !!m_autoRepeatEmptyColumns : !!m_autoRepeatEmptyRows; |
| } |
| |
| bool RenderGrid::isEmptyAutoRepeatTrack(GridTrackSizingDirection direction, unsigned line) const |
| { |
| ASSERT(hasAutoRepeatEmptyTracks(direction)); |
| return direction == ForColumns ? m_autoRepeatEmptyColumns->contains(line) : m_autoRepeatEmptyRows->contains(line); |
| } |
| |
| LayoutUnit RenderGrid::gridGapForDirection(GridTrackSizingDirection direction) const |
| { |
| return valueForLength(direction == ForColumns ? style().gridColumnGap() : style().gridRowGap(), LayoutUnit()); |
| } |
| |
| LayoutUnit RenderGrid::guttersSize(GridTrackSizingDirection direction, unsigned startLine, unsigned span) const |
| { |
| if (span <= 1) |
| return { }; |
| |
| bool isRowAxis = direction == ForColumns; |
| LayoutUnit gap = gridGapForDirection(direction); |
| |
| // Fast path, no collapsing tracks. |
| if (!hasAutoRepeatEmptyTracks(direction)) |
| return gap * (span - 1); |
| |
| // If there are collapsing tracks we need to be sure that gutters are properly collapsed. Apart |
| // from that, if we have a collapsed track in the edges of the span we're considering, we need |
| // to move forward (or backwards) in order to know whether the collapsed tracks reach the end of |
| // the grid (so the gap becomes 0) or there is a non empty track before that. |
| |
| LayoutUnit gapAccumulator; |
| unsigned endLine = startLine + span; |
| |
| for (unsigned line = startLine; line < endLine - 1; ++line) { |
| if (!isEmptyAutoRepeatTrack(direction, line)) |
| gapAccumulator += gap; |
| } |
| |
| // The above loop adds one extra gap for trailing collapsed tracks. |
| if (gapAccumulator && isEmptyAutoRepeatTrack(direction, endLine - 1)) { |
| ASSERT(gapAccumulator >= gap); |
| gapAccumulator -= gap; |
| } |
| |
| // If the startLine is the start line of a collapsed track we need to go backwards till we reach |
| // a non collapsed track. If we find a non collapsed track we need to add that gap. |
| if (startLine && isEmptyAutoRepeatTrack(direction, startLine)) { |
| unsigned nonEmptyTracksBeforeStartLine = startLine; |
| auto begin = isRowAxis ? m_autoRepeatEmptyColumns->begin() : m_autoRepeatEmptyRows->begin(); |
| for (auto it = begin; *it != startLine; ++it) { |
| ASSERT(nonEmptyTracksBeforeStartLine); |
| --nonEmptyTracksBeforeStartLine; |
| } |
| if (nonEmptyTracksBeforeStartLine) |
| gapAccumulator += gap; |
| } |
| |
| // If the endLine is the end line of a collapsed track we need to go forward till we reach a non |
| // collapsed track. If we find a non collapsed track we need to add that gap. |
| if (isEmptyAutoRepeatTrack(direction, endLine - 1)) { |
| unsigned nonEmptyTracksAfterEndLine = (isRowAxis ? gridColumnCount() : gridRowCount()) - endLine; |
| auto currentEmptyTrack = isRowAxis ? m_autoRepeatEmptyColumns->find(endLine - 1) : m_autoRepeatEmptyRows->find(endLine - 1); |
| auto endEmptyTrack = isRowAxis ? m_autoRepeatEmptyColumns->end() : m_autoRepeatEmptyRows->end(); |
| // HashSet iterators do not implement operator- so we have to manually iterate to know the number of remaining empty tracks. |
| for (auto it = ++currentEmptyTrack; it != endEmptyTrack; ++it) { |
| ASSERT(nonEmptyTracksAfterEndLine >= 1); |
| --nonEmptyTracksAfterEndLine; |
| } |
| if (nonEmptyTracksAfterEndLine) |
| gapAccumulator += gap; |
| } |
| |
| return gapAccumulator; |
| } |
| |
| void RenderGrid::computeIntrinsicLogicalWidths(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth) const |
| { |
| bool wasPopulated = !m_gridIsDirty; |
| if (!wasPopulated) |
| const_cast<RenderGrid*>(this)->placeItemsOnGrid(IntrinsicSizeComputation); |
| |
| GridSizingData sizingData(numTracks(ForColumns), numTracks(ForRows)); |
| sizingData.setAvailableSpace(std::nullopt); |
| sizingData.setFreeSpace(ForColumns, std::nullopt); |
| sizingData.sizingOperation = IntrinsicSizeComputation; |
| computeUsedBreadthOfGridTracks(ForColumns, sizingData, minLogicalWidth, maxLogicalWidth); |
| |
| LayoutUnit totalGuttersSize = guttersSize(ForColumns, 0, sizingData.columnTracks.size()); |
| minLogicalWidth += totalGuttersSize; |
| maxLogicalWidth += totalGuttersSize; |
| |
| LayoutUnit scrollbarWidth = intrinsicScrollbarLogicalWidth(); |
| minLogicalWidth += scrollbarWidth; |
| maxLogicalWidth += scrollbarWidth; |
| |
| if (!wasPopulated) |
| const_cast<RenderGrid*>(this)->clearGrid(); |
| } |
| |
| void RenderGrid::computeIntrinsicLogicalHeight(GridSizingData& sizingData) |
| { |
| ASSERT(sizingData.isValidTransition(ForRows)); |
| sizingData.setAvailableSpace(std::nullopt); |
| sizingData.setFreeSpace(ForRows, std::nullopt); |
| sizingData.sizingOperation = IntrinsicSizeComputation; |
| LayoutUnit minHeight, maxHeight; |
| computeUsedBreadthOfGridTracks(ForRows, sizingData, minHeight, maxHeight); |
| |
| // FIXME: This should be really added to the intrinsic height in RenderBox::computeContentAndScrollbarLogicalHeightUsing(). |
| // Remove this when that is fixed. |
| LayoutUnit scrollbarHeight = scrollbarLogicalHeight(); |
| minHeight += scrollbarHeight; |
| maxHeight += scrollbarHeight; |
| |
| LayoutUnit totalGuttersSize = guttersSize(ForRows, 0, gridRowCount()); |
| minHeight += totalGuttersSize; |
| maxHeight += totalGuttersSize; |
| |
| m_minContentHeight = minHeight; |
| m_maxContentHeight = maxHeight; |
| |
| ASSERT(tracksAreWiderThanMinTrackBreadth(ForRows, sizingData)); |
| sizingData.advanceNextState(); |
| sizingData.sizingOperation = TrackSizing; |
| } |
| |
| std::optional<LayoutUnit> RenderGrid::computeIntrinsicLogicalContentHeightUsing(Length logicalHeightLength, std::optional<LayoutUnit> intrinsicLogicalHeight, LayoutUnit borderAndPadding) const |
| { |
| if (!intrinsicLogicalHeight) |
| return std::nullopt; |
| |
| if (logicalHeightLength.isMinContent()) |
| return m_minContentHeight; |
| |
| if (logicalHeightLength.isMaxContent()) |
| return m_maxContentHeight; |
| |
| if (logicalHeightLength.isFitContent()) { |
| LayoutUnit fillAvailableExtent = containingBlock()->availableLogicalHeight(ExcludeMarginBorderPadding); |
| return std::min(m_maxContentHeight.value_or(0), std::max(m_minContentHeight.value_or(0), fillAvailableExtent)); |
| } |
| |
| if (logicalHeightLength.isFillAvailable()) |
| return containingBlock()->availableLogicalHeight(ExcludeMarginBorderPadding) - borderAndPadding; |
| ASSERT_NOT_REACHED(); |
| return std::nullopt; |
| } |
| |
| static inline double normalizedFlexFraction(const GridTrack& track, double flexFactor) |
| { |
| return track.baseSize() / std::max<double>(1, flexFactor); |
| } |
| |
| void RenderGrid::computeUsedBreadthOfGridTracks(GridTrackSizingDirection direction, GridSizingData& sizingData, LayoutUnit& baseSizesWithoutMaximization, LayoutUnit& growthLimitsWithoutMaximization) const |
| { |
| const std::optional<LayoutUnit> initialFreeSpace = sizingData.freeSpace(direction); |
| Vector<GridTrack>& tracks = (direction == ForColumns) ? sizingData.columnTracks : sizingData.rowTracks; |
| Vector<unsigned> flexibleSizedTracksIndex; |
| sizingData.contentSizedTracksIndex.shrink(0); |
| |
| // Grid gutters were removed from freeSpace by the caller (if freeSpace is definite), |
| // but we must use them to compute relative (i.e. percentages) sizes. |
| LayoutUnit maxSize = std::max(LayoutUnit(), sizingData.availableSpace().value_or(LayoutUnit())); |
| const bool hasDefiniteFreeSpace = sizingData.sizingOperation == TrackSizing; |
| |
| // 1. Initialize per Grid track variables. |
| for (unsigned i = 0; i < tracks.size(); ++i) { |
| GridTrack& track = tracks[i]; |
| const GridTrackSize& trackSize = gridTrackSize(direction, i, sizingData.sizingOperation); |
| |
| track.setBaseSize(computeUsedBreadthOfMinLength(trackSize, maxSize)); |
| track.setGrowthLimit(computeUsedBreadthOfMaxLength(trackSize, track.baseSize(), maxSize)); |
| track.setInfinitelyGrowable(false); |
| |
| if (trackSize.isFitContent()) { |
| GridLength gridLength = trackSize.fitContentTrackBreadth(); |
| if (!gridLength.isPercentage() || hasDefiniteFreeSpace) |
| track.setGrowthLimitCap(valueForLength(gridLength.length(), maxSize)); |
| } |
| if (trackSize.isContentSized()) |
| sizingData.contentSizedTracksIndex.append(i); |
| if (trackSize.maxTrackBreadth().isFlex()) |
| flexibleSizedTracksIndex.append(i); |
| } |
| |
| // 2. Resolve content-based TrackSizingFunctions. |
| if (!sizingData.contentSizedTracksIndex.isEmpty()) |
| resolveContentBasedTrackSizingFunctions(direction, sizingData); |
| |
| baseSizesWithoutMaximization = growthLimitsWithoutMaximization = 0; |
| |
| for (auto& track : tracks) { |
| ASSERT(!track.infiniteGrowthPotential()); |
| baseSizesWithoutMaximization += track.baseSize(); |
| growthLimitsWithoutMaximization += track.growthLimit(); |
| // The growth limit caps must be cleared now in order to properly sort tracks by growth |
| // potential on an eventual "Maximize Tracks". |
| track.setGrowthLimitCap(std::nullopt); |
| } |
| LayoutUnit freeSpace = initialFreeSpace ? initialFreeSpace.value() - baseSizesWithoutMaximization : LayoutUnit(0); |
| |
| if (hasDefiniteFreeSpace && freeSpace <= 0) { |
| sizingData.setFreeSpace(direction, freeSpace); |
| return; |
| } |
| |
| // 3. Grow all Grid tracks in GridTracks from their UsedBreadth up to their MaxBreadth value until freeSpace is exhausted. |
| if (hasDefiniteFreeSpace) { |
| const unsigned tracksSize = tracks.size(); |
| Vector<GridTrack*> tracksForDistribution(tracksSize); |
| for (unsigned i = 0; i < tracksSize; ++i) { |
| tracksForDistribution[i] = tracks.data() + i; |
| tracksForDistribution[i]->setPlannedSize(tracksForDistribution[i]->baseSize()); |
| } |
| |
| distributeSpaceToTracks<MaximizeTracks>(tracksForDistribution, nullptr, freeSpace); |
| |
| for (auto* track : tracksForDistribution) |
| track->setBaseSize(track->plannedSize()); |
| } else { |
| for (auto& track : tracks) |
| track.setBaseSize(track.growthLimit()); |
| } |
| |
| if (flexibleSizedTracksIndex.isEmpty()) { |
| sizingData.setFreeSpace(direction, freeSpace); |
| return; |
| } |
| |
| // 4. Grow all Grid tracks having a fraction as the MaxTrackSizingFunction. |
| double flexFraction = 0; |
| if (hasDefiniteFreeSpace) |
| flexFraction = findFlexFactorUnitSize(tracks, GridSpan::translatedDefiniteGridSpan(0, tracks.size()), direction, sizingData.sizingOperation, initialFreeSpace.value()); |
| else { |
| for (const auto& trackIndex : flexibleSizedTracksIndex) |
| flexFraction = std::max(flexFraction, normalizedFlexFraction(tracks[trackIndex], gridTrackSize(direction, trackIndex, sizingData.sizingOperation).maxTrackBreadth().flex())); |
| |
| if (!m_gridItemArea.isEmpty()) { |
| for (unsigned i = 0; i < flexibleSizedTracksIndex.size(); ++i) { |
| GridIterator iterator(m_grid, direction, flexibleSizedTracksIndex[i]); |
| while (auto* gridItem = iterator.nextGridItem()) { |
| GridSpan span = cachedGridSpan(*gridItem, direction); |
| |
| // Do not include already processed items. |
| if (i > 0 && span.startLine() <= flexibleSizedTracksIndex[i - 1]) |
| continue; |
| |
| flexFraction = std::max(flexFraction, findFlexFactorUnitSize(tracks, span, direction, sizingData.sizingOperation, maxContentForChild(*gridItem, direction, sizingData))); |
| } |
| } |
| } |
| } |
| LayoutUnit totalGrowth; |
| Vector<LayoutUnit> increments; |
| increments.grow(flexibleSizedTracksIndex.size()); |
| computeFlexSizedTracksGrowth(direction, sizingData.sizingOperation, tracks, flexibleSizedTracksIndex, flexFraction, increments, totalGrowth); |
| |
| // We only need to redo the flex fraction computation for indefinite heights (definite sizes are |
| // already constrained by min/max sizes). Regarding widths, they are always definite at layout |
| // time so we shouldn't ever have to do this. |
| if (!hasDefiniteFreeSpace && direction == ForRows) { |
| auto minSize = computeContentLogicalHeight(MinSize, style().logicalMinHeight(), LayoutUnit(-1)); |
| auto maxSize = computeContentLogicalHeight(MaxSize, style().logicalMaxHeight(), LayoutUnit(-1)); |
| |
| // Redo the flex fraction computation using min|max-height as definite available space in |
| // case the total height is smaller than min-height or larger than max-height. |
| LayoutUnit rowsSize = totalGrowth + computeTrackBasedLogicalHeight(sizingData); |
| bool checkMinSize = minSize && rowsSize < minSize.value(); |
| bool checkMaxSize = maxSize && rowsSize > maxSize.value(); |
| if (checkMinSize || checkMaxSize) { |
| LayoutUnit constrainedFreeSpace = checkMaxSize ? maxSize.value() : LayoutUnit(-1); |
| constrainedFreeSpace = std::max(constrainedFreeSpace, minSize.value()) - guttersSize(ForRows, 0, gridRowCount()); |
| flexFraction = findFlexFactorUnitSize(tracks, GridSpan::translatedDefiniteGridSpan(0, tracks.size()), ForRows, sizingData.sizingOperation, constrainedFreeSpace); |
| |
| totalGrowth = LayoutUnit(0); |
| computeFlexSizedTracksGrowth(ForRows, sizingData.sizingOperation, tracks, flexibleSizedTracksIndex, flexFraction, increments, totalGrowth); |
| } |
| } |
| |
| for (size_t i = 0; i < flexibleSizedTracksIndex.size(); ++i) { |
| if (LayoutUnit increment = increments[i]) { |
| auto& track = tracks[flexibleSizedTracksIndex[i]]; |
| track.setBaseSize(track.baseSize() + increment); |
| } |
| } |
| freeSpace -= totalGrowth; |
| growthLimitsWithoutMaximization += totalGrowth; |
| sizingData.setFreeSpace(direction, freeSpace); |
| } |
| |
| void RenderGrid::computeFlexSizedTracksGrowth(GridTrackSizingDirection direction, SizingOperation sizingOperation, Vector<GridTrack>& tracks, const Vector<unsigned>& flexibleSizedTracksIndex, double flexFraction, Vector<LayoutUnit>& increments, LayoutUnit& totalGrowth) const |
| { |
| size_t numFlexTracks = flexibleSizedTracksIndex.size(); |
| ASSERT(increments.size() == numFlexTracks); |
| for (size_t i = 0; i < numFlexTracks; ++i) { |
| unsigned trackIndex = flexibleSizedTracksIndex[i]; |
| auto trackSize = gridTrackSize(direction, trackIndex, sizingOperation); |
| ASSERT(trackSize.maxTrackBreadth().isFlex()); |
| LayoutUnit oldBaseSize = tracks[trackIndex].baseSize(); |
| LayoutUnit newBaseSize = std::max(oldBaseSize, LayoutUnit(flexFraction * trackSize.maxTrackBreadth().flex())); |
| increments[i] = newBaseSize - oldBaseSize; |
| totalGrowth += increments[i]; |
| } |
| } |
| |
| LayoutUnit RenderGrid::computeUsedBreadthOfMinLength(const GridTrackSize& trackSize, LayoutUnit maxSize) const |
| { |
| const GridLength& gridLength = trackSize.minTrackBreadth(); |
| if (gridLength.isFlex()) |
| return 0; |
| |
| const Length& trackLength = gridLength.length(); |
| if (trackLength.isSpecified()) |
| return valueForLength(trackLength, maxSize); |
| |
| ASSERT(trackLength.isMinContent() || trackLength.isAuto() || trackLength.isMaxContent()); |
| return 0; |
| } |
| |
| LayoutUnit RenderGrid::computeUsedBreadthOfMaxLength(const GridTrackSize& trackSize, LayoutUnit usedBreadth, LayoutUnit maxSize) const |
| { |
| const GridLength& gridLength = trackSize.maxTrackBreadth(); |
| if (gridLength.isFlex()) |
| return usedBreadth; |
| |
| const Length& trackLength = gridLength.length(); |
| if (trackLength.isSpecified()) |
| return valueForLength(trackLength, maxSize); |
| |
| ASSERT(trackLength.isMinContent() || trackLength.isAuto() || trackLength.isMaxContent()); |
| return infinity; |
| } |
| |
| double RenderGrid::computeFlexFactorUnitSize(const Vector<GridTrack>& tracks, GridTrackSizingDirection direction, SizingOperation sizingOperation, double flexFactorSum, LayoutUnit leftOverSpace, const Vector<unsigned, 8>& flexibleTracksIndexes, std::unique_ptr<TrackIndexSet> tracksToTreatAsInflexible) const |
| { |
| // We want to avoid the effect of flex factors sum below 1 making the factor unit size to grow exponentially. |
| double hypotheticalFactorUnitSize = leftOverSpace / std::max<double>(1, flexFactorSum); |
| |
| // product of the hypothetical "flex factor unit" and any flexible track's "flex factor" must be grater than such track's "base size". |
| bool validFlexFactorUnit = true; |
| for (auto index : flexibleTracksIndexes) { |
| if (tracksToTreatAsInflexible && tracksToTreatAsInflexible->contains(index)) |
| continue; |
| LayoutUnit baseSize = tracks[index].baseSize(); |
| double flexFactor = gridTrackSize(direction, index, sizingOperation).maxTrackBreadth().flex(); |
| // treating all such tracks as inflexible. |
| if (baseSize > hypotheticalFactorUnitSize * flexFactor) { |
| leftOverSpace -= baseSize; |
| flexFactorSum -= flexFactor; |
| if (!tracksToTreatAsInflexible) |
| tracksToTreatAsInflexible = std::unique_ptr<TrackIndexSet>(new TrackIndexSet()); |
| tracksToTreatAsInflexible->add(index); |
| validFlexFactorUnit = false; |
| } |
| } |
| if (!validFlexFactorUnit) |
| return computeFlexFactorUnitSize(tracks, direction, sizingOperation, flexFactorSum, leftOverSpace, flexibleTracksIndexes, WTFMove(tracksToTreatAsInflexible)); |
| return hypotheticalFactorUnitSize; |
| } |
| |
| double RenderGrid::findFlexFactorUnitSize(const Vector<GridTrack>& tracks, const GridSpan& tracksSpan, GridTrackSizingDirection direction, SizingOperation sizingOperation, LayoutUnit leftOverSpace) const |
| { |
| if (leftOverSpace <= 0) |
| return 0; |
| |
| double flexFactorSum = 0; |
| Vector<unsigned, 8> flexibleTracksIndexes; |
| for (auto trackIndex : tracksSpan) { |
| GridTrackSize trackSize = gridTrackSize(direction, trackIndex, sizingOperation); |
| if (!trackSize.maxTrackBreadth().isFlex()) |
| leftOverSpace -= tracks[trackIndex].baseSize(); |
| else { |
| double flexFactor = trackSize.maxTrackBreadth().flex(); |
| flexibleTracksIndexes.append(trackIndex); |
| flexFactorSum += flexFactor; |
| } |
| } |
| |
| // The function is not called if we don't have <flex> grid tracks |
| ASSERT(!flexibleTracksIndexes.isEmpty()); |
| |
| return computeFlexFactorUnitSize(tracks, direction, sizingOperation, flexFactorSum, leftOverSpace, flexibleTracksIndexes); |
| } |
| |
| static bool hasOverrideContainingBlockContentSizeForChild(const RenderBox& child, GridTrackSizingDirection direction) |
| { |
| return direction == ForColumns ? child.hasOverrideContainingBlockLogicalWidth() : child.hasOverrideContainingBlockLogicalHeight(); |
| } |
| |
| static std::optional<LayoutUnit> overrideContainingBlockContentSizeForChild(const RenderBox& child, GridTrackSizingDirection direction) |
| { |
| return direction == ForColumns ? child.overrideContainingBlockContentLogicalWidth() : child.overrideContainingBlockContentLogicalHeight(); |
| } |
| |
| static void setOverrideContainingBlockContentSizeForChild(RenderBox& child, GridTrackSizingDirection direction, std::optional<LayoutUnit> size) |
| { |
| if (direction == ForColumns) |
| child.setOverrideContainingBlockContentLogicalWidth(size); |
| else |
| child.setOverrideContainingBlockContentLogicalHeight(size); |
| } |
| |
| static bool shouldClearOverrideContainingBlockContentSizeForChild(const RenderBox& child, GridTrackSizingDirection direction) |
| { |
| if (direction == ForColumns) |
| return child.hasRelativeLogicalWidth() || child.style().logicalWidth().isIntrinsicOrAuto(); |
| return child.hasRelativeLogicalHeight() || child.style().logicalHeight().isIntrinsicOrAuto(); |
| } |
| |
| const GridTrackSize& RenderGrid::rawGridTrackSize(GridTrackSizingDirection direction, unsigned translatedIndex) const |
| { |
| bool isRowAxis = direction == ForColumns; |
| auto& trackStyles = isRowAxis ? style().gridColumns() : style().gridRows(); |
| auto& autoRepeatTrackStyles = isRowAxis ? style().gridAutoRepeatColumns() : style().gridAutoRepeatRows(); |
| auto& autoTrackStyles = isRowAxis ? style().gridAutoColumns() : style().gridAutoRows(); |
| unsigned insertionPoint = isRowAxis ? style().gridAutoRepeatColumnsInsertionPoint() : style().gridAutoRepeatRowsInsertionPoint(); |
| unsigned autoRepeatTracksCount = autoRepeatCountForDirection(direction); |
| |
| // We should not use GridPositionsResolver::explicitGridXXXCount() for this because the |
| // explicit grid might be larger than the number of tracks in grid-template-rows|columns (if |
| // grid-template-areas is specified for example). |
| unsigned explicitTracksCount = trackStyles.size() + autoRepeatTracksCount; |
| |
| int untranslatedIndexAsInt = translatedIndex + (isRowAxis ? m_smallestColumnStart : m_smallestRowStart); |
| unsigned autoTrackStylesSize = autoTrackStyles.size(); |
| if (untranslatedIndexAsInt < 0) { |
| int index = untranslatedIndexAsInt % static_cast<int>(autoTrackStylesSize); |
| // We need to traspose the index because the first negative implicit line will get the last defined auto track and so on. |
| index += index ? autoTrackStylesSize : 0; |
| return autoTrackStyles[index]; |
| } |
| |
| unsigned untranslatedIndex = static_cast<unsigned>(untranslatedIndexAsInt); |
| if (untranslatedIndex >= explicitTracksCount) |
| return autoTrackStyles[(untranslatedIndex - explicitTracksCount) % autoTrackStylesSize]; |
| |
| if (!autoRepeatTracksCount || untranslatedIndex < insertionPoint) |
| return trackStyles[untranslatedIndex]; |
| |
| if (untranslatedIndex < (insertionPoint + autoRepeatTracksCount)) { |
| unsigned autoRepeatLocalIndex = untranslatedIndexAsInt - insertionPoint; |
| return autoRepeatTrackStyles[autoRepeatLocalIndex % autoRepeatTrackStyles.size()]; |
| } |
| |
| return trackStyles[untranslatedIndex - autoRepeatTracksCount]; |
| } |
| |
| GridTrackSize RenderGrid::gridTrackSize(GridTrackSizingDirection direction, unsigned translatedIndex, SizingOperation sizingOperation) const |
| { |
| // Collapse empty auto repeat tracks if auto-fit. |
| if (hasAutoRepeatEmptyTracks(direction) && isEmptyAutoRepeatTrack(direction, translatedIndex)) |
| return { Length(Fixed), LengthTrackSizing }; |
| |
| auto& trackSize = rawGridTrackSize(direction, translatedIndex); |
| if (trackSize.isFitContent()) |
| return trackSize; |
| |
| GridLength minTrackBreadth = trackSize.minTrackBreadth(); |
| GridLength maxTrackBreadth = trackSize.maxTrackBreadth(); |
| |
| // FIXME: Ensure this condition for determining whether a size is indefinite or not is working correctly for orthogonal flows. |
| if (minTrackBreadth.isPercentage() || maxTrackBreadth.isPercentage()) { |
| // If the logical width/height of the grid container is indefinite, percentage values are treated as <auto>. |
| // For the inline axis this only happens when we're computing the intrinsic sizes (IntrinsicSizeComputation). |
| if (sizingOperation == IntrinsicSizeComputation || (direction == ForRows && !hasDefiniteLogicalHeight())) { |
| if (minTrackBreadth.isPercentage()) |
| minTrackBreadth = Length(Auto); |
| if (maxTrackBreadth.isPercentage()) |
| maxTrackBreadth = Length(Auto); |
| } |
| } |
| |
| // Flex sizes are invalid as a min sizing function. However we still can have a flexible |minTrackBreadth| |
| // if the track size is just a flex size (e.g. "1fr"), the spec says that in this case it implies an automatic minimum. |
| if (minTrackBreadth.isFlex()) |
| minTrackBreadth = Length(Auto); |
| |
| return GridTrackSize(minTrackBreadth, maxTrackBreadth); |
| } |
| |
| bool RenderGrid::isOrthogonalChild(const RenderBox& child) const |
| { |
| return child.isHorizontalWritingMode() != isHorizontalWritingMode(); |
| } |
| |
| GridTrackSizingDirection RenderGrid::flowAwareDirectionForChild(const RenderBox& child, GridTrackSizingDirection direction) const |
| { |
| return !isOrthogonalChild(child) ? direction : (direction == ForColumns ? ForRows : ForColumns); |
| } |
| |
| LayoutUnit RenderGrid::logicalHeightForChild(RenderBox& child) const |
| { |
| GridTrackSizingDirection childBlockDirection = flowAwareDirectionForChild(child, ForRows); |
| // If |child| has a relative logical height, we shouldn't let it override its intrinsic height, which is |
| // what we are interested in here. Thus we need to set the block-axis override size to -1 (no possible resolution). |
| if (shouldClearOverrideContainingBlockContentSizeForChild(child, ForRows)) { |
| setOverrideContainingBlockContentSizeForChild(child, childBlockDirection, std::nullopt); |
| child.setNeedsLayout(MarkOnlyThis); |
| } |
| |
| // We need to clear the stretched height to properly compute logical height during layout. |
| if (child.needsLayout()) |
| child.clearOverrideLogicalContentHeight(); |
| |
| child.layoutIfNeeded(); |
| return child.logicalHeight() + child.marginLogicalHeight(); |
| } |
| |
| LayoutUnit RenderGrid::minSizeForChild(RenderBox& child, GridTrackSizingDirection direction, GridSizingData& sizingData) const |
| { |
| GridTrackSizingDirection childInlineDirection = flowAwareDirectionForChild(child, ForColumns); |
| bool isRowAxis = direction == childInlineDirection; |
| const Length& childMinSize = isRowAxis ? child.style().logicalMinWidth() : child.style().logicalMinHeight(); |
| const Length& childSize = isRowAxis ? child.style().logicalWidth() : child.style().logicalHeight(); |
| if (!childSize.isAuto() || childMinSize.isAuto()) |
| return minContentForChild(child, direction, sizingData); |
| |
| bool overrideSizeHasChanged = updateOverrideContainingBlockContentSizeForChild(child, childInlineDirection, sizingData); |
| if (isRowAxis) { |
| LayoutUnit marginLogicalWidth = sizingData.sizingOperation == TrackSizing ? computeMarginLogicalSizeForChild(childInlineDirection, child) : marginIntrinsicLogicalWidthForChild(child); |
| return child.computeLogicalWidthInRegionUsing(MinSize, childMinSize, overrideContainingBlockContentSizeForChild(child, childInlineDirection).value_or(0), *this, nullptr) + marginLogicalWidth; |
| } |
| |
| if (overrideSizeHasChanged && (direction != ForColumns || sizingData.sizingOperation != IntrinsicSizeComputation)) |
| child.setNeedsLayout(MarkOnlyThis); |
| child.layoutIfNeeded(); |
| return child.computeLogicalHeightUsing(MinSize, childMinSize, std::nullopt).value_or(0) + child.marginLogicalHeight() + child.scrollbarLogicalHeight(); |
| } |
| |
| bool RenderGrid::updateOverrideContainingBlockContentSizeForChild(RenderBox& child, GridTrackSizingDirection direction, GridSizingData& sizingData) const |
| { |
| LayoutUnit overrideSize = gridAreaBreadthForChild(child, direction, sizingData); |
| if (hasOverrideContainingBlockContentSizeForChild(child, direction) && overrideContainingBlockContentSizeForChild(child, direction) == overrideSize) |
| return false; |
| |
| setOverrideContainingBlockContentSizeForChild(child, direction, overrideSize); |
| return true; |
| } |
| |
| LayoutUnit RenderGrid::minContentForChild(RenderBox& child, GridTrackSizingDirection direction, GridSizingData& sizingData) const |
| { |
| GridTrackSizingDirection childInlineDirection = flowAwareDirectionForChild(child, ForColumns); |
| if (direction == childInlineDirection) { |
| // If |child| has a relative logical width, we shouldn't let it override its intrinsic width, which is |
| // what we are interested in here. Thus we need to set the override logical width to std::nullopt (no possible resolution). |
| if (shouldClearOverrideContainingBlockContentSizeForChild(child, ForColumns)) |
| setOverrideContainingBlockContentSizeForChild(child, childInlineDirection, std::nullopt); |
| |
| // FIXME: It's unclear if we should return the intrinsic width or the preferred width. |
| // See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html |
| return child.minPreferredLogicalWidth() + marginIntrinsicLogicalWidthForChild(child); |
| } |
| |
| // All orthogonal flow boxes were already laid out during an early layout phase performed in FrameView::performLayout. |
| // It's true that grid track sizing was not completed at that time and it may afffect the final height of a |
| // grid item, but since it's forbidden to perform a layout during intrinsic width computation, we have to use |
| // that computed height for now. |
| if (direction == ForColumns && sizingData.sizingOperation == IntrinsicSizeComputation) { |
| ASSERT(isOrthogonalChild(child)); |
| return child.logicalHeight() + child.marginLogicalHeight(); |
| } |
| |
| if (updateOverrideContainingBlockContentSizeForChild(child, childInlineDirection, sizingData)) |
| child.setNeedsLayout(MarkOnlyThis); |
| return logicalHeightForChild(child); |
| } |
| |
| LayoutUnit RenderGrid::maxContentForChild(RenderBox& child, GridTrackSizingDirection direction, GridSizingData& sizingData) const |
| { |
| GridTrackSizingDirection childInlineDirection = flowAwareDirectionForChild(child, ForColumns); |
| if (direction == childInlineDirection) { |
| // If |child| has a relative logical width, we shouldn't let it override its intrinsic width, which is |
| // what we are interested in here. Thus we need to set the inline-axis override size to -1 (no possible resolution). |
| if (shouldClearOverrideContainingBlockContentSizeForChild(child, ForColumns)) |
| setOverrideContainingBlockContentSizeForChild(child, childInlineDirection, std::nullopt); |
| |
| // FIXME: It's unclear if we should return the intrinsic width or the preferred width. |
| // See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html |
| return child.maxPreferredLogicalWidth() + marginIntrinsicLogicalWidthForChild(child); |
| } |
| |
| // All orthogonal flow boxes were already laid out during an early layout phase performed in FrameView::performLayout. |
| // It's true that grid track sizing was not completed at that time and it may afffect the final height of a |
| // grid item, but since it's forbidden to perform a layout during intrinsic width computation, we have to use |
| // that computed height for now. |
| if (direction == ForColumns && sizingData.sizingOperation == IntrinsicSizeComputation) { |
| ASSERT(isOrthogonalChild(child)); |
| return child.logicalHeight() + child.marginLogicalHeight(); |
| } |
| |
| if (updateOverrideContainingBlockContentSizeForChild(child, childInlineDirection, sizingData)) |
| child.setNeedsLayout(MarkOnlyThis); |
| return logicalHeightForChild(child); |
| } |
| |
| class GridItemWithSpan { |
| public: |
| GridItemWithSpan(RenderBox& gridItem, GridSpan span) |
| : m_gridItem(gridItem) |
| , m_span(span) |
| { |
| } |
| |
| RenderBox& gridItem() const { return m_gridItem; } |
| GridSpan span() const { return m_span; } |
| |
| bool operator<(const GridItemWithSpan other) const |
| { |
| return m_span.integerSpan() < other.m_span.integerSpan(); |
| } |
| |
| private: |
| std::reference_wrapper<RenderBox> m_gridItem; |
| GridSpan m_span; |
| }; |
| |
| bool RenderGrid::spanningItemCrossesFlexibleSizedTracks(const GridSpan& itemSpan, GridTrackSizingDirection direction, SizingOperation sizingOperation) const |
| { |
| for (auto trackPosition : itemSpan) { |
| const GridTrackSize& trackSize = gridTrackSize(direction, trackPosition, sizingOperation); |
| if (trackSize.minTrackBreadth().isFlex() || trackSize.maxTrackBreadth().isFlex()) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| struct GridItemsSpanGroupRange { |
| Vector<GridItemWithSpan>::iterator rangeStart; |
| Vector<GridItemWithSpan>::iterator rangeEnd; |
| }; |
| |
| void RenderGrid::resolveContentBasedTrackSizingFunctions(GridTrackSizingDirection direction, GridSizingData& sizingData) const |
| { |
| sizingData.itemsSortedByIncreasingSpan.shrink(0); |
| HashSet<RenderBox*> itemsSet; |
| if (!m_gridItemArea.isEmpty()) { |
| for (auto trackIndex : sizingData.contentSizedTracksIndex) { |
| GridIterator iterator(m_grid, direction, trackIndex); |
| GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[trackIndex] : sizingData.rowTracks[trackIndex]; |
| |
| while (auto* gridItem = iterator.nextGridItem()) { |
| if (itemsSet.add(gridItem).isNewEntry) { |
| GridSpan span = cachedGridSpan(*gridItem, direction); |
| if (span.integerSpan() == 1) |
| resolveContentBasedTrackSizingFunctionsForNonSpanningItems(direction, span, *gridItem, track, sizingData); |
| else if (!spanningItemCrossesFlexibleSizedTracks(span, direction, sizingData.sizingOperation)) |
| sizingData.itemsSortedByIncreasingSpan.append(GridItemWithSpan(*gridItem, span)); |
| } |
| } |
| } |
| std::sort(sizingData.itemsSortedByIncreasingSpan.begin(), sizingData.itemsSortedByIncreasingSpan.end()); |
| } |
| |
| auto it = sizingData.itemsSortedByIncreasingSpan.begin(); |
| auto end = sizingData.itemsSortedByIncreasingSpan.end(); |
| while (it != end) { |
| GridItemsSpanGroupRange spanGroupRange = { it, std::upper_bound(it, end, *it) }; |
| resolveContentBasedTrackSizingFunctionsForItems<ResolveIntrinsicMinimums>(direction, sizingData, spanGroupRange); |
| resolveContentBasedTrackSizingFunctionsForItems<ResolveContentBasedMinimums>(direction, sizingData, spanGroupRange); |
| resolveContentBasedTrackSizingFunctionsForItems<ResolveMaxContentMinimums>(direction, sizingData, spanGroupRange); |
| resolveContentBasedTrackSizingFunctionsForItems<ResolveIntrinsicMaximums>(direction, sizingData, spanGroupRange); |
| resolveContentBasedTrackSizingFunctionsForItems<ResolveMaxContentMaximums>(direction, sizingData, spanGroupRange); |
| it = spanGroupRange.rangeEnd; |
| } |
| |
| for (auto trackIndex : sizingData.contentSizedTracksIndex) { |
| GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[trackIndex] : sizingData.rowTracks[trackIndex]; |
| if (track.growthLimit() == infinity) |
| track.setGrowthLimit(track.baseSize()); |
| } |
| } |
| |
| void RenderGrid::resolveContentBasedTrackSizingFunctionsForNonSpanningItems(GridTrackSizingDirection direction, const GridSpan& span, RenderBox& gridItem, GridTrack& track, GridSizingData& sizingData) const |
| { |
| unsigned trackPosition = span.startLine(); |
| GridTrackSize trackSize = gridTrackSize(direction, trackPosition, sizingData.sizingOperation); |
| |
| if (trackSize.hasMinContentMinTrackBreadth()) |
| track.setBaseSize(std::max(track.baseSize(), minContentForChild(gridItem, direction, sizingData))); |
| else if (trackSize.hasMaxContentMinTrackBreadth()) |
| track.setBaseSize(std::max(track.baseSize(), maxContentForChild(gridItem, direction, sizingData))); |
| else if (trackSize.hasAutoMinTrackBreadth()) |
| track.setBaseSize(std::max(track.baseSize(), minSizeForChild(gridItem, direction, sizingData))); |
| |
| if (trackSize.hasMinContentMaxTrackBreadth()) { |
| track.setGrowthLimit(std::max(track.growthLimit(), minContentForChild(gridItem, direction, sizingData))); |
| } else if (trackSize.hasMaxContentOrAutoMaxTrackBreadth()) { |
| LayoutUnit growthLimit = maxContentForChild(gridItem, direction, sizingData); |
| if (trackSize.isFitContent()) |
| growthLimit = std::min(growthLimit, valueForLength(trackSize.fitContentTrackBreadth().length(), sizingData.availableSpace().value_or(0))); |
| track.setGrowthLimit(std::max(track.growthLimit(), growthLimit)); |
| } |
| } |
| |
| static LayoutUnit trackSizeForTrackSizeComputationPhase(TrackSizeComputationPhase phase, GridTrack& track, TrackSizeRestriction restriction) |
| { |
| switch (phase) { |
| case ResolveIntrinsicMinimums: |
| case ResolveContentBasedMinimums: |
| case ResolveMaxContentMinimums: |
| case MaximizeTracks: |
| return track.baseSize(); |
| case ResolveIntrinsicMaximums: |
| case ResolveMaxContentMaximums: |
| return restriction == AllowInfinity ? track.growthLimit() : track.growthLimitIfNotInfinite(); |
| } |
| |
| ASSERT_NOT_REACHED(); |
| return track.baseSize(); |
| } |
| |
| bool RenderGrid::shouldProcessTrackForTrackSizeComputationPhase(TrackSizeComputationPhase phase, const GridTrackSize& trackSize) |
| { |
| switch (phase) { |
| case ResolveIntrinsicMinimums: |
| return trackSize.hasIntrinsicMinTrackBreadth(); |
| case ResolveContentBasedMinimums: |
| return trackSize.hasMinOrMaxContentMinTrackBreadth(); |
| case ResolveMaxContentMinimums: |
| return trackSize.hasMaxContentMinTrackBreadth(); |
| case ResolveIntrinsicMaximums: |
| return trackSize.hasIntrinsicMaxTrackBreadth(); |
| case ResolveMaxContentMaximums: |
| return trackSize.hasMaxContentOrAutoMaxTrackBreadth(); |
| case MaximizeTracks: |
| ASSERT_NOT_REACHED(); |
| return false; |
| } |
| |
| ASSERT_NOT_REACHED(); |
| return false; |
| } |
| |
| bool RenderGrid::trackShouldGrowBeyondGrowthLimitsForTrackSizeComputationPhase(TrackSizeComputationPhase phase, const GridTrackSize& trackSize) |
| { |
| switch (phase) { |
| case ResolveIntrinsicMinimums: |
| case ResolveContentBasedMinimums: |
| return trackSize.hasAutoOrMinContentMinTrackBreadthAndIntrinsicMaxTrackBreadth(); |
| case ResolveMaxContentMinimums: |
| return trackSize.hasMaxContentMinTrackBreadthAndMaxContentMaxTrackBreadth(); |
| case ResolveIntrinsicMaximums: |
| case ResolveMaxContentMaximums: |
| return true; |
| case MaximizeTracks: |
| ASSERT_NOT_REACHED(); |
| return false; |
| } |
| |
| ASSERT_NOT_REACHED(); |
| return false; |
| } |
| |
| void RenderGrid::markAsInfinitelyGrowableForTrackSizeComputationPhase(TrackSizeComputationPhase phase, GridTrack& track) |
| { |
| switch (phase) { |
| case ResolveIntrinsicMinimums: |
| case ResolveContentBasedMinimums: |
| case ResolveMaxContentMinimums: |
| return; |
| case ResolveIntrinsicMaximums: |
| if (trackSizeForTrackSizeComputationPhase(phase, track, AllowInfinity) == infinity && track.plannedSize() != infinity) |
| track.setInfinitelyGrowable(true); |
| return; |
| case ResolveMaxContentMaximums: |
| if (track.infinitelyGrowable()) |
| track.setInfinitelyGrowable(false); |
| return; |
| case MaximizeTracks: |
| ASSERT_NOT_REACHED(); |
| return; |
| } |
| |
| ASSERT_NOT_REACHED(); |
| } |
| |
| void RenderGrid::updateTrackSizeForTrackSizeComputationPhase(TrackSizeComputationPhase phase, GridTrack& track) |
| { |
| switch (phase) { |
| case ResolveIntrinsicMinimums: |
| case ResolveContentBasedMinimums: |
| case ResolveMaxContentMinimums: |
| track.setBaseSize(track.plannedSize()); |
| return; |
| case ResolveIntrinsicMaximums: |
| case ResolveMaxContentMaximums: |
| track.setGrowthLimit(track.plannedSize()); |
| return; |
| case MaximizeTracks: |
| ASSERT_NOT_REACHED(); |
| return; |
| } |
| |
| ASSERT_NOT_REACHED(); |
| } |
| |
| LayoutUnit RenderGrid::currentItemSizeForTrackSizeComputationPhase(TrackSizeComputationPhase phase, RenderBox& gridItem, GridTrackSizingDirection direction, GridSizingData& sizingData) const |
| { |
| switch (phase) { |
| case ResolveIntrinsicMinimums: |
| case ResolveIntrinsicMaximums: |
| return minSizeForChild(gridItem, direction, sizingData); |
| case ResolveContentBasedMinimums: |
| return minContentForChild(gridItem, direction, sizingData); |
| case ResolveMaxContentMinimums: |
| case ResolveMaxContentMaximums: |
| return maxContentForChild(gridItem, direction, sizingData); |
| case MaximizeTracks: |
| ASSERT_NOT_REACHED(); |
| return 0; |
| } |
| |
| ASSERT_NOT_REACHED(); |
| return 0; |
| } |
| |
| template <TrackSizeComputationPhase phase> |
| void RenderGrid::resolveContentBasedTrackSizingFunctionsForItems(GridTrackSizingDirection direction, GridSizingData& sizingData, const GridItemsSpanGroupRange& gridItemsWithSpan) const |
| { |
| Vector<GridTrack>& tracks = (direction == ForColumns) ? sizingData.columnTracks : sizingData.rowTracks; |
| for (const auto& trackIndex : sizingData.contentSizedTracksIndex) { |
| GridTrack& track = tracks[trackIndex]; |
| track.setPlannedSize(trackSizeForTrackSizeComputationPhase(phase, track, AllowInfinity)); |
| } |
| |
| for (auto it = gridItemsWithSpan.rangeStart; it != gridItemsWithSpan.rangeEnd; ++it) { |
| GridItemWithSpan& gridItemWithSpan = *it; |
| ASSERT(gridItemWithSpan.span().integerSpan() > 1); |
| const GridSpan& itemSpan = gridItemWithSpan.span(); |
| |
| sizingData.filteredTracks.shrink(0); |
| sizingData.growBeyondGrowthLimitsTracks.shrink(0); |
| LayoutUnit spanningTracksSize; |
| for (auto trackPosition : itemSpan) { |
| const GridTrackSize& trackSize = gridTrackSize(direction, trackPosition, sizingData.sizingOperation); |
| GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[trackPosition] : sizingData.rowTracks[trackPosition]; |
| spanningTracksSize += trackSizeForTrackSizeComputationPhase(phase, track, ForbidInfinity); |
| if (!shouldProcessTrackForTrackSizeComputationPhase(phase, trackSize)) |
| continue; |
| |
| sizingData.filteredTracks.append(&track); |
| |
| if (trackShouldGrowBeyondGrowthLimitsForTrackSizeComputationPhase(phase, trackSize)) |
| sizingData.growBeyondGrowthLimitsTracks.append(&track); |
| } |
| |
| if (sizingData.filteredTracks.isEmpty()) |
| continue; |
| |
| spanningTracksSize += guttersSize(direction, itemSpan.startLine(), itemSpan.integerSpan()); |
| |
| LayoutUnit extraSpace = currentItemSizeForTrackSizeComputationPhase(phase, gridItemWithSpan.gridItem(), direction, sizingData) - spanningTracksSize; |
| extraSpace = std::max<LayoutUnit>(extraSpace, 0); |
| auto& tracksToGrowBeyondGrowthLimits = sizingData.growBeyondGrowthLimitsTracks.isEmpty() ? sizingData.filteredTracks : sizingData.growBeyondGrowthLimitsTracks; |
| distributeSpaceToTracks<phase>(sizingData.filteredTracks, &tracksToGrowBeyondGrowthLimits, extraSpace); |
| } |
| |
| for (const auto& trackIndex : sizingData.contentSizedTracksIndex) { |
| GridTrack& track = tracks[trackIndex]; |
| markAsInfinitelyGrowableForTrackSizeComputationPhase(phase, track); |
| updateTrackSizeForTrackSizeComputationPhase(phase, track); |
| } |
| } |
| |
| static bool sortByGridTrackGrowthPotential(const GridTrack* track1, const GridTrack* track2) |
| { |
| // This check ensures that we respect the irreflexivity property of the strict weak ordering required by std::sort |
| // (forall x: NOT x < x). |
| bool track1HasInfiniteGrowthPotentialWithoutCap = track1->infiniteGrowthPotential() && !track1->growthLimitCap(); |
| bool track2HasInfiniteGrowthPotentialWithoutCap = track2->infiniteGrowthPotential() && !track2->growthLimitCap(); |
| |
| if (track1HasInfiniteGrowthPotentialWithoutCap && track2HasInfiniteGrowthPotentialWithoutCap) |
| return false; |
| |
| if (track1HasInfiniteGrowthPotentialWithoutCap || track2HasInfiniteGrowthPotentialWithoutCap) |
| return track2HasInfiniteGrowthPotentialWithoutCap; |
| |
| LayoutUnit track1Limit = track1->growthLimitCap().value_or(track1->growthLimit()); |
| LayoutUnit track2Limit = track2->growthLimitCap().value_or(track2->growthLimit()); |
| return (track1Limit - track1->baseSize()) < (track2Limit - track2->baseSize()); |
| } |
| |
| static void clampGrowthShareIfNeeded(TrackSizeComputationPhase phase, const GridTrack& track, LayoutUnit& growthShare) |
| { |
| if (phase != ResolveMaxContentMaximums || !track.growthLimitCap()) |
| return; |
| |
| LayoutUnit distanceToCap = track.growthLimitCap().value() - track.tempSize(); |
| if (distanceToCap <= 0) |
| return; |
| |
| growthShare = std::min(growthShare, distanceToCap); |
| } |
| |
| template <TrackSizeComputationPhase phase> |
| void RenderGrid::distributeSpaceToTracks(Vector<GridTrack*>& tracks, Vector<GridTrack*>* growBeyondGrowthLimitsTracks, LayoutUnit& freeSpace) const |
| { |
| ASSERT(freeSpace >= 0); |
| |
| for (auto* track : tracks) |
| track->setTempSize(trackSizeForTrackSizeComputationPhase(phase, *track, ForbidInfinity)); |
| |
| if (freeSpace > 0) { |
| std::sort(tracks.begin(), tracks.end(), sortByGridTrackGrowthPotential); |
| |
| unsigned tracksSize = tracks.size(); |
| for (unsigned i = 0; i < tracksSize; ++i) { |
| GridTrack& track = *tracks[i]; |
| const LayoutUnit& trackBreadth = trackSizeForTrackSizeComputationPhase(phase, track, ForbidInfinity); |
| bool infiniteGrowthPotential = track.infiniteGrowthPotential(); |
| LayoutUnit trackGrowthPotential = infiniteGrowthPotential ? track.growthLimit() : track.growthLimit() - trackBreadth; |
| // Let's avoid computing availableLogicalSpaceShare as much as possible as it's a hot spot in performance tests. |
| if (trackGrowthPotential > 0 || infiniteGrowthPotential) { |
| LayoutUnit availableLogicalSpaceShare = freeSpace / (tracksSize - i); |
| LayoutUnit growthShare = infiniteGrowthPotential ? availableLogicalSpaceShare : std::min(availableLogicalSpaceShare, trackGrowthPotential); |
| clampGrowthShareIfNeeded(phase, track, growthShare); |
| ASSERT_WITH_MESSAGE(growthShare >= 0, "We should never shrink any grid track or else we can't guarantee we abide by our min-sizing function. We can still have 0 as growthShare if the amount of tracks greatly exceeds the freeSpace."); |
| track.growTempSize(growthShare); |
| freeSpace -= growthShare; |
| } |
| } |
| } |
| |
| if (freeSpace > 0 && growBeyondGrowthLimitsTracks) { |
| // We need to sort them because there might be tracks with growth limit caps (like the ones |
| // with fit-content()) which cannot indefinitely grow over the limits. |
| if (phase == ResolveMaxContentMaximums) |
| std::sort(growBeyondGrowthLimitsTracks->begin(), growBeyondGrowthLimitsTracks->end(), sortByGridTrackGrowthPotential); |
| |
| unsigned tracksGrowingBeyondGrowthLimitsSize = growBeyondGrowthLimitsTracks->size(); |
| for (unsigned i = 0; i < tracksGrowingBeyondGrowthLimitsSize; ++i) { |
| GridTrack* track = growBeyondGrowthLimitsTracks->at(i); |
| LayoutUnit growthShare = freeSpace / (tracksGrowingBeyondGrowthLimitsSize - i); |
| clampGrowthShareIfNeeded(phase, *track, growthShare); |
| track->growTempSize(growthShare); |
| freeSpace -= growthShare; |
| } |
| } |
| |
| for (auto* track : tracks) |
| track->setPlannedSize(track->plannedSize() == infinity ? track->tempSize() : std::max(track->plannedSize(), track->tempSize())); |
| } |
| |
| #ifndef NDEBUG |
| bool RenderGrid::tracksAreWiderThanMinTrackBreadth(GridTrackSizingDirection direction, GridSizingData& sizingData) |
| { |
| const Vector<GridTrack>& tracks = (direction == ForColumns) ? sizingData.columnTracks : sizingData.rowTracks; |
| const LayoutUnit maxSize = sizingData.availableSpace().value_or(0); |
| for (unsigned i = 0; i < tracks.size(); ++i) { |
| const GridTrackSize& trackSize = gridTrackSize(direction, i, sizingData.sizingOperation); |
| if (computeUsedBreadthOfMinLength(trackSize, maxSize) > tracks[i].baseSize()) |
| return false; |
| } |
| return true; |
| } |
| #endif |
| |
| unsigned RenderGrid::computeAutoRepeatTracksCount(GridTrackSizingDirection direction, SizingOperation sizingOperation) const |
| { |
| bool isRowAxis = direction == ForColumns; |
| const auto& autoRepeatTracks = isRowAxis ? style().gridAutoRepeatColumns() : style().gridAutoRepeatRows(); |
| unsigned autoRepeatTrackListLength = autoRepeatTracks.size(); |
| |
| if (!autoRepeatTrackListLength) |
| return 0; |
| |
| std::optional<LayoutUnit> availableSize; |
| if (isRowAxis) { |
| if (sizingOperation != IntrinsicSizeComputation) |
| availableSize = availableLogicalWidth(); |
| } else { |
| availableSize = computeContentLogicalHeight(MainOrPreferredSize, style().logicalHeight(), std::nullopt); |
| if (!availableSize) { |
| const Length& maxLength = style().logicalMaxHeight(); |
| if (!maxLength.isUndefined()) |
| availableSize = computeContentLogicalHeight(MaxSize, maxLength, std::nullopt); |
| } |
| if (availableSize) |
| availableSize = constrainContentBoxLogicalHeightByMinMax(availableSize.value(), std::nullopt); |
| } |
| |
| bool needsToFulfillMinimumSize = false; |
| if (!availableSize) { |
| const Length& minSize = isRowAxis ? style().logicalMinWidth() : style().logicalMinHeight(); |
| if (!minSize.isSpecified()) |
| return autoRepeatTrackListLength; |
| |
| LayoutUnit containingBlockAvailableSize = isRowAxis ? containingBlockLogicalWidthForContent() : containingBlockLogicalHeightForContent(ExcludeMarginBorderPadding); |
| availableSize = valueForLength(minSize, containingBlockAvailableSize); |
| needsToFulfillMinimumSize = true; |
| } |
| |
| LayoutUnit autoRepeatTracksSize; |
| for (auto& autoTrackSize : autoRepeatTracks) { |
| ASSERT(autoTrackSize.minTrackBreadth().isLength()); |
| ASSERT(!autoTrackSize.minTrackBreadth().isFlex()); |
| bool hasDefiniteMaxTrackSizingFunction = autoTrackSize.maxTrackBreadth().isLength() && !autoTrackSize.maxTrackBreadth().isContentSized(); |
| auto trackLength = hasDefiniteMaxTrackSizingFunction ? autoTrackSize.maxTrackBreadth().length() : autoTrackSize.minTrackBreadth().length(); |
| autoRepeatTracksSize += valueForLength(trackLength, availableSize.value()); |
| } |
| // For the purpose of finding the number of auto-repeated tracks, the UA must floor the track size to a UA-specified |
| // value to avoid division by zero. It is suggested that this floor be 1px. |
| autoRepeatTracksSize = std::max<LayoutUnit>(LayoutUnit(1), autoRepeatTracksSize); |
| |
| // There will be always at least 1 auto-repeat track, so take it already into account when computing the total track size. |
| LayoutUnit tracksSize = autoRepeatTracksSize; |
| auto& trackSizes = isRowAxis ? style().gridColumns() : style().gridRows(); |
| |
| for (const auto& track : trackSizes) { |
| bool hasDefiniteMaxTrackBreadth = track.maxTrackBreadth().isLength() && !track.maxTrackBreadth().isContentSized(); |
| ASSERT(hasDefiniteMaxTrackBreadth || (track.minTrackBreadth().isLength() && !track.minTrackBreadth().isContentSized())); |
| tracksSize += valueForLength(hasDefiniteMaxTrackBreadth ? track.maxTrackBreadth().length() : track.minTrackBreadth().length(), availableSize.value()); |
| } |
| |
| // Add gutters as if there where only 1 auto repeat track. Gaps between auto repeat tracks will be added later when |
| // computing the repetitions. |
| LayoutUnit gapSize = gridGapForDirection(direction); |
| tracksSize += gapSize * trackSizes.size(); |
| |
| LayoutUnit freeSpace = availableSize.value() - tracksSize; |
| if (freeSpace <= 0) |
| return autoRepeatTrackListLength; |
| |
| unsigned repetitions = 1 + (freeSpace / (autoRepeatTracksSize + gapSize)).toInt(); |
| |
| // Provided the grid container does not have a definite size or max-size in the relevant axis, |
| // if the min size is definite then the number of repetitions is the largest possible positive |
| // integer that fulfills that minimum requirement. |
| if (needsToFulfillMinimumSize) |
| ++repetitions; |
| |
| return repetitions * autoRepeatTrackListLength; |
| } |
| |
| |
| std::unique_ptr<RenderGrid::OrderedTrackIndexSet> RenderGrid::computeEmptyTracksForAutoRepeat(GridTrackSizingDirection direction) const |
| { |
| bool isRowAxis = direction == ForColumns; |
| if ((isRowAxis && style().gridAutoRepeatColumnsType() != AutoFit) |
| || (!isRowAxis && style().gridAutoRepeatRowsType() != AutoFit)) |
| return nullptr; |
| |
| std::unique_ptr<OrderedTrackIndexSet> emptyTrackIndexes; |
| unsigned insertionPoint = isRowAxis ? style().gridAutoRepeatColumnsInsertionPoint() : style().gridAutoRepeatRowsInsertionPoint(); |
| unsigned firstAutoRepeatTrack = insertionPoint + std::abs(isRowAxis ? m_smallestColumnStart : m_smallestRowStart); |
| unsigned lastAutoRepeatTrack = firstAutoRepeatTrack + autoRepeatCountForDirection(direction); |
| |
| if (m_gridItemArea.isEmpty()) { |
| emptyTrackIndexes = std::make_unique<OrderedTrackIndexSet>(); |
| for (unsigned trackIndex = firstAutoRepeatTrack; trackIndex < lastAutoRepeatTrack; ++trackIndex) |
| emptyTrackIndexes->add(trackIndex); |
| } else { |
| for (unsigned trackIndex = firstAutoRepeatTrack; trackIndex < lastAutoRepeatTrack; ++trackIndex) { |
| GridIterator iterator(m_grid, direction, trackIndex); |
| if (!iterator.nextGridItem()) { |
| if (!emptyTrackIndexes) |
| emptyTrackIndexes = std::make_unique<OrderedTrackIndexSet>(); |
| emptyTrackIndexes->add(trackIndex); |
| } |
| } |
| } |
| return emptyTrackIndexes; |
| } |
| |
| void RenderGrid::placeItemsOnGrid(SizingOperation sizingOperation) |
| { |
| ASSERT(m_gridIsDirty); |
| ASSERT(m_gridItemArea.isEmpty()); |
| |
| m_autoRepeatColumns = computeAutoRepeatTracksCount(ForColumns, sizingOperation); |
| m_autoRepeatRows = computeAutoRepeatTracksCount(ForRows, sizingOperation); |
| |
| populateExplicitGridAndOrderIterator(); |
| m_gridIsDirty = false; |
| |
| Vector<RenderBox*> autoMajorAxisAutoGridItems; |
| Vector<RenderBox*> specifiedMajorAxisAutoGridItems; |
| m_hasAnyOrthogonalChild = false; |
| for (RenderBox* child = m_orderIterator.first(); child; child = m_orderIterator.next()) { |
| if (child->isOutOfFlowPositioned()) |
| continue; |
| |
| m_hasAnyOrthogonalChild = m_hasAnyOrthogonalChild || isOrthogonalChild(*child); |
| |
| GridArea area = cachedGridArea(*child); |
| if (!area.rows.isIndefinite()) |
| area.rows.translate(std::abs(m_smallestRowStart)); |
| if (!area.columns.isIndefinite()) |
| area.columns.translate(std::abs(m_smallestColumnStart)); |
| m_gridItemArea.set(child, area); |
| |
| if (area.rows.isIndefinite() || area.columns.isIndefinite()) { |
| bool majorAxisDirectionIsForColumns = autoPlacementMajorAxisDirection() == ForColumns; |
| if ((majorAxisDirectionIsForColumns && area.columns.isIndefinite()) |
| || (!majorAxisDirectionIsForColumns && area.rows.isIndefinite())) |
| autoMajorAxisAutoGridItems.append(child); |
| else |
| specifiedMajorAxisAutoGridItems.append(child); |
| continue; |
| } |
| m_grid.insert(*child, { area.rows, area.columns }); |
| } |
| |
| #if ENABLE(ASSERT) |
| if (!m_gridItemArea.isEmpty()) { |
| ASSERT(gridRowCount() >= GridPositionsResolver::explicitGridRowCount(style(), m_autoRepeatRows)); |
| ASSERT(gridColumnCount() >= GridPositionsResolver::explicitGridColumnCount(style(), m_autoRepeatColumns)); |
| } |
| #endif |
| |
| placeSpecifiedMajorAxisItemsOnGrid(specifiedMajorAxisAutoGridItems); |
| placeAutoMajorAxisItemsOnGrid(autoMajorAxisAutoGridItems); |
| |
| // Compute collapsible tracks for auto-fit. |
| m_autoRepeatEmptyColumns = computeEmptyTracksForAutoRepeat(ForColumns); |
| m_autoRepeatEmptyRows = computeEmptyTracksForAutoRepeat(ForRows); |
| |
| #if ENABLE(ASSERT) |
| for (RenderBox* child = m_orderIterator.first(); child; child = m_orderIterator.next()) { |
| if (child->isOutOfFlowPositioned()) |
| continue; |
| |
| GridArea area = cachedGridArea(*child); |
| ASSERT(area.rows.isTranslatedDefinite() && area.columns.isTranslatedDefinite()); |
| } |
| #endif |
| } |
| |
| void RenderGrid::populateExplicitGridAndOrderIterator() |
| { |
| OrderIteratorPopulator populator(m_orderIterator); |
| m_smallestRowStart = m_smallestColumnStart = 0; |
| unsigned maximumRowIndex = GridPositionsResolver::explicitGridRowCount(style(), m_autoRepeatRows); |
| unsigned maximumColumnIndex = GridPositionsResolver::explicitGridColumnCount(style(), m_autoRepeatColumns); |
| |
| for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) { |
| if (child->isOutOfFlowPositioned()) |
| continue; |
| |
| populator.collectChild(*child); |
| |
| GridSpan rowPositions = GridPositionsResolver::resolveGridPositionsFromStyle(style(), *child, ForRows, m_autoRepeatRows); |
| if (!rowPositions.isIndefinite()) { |
| m_smallestRowStart = std::min(m_smallestRowStart, rowPositions.untranslatedStartLine()); |
| maximumRowIndex = std::max<int>(maximumRowIndex, rowPositions.untranslatedEndLine()); |
| } else { |
| // Grow the grid for items with a definite row span, getting the largest such span. |
| unsigned spanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(style(), *child, ForRows); |
| maximumRowIndex = std::max(maximumRowIndex, spanSize); |
| } |
| |
| GridSpan columnPositions = GridPositionsResolver::resolveGridPositionsFromStyle(style(), *child, ForColumns, m_autoRepeatColumns); |
| if (!columnPositions.isIndefinite()) { |
| m_smallestColumnStart = std::min(m_smallestColumnStart, columnPositions.untranslatedStartLine()); |
| maximumColumnIndex = std::max<int>(maximumColumnIndex, columnPositions.untranslatedEndLine()); |
| } else { |
| // Grow the grid for items with a definite column span, getting the largest such span. |
| unsigned spanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(style(), *child, ForColumns); |
| maximumColumnIndex = std::max(maximumColumnIndex, spanSize); |
| } |
| |
| m_gridItemArea.set(child, GridArea(rowPositions, columnPositions)); |
| } |
| |
| m_grid.ensureGridSize(maximumRowIndex + std::abs(m_smallestRowStart), maximumColumnIndex + std::abs(m_smallestColumnStart)); |
| } |
| |
| std::unique_ptr<GridArea> RenderGrid::createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(const RenderBox& gridItem, GridTrackSizingDirection specifiedDirection, const GridSpan& specifiedPositions) const |
| { |
| GridTrackSizingDirection crossDirection = specifiedDirection == ForColumns ? ForRows : ForColumns; |
| const unsigned endOfCrossDirection = crossDirection == ForColumns ? gridColumnCount() : gridRowCount(); |
| unsigned crossDirectionSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(style(), gridItem, crossDirection); |
| GridSpan crossDirectionPositions = GridSpan::translatedDefiniteGridSpan(endOfCrossDirection, endOfCrossDirection + crossDirectionSpanSize); |
| return std::make_unique<GridArea>(specifiedDirection == ForColumns ? crossDirectionPositions : specifiedPositions, specifiedDirection == ForColumns ? specifiedPositions : crossDirectionPositions); |
| } |
| |
| void RenderGrid::placeSpecifiedMajorAxisItemsOnGrid(const Vector<RenderBox*>& autoGridItems) |
| { |
| bool isForColumns = autoPlacementMajorAxisDirection() == ForColumns; |
| bool isGridAutoFlowDense = style().isGridAutoFlowAlgorithmDense(); |
| |
| // Mapping between the major axis tracks (rows or columns) and the last auto-placed item's position inserted on |
| // that track. This is needed to implement "sparse" packing for items locked to a given track. |
| // See http://dev.w3.org/csswg/css-grid/#auto-placement-algo |
| HashMap<unsigned, unsigned, DefaultHash<unsigned>::Hash, WTF::UnsignedWithZeroKeyHashTraits<unsigned>> minorAxisCursors; |
| |
| for (auto& autoGridItem : autoGridItems) { |
| GridSpan majorAxisPositions = cachedGridSpan(*autoGridItem, autoPlacementMajorAxisDirection()); |
| ASSERT(majorAxisPositions.isTranslatedDefinite()); |
| ASSERT(cachedGridSpan(*autoGridItem, autoPlacementMinorAxisDirection()).isIndefinite()); |
| unsigned minorAxisSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(style(), *autoGridItem, autoPlacementMinorAxisDirection()); |
| unsigned majorAxisInitialPosition = majorAxisPositions.startLine(); |
| |
| GridIterator iterator(m_grid, autoPlacementMajorAxisDirection(), majorAxisPositions.startLine(), isGridAutoFlowDense ? 0 : minorAxisCursors.get(majorAxisInitialPosition)); |
| std::unique_ptr<GridArea> emptyGridArea = iterator.nextEmptyGridArea(majorAxisPositions.integerSpan(), minorAxisSpanSize); |
| if (!emptyGridArea) |
| emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(*autoGridItem, autoPlacementMajorAxisDirection(), majorAxisPositions); |
| |
| m_gridItemArea.set(autoGridItem, *emptyGridArea); |
| m_grid.insert(*autoGridItem, *emptyGridArea); |
| |
| if (!isGridAutoFlowDense) |
| minorAxisCursors.set(majorAxisInitialPosition, isForColumns ? emptyGridArea->rows.startLine() : emptyGridArea->columns.startLine()); |
| } |
| } |
| |
| void RenderGrid::placeAutoMajorAxisItemsOnGrid(const Vector<RenderBox*>& autoGridItems) |
| { |
| AutoPlacementCursor autoPlacementCursor = {0, 0}; |
| bool isGridAutoFlowDense = style().isGridAutoFlowAlgorithmDense(); |
| |
| for (auto& autoGridItem : autoGridItems) { |
| placeAutoMajorAxisItemOnGrid(*autoGridItem, autoPlacementCursor); |
| |
| if (isGridAutoFlowDense) { |
| autoPlacementCursor.first = 0; |
| autoPlacementCursor.second = 0; |
| } |
| } |
| } |
| |
| void RenderGrid::placeAutoMajorAxisItemOnGrid(RenderBox& gridItem, AutoPlacementCursor& autoPlacementCursor) |
| { |
| ASSERT(cachedGridSpan(gridItem, autoPlacementMajorAxisDirection()).isIndefinite()); |
| unsigned majorAxisSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(style(), gridItem, autoPlacementMajorAxisDirection()); |
| |
| const unsigned endOfMajorAxis = (autoPlacementMajorAxisDirection() == ForColumns) ? gridColumnCount() : gridRowCount(); |
| unsigned majorAxisAutoPlacementCursor = autoPlacementMajorAxisDirection() == ForColumns ? autoPlacementCursor.second : autoPlacementCursor.first; |
| unsigned minorAxisAutoPlacementCursor = autoPlacementMajorAxisDirection() == ForColumns ? autoPlacementCursor.first : autoPlacementCursor.second; |
| |
| std::unique_ptr<GridArea> emptyGridArea; |
| GridSpan minorAxisPositions = cachedGridSpan(gridItem, autoPlacementMinorAxisDirection()); |
| if (minorAxisPositions.isTranslatedDefinite()) { |
| // Move to the next track in major axis if initial position in minor axis is before auto-placement cursor. |
| if (minorAxisPositions.startLine() < minorAxisAutoPlacementCursor) |
| majorAxisAutoPlacementCursor++; |
| |
| if (majorAxisAutoPlacementCursor < endOfMajorAxis) { |
| GridIterator iterator(m_grid, autoPlacementMinorAxisDirection(), minorAxisPositions.startLine(), majorAxisAutoPlacementCursor); |
| emptyGridArea = iterator.nextEmptyGridArea(minorAxisPositions.integerSpan(), majorAxisSpanSize); |
| } |
| |
| if (!emptyGridArea) |
| emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(gridItem, autoPlacementMinorAxisDirection(), minorAxisPositions); |
| } else { |
| unsigned minorAxisSpanSize = GridPositionsResolver::spanSizeForAutoPlacedItem(style(), gridItem, autoPlacementMinorAxisDirection()); |
| |
| for (unsigned majorAxisIndex = majorAxisAutoPlacementCursor; majorAxisIndex < endOfMajorAxis; ++majorAxisIndex) { |
| GridIterator iterator(m_grid, autoPlacementMajorAxisDirection(), majorAxisIndex, minorAxisAutoPlacementCursor); |
| emptyGridArea = iterator.nextEmptyGridArea(majorAxisSpanSize, minorAxisSpanSize); |
| |
| if (emptyGridArea) { |
| // Check that it fits in the minor axis direction, as we shouldn't grow in that direction here (it was already managed in populateExplicitGridAndOrderIterator()). |
| unsigned minorAxisFinalPositionIndex = autoPlacementMinorAxisDirection() == ForColumns ? emptyGridArea->columns.endLine() : emptyGridArea->rows.endLine(); |
| const unsigned endOfMinorAxis = autoPlacementMinorAxisDirection() == ForColumns ? gridColumnCount() : gridRowCount(); |
| if (minorAxisFinalPositionIndex <= endOfMinorAxis) |
| break; |
| |
| // Discard empty grid area as it does not fit in the minor axis direction. |
| // We don't need to create a new empty grid area yet as we might find a valid one in the next iteration. |
| emptyGridArea = nullptr; |
| } |
| |
| // As we're moving to the next track in the major axis we should reset the auto-placement cursor in the minor axis. |
| minorAxisAutoPlacementCursor = 0; |
| } |
| |
| if (!emptyGridArea) |
| emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(gridItem, autoPlacementMinorAxisDirection(), GridSpan::translatedDefiniteGridSpan(0, minorAxisSpanSize)); |
| } |
| |
| m_gridItemArea.set(&gridItem, *emptyGridArea); |
| m_grid.insert(gridItem, *emptyGridArea); |
| autoPlacementCursor.first = emptyGridArea->rows.startLine(); |
| autoPlacementCursor.second = emptyGridArea->columns.startLine(); |
| } |
| |
| GridTrackSizingDirection RenderGrid::autoPlacementMajorAxisDirection() const |
| { |
| return style().isGridAutoFlowDirectionColumn() ? ForColumns : ForRows; |
| } |
| |
| GridTrackSizingDirection RenderGrid::autoPlacementMinorAxisDirection() const |
| { |
| return style().isGridAutoFlowDirectionColumn() ? ForRows : ForColumns; |
| } |
| |
| void RenderGrid::clearGrid() |
| { |
| m_grid.clear(); |
| m_gridItemArea.clear(); |
| m_gridIsDirty = true; |
| } |
| |
| Vector<LayoutUnit> RenderGrid::trackSizesForComputedStyle(GridTrackSizingDirection direction) const |
| { |
| bool isRowAxis = direction == ForColumns; |
| auto& positions = isRowAxis ? m_columnPositions : m_rowPositions; |
| size_t numPositions = positions.size(); |
| LayoutUnit offsetBetweenTracks = isRowAxis ? m_offsetBetweenColumns : m_offsetBetweenRows; |
| |
| Vector<LayoutUnit> tracks; |
| if (numPositions < 2) |
| return tracks; |
| |
| bool hasCollapsedTracks = hasAutoRepeatEmptyTracks(direction); |
| LayoutUnit gap = !hasCollapsedTracks ? gridGapForDirection(direction) : LayoutUnit(); |
| tracks.reserveCapacity(numPositions - 1); |
| for (size_t i = 0; i < numPositions - 2; ++i) |
| tracks.append(positions[i + 1] - positions[i] - offsetBetweenTracks - gap); |
| tracks.append(positions[numPositions - 1] - positions[numPositions - 2]); |
| |
| if (!hasCollapsedTracks) |
| return tracks; |
| |
| size_t remainingEmptyTracks = isRowAxis ? m_autoRepeatEmptyColumns->size() : m_autoRepeatEmptyRows->size(); |
| size_t lastLine = tracks.size(); |
| gap = gridGapForDirection(direction); |
| for (size_t i = 1; i < lastLine; ++i) { |
| if (isEmptyAutoRepeatTrack(direction, i - 1)) |
| --remainingEmptyTracks; |
| else { |
| // Remove the gap between consecutive non empty tracks. Remove it also just once for an |
| // arbitrary number of empty tracks between two non empty ones. |
| bool allRemainingTracksAreEmpty = remainingEmptyTracks == (lastLine - i); |
| if (!allRemainingTracksAreEmpty || !isEmptyAutoRepeatTrack(direction, i)) |
| tracks[i - 1] -= gap; |
| } |
| } |
| |
| return tracks; |
| } |
| |
| static const StyleContentAlignmentData& contentAlignmentNormalBehaviorGrid() |
| { |
| static const StyleContentAlignmentData normalBehavior = {ContentPositionNormal, ContentDistributionStretch}; |
| return normalBehavior; |
| } |
| |
| void RenderGrid::applyStretchAlignmentToTracksIfNeeded(GridTrackSizingDirection direction, GridSizingData& sizingData) |
| { |
| std::optional<LayoutUnit> freeSpace = sizingData.freeSpace(direction); |
| if (!freeSpace |
| || freeSpace.value() <= 0 |
| || (direction == ForColumns && style().resolvedJustifyContentDistribution(contentAlignmentNormalBehaviorGrid()) != ContentDistributionStretch) |
| || (direction == ForRows && style().resolvedAlignContentDistribution(contentAlignmentNormalBehaviorGrid()) != ContentDistributionStretch)) |
| return; |
| |
| // Spec defines auto-sized tracks as the ones with an 'auto' max-sizing function. |
| Vector<GridTrack>& tracks = (direction == ForColumns) ? sizingData.columnTracks : sizingData.rowTracks; |
| Vector<unsigned> autoSizedTracksIndex; |
| for (unsigned i = 0; i < tracks.size(); ++i) { |
| const GridTrackSize& trackSize = gridTrackSize(direction, i, sizingData.sizingOperation); |
| if (trackSize.hasAutoMaxTrackBreadth()) |
| autoSizedTracksIndex.append(i); |
| } |
| |
| unsigned numberOfAutoSizedTracks = autoSizedTracksIndex.size(); |
| if (numberOfAutoSizedTracks < 1) |
| return; |
| |
| LayoutUnit sizeToIncrease = freeSpace.value() / numberOfAutoSizedTracks; |
| for (const auto& trackIndex : autoSizedTracksIndex) { |
| auto& track = tracks[trackIndex]; |
| track.setBaseSize(track.baseSize() + sizeToIncrease); |
| } |
| sizingData.setFreeSpace(direction, std::optional<LayoutUnit>(0)); |
| } |
| |
| void RenderGrid::layoutGridItems(GridSizingData& sizingData) |
| { |
| ASSERT(sizingData.sizingOperation == TrackSizing); |
| populateGridPositionsForDirection(sizingData, ForColumns); |
| populateGridPositionsForDirection(sizingData, ForRows); |
| |
| for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) { |
| if (child->isOutOfFlowPositioned()) { |
| prepareChildForPositionedLayout(*child); |
| continue; |
| } |
| |
| // Because the grid area cannot be styled, we don't need to adjust |
| // the grid breadth to account for 'box-sizing'. |
| std::optional<LayoutUnit> oldOverrideContainingBlockContentLogicalWidth = child->hasOverrideContainingBlockLogicalWidth() ? child->overrideContainingBlockContentLogicalWidth() : LayoutUnit(); |
| std::optional<LayoutUnit> oldOverrideContainingBlockContentLogicalHeight = child->hasOverrideContainingBlockLogicalHeight() ? child->overrideContainingBlockContentLogicalHeight() : LayoutUnit(); |
| |
| LayoutUnit overrideContainingBlockContentLogicalWidth = gridAreaBreadthForChildIncludingAlignmentOffsets(*child, ForColumns, sizingData); |
| LayoutUnit overrideContainingBlockContentLogicalHeight = gridAreaBreadthForChildIncludingAlignmentOffsets(*child, ForRows, sizingData); |
| if (!oldOverrideContainingBlockContentLogicalWidth || oldOverrideContainingBlockContentLogicalWidth.value() != overrideContainingBlockContentLogicalWidth |
| || ((!oldOverrideContainingBlockContentLogicalHeight || oldOverrideContainingBlockContentLogicalHeight.value() != overrideContainingBlockContentLogicalHeight) |
| && child->hasRelativeLogicalHeight())) |
| child->setNeedsLayout(MarkOnlyThis); |
| |
| child->setOverrideContainingBlockContentLogicalWidth(overrideContainingBlockContentLogicalWidth); |
| child->setOverrideContainingBlockContentLogicalHeight(overrideContainingBlockContentLogicalHeight); |
| |
| LayoutRect oldChildRect = child->frameRect(); |
| |
| // Stretching logic might force a child layout, so we need to run it before the layoutIfNeeded |
| // call to avoid unnecessary relayouts. This might imply that child margins, needed to correctly |
| // determine the available space before stretching, are not set yet. |
| applyStretchAlignmentToChildIfNeeded(*child); |
| |
| child->layoutIfNeeded(); |
| |
| // We need pending layouts to be done in order to compute auto-margins properly. |
| updateAutoMarginsInColumnAxisIfNeeded(*child); |
| updateAutoMarginsInRowAxisIfNeeded(*child); |
| |
| child->setLogicalLocation(findChildLogicalPosition(*child)); |
| |
| // If the child moved, we have to repaint it as well as any floating/positioned |
| // descendants. An exception is if we need a layout. In this case, we know we're going to |
| // repaint ourselves (and the child) anyway. |
| if (!selfNeedsLayout() && child->checkForRepaintDuringLayout()) |
| child->repaintDuringLayoutIfMoved(oldChildRect); |
| } |
| } |
| |
| void RenderGrid::prepareChildForPositionedLayout(RenderBox& child) |
| { |
| ASSERT(child.isOutOfFlowPositioned()); |
| child.containingBlock()->insertPositionedObject(child); |
| |
| RenderLayer* childLayer = child.layer(); |
| childLayer->setStaticInlinePosition(borderAndPaddingStart()); |
| childLayer->setStaticBlockPosition(borderAndPaddingBefore()); |
| } |
| |
| void RenderGrid::layoutPositionedObject(RenderBox& child, bool relayoutChildren, bool fixedPositionObjectsOnly) |
| { |
| // FIXME: Properly support orthogonal writing mode. |
| if (!isOrthogonalChild(child)) { |
| LayoutUnit columnOffset = LayoutUnit(); |
| LayoutUnit columnBreadth = LayoutUnit(); |
| offsetAndBreadthForPositionedChild(child, ForColumns, columnOffset, columnBreadth); |
| LayoutUnit rowOffset = LayoutUnit(); |
| LayoutUnit rowBreadth = LayoutUnit(); |
| offsetAndBreadthForPositionedChild(child, ForRows, rowOffset, rowBreadth); |
| |
| child.setOverrideContainingBlockContentLogicalWidth(columnBreadth); |
| child.setOverrideContainingBlockContentLogicalHeight(rowBreadth); |
| child.setExtraInlineOffset(columnOffset); |
| child.setExtraBlockOffset(rowOffset); |
| |
| if (child.parent() == this) { |
| auto& childLayer = *child.layer(); |
| childLayer.setStaticInlinePosition(borderStart() + columnOffset); |
| childLayer.setStaticBlockPosition(borderBefore() + rowOffset); |
| } |
| } |
| |
| RenderBlock::layoutPositionedObject(child, relayoutChildren, fixedPositionObjectsOnly); |
| } |
| |
| void RenderGrid::offsetAndBreadthForPositionedChild(const RenderBox& child, GridTrackSizingDirection direction, LayoutUnit& offset, LayoutUnit& breadth) |
| { |
| ASSERT(!isOrthogonalChild(child)); |
| bool isRowAxis = direction == ForColumns; |
| |
| unsigned autoRepeatCount = autoRepeatCountForDirection(direction); |
| GridSpan positions = GridPositionsResolver::resolveGridPositionsFromStyle(style(), child, direction, autoRepeatCount); |
| if (positions.isIndefinite()) { |
| offset = LayoutUnit(); |
| breadth = isRowAxis ? clientLogicalWidth() : clientLogicalHeight(); |
| return; |
| } |
| |
| // For positioned items we cannot use GridSpan::translate() because we could end up with negative values, as the positioned items do not create implicit tracks per spec. |
| int smallestStart = std::abs(isRowAxis ? m_smallestColumnStart : m_smallestRowStart); |
| int startLine = positions.untranslatedStartLine() + smallestStart; |
| int endLine = positions.untranslatedEndLine() + smallestStart; |
| |
| GridPosition startPosition = isRowAxis ? child.style().gridItemColumnStart() : child.style().gridItemRowStart(); |
| GridPosition endPosition = isRowAxis ? child.style().gridItemColumnEnd() : child.style().gridItemRowEnd(); |
| int lastLine = numTracks(direction); |
| |
| bool startIsAuto = startPosition.isAuto() |
| || (startPosition.isNamedGridArea() && !NamedLineCollection::isValidNamedLineOrArea(startPosition.namedGridLine(), style(), (direction == ForColumns) ? ColumnStartSide : RowStartSide)) |
| || (startLine < 0) |
| || (startLine > lastLine); |
| bool endIsAuto = endPosition.isAuto() |
| || (endPosition.isNamedGridArea() && !NamedLineCollection::isValidNamedLineOrArea(endPosition.namedGridLine(), style(), (direction == ForColumns) ? ColumnEndSide : RowEndSide)) |
| || (endLine < 0) |
| || (endLine > lastLine); |
| |
| // We're normalizing the positions to avoid issues with RTL (as they're stored in the same order than LTR but adding an offset). |
| LayoutUnit start; |
| if (!startIsAuto) { |
| if (isRowAxis) { |
| if (style().isLeftToRightDirection()) |
| start = m_columnPositions[startLine] - borderLogicalLeft(); |
| else |
| start = logicalWidth() - translateRTLCoordinate(m_columnPositions[startLine]) - borderLogicalRight(); |
| } else |
| start = m_rowPositions[startLine] - borderBefore(); |
| } |
| |
| LayoutUnit end = isRowAxis ? clientLogicalWidth() : clientLogicalHeight(); |
| if (!endIsAuto) { |
| if (isRowAxis) { |
| if (style().isLeftToRightDirection()) |
| end = m_columnPositions[endLine] - borderLogicalLeft(); |
| else |
| end = logicalWidth() - translateRTLCoordinate(m_columnPositions[endLine]) - borderLogicalRight(); |
| } else |
| end = m_rowPositions[endLine] - borderBefore(); |
| |
| // These vectors store line positions including gaps, but we shouldn't consider them for the edges of the grid. |
| if (endLine > 0 && endLine < lastLine) { |
| end -= guttersSize(direction, endLine - 1, 2); |
| end -= isRowAxis ? m_offsetBetweenColumns : m_offsetBetweenRows; |
| } |
| } |
| |
| breadth = end - start; |
| offset = start; |
| |
| if (isRowAxis && !style().isLeftToRightDirection() && !child.style().hasStaticInlinePosition(child.isHorizontalWritingMode())) { |
| // If the child doesn't have a static inline position (i.e. "left" and/or "right" aren't "auto", |
| // we need to calculate the offset from the left (even if we're in RTL). |
| if (endIsAuto) |
| offset = LayoutUnit(); |
| else { |
| offset = translateRTLCoordinate(m_columnPositions[endLine]) - borderLogicalLeft(); |
| |
| if (endLine > 0 && endLine < lastLine) { |
| offset += guttersSize(direction, endLine - 1, 2); |
| offset += isRowAxis ? m_offsetBetweenColumns : m_offsetBetweenRows; |
| } |
| } |
| } |
| } |
| |
| GridArea RenderGrid::cachedGridArea(const RenderBox& gridItem) const |
| { |
| ASSERT(m_gridItemArea.contains(&gridItem)); |
| return m_gridItemArea.get(&gridItem); |
| } |
| |
| GridSpan RenderGrid::cachedGridSpan(const RenderBox& gridItem, GridTrackSizingDirection direction) const |
| { |
| GridArea area = cachedGridArea(gridItem); |
| return direction == ForColumns ? area.columns : area.rows; |
| } |
| |
| LayoutUnit RenderGrid::assumedRowsSizeForOrthogonalChild(const RenderBox& child, SizingOperation sizingOperation) const |
| { |
| ASSERT(isOrthogonalChild(child)); |
| const GridSpan& span = cachedGridSpan(child, ForRows); |
| LayoutUnit gridAreaSize; |
| bool gridAreaIsIndefinite = false; |
| LayoutUnit containingBlockAvailableSize = containingBlockLogicalHeightForContent(ExcludeMarginBorderPadding); |
| for (auto trackPosition : span) { |
| GridLength maxTrackSize = gridTrackSize(ForRows, trackPosition, sizingOperation).maxTrackBreadth(); |
| if (maxTrackSize.isContentSized() || maxTrackSize.isFlex()) |
| gridAreaIsIndefinite = true; |
| else |
| gridAreaSize += valueForLength(maxTrackSize.length(), containingBlockAvailableSize); |
| } |
| |
| gridAreaSize += guttersSize(ForRows, span.startLine(), span.integerSpan()); |
| |
| return gridAreaIsIndefinite ? std::max(child.maxPreferredLogicalWidth(), gridAreaSize) : gridAreaSize; |
| } |
| |
| LayoutUnit RenderGrid::gridAreaBreadthForChild(const RenderBox& child, GridTrackSizingDirection direction, const GridSizingData& sizingData) const |
| { |
| // To determine the column track's size based on an orthogonal grid item we need it's logical height, which |
| // may depend on the row track's size. It's possible that the row tracks sizing logic has not been performed yet, |
| // so we will need to do an estimation. |
| if (direction == ForRows && sizingData.sizingState == GridSizingData::ColumnSizingFirstIteration) |
| return assumedRowsSizeForOrthogonalChild(child, sizingData.sizingOperation); |
| |
| const Vector<GridTrack>& tracks = direction == ForColumns ? sizingData.columnTracks : sizingData.rowTracks; |
| const GridSpan& span = cachedGridSpan(child, direction); |
| LayoutUnit gridAreaBreadth = 0; |
| for (auto trackPosition : span) |
| gridAreaBreadth += tracks[trackPosition].baseSize(); |
| |
| gridAreaBreadth += guttersSize(direction, span.startLine(), span.integerSpan()); |
| |
| return gridAreaBreadth; |
| } |
| |
| LayoutUnit RenderGrid::gridAreaBreadthForChildIncludingAlignmentOffsets(const RenderBox& child, GridTrackSizingDirection direction, const GridSizingData& sizingData) const |
| { |
| // We need the cached value when available because Content Distribution alignment properties |
| // may have some influence in the final grid area breadth. |
| const auto& tracks = (direction == ForColumns) ? sizingData.columnTracks : sizingData.rowTracks; |
| const auto& span = cachedGridSpan(child, direction); |
| const auto& linePositions = (direction == ForColumns) ? m_columnPositions : m_rowPositions; |
| |
| LayoutUnit initialTrackPosition = linePositions[span.startLine()]; |
| LayoutUnit finalTrackPosition = linePositions[span.endLine() - 1]; |
| |
| // Track Positions vector stores the 'start' grid line of each track, so we have to add last track's baseSize. |
| return finalTrackPosition - initialTrackPosition + tracks[span.endLine() - 1].baseSize(); |
| } |
| |
| void RenderGrid::populateGridPositionsForDirection(GridSizingData& sizingData, GridTrackSizingDirection direction) |
| { |
| // Since we add alignment offsets and track gutters, grid lines are not always adjacent. Hence we will have to |
| // assume from now on that we just store positions of the initial grid lines of each track, |
| // except the last one, which is the only one considered as a final grid line of a track. |
| |
| // The grid container's frame elements (border, padding and <content-position> offset) are sensible to the |
| // inline-axis flow direction. However, column lines positions are 'direction' unaware. This simplification |
| // allows us to use the same indexes to identify the columns independently on the inline-axis direction. |
| bool isRowAxis = direction == ForColumns; |
| auto& tracks = isRowAxis ? sizingData.columnTracks : sizingData.rowTracks; |
| unsigned numberOfTracks = tracks.size(); |
| unsigned numberOfLines = numberOfTracks + 1; |
| unsigned lastLine = numberOfLines - 1; |
| |
| ContentAlignmentData offset = computeContentPositionAndDistributionOffset(direction, sizingData.freeSpace(direction).value(), numberOfTracks); |
| auto& positions = isRowAxis ? m_columnPositions : m_rowPositions; |
| positions.resize(numberOfLines); |
| auto borderAndPadding = isRowAxis ? borderAndPaddingLogicalLeft() : borderAndPaddingBefore(); |
| positions[0] = borderAndPadding + offset.positionOffset; |
| if (numberOfLines > 1) { |
| // If we have collapsed tracks we just ignore gaps here and add them later as we might not |
| // compute the gap between two consecutive tracks without examining the surrounding ones. |
| bool hasCollapsedTracks = hasAutoRepeatEmptyTracks(direction); |
| LayoutUnit gap = !hasCollapsedTracks ? gridGapForDirection(direction) : LayoutUnit(); |
| unsigned nextToLastLine = numberOfLines - 2; |
| for (unsigned i = 0; i < nextToLastLine; ++i) |
| positions[i + 1] = positions[i] + offset.distributionOffset + tracks[i].baseSize() + gap; |
| positions[lastLine] = positions[nextToLastLine] + tracks[nextToLastLine].baseSize(); |
| |
| // Adjust collapsed gaps. Collapsed tracks cause the surrounding gutters to collapse (they |
| // coincide exactly) except on the edges of the grid where they become 0. |
| if (hasCollapsedTracks) { |
| gap = gridGapForDirection(direction); |
| unsigned remainingEmptyTracks = isRowAxis ? m_autoRepeatEmptyColumns->size() : m_autoRepeatEmptyRows->size(); |
| LayoutUnit gapAccumulator; |
| for (unsigned i = 1; i < lastLine; ++i) { |
| if (isEmptyAutoRepeatTrack(direction, i - 1)) |
| --remainingEmptyTracks; |
| else { |
| // Add gap between consecutive non empty tracks. Add it also just once for an |
| // arbitrary number of empty tracks between two non empty ones. |
| bool allRemainingTracksAreEmpty = remainingEmptyTracks == (lastLine - i); |
| if (!allRemainingTracksAreEmpty || !isEmptyAutoRepeatTrack(direction, i)) |
| gapAccumulator += gap; |
| } |
| positions[i] += gapAccumulator; |
| } |
| positions[lastLine] += gapAccumulator; |
| } |
| } |
| auto& offsetBetweenTracks = isRowAxis ? m_offsetBetweenColumns : m_offsetBetweenRows; |
| offsetBetweenTracks = offset.distributionOffset; |
| } |
| |
| static LayoutUnit computeOverflowAlignmentOffset(OverflowAlignment overflow, LayoutUnit trackSize, LayoutUnit childSize) |
| { |
| LayoutUnit offset = trackSize - childSize; |
| switch (overflow) { |
| case OverflowAlignmentSafe: |
| // If overflow is 'safe', we have to make sure we don't overflow the 'start' |
| // edge (potentially cause some data loss as the overflow is unreachable). |
| return std::max<LayoutUnit>(0, offset); |
| case OverflowAlignmentUnsafe: |
| case OverflowAlignmentDefault: |
| // If we overflow our alignment container and overflow is 'true' (default), we |
| // ignore the overflow and just return the value regardless (which may cause data |
| // loss as we overflow the 'start' edge). |
| return offset; |
| } |
| |
| ASSERT_NOT_REACHED(); |
| return 0; |
| } |
| |
| // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. |
| bool RenderGrid::needToStretchChildLogicalHeight(const RenderBox& child) const |
| { |
| if (child.style().resolvedAlignSelf(style(), selfAlignmentNormalBehavior).position() != ItemPositionStretch) |
| return false; |
| |
| return isHorizontalWritingMode() && child.style().height().isAuto(); |
| } |
| |
| // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. |
| LayoutUnit RenderGrid::marginLogicalHeightForChild(const RenderBox& child) const |
| { |
| return isHorizontalWritingMode() ? child.verticalMarginExtent() : child.horizontalMarginExtent(); |
| } |
| |
| LayoutUnit RenderGrid::computeMarginLogicalSizeForChild(GridTrackSizingDirection direction, const RenderBox& child) const |
| { |
| if (!child.style().hasMargin()) |
| return 0; |
| |
| LayoutUnit marginStart; |
| LayoutUnit marginEnd; |
| if (direction == ForColumns) |
| child.computeInlineDirectionMargins(*this, child.containingBlockLogicalWidthForContentInRegion(nullptr), child.logicalWidth(), marginStart, marginEnd); |
| else |
| child.computeBlockDirectionMargins(*this, marginStart, marginEnd); |
| |
| return marginStart + marginEnd; |
| } |
| |
| LayoutUnit RenderGrid::availableAlignmentSpaceForChildBeforeStretching(LayoutUnit gridAreaBreadthForChild, const RenderBox& child) const |
| { |
| // Because we want to avoid multiple layouts, stretching logic might be performed before |
| // children are laid out, so we can't use the child cached values. Hence, we need to |
| // compute margins in order to determine the available height before stretching. |
| return gridAreaBreadthForChild - (child.needsLayout() ? computeMarginLogicalSizeForChild(ForRows, child) : marginLogicalHeightForChild(child)); |
| } |
| |
| StyleSelfAlignmentData RenderGrid::alignSelfForChild(const RenderBox& child) const |
| { |
| return child.style().resolvedAlignSelf(style(), selfAlignmentNormalBehavior); |
| } |
| |
| StyleSelfAlignmentData RenderGrid::justifySelfForChild(const RenderBox& child) const |
| { |
| return child.style().resolvedJustifySelf(style(), selfAlignmentNormalBehavior); |
| } |
| |
| // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. |
| void RenderGrid::applyStretchAlignmentToChildIfNeeded(RenderBox& child) |
| { |
| ASSERT(child.overrideContainingBlockContentLogicalHeight()); |
| |
| // We clear height override values because we will decide now whether it's allowed or |
| // not, evaluating the conditions which might have changed since the old values were set. |
| child.clearOverrideLogicalContentHeight(); |
| |
| GridTrackSizingDirection childBlockDirection = flowAwareDirectionForChild(child, ForRows); |
| bool blockFlowIsColumnAxis = childBlockDirection == ForRows; |
| bool allowedToStretchChildBlockSize = blockFlowIsColumnAxis ? allowedToStretchChildAlongColumnAxis(child) : allowedToStretchChildAlongRowAxis(child); |
| if (allowedToStretchChildBlockSize) { |
| LayoutUnit stretchedLogicalHeight = availableAlignmentSpaceForChildBeforeStretching(overrideContainingBlockContentSizeForChild(child, childBlockDirection).value(), child); |
| LayoutUnit desiredLogicalHeight = child.constrainLogicalHeightByMinMax(stretchedLogicalHeight, LayoutUnit(-1)); |
| child.setOverrideLogicalContentHeight(desiredLogicalHeight - child.borderAndPaddingLogicalHeight()); |
| if (desiredLogicalHeight != child.logicalHeight()) { |
| // FIXME: Can avoid laying out here in some cases. See https://webkit.org/b/87905. |
| child.setLogicalHeight(LayoutUnit()); |
| child.setNeedsLayout(); |
| } |
| } |
| } |
| |
| // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. |
| bool RenderGrid::hasAutoMarginsInColumnAxis(const RenderBox& child) const |
| { |
| if (isHorizontalWritingMode()) |
| return child.style().marginTop().isAuto() || child.style().marginBottom().isAuto(); |
| return child.style().marginLeft().isAuto() || child.style().marginRight().isAuto(); |
| } |
| |
| // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. |
| bool RenderGrid::hasAutoMarginsInRowAxis(const RenderBox& child) const |
| { |
| if (isHorizontalWritingMode()) |
| return child.style().marginLeft().isAuto() || child.style().marginRight().isAuto(); |
| return child.style().marginTop().isAuto() || child.style().marginBottom().isAuto(); |
| } |
| |
| // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. |
| void RenderGrid::updateAutoMarginsInRowAxisIfNeeded(RenderBox& child) |
| { |
| ASSERT(!child.isOutOfFlowPositioned()); |
| |
| LayoutUnit availableAlignmentSpace = child.overrideContainingBlockContentLogicalWidth().value() - child.logicalWidth() - child.marginLogicalWidth(); |
| if (availableAlignmentSpace <= 0) |
| return; |
| |
| const RenderStyle& parentStyle = style(); |
| Length marginStart = child.style().marginStartUsing(&parentStyle); |
| Length marginEnd = child.style().marginEndUsing(&parentStyle); |
| if (marginStart.isAuto() && marginEnd.isAuto()) { |
| child.setMarginStart(availableAlignmentSpace / 2, &parentStyle); |
| child.setMarginEnd(availableAlignmentSpace / 2, &parentStyle); |
| } else if (marginStart.isAuto()) { |
| child.setMarginStart(availableAlignmentSpace, &parentStyle); |
| } else if (marginEnd.isAuto()) { |
| child.setMarginEnd(availableAlignmentSpace, &parentStyle); |
| } |
| } |
| |
| // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. |
| void RenderGrid::updateAutoMarginsInColumnAxisIfNeeded(RenderBox& child) |
| { |
| ASSERT(!child.isOutOfFlowPositioned()); |
| |
| LayoutUnit availableAlignmentSpace = child.overrideContainingBlockContentLogicalHeight().value() - child.logicalHeight() - child.marginLogicalHeight(); |
| if (availableAlignmentSpace <= 0) |
| return; |
| |
| const RenderStyle& parentStyle = style(); |
| Length marginBefore = child.style().marginBeforeUsing(&parentStyle); |
| Length marginAfter = child.style().marginAfterUsing(&parentStyle); |
| if (marginBefore.isAuto() && marginAfter.isAuto()) { |
| child.setMarginBefore(availableAlignmentSpace / 2, &parentStyle); |
| child.setMarginAfter(availableAlignmentSpace / 2, &parentStyle); |
| } else if (marginBefore.isAuto()) { |
| child.setMarginBefore(availableAlignmentSpace, &parentStyle); |
| } else if (marginAfter.isAuto()) { |
| child.setMarginAfter(availableAlignmentSpace, &parentStyle); |
| } |
| } |
| |
| GridAxisPosition RenderGrid::columnAxisPositionForChild(const RenderBox& child) const |
| { |
| bool hasSameWritingMode = child.style().writingMode() == style().writingMode(); |
| bool childIsLTR = child.style().isLeftToRightDirection(); |
| |
| switch (child.style().resolvedAlignSelf(style(), selfAlignmentNormalBehavior).position()) { |
| case ItemPositionSelfStart: |
| // FIXME: Should we implement this logic in a generic utility function ? |
| // Aligns the alignment subject to be flush with the edge of the alignment container |
| // corresponding to the alignment subject's 'start' side in the column axis. |
| if (isOrthogonalChild(child)) { |
| // If orthogonal writing-modes, self-start will be based on the child's inline-axis |
| // direction (inline-start), because it's the one parallel to the column axis. |
| if (style().isFlippedBlocksWritingMode()) |
| return childIsLTR ? GridAxisEnd : GridAxisStart; |
| return childIsLTR ? GridAxisStart : GridAxisEnd; |
| } |
| // self-start is based on the child's block-flow direction. That's why we need to check against the grid container's block-flow direction. |
| return hasSameWritingMode ? GridAxisStart : GridAxisEnd; |
| case ItemPositionSelfEnd: |
| // FIXME: Should we implement this logic in a generic utility function ? |
| // Aligns the alignment subject to be flush with the edge of the alignment container |
| // corresponding to the alignment subject's 'end' side in the column axis. |
| if (isOrthogonalChild(child)) { |
| // If orthogonal writing-modes, self-end will be based on the child's inline-axis |
| // direction, (inline-end) because it's the one parallel to the column axis. |
| if (style().isFlippedBlocksWritingMode()) |
| return childIsLTR ? GridAxisStart : GridAxisEnd; |
| return childIsLTR ? GridAxisEnd : GridAxisStart; |
| } |
| // self-end is based on the child's block-flow direction. That's why we need to check against the grid container's block-flow direction. |
| return hasSameWritingMode ? GridAxisEnd : GridAxisStart; |
| case ItemPositionLeft: |
| // Aligns the alignment subject to be flush with the alignment container's 'line-left' edge. |
| // The alignment axis (column axis) is always orthogonal to the inline axis, hence this value behaves as 'start'. |
| return GridAxisStart; |
| case ItemPositionRight: |
| // Aligns the alignment subject to be flush with the alignment container's 'line-right' edge. |
| // The alignment axis (column axis) is always orthogonal to the inline axis, hence this value behaves as 'start'. |
| return GridAxisStart; |
| case ItemPositionCenter: |
| return GridAxisCenter; |
| case ItemPositionFlexStart: // Only used in flex layout, otherwise equivalent to 'start'. |
| // Aligns the alignment subject to be flush with the alignment container's 'start' edge (block-start) in the column axis. |
| case ItemPositionStart: |
| return GridAxisStart; |
| case ItemPositionFlexEnd: // Only used in flex layout, otherwise equivalent to 'end'. |
| // Aligns the alignment subject to be flush with the alignment container's 'end' edge (block-end) in the column axis. |
| case ItemPositionEnd: |
| return GridAxisEnd; |
| case ItemPositionStretch: |
| return GridAxisStart; |
| case ItemPositionBaseline: |
| case ItemPositionLastBaseline: |
| // FIXME: Implement the previous values. For now, we always 'start' align the child. |
| return GridAxisStart; |
| case ItemPositionAuto: |
| case ItemPositionNormal: |
| break; |
| } |
| |
| ASSERT_NOT_REACHED(); |
| return GridAxisStart; |
| } |
| |
| GridAxisPosition RenderGrid::rowAxisPositionForChild(const RenderBox& child) const |
| { |
| bool hasSameDirection = child.style().direction() == style().direction(); |
| bool gridIsLTR = style().isLeftToRightDirection(); |
| |
| switch (child.style().resolvedJustifySelf(style(), selfAlignmentNormalBehavior).position()) { |
| case ItemPositionSelfStart: |
| // FIXME: Should we implement this logic in a generic utility function ? |
| // Aligns the alignment subject to be flush with the edge of the alignment container |
| // corresponding to the alignment subject's 'start' side in the row axis. |
| if (isOrthogonalChild(child)) { |
| // If orthogonal writing-modes, self-start will be based on the child's block-axis |
| // direction, because it's the one parallel to the row axis. |
| if (child.style().isFlippedBlocksWritingMode()) |
| return gridIsLTR ? GridAxisEnd : GridAxisStart; |
| return gridIsLTR ? GridAxisStart : GridAxisEnd; |
| } |
| // self-start is based on the child's inline-flow direction. That's why we need to check against the grid container's direction. |
| return hasSameDirection ? GridAxisStart : GridAxisEnd; |
| case ItemPositionSelfEnd: |
| // FIXME: Should we implement this logic in a generic utility function ? |
| // Aligns the alignment subject to be flush with the edge of the alignment container |
| // corresponding to the alignment subject's 'end' side in the row axis. |
| if (isOrthogonalChild(child)) { |
| // If orthogonal writing-modes, self-end will be based on the child's block-axis |
| // direction, because it's the one parallel to the row axis. |
| if (child.style().isFlippedBlocksWritingMode()) |
| return gridIsLTR ? GridAxisStart : GridAxisEnd; |
| return gridIsLTR ? GridAxisEnd : GridAxisStart; |
| } |
| // self-end is based on the child's inline-flow direction. That's why we need to check against the grid container's direction. |
| return hasSameDirection ? GridAxisEnd : GridAxisStart; |
| case ItemPositionLeft: |
| // Aligns the alignment subject to be flush with the alignment container's 'line-left' edge. |
| // We want the physical 'left' side, so we have to take account, container's inline-flow direction. |
| return gridIsLTR ? GridAxisStart : GridAxisEnd; |
| case ItemPositionRight: |
| // Aligns the alignment subject to be flush with the alignment container's 'line-right' edge. |
| // We want the physical 'right' side, so we have to take account, container's inline-flow direction. |
| return gridIsLTR ? GridAxisEnd : GridAxisStart; |
| case ItemPositionCenter: |
| return GridAxisCenter; |
| case ItemPositionFlexStart: // Only used in flex layout, otherwise equivalent to 'start'. |
| // Aligns the alignment subject to be flush with the alignment container's 'start' edge (inline-start) in the row axis. |
| case ItemPositionStart: |
| return GridAxisStart; |
| case ItemPositionFlexEnd: // Only used in flex layout, otherwise equivalent to 'end'. |
| // Aligns the alignment subject to be flush with the alignment container's 'end' edge (inline-end) in the row axis. |
| case ItemPositionEnd: |
| return GridAxisEnd; |
| case ItemPositionStretch: |
| return GridAxisStart; |
| case ItemPositionBaseline: |
| case ItemPositionLastBaseline: |
| // FIXME: Implement the previous values. For now, we always 'start' align the child. |
| return GridAxisStart; |
| case ItemPositionAuto: |
| case ItemPositionNormal: |
| break; |
| } |
| |
| ASSERT_NOT_REACHED(); |
| return GridAxisStart; |
| } |
| |
| LayoutUnit RenderGrid::columnAxisOffsetForChild(const RenderBox& child) const |
| { |
| const GridSpan& rowsSpan = cachedGridSpan(child, ForRows); |
| unsigned childStartLine = rowsSpan.startLine(); |
| LayoutUnit startOfRow = m_rowPositions[childStartLine]; |
| LayoutUnit startPosition = startOfRow + marginBeforeForChild(child); |
| if (hasAutoMarginsInColumnAxis(child)) |
| return startPosition; |
| GridAxisPosition axisPosition = columnAxisPositionForChild(child); |
| switch (axisPosition) { |
| case GridAxisStart: |
| return startPosition; |
| case GridAxisEnd: |
| case GridAxisCenter: { |
| unsigned childEndLine = rowsSpan.endLine(); |
| LayoutUnit endOfRow = m_rowPositions[childEndLine]; |
| // m_rowPositions include distribution offset (because of content alignment) and gutters |
| // so we need to subtract them to get the actual end position for a given row |
| // (this does not have to be done for the last track as there are no more m_rowPositions after it). |
| if (childEndLine < m_rowPositions.size() - 1) |
| endOfRow -= gridGapForDirection(ForRows) + m_offsetBetweenRows; |
| LayoutUnit columnAxisChildSize = isOrthogonalChild(child) ? child.logicalWidth() + child.marginLogicalWidth() : child.logicalHeight() + child.marginLogicalHeight(); |
| auto overflow = child.style().resolvedAlignSelf(style(), selfAlignmentNormalBehavior).overflow(); |
| LayoutUnit offsetFromStartPosition = computeOverflowAlignmentOffset(overflow, endOfRow - startOfRow, columnAxisChildSize); |
| return startPosition + (axisPosition == GridAxisEnd ? offsetFromStartPosition : offsetFromStartPosition / 2); |
| } |
| } |
| |
| ASSERT_NOT_REACHED(); |
| return 0; |
| } |
| |
| |
| LayoutUnit RenderGrid::rowAxisOffsetForChild(const RenderBox& child) const |
| { |
| const GridSpan& columnsSpan = cachedGridSpan(child, ForColumns); |
| unsigned childStartLine = columnsSpan.startLine(); |
| LayoutUnit startOfColumn = m_columnPositions[childStartLine]; |
| LayoutUnit startPosition = startOfColumn + marginStartForChild(child); |
| if (hasAutoMarginsInRowAxis(child)) |
| return startPosition; |
| GridAxisPosition axisPosition = rowAxisPositionForChild(child); |
| switch (axisPosition) { |
| case GridAxisStart: |
| return startPosition; |
| case GridAxisEnd: |
| case GridAxisCenter: { |
| unsigned childEndLine = columnsSpan.endLine(); |
| LayoutUnit endOfColumn = m_columnPositions[childEndLine]; |
| // m_columnPositions include distribution offset (because of content alignment) and gutters |
| // so we need to subtract them to get the actual end position for a given column |
| // (this does not have to be done for the last track as there are no more m_columnPositions after it). |
| if (childEndLine < m_columnPositions.size() - 1) |
| endOfColumn -= gridGapForDirection(ForColumns) + m_offsetBetweenColumns; |
| LayoutUnit rowAxisChildSize = isOrthogonalChild(child) ? child.logicalHeight() + child.marginLogicalHeight() : child.logicalWidth() + child.marginLogicalWidth(); |
| auto overflow = child.style().resolvedJustifySelf(style(), selfAlignmentNormalBehavior).overflow(); |
| LayoutUnit offsetFromStartPosition = computeOverflowAlignmentOffset(overflow, endOfColumn - startOfColumn, rowAxisChildSize); |
| return startPosition + (axisPosition == GridAxisEnd ? offsetFromStartPosition : offsetFromStartPosition / 2); |
| } |
| } |
| |
| ASSERT_NOT_REACHED(); |
| return 0; |
| } |
| |
| ContentPosition static resolveContentDistributionFallback(ContentDistributionType distribution) |
| { |
| switch (distribution) { |
| case ContentDistributionSpaceBetween: |
| return ContentPositionStart; |
| case ContentDistributionSpaceAround: |
| return ContentPositionCenter; |
| case ContentDistributionSpaceEvenly: |
| return ContentPositionCenter; |
| case ContentDistributionStretch: |
| return ContentPositionStart; |
| case ContentDistributionDefault: |
| return ContentPositionNormal; |
| } |
| |
| ASSERT_NOT_REACHED(); |
| return ContentPositionNormal; |
| } |
| |
| static ContentAlignmentData contentDistributionOffset(const LayoutUnit& availableFreeSpace, ContentPosition& fallbackPosition, ContentDistributionType distribution, unsigned numberOfGridTracks) |
| { |
| if (distribution != ContentDistributionDefault && fallbackPosition == ContentPositionNormal) |
| fallbackPosition = resolveContentDistributionFallback(distribution); |
| |
| if (availableFreeSpace <= 0) |
| return ContentAlignmentData::defaultOffsets(); |
| |
| LayoutUnit distributionOffset; |
| switch (distribution) { |
| case ContentDistributionSpaceBetween: |
| if (numberOfGridTracks < 2) |
| return ContentAlignmentData::defaultOffsets(); |
| return {0, availableFreeSpace / (numberOfGridTracks - 1)}; |
| case ContentDistributionSpaceAround: |
| if (numberOfGridTracks < 1) |
| return ContentAlignmentData::defaultOffsets(); |
| distributionOffset = availableFreeSpace / numberOfGridTracks; |
| return {distributionOffset / 2, distributionOffset}; |
| case ContentDistributionSpaceEvenly: |
| distributionOffset = availableFreeSpace / (numberOfGridTracks + 1); |
| return {distributionOffset, distributionOffset}; |
| case ContentDistributionStretch: |
| case ContentDistributionDefault: |
| return ContentAlignmentData::defaultOffsets(); |
| } |
| |
| ASSERT_NOT_REACHED(); |
| return ContentAlignmentData::defaultOffsets(); |
| } |
| |
| ContentAlignmentData RenderGrid::computeContentPositionAndDistributionOffset(GridTrackSizingDirection direction, const LayoutUnit& availableFreeSpace, unsigned numberOfGridTracks) const |
| { |
| bool isRowAxis = direction == ForColumns; |
| auto position = isRowAxis ? style().resolvedJustifyContentPosition(contentAlignmentNormalBehaviorGrid()) : style().resolvedAlignContentPosition(contentAlignmentNormalBehaviorGrid()); |
| auto distribution = isRowAxis ? style().resolvedJustifyContentDistribution(contentAlignmentNormalBehaviorGrid()) : style().resolvedAlignContentDistribution(contentAlignmentNormalBehaviorGrid()); |
| // If <content-distribution> value can't be applied, 'position' will become the associated |
| // <content-position> fallback value. |
| auto contentAlignment = contentDistributionOffset(availableFreeSpace, position, distribution, numberOfGridTracks); |
| if (contentAlignment.isValid()) |
| return contentAlignment; |
| |
| auto overflow = isRowAxis ? style().justifyContentOverflowAlignment() : style().alignContentOverflowAlignment(); |
| if (availableFreeSpace <= 0 && overflow == OverflowAlignmentSafe) |
| return {0, 0}; |
| |
| switch (position) { |
| case ContentPositionLeft: |
| // The align-content's axis is always orthogonal to the inline-axis. |
| return {0, 0}; |
| case ContentPositionRight: |
| if (isRowAxis) |
| return {availableFreeSpace, 0}; |
| // The align-content's axis is always orthogonal to the inline-axis. |
| return {0, 0}; |
| case ContentPositionCenter: |
| return {availableFreeSpace / 2, 0}; |
| case ContentPositionFlexEnd: // Only used in flex layout, for other layout, it's equivalent to 'end'. |
| case ContentPositionEnd: |
| if (isRowAxis) |
| return {style().isLeftToRightDirection() ? availableFreeSpace : LayoutUnit(), LayoutUnit()}; |
| return {availableFreeSpace, 0}; |
| case ContentPositionFlexStart: // Only used in flex layout, for other layout, it's equivalent to 'start'. |
| case ContentPositionStart: |
| if (isRowAxis) |
| return {style().isLeftToRightDirection() ? LayoutUnit() : availableFreeSpace, LayoutUnit()}; |
| return {0, 0}; |
| case ContentPositionBaseline: |
| case ContentPositionLastBaseline: |
| // FIXME: Implement the previous values. For now, we always 'start' align. |
| // http://webkit.org/b/145566 |
| if (isRowAxis) |
| return {style().isLeftToRightDirection() ? LayoutUnit() : availableFreeSpace, LayoutUnit()}; |
| return {0, 0}; |
| case ContentPositionNormal: |
| break; |
| } |
| |
| ASSERT_NOT_REACHED(); |
| return {0, 0}; |
| } |
| |
| LayoutUnit RenderGrid::translateRTLCoordinate(LayoutUnit coordinate) const |
| { |
| ASSERT(!style().isLeftToRightDirection()); |
| |
| LayoutUnit alignmentOffset = m_columnPositions[0]; |
| LayoutUnit rightGridEdgePosition = m_columnPositions[m_columnPositions.size() - 1]; |
| return rightGridEdgePosition + alignmentOffset - coordinate; |
| } |
| |
| LayoutPoint RenderGrid::findChildLogicalPosition(const RenderBox& child) const |
| { |
| LayoutUnit columnAxisOffset = columnAxisOffsetForChild(child); |
| LayoutUnit rowAxisOffset = rowAxisOffsetForChild(child); |
| // We stored m_columnPositions's data ignoring the direction, hence we might need now |
| // to translate positions from RTL to LTR, as it's more convenient for painting. |
| if (!style().isLeftToRightDirection()) |
| rowAxisOffset = translateRTLCoordinate(rowAxisOffset) - (isOrthogonalChild(child) ? child.logicalHeight() : child.logicalWidth()); |
| |
| // "In the positioning phase [...] calculations are performed according to the writing mode |
| // of the containing block of the box establishing the orthogonal flow." However, the |
| // resulting LayoutPoint will be used in 'setLogicalPosition' in order to set the child's |
| // logical position, which will only take into account the child's writing-mode. |
| LayoutPoint childLocation(rowAxisOffset, columnAxisOffset); |
| return isOrthogonalChild(child) ? childLocation.transposedPoint() : childLocation; |
| } |
| |
| unsigned RenderGrid::numTracks(GridTrackSizingDirection direction) const |
| { |
| // Due to limitations in our internal representation, we cannot know the number of columns from |
| // m_grid *if* there is no row (because m_grid would be empty). That's why in that case we need |
| // to get it from the style. Note that we know for sure that there are't any implicit tracks, |
| // because not having rows implies that there are no "normal" children (out-of-flow children are |
| // not stored in m_grid). |
| if (direction == ForRows) |
| return m_grid.numRows(); |
| |
| return m_grid.numRows() ? m_grid.numColumns() : GridPositionsResolver::explicitGridColumnCount(style(), m_autoRepeatColumns); |
| } |
| |
| void RenderGrid::paintChildren(PaintInfo& paintInfo, const LayoutPoint& paintOffset, PaintInfo& forChild, bool usePrintRect) |
| { |
| for (RenderBox* child = m_orderIterator.first(); child; child = m_orderIterator.next()) |
| paintChild(*child, paintInfo, paintOffset, forChild, usePrintRect, PaintAsInlineBlock); |
| } |
| |
| const char* RenderGrid::renderName() const |
| { |
| if (isFloating()) |
| return "RenderGrid (floating)"; |
| if (isOutOfFlowPositioned()) |
| return "RenderGrid (positioned)"; |
| if (isAnonymous()) |
| return "RenderGrid (generated)"; |
| if (isRelPositioned()) |
| return "RenderGrid (relative positioned)"; |
| return "RenderGrid"; |
| } |
| |
| } // namespace WebCore |
| |
| #endif /* ENABLE(CSS_GRID_LAYOUT) */ |