| /* |
| * Copyright (C) 2006-2018 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #pragma once |
| |
| #include <algorithm> |
| #include <climits> |
| #include <cmath> |
| #include <float.h> |
| #include <limits> |
| #include <stdint.h> |
| #include <stdlib.h> |
| #include <wtf/StdLibExtras.h> |
| |
| #if OS(OPENBSD) |
| #include <sys/types.h> |
| #include <machine/ieee.h> |
| #endif |
| |
| #ifndef M_PI |
| constexpr double piDouble = 3.14159265358979323846; |
| constexpr float piFloat = 3.14159265358979323846f; |
| #else |
| constexpr double piDouble = M_PI; |
| constexpr float piFloat = static_cast<float>(M_PI); |
| #endif |
| |
| #ifndef M_PI_2 |
| constexpr double piOverTwoDouble = 1.57079632679489661923; |
| constexpr float piOverTwoFloat = 1.57079632679489661923f; |
| #else |
| constexpr double piOverTwoDouble = M_PI_2; |
| constexpr float piOverTwoFloat = static_cast<float>(M_PI_2); |
| #endif |
| |
| #ifndef M_PI_4 |
| constexpr double piOverFourDouble = 0.785398163397448309616; |
| constexpr float piOverFourFloat = 0.785398163397448309616f; |
| #else |
| constexpr double piOverFourDouble = M_PI_4; |
| constexpr float piOverFourFloat = static_cast<float>(M_PI_4); |
| #endif |
| |
| #ifndef M_SQRT2 |
| constexpr double sqrtOfTwoDouble = 1.41421356237309504880; |
| constexpr float sqrtOfTwoFloat = 1.41421356237309504880f; |
| #else |
| constexpr double sqrtOfTwoDouble = M_SQRT2; |
| constexpr float sqrtOfTwoFloat = static_cast<float>(M_SQRT2); |
| #endif |
| |
| #if COMPILER(MSVC) |
| |
| // Work around a bug in Win, where atan2(+-infinity, +-infinity) yields NaN instead of specific values. |
| extern "C" inline double wtf_atan2(double x, double y) |
| { |
| double posInf = std::numeric_limits<double>::infinity(); |
| double negInf = -std::numeric_limits<double>::infinity(); |
| double nan = std::numeric_limits<double>::quiet_NaN(); |
| |
| double result = nan; |
| |
| if (x == posInf && y == posInf) |
| result = piOverFourDouble; |
| else if (x == posInf && y == negInf) |
| result = 3 * piOverFourDouble; |
| else if (x == negInf && y == posInf) |
| result = -piOverFourDouble; |
| else if (x == negInf && y == negInf) |
| result = -3 * piOverFourDouble; |
| else |
| result = ::atan2(x, y); |
| |
| return result; |
| } |
| |
| #define atan2(x, y) wtf_atan2(x, y) |
| |
| #endif // COMPILER(MSVC) |
| |
| constexpr double radiansPerDegreeDouble = piDouble / 180.0; |
| constexpr double degreesPerRadianDouble = 180.0 / piDouble; |
| constexpr double gradientsPerDegreeDouble = 400.0 / 360.0; |
| constexpr double degreesPerGradientDouble = 360.0 / 400.0; |
| constexpr double turnsPerDegreeDouble = 1.0 / 360.0; |
| constexpr double degreesPerTurnDouble = 360.0; |
| |
| constexpr inline double deg2rad(double d) { return d * radiansPerDegreeDouble; } |
| constexpr inline double rad2deg(double r) { return r * degreesPerRadianDouble; } |
| constexpr inline double deg2grad(double d) { return d * gradientsPerDegreeDouble; } |
| constexpr inline double grad2deg(double g) { return g * degreesPerGradientDouble; } |
| constexpr inline double deg2turn(double d) { return d * turnsPerDegreeDouble; } |
| constexpr inline double turn2deg(double t) { return t * degreesPerTurnDouble; } |
| |
| |
| // Note that these differ from the casting the double values above in their rounding errors. |
| constexpr float radiansPerDegreeFloat = piFloat / 180.0f; |
| constexpr float degreesPerRadianFloat = 180.0f / piFloat; |
| constexpr float gradientsPerDegreeFloat= 400.0f / 360.0f; |
| constexpr float degreesPerGradientFloat = 360.0f / 400.0f; |
| constexpr float turnsPerDegreeFloat = 1.0f / 360.0f; |
| constexpr float degreesPerTurnFloat = 360.0f; |
| |
| constexpr inline float deg2rad(float d) { return d * radiansPerDegreeFloat; } |
| constexpr inline float rad2deg(float r) { return r * degreesPerRadianFloat; } |
| constexpr inline float deg2grad(float d) { return d * gradientsPerDegreeFloat; } |
| constexpr inline float grad2deg(float g) { return g * degreesPerGradientFloat; } |
| constexpr inline float deg2turn(float d) { return d * turnsPerDegreeFloat; } |
| constexpr inline float turn2deg(float t) { return t * degreesPerTurnFloat; } |
| |
| // Treat theses as conversions through the cannonical unit for angles, which is degrees. |
| constexpr inline double rad2grad(double r) { return deg2grad(rad2deg(r)); } |
| constexpr inline double grad2rad(double g) { return deg2rad(grad2deg(g)); } |
| constexpr inline float rad2grad(float r) { return deg2grad(rad2deg(r)); } |
| constexpr inline float grad2rad(float g) { return deg2rad(grad2deg(g)); } |
| |
| inline double roundTowardsPositiveInfinity(double value) { return std::floor(value + 0.5); } |
| inline float roundTowardsPositiveInfinity(float value) { return std::floor(value + 0.5f); } |
| |
| // std::numeric_limits<T>::min() returns the smallest positive value for floating point types |
| template<typename T> constexpr T defaultMinimumForClamp() { return std::numeric_limits<T>::min(); } |
| template<> constexpr float defaultMinimumForClamp() { return -std::numeric_limits<float>::max(); } |
| template<> constexpr double defaultMinimumForClamp() { return -std::numeric_limits<double>::max(); } |
| template<typename T> constexpr T defaultMaximumForClamp() { return std::numeric_limits<T>::max(); } |
| |
| // Same type in and out. |
| template<typename TargetType, typename SourceType> |
| typename std::enable_if<std::is_same<TargetType, SourceType>::value, TargetType>::type |
| clampTo(SourceType value, TargetType min = defaultMinimumForClamp<TargetType>(), TargetType max = defaultMaximumForClamp<TargetType>()) |
| { |
| if (value >= max) |
| return max; |
| if (value <= min) |
| return min; |
| return value; |
| } |
| |
| // Floating point source. |
| template<typename TargetType, typename SourceType> |
| typename std::enable_if<!std::is_same<TargetType, SourceType>::value |
| && std::is_floating_point<SourceType>::value |
| && !(std::is_floating_point<TargetType>::value && sizeof(TargetType) > sizeof(SourceType)), TargetType>::type |
| clampTo(SourceType value, TargetType min = defaultMinimumForClamp<TargetType>(), TargetType max = defaultMaximumForClamp<TargetType>()) |
| { |
| if (value >= static_cast<SourceType>(max)) |
| return max; |
| // This will return min if value is NaN. |
| if (!(value > static_cast<SourceType>(min))) |
| return min; |
| return static_cast<TargetType>(value); |
| } |
| |
| template<typename TargetType, typename SourceType> |
| typename std::enable_if<!std::is_same<TargetType, SourceType>::value |
| && std::is_floating_point<SourceType>::value |
| && std::is_floating_point<TargetType>::value |
| && (sizeof(TargetType) > sizeof(SourceType)), TargetType>::type |
| clampTo(SourceType value, TargetType min = defaultMinimumForClamp<TargetType>(), TargetType max = defaultMaximumForClamp<TargetType>()) |
| { |
| TargetType convertedValue = static_cast<TargetType>(value); |
| if (convertedValue >= max) |
| return max; |
| if (convertedValue <= min) |
| return min; |
| return convertedValue; |
| } |
| |
| // Source and Target have the same sign and Source is larger or equal to Target |
| template<typename TargetType, typename SourceType> |
| typename std::enable_if<!std::is_same<TargetType, SourceType>::value |
| && std::numeric_limits<SourceType>::is_integer |
| && std::numeric_limits<TargetType>::is_integer |
| && std::numeric_limits<TargetType>::is_signed == std::numeric_limits<SourceType>::is_signed |
| && sizeof(SourceType) >= sizeof(TargetType), TargetType>::type |
| clampTo(SourceType value, TargetType min = defaultMinimumForClamp<TargetType>(), TargetType max = defaultMaximumForClamp<TargetType>()) |
| { |
| if (value >= static_cast<SourceType>(max)) |
| return max; |
| if (value <= static_cast<SourceType>(min)) |
| return min; |
| return static_cast<TargetType>(value); |
| } |
| |
| // Clamping a unsigned integer to the max signed value. |
| template<typename TargetType, typename SourceType> |
| typename std::enable_if<!std::is_same<TargetType, SourceType>::value |
| && std::numeric_limits<SourceType>::is_integer |
| && std::numeric_limits<TargetType>::is_integer |
| && std::numeric_limits<TargetType>::is_signed |
| && !std::numeric_limits<SourceType>::is_signed |
| && sizeof(SourceType) >= sizeof(TargetType), TargetType>::type |
| clampTo(SourceType value) |
| { |
| TargetType max = std::numeric_limits<TargetType>::max(); |
| if (value >= static_cast<SourceType>(max)) |
| return max; |
| return static_cast<TargetType>(value); |
| } |
| |
| // Clamping a signed integer into a valid unsigned integer. |
| template<typename TargetType, typename SourceType> |
| typename std::enable_if<!std::is_same<TargetType, SourceType>::value |
| && std::numeric_limits<SourceType>::is_integer |
| && std::numeric_limits<TargetType>::is_integer |
| && !std::numeric_limits<TargetType>::is_signed |
| && std::numeric_limits<SourceType>::is_signed |
| && sizeof(SourceType) == sizeof(TargetType), TargetType>::type |
| clampTo(SourceType value) |
| { |
| if (value < 0) |
| return 0; |
| return static_cast<TargetType>(value); |
| } |
| |
| template<typename TargetType, typename SourceType> |
| typename std::enable_if<!std::is_same<TargetType, SourceType>::value |
| && std::numeric_limits<SourceType>::is_integer |
| && std::numeric_limits<TargetType>::is_integer |
| && !std::numeric_limits<TargetType>::is_signed |
| && std::numeric_limits<SourceType>::is_signed |
| && (sizeof(SourceType) > sizeof(TargetType)), TargetType>::type |
| clampTo(SourceType value) |
| { |
| if (value < 0) |
| return 0; |
| TargetType max = std::numeric_limits<TargetType>::max(); |
| if (value >= static_cast<SourceType>(max)) |
| return max; |
| return static_cast<TargetType>(value); |
| } |
| |
| inline int clampToInteger(double value) |
| { |
| return clampTo<int>(value); |
| } |
| |
| inline unsigned clampToUnsigned(double value) |
| { |
| return clampTo<unsigned>(value); |
| } |
| |
| inline float clampToFloat(double value) |
| { |
| return clampTo<float>(value); |
| } |
| |
| inline int clampToPositiveInteger(double value) |
| { |
| return clampTo<int>(value, 0); |
| } |
| |
| inline int clampToInteger(float value) |
| { |
| return clampTo<int>(value); |
| } |
| |
| template<typename T> |
| inline int clampToInteger(T x) |
| { |
| static_assert(std::numeric_limits<T>::is_integer, "T must be an integer."); |
| |
| const T intMax = static_cast<unsigned>(std::numeric_limits<int>::max()); |
| |
| if (x >= intMax) |
| return std::numeric_limits<int>::max(); |
| return static_cast<int>(x); |
| } |
| |
| // Explicitly accept 64bit result when clamping double value. |
| // Keep in mind that double can only represent 53bit integer precisely. |
| template<typename T> constexpr T clampToAccepting64(double value, T min = defaultMinimumForClamp<T>(), T max = defaultMaximumForClamp<T>()) |
| { |
| return (value >= static_cast<double>(max)) ? max : ((value <= static_cast<double>(min)) ? min : static_cast<T>(value)); |
| } |
| |
| inline bool isWithinIntRange(float x) |
| { |
| return x > static_cast<float>(std::numeric_limits<int>::min()) && x < static_cast<float>(std::numeric_limits<int>::max()); |
| } |
| |
| inline float normalizedFloat(float value) |
| { |
| if (value > 0 && value < std::numeric_limits<float>::min()) |
| return std::numeric_limits<float>::min(); |
| if (value < 0 && value > -std::numeric_limits<float>::min()) |
| return -std::numeric_limits<float>::min(); |
| return value; |
| } |
| |
| template<typename T> constexpr bool hasOneBitSet(T value) |
| { |
| return !((value - 1) & value) && value; |
| } |
| |
| template<typename T> constexpr bool hasZeroOrOneBitsSet(T value) |
| { |
| return !((value - 1) & value); |
| } |
| |
| template<typename T> constexpr bool hasTwoOrMoreBitsSet(T value) |
| { |
| return !hasZeroOrOneBitsSet(value); |
| } |
| |
| template<typename T> inline T divideRoundedUp(T a, T b) |
| { |
| return (a + b - 1) / b; |
| } |
| |
| template<typename T> inline T timesThreePlusOneDividedByTwo(T value) |
| { |
| // Mathematically equivalent to: |
| // (value * 3 + 1) / 2; |
| // or: |
| // (unsigned)ceil(value * 1.5)); |
| // This form is not prone to internal overflow. |
| return value + (value >> 1) + (value & 1); |
| } |
| |
| template<typename T> inline bool isNotZeroAndOrdered(T value) |
| { |
| return value > 0.0 || value < 0.0; |
| } |
| |
| template<typename T> inline bool isZeroOrUnordered(T value) |
| { |
| return !isNotZeroAndOrdered(value); |
| } |
| |
| template<typename T> inline bool isGreaterThanNonZeroPowerOfTwo(T value, unsigned power) |
| { |
| // The crazy way of testing of index >= 2 ** power |
| // (where I use ** to denote pow()). |
| return !!((value >> 1) >> (power - 1)); |
| } |
| |
| template<typename T> constexpr bool isLessThan(const T& a, const T& b) { return a < b; } |
| template<typename T> constexpr bool isLessThanEqual(const T& a, const T& b) { return a <= b; } |
| template<typename T> constexpr bool isGreaterThan(const T& a, const T& b) { return a > b; } |
| template<typename T> constexpr bool isGreaterThanEqual(const T& a, const T& b) { return a >= b; } |
| template<typename T> constexpr bool isInRange(const T& a, const T& min, const T& max) { return a >= min && a <= max; } |
| |
| #ifndef UINT64_C |
| #if COMPILER(MSVC) |
| #define UINT64_C(c) c ## ui64 |
| #else |
| #define UINT64_C(c) c ## ull |
| #endif |
| #endif |
| |
| #if COMPILER(MINGW64) && (!defined(__MINGW64_VERSION_RC) || __MINGW64_VERSION_RC < 1) |
| inline double wtf_pow(double x, double y) |
| { |
| // MinGW-w64 has a custom implementation for pow. |
| // This handles certain special cases that are different. |
| if ((x == 0.0 || std::isinf(x)) && std::isfinite(y)) { |
| double f; |
| if (modf(y, &f) != 0.0) |
| return ((x == 0.0) ^ (y > 0.0)) ? std::numeric_limits<double>::infinity() : 0.0; |
| } |
| |
| if (x == 2.0) { |
| int yInt = static_cast<int>(y); |
| if (y == yInt) |
| return ldexp(1.0, yInt); |
| } |
| |
| return pow(x, y); |
| } |
| #define pow(x, y) wtf_pow(x, y) |
| #endif // COMPILER(MINGW64) && (!defined(__MINGW64_VERSION_RC) || __MINGW64_VERSION_RC < 1) |
| |
| |
| // decompose 'number' to its sign, exponent, and mantissa components. |
| // The result is interpreted as: |
| // (sign ? -1 : 1) * pow(2, exponent) * (mantissa / (1 << 52)) |
| inline void decomposeDouble(double number, bool& sign, int32_t& exponent, uint64_t& mantissa) |
| { |
| ASSERT(std::isfinite(number)); |
| |
| sign = std::signbit(number); |
| |
| uint64_t bits = WTF::bitwise_cast<uint64_t>(number); |
| exponent = (static_cast<int32_t>(bits >> 52) & 0x7ff) - 0x3ff; |
| mantissa = bits & 0xFFFFFFFFFFFFFull; |
| |
| // Check for zero/denormal values; if so, adjust the exponent, |
| // if not insert the implicit, omitted leading 1 bit. |
| if (exponent == -0x3ff) |
| exponent = mantissa ? -0x3fe : 0; |
| else |
| mantissa |= 0x10000000000000ull; |
| } |
| |
| template<typename T> constexpr unsigned countOfBits = sizeof(T) * CHAR_BIT; |
| template<typename T> constexpr unsigned countOfMagnitudeBits = countOfBits<T> - std::is_signed_v<T>; |
| |
| constexpr float powerOfTwo(unsigned e) |
| { |
| float p = 1; |
| while (e--) |
| p *= 2; |
| return p; |
| } |
| |
| template<typename T> constexpr float maxPlusOne = powerOfTwo(countOfMagnitudeBits<T>); |
| |
| // Calculate d % 2^{64}. |
| inline void doubleToInteger(double d, unsigned long long& value) |
| { |
| if (std::isnan(d) || std::isinf(d)) |
| value = 0; |
| else { |
| // -2^{64} < fmodValue < 2^{64}. |
| double fmodValue = fmod(trunc(d), maxPlusOne<unsigned long long>); |
| if (fmodValue >= 0) { |
| // 0 <= fmodValue < 2^{64}. |
| // 0 <= value < 2^{64}. This cast causes no loss. |
| value = static_cast<unsigned long long>(fmodValue); |
| } else { |
| // -2^{64} < fmodValue < 0. |
| // 0 < fmodValueInUnsignedLongLong < 2^{64}. This cast causes no loss. |
| unsigned long long fmodValueInUnsignedLongLong = static_cast<unsigned long long>(-fmodValue); |
| // -1 < (std::numeric_limits<unsigned long long>::max() - fmodValueInUnsignedLongLong) < 2^{64} - 1. |
| // 0 < value < 2^{64}. |
| value = std::numeric_limits<unsigned long long>::max() - fmodValueInUnsignedLongLong + 1; |
| } |
| } |
| } |
| |
| namespace WTF { |
| |
| // From http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2 |
| constexpr uint32_t roundUpToPowerOfTwo(uint32_t v) |
| { |
| v--; |
| v |= v >> 1; |
| v |= v >> 2; |
| v |= v >> 4; |
| v |= v >> 8; |
| v |= v >> 16; |
| v++; |
| return v; |
| } |
| |
| constexpr unsigned maskForSize(unsigned size) |
| { |
| if (!size) |
| return 0; |
| return roundUpToPowerOfTwo(size) - 1; |
| } |
| |
| inline unsigned fastLog2(unsigned i) |
| { |
| unsigned log2 = 0; |
| if (i & (i - 1)) |
| log2 += 1; |
| if (i >> 16) { |
| log2 += 16; |
| i >>= 16; |
| } |
| if (i >> 8) { |
| log2 += 8; |
| i >>= 8; |
| } |
| if (i >> 4) { |
| log2 += 4; |
| i >>= 4; |
| } |
| if (i >> 2) { |
| log2 += 2; |
| i >>= 2; |
| } |
| if (i >> 1) |
| log2 += 1; |
| return log2; |
| } |
| |
| inline unsigned fastLog2(uint64_t value) |
| { |
| unsigned high = static_cast<unsigned>(value >> 32); |
| if (high) |
| return fastLog2(high) + 32; |
| return fastLog2(static_cast<unsigned>(value)); |
| } |
| |
| template <typename T> |
| inline typename std::enable_if<std::is_floating_point<T>::value, T>::type safeFPDivision(T u, T v) |
| { |
| // Protect against overflow / underflow. |
| if (v < 1 && u > v * std::numeric_limits<T>::max()) |
| return std::numeric_limits<T>::max(); |
| if (v > 1 && u < v * std::numeric_limits<T>::min()) |
| return 0; |
| return u / v; |
| } |
| |
| // Floating point numbers comparison: |
| // u is "essentially equal" [1][2] to v if: | u - v | / |u| <= e and | u - v | / |v| <= e |
| // |
| // [1] Knuth, D. E. "Accuracy of Floating Point Arithmetic." The Art of Computer Programming. 3rd ed. Vol. 2. |
| // Boston: Addison-Wesley, 1998. 229-45. |
| // [2] http://www.boost.org/doc/libs/1_34_0/libs/test/doc/components/test_tools/floating_point_comparison.html |
| template <typename T> |
| inline typename std::enable_if<std::is_floating_point<T>::value, bool>::type areEssentiallyEqual(T u, T v, T epsilon = std::numeric_limits<T>::epsilon()) |
| { |
| if (u == v) |
| return true; |
| |
| const T delta = std::abs(u - v); |
| return safeFPDivision(delta, std::abs(u)) <= epsilon && safeFPDivision(delta, std::abs(v)) <= epsilon; |
| } |
| |
| // Match behavior of Math.min, where NaN is returned if either argument is NaN. |
| template <typename T> |
| inline typename std::enable_if<std::is_floating_point<T>::value, T>::type nanPropagatingMin(T a, T b) |
| { |
| return std::isnan(a) || std::isnan(b) ? std::numeric_limits<T>::quiet_NaN() : std::min(a, b); |
| } |
| |
| // Match behavior of Math.max, where NaN is returned if either argument is NaN. |
| template <typename T> |
| inline typename std::enable_if<std::is_floating_point<T>::value, T>::type nanPropagatingMax(T a, T b) |
| { |
| return std::isnan(a) || std::isnan(b) ? std::numeric_limits<T>::quiet_NaN() : std::max(a, b); |
| } |
| |
| inline bool isIntegral(float value) |
| { |
| return static_cast<int>(value) == value; |
| } |
| |
| template<typename T> |
| inline void incrementWithSaturation(T& value) |
| { |
| if (value != std::numeric_limits<T>::max()) |
| value++; |
| } |
| |
| template<typename T> |
| inline T leftShiftWithSaturation(T value, unsigned shiftAmount, T max = std::numeric_limits<T>::max()) |
| { |
| T result = value << shiftAmount; |
| // We will have saturated if shifting right doesn't recover the original value. |
| if (result >> shiftAmount != value) |
| return max; |
| if (result > max) |
| return max; |
| return result; |
| } |
| |
| // Check if two ranges overlap assuming that neither range is empty. |
| template<typename T> |
| inline bool nonEmptyRangesOverlap(T leftMin, T leftMax, T rightMin, T rightMax) |
| { |
| ASSERT(leftMin < leftMax); |
| ASSERT(rightMin < rightMax); |
| |
| return leftMax > rightMin && rightMax > leftMin; |
| } |
| |
| // Pass ranges with the min being inclusive and the max being exclusive. For example, this should |
| // return false: |
| // |
| // rangesOverlap(0, 8, 8, 16) |
| template<typename T> |
| inline bool rangesOverlap(T leftMin, T leftMax, T rightMin, T rightMax) |
| { |
| ASSERT(leftMin <= leftMax); |
| ASSERT(rightMin <= rightMax); |
| |
| // Empty ranges interfere with nothing. |
| if (leftMin == leftMax) |
| return false; |
| if (rightMin == rightMax) |
| return false; |
| |
| return nonEmptyRangesOverlap(leftMin, leftMax, rightMin, rightMax); |
| } |
| |
| template<typename VectorType, typename RandomFunc> |
| void shuffleVector(VectorType& vector, size_t size, const RandomFunc& randomFunc) |
| { |
| for (size_t i = 0; i + 1 < size; ++i) |
| std::swap(vector[i], vector[i + randomFunc(size - i)]); |
| } |
| |
| template<typename VectorType, typename RandomFunc> |
| void shuffleVector(VectorType& vector, const RandomFunc& randomFunc) |
| { |
| shuffleVector(vector, vector.size(), randomFunc); |
| } |
| |
| template <typename T> |
| constexpr unsigned clzConstexpr(T value) |
| { |
| constexpr unsigned bitSize = sizeof(T) * CHAR_BIT; |
| |
| using UT = typename std::make_unsigned<T>::type; |
| UT uValue = value; |
| |
| unsigned zeroCount = 0; |
| for (int i = bitSize - 1; i >= 0; i--) { |
| if (uValue >> i) |
| break; |
| zeroCount++; |
| } |
| return zeroCount; |
| } |
| |
| template<typename T> |
| inline unsigned clz(T value) |
| { |
| constexpr unsigned bitSize = sizeof(T) * CHAR_BIT; |
| |
| using UT = typename std::make_unsigned<T>::type; |
| UT uValue = value; |
| |
| #if COMPILER(GCC_COMPATIBLE) |
| constexpr unsigned bitSize64 = sizeof(uint64_t) * CHAR_BIT; |
| if (uValue) |
| return __builtin_clzll(uValue) - (bitSize64 - bitSize); |
| return bitSize; |
| #elif COMPILER(MSVC) && !CPU(X86) |
| // Visual Studio 2008 or upper have __lzcnt, but we can't detect Intel AVX at compile time. |
| // So we use bit-scan-reverse operation to calculate clz. |
| // _BitScanReverse64 is defined in X86_64 and ARM in MSVC supported environments. |
| unsigned long ret = 0; |
| if (_BitScanReverse64(&ret, uValue)) |
| return bitSize - 1 - ret; |
| return bitSize; |
| #else |
| UNUSED_PARAM(bitSize); |
| UNUSED_PARAM(uValue); |
| return clzConstexpr(value); |
| #endif |
| } |
| |
| template <typename T> |
| constexpr unsigned ctzConstexpr(T value) |
| { |
| constexpr unsigned bitSize = sizeof(T) * CHAR_BIT; |
| |
| using UT = typename std::make_unsigned<T>::type; |
| UT uValue = value; |
| |
| unsigned zeroCount = 0; |
| for (unsigned i = 0; i < bitSize; i++) { |
| if (uValue & 1) |
| break; |
| |
| zeroCount++; |
| uValue >>= 1; |
| } |
| return zeroCount; |
| } |
| |
| template<typename T> |
| inline unsigned ctz(T value) |
| { |
| constexpr unsigned bitSize = sizeof(T) * CHAR_BIT; |
| |
| using UT = typename std::make_unsigned<T>::type; |
| UT uValue = value; |
| |
| #if COMPILER(GCC_COMPATIBLE) |
| if (uValue) |
| return __builtin_ctzll(uValue); |
| return bitSize; |
| #elif COMPILER(MSVC) && !CPU(X86) |
| unsigned long ret = 0; |
| if (_BitScanForward64(&ret, uValue)) |
| return ret; |
| return bitSize; |
| #else |
| UNUSED_PARAM(bitSize); |
| UNUSED_PARAM(uValue); |
| return ctzConstexpr(value); |
| #endif |
| } |
| |
| template<typename T> |
| inline unsigned getLSBSet(T t) |
| { |
| ASSERT(t); |
| return ctz(t); |
| } |
| |
| template<typename T> |
| constexpr unsigned getLSBSetConstexpr(T t) |
| { |
| ASSERT_UNDER_CONSTEXPR_CONTEXT(t); |
| return ctzConstexpr(t); |
| } |
| |
| template<typename T> |
| inline unsigned getMSBSet(T t) |
| { |
| constexpr unsigned bitSize = sizeof(T) * CHAR_BIT; |
| ASSERT(t); |
| return bitSize - 1 - clz(t); |
| } |
| |
| template<typename T> |
| constexpr unsigned getMSBSetConstexpr(T t) |
| { |
| constexpr unsigned bitSize = sizeof(T) * CHAR_BIT; |
| ASSERT_UNDER_CONSTEXPR_CONTEXT(t); |
| return bitSize - 1 - clzConstexpr(t); |
| } |
| |
| inline size_t countTrailingZeros(uint32_t v) |
| { |
| static const unsigned Mod37BitPosition[] = { |
| 32, 0, 1, 26, 2, 23, 27, 0, 3, 16, 24, 30, 28, 11, 0, 13, |
| 4, 7, 17, 0, 25, 22, 31, 15, 29, 10, 12, 6, 0, 21, 14, 9, |
| 5, 20, 8, 19, 18 |
| }; |
| return Mod37BitPosition[((1 + ~v) & v) % 37]; |
| } |
| |
| inline size_t countTrailingZeros(uint64_t v) |
| { |
| static const unsigned Mod67Position[] = { |
| 64, 0, 1, 39, 2, 15, 40, 23, 3, 12, 16, 59, 41, 19, 24, 54, |
| 4, 64, 13, 10, 17, 62, 60, 28, 42, 30, 20, 51, 25, 44, 55, |
| 47, 5, 32, 65, 38, 14, 22, 11, 58, 18, 53, 63, 9, 61, 27, |
| 29, 50, 43, 46, 31, 37, 21, 57, 52, 8, 26, 49, 45, 36, 56, |
| 7, 48, 35, 6, 34, 33, 0 |
| }; |
| return Mod67Position[((1 + ~v) & v) % 67]; |
| } |
| |
| } // namespace WTF |
| |
| using WTF::shuffleVector; |
| using WTF::clz; |
| using WTF::ctz; |
| using WTF::getLSBSet; |
| using WTF::getMSBSet; |