| // |
| // Copyright 2019 The ANGLE Project Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| // |
| // PoolAlloc.h: |
| // Defines the class interface for PoolAllocator and the Allocation |
| // class that it uses internally. |
| // |
| |
| #ifndef COMMON_POOLALLOC_H_ |
| #define COMMON_POOLALLOC_H_ |
| |
| #if !defined(NDEBUG) |
| # define ANGLE_POOL_ALLOC_GUARD_BLOCKS // define to enable guard block sanity checking |
| #endif |
| |
| // |
| // This header defines an allocator that can be used to efficiently |
| // allocate a large number of small requests for heap memory, with the |
| // intention that they are not individually deallocated, but rather |
| // collectively deallocated at one time. |
| // |
| // This simultaneously |
| // |
| // * Makes each individual allocation much more efficient; the |
| // typical allocation is trivial. |
| // * Completely avoids the cost of doing individual deallocation. |
| // * Saves the trouble of tracking down and plugging a large class of leaks. |
| // |
| // Individual classes can use this allocator by supplying their own |
| // new and delete methods. |
| // |
| |
| #include <stddef.h> |
| #include <string.h> |
| #include <memory> |
| #include <vector> |
| |
| #include "angleutils.h" |
| #include "common/debug.h" |
| |
| namespace angle |
| { |
| // If we are using guard blocks, we must track each individual |
| // allocation. If we aren't using guard blocks, these |
| // never get instantiated, so won't have any impact. |
| // |
| |
| class Allocation |
| { |
| public: |
| Allocation(size_t size, unsigned char *mem, Allocation *prev = 0) |
| : mSize(size), mMem(mem), mPrevAlloc(prev) |
| { |
| // Allocations are bracketed: |
| // [allocationHeader][initialGuardBlock][userData][finalGuardBlock] |
| // This would be cleaner with if (kGuardBlockSize)..., but that |
| // makes the compiler print warnings about 0 length memsets, |
| // even with the if() protecting them. |
| #if defined(ANGLE_POOL_ALLOC_GUARD_BLOCKS) |
| memset(preGuard(), kGuardBlockBeginVal, kGuardBlockSize); |
| memset(data(), kUserDataFill, mSize); |
| memset(postGuard(), kGuardBlockEndVal, kGuardBlockSize); |
| #endif |
| } |
| |
| void check() const |
| { |
| checkGuardBlock(preGuard(), kGuardBlockBeginVal, "before"); |
| checkGuardBlock(postGuard(), kGuardBlockEndVal, "after"); |
| } |
| |
| void checkAllocList() const; |
| |
| // Return total size needed to accommodate user buffer of 'size', |
| // plus our tracking data. |
| static size_t AllocationSize(size_t size) { return size + 2 * kGuardBlockSize + HeaderSize(); } |
| |
| // Offset from surrounding buffer to get to user data buffer. |
| static unsigned char *OffsetAllocation(unsigned char *m) |
| { |
| return m + kGuardBlockSize + HeaderSize(); |
| } |
| |
| private: |
| void checkGuardBlock(unsigned char *blockMem, unsigned char val, const char *locText) const; |
| |
| // Find offsets to pre and post guard blocks, and user data buffer |
| unsigned char *preGuard() const { return mMem + HeaderSize(); } |
| unsigned char *data() const { return preGuard() + kGuardBlockSize; } |
| unsigned char *postGuard() const { return data() + mSize; } |
| size_t mSize; // size of the user data area |
| unsigned char *mMem; // beginning of our allocation (pts to header) |
| Allocation *mPrevAlloc; // prior allocation in the chain |
| |
| static constexpr unsigned char kGuardBlockBeginVal = 0xfb; |
| static constexpr unsigned char kGuardBlockEndVal = 0xfe; |
| static constexpr unsigned char kUserDataFill = 0xcd; |
| #if defined(ANGLE_POOL_ALLOC_GUARD_BLOCKS) |
| static constexpr size_t kGuardBlockSize = 16; |
| static constexpr size_t HeaderSize() { return sizeof(Allocation); } |
| #else |
| static constexpr size_t kGuardBlockSize = 0; |
| static constexpr size_t HeaderSize() { return 0; } |
| #endif |
| }; |
| |
| // |
| // There are several stacks. One is to track the pushing and popping |
| // of the user, and not yet implemented. The others are simply a |
| // repositories of free pages or used pages. |
| // |
| // Page stacks are linked together with a simple header at the beginning |
| // of each allocation obtained from the underlying OS. Multi-page allocations |
| // are returned to the OS. Individual page allocations are kept for future |
| // re-use. |
| // |
| // The "page size" used is not, nor must it match, the underlying OS |
| // page size. But, having it be about that size or equal to a set of |
| // pages is likely most optimal. |
| // |
| class PoolAllocator : angle::NonCopyable |
| { |
| public: |
| static const int kDefaultAlignment = 16; |
| // |
| // Create PoolAllocator. If alignment is be set to 1 byte then fastAllocate() |
| // function can be used to make allocations with less overhead. |
| // |
| PoolAllocator(int growthIncrement = 8 * 1024, int allocationAlignment = kDefaultAlignment); |
| |
| // |
| // Don't call the destructor just to free up the memory, call pop() |
| // |
| ~PoolAllocator(); |
| |
| // |
| // Call push() to establish a new place to pop memory to. Does not |
| // have to be called to get things started. |
| // |
| void push(); |
| |
| // |
| // Call pop() to free all memory allocated since the last call to push(), |
| // or if no last call to push, frees all memory since first allocation. |
| // |
| void pop(); |
| |
| // |
| // Call popAll() to free all memory allocated. |
| // |
| void popAll(); |
| |
| // |
| // Call allocate() to actually acquire memory. Returns 0 if no memory |
| // available, otherwise a properly aligned pointer to 'numBytes' of memory. |
| // |
| void *allocate(size_t numBytes); |
| |
| // |
| // Call fastAllocate() for a faster allocate function that does minimal bookkeeping |
| // preCondition: Allocator must have been created w/ alignment of 1 |
| ANGLE_INLINE uint8_t *fastAllocate(size_t numBytes) |
| { |
| #if defined(ANGLE_DISABLE_POOL_ALLOC) |
| return reinterpret_cast<uint8_t *>(allocate(numBytes)); |
| #else |
| ASSERT(mAlignment == 1); |
| // No multi-page allocations |
| ASSERT(numBytes <= (mPageSize - mHeaderSkip)); |
| // |
| // Do the allocation, most likely case inline first, for efficiency. |
| // |
| if (numBytes <= mPageSize - mCurrentPageOffset) |
| { |
| // |
| // Safe to allocate from mCurrentPageOffset. |
| // |
| uint8_t *memory = reinterpret_cast<uint8_t *>(mInUseList) + mCurrentPageOffset; |
| mCurrentPageOffset += numBytes; |
| return memory; |
| } |
| return reinterpret_cast<uint8_t *>(allocateNewPage(numBytes, numBytes)); |
| #endif |
| } |
| |
| // |
| // There is no deallocate. The point of this class is that |
| // deallocation can be skipped by the user of it, as the model |
| // of use is to simultaneously deallocate everything at once |
| // by calling pop(), and to not have to solve memory leak problems. |
| // |
| |
| // Catch unwanted allocations. |
| // TODO(jmadill): Remove this when we remove the global allocator. |
| void lock(); |
| void unlock(); |
| |
| private: |
| size_t mAlignment; // all returned allocations will be aligned at |
| // this granularity, which will be a power of 2 |
| size_t mAlignmentMask; |
| #if !defined(ANGLE_DISABLE_POOL_ALLOC) |
| friend struct Header; |
| |
| struct Header |
| { |
| Header(Header *nextPage, size_t pageCount) |
| : nextPage(nextPage), |
| pageCount(pageCount) |
| # if defined(ANGLE_POOL_ALLOC_GUARD_BLOCKS) |
| , |
| lastAllocation(0) |
| # endif |
| {} |
| |
| ~Header() |
| { |
| # if defined(ANGLE_POOL_ALLOC_GUARD_BLOCKS) |
| if (lastAllocation) |
| lastAllocation->checkAllocList(); |
| # endif |
| } |
| |
| Header *nextPage; |
| size_t pageCount; |
| # if defined(ANGLE_POOL_ALLOC_GUARD_BLOCKS) |
| Allocation *lastAllocation; |
| # endif |
| }; |
| |
| struct AllocState |
| { |
| size_t offset; |
| Header *page; |
| }; |
| using AllocStack = std::vector<AllocState>; |
| |
| // Slow path of allocation when we have to get a new page. |
| void *allocateNewPage(size_t numBytes, size_t allocationSize); |
| // Track allocations if and only if we're using guard blocks |
| void *initializeAllocation(Header *block, unsigned char *memory, size_t numBytes) |
| { |
| # if defined(ANGLE_POOL_ALLOC_GUARD_BLOCKS) |
| new (memory) Allocation(numBytes + mAlignment, memory, block->lastAllocation); |
| block->lastAllocation = reinterpret_cast<Allocation *>(memory); |
| # endif |
| // The OffsetAllocation() call is optimized away if !defined(ANGLE_POOL_ALLOC_GUARD_BLOCKS) |
| void *unalignedPtr = Allocation::OffsetAllocation(memory); |
| size_t alignedBytes = numBytes + mAlignment; |
| return std::align(mAlignment, numBytes, unalignedPtr, alignedBytes); |
| } |
| |
| size_t mPageSize; // granularity of allocation from the OS |
| size_t mHeaderSkip; // amount of memory to skip to make room for the |
| // header (basically, size of header, rounded |
| // up to make it aligned |
| size_t mCurrentPageOffset; // next offset in top of inUseList to allocate from |
| Header *mFreeList; // list of popped memory |
| Header *mInUseList; // list of all memory currently being used |
| AllocStack mStack; // stack of where to allocate from, to partition pool |
| |
| int mNumCalls; // just an interesting statistic |
| size_t mTotalBytes; // just an interesting statistic |
| |
| #else // !defined(ANGLE_DISABLE_POOL_ALLOC) |
| std::vector<std::vector<void *>> mStack; |
| #endif |
| |
| bool mLocked; |
| }; |
| |
| } // namespace angle |
| |
| #endif // COMMON_POOLALLOC_H_ |