blob: 7f5191d50bfe14f75dbb05d82fbd9fb18a80f8c5 [file] [log] [blame]
/*
* Copyright (C) 2017 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "MacroAssembler.h"
#include "ProbeStack.h"
#if ENABLE(MASM_PROBE)
namespace JSC {
namespace Probe {
struct CPUState {
using RegisterID = MacroAssembler::RegisterID;
using SPRegisterID = MacroAssembler::SPRegisterID;
using FPRegisterID = MacroAssembler::FPRegisterID;
static inline const char* gprName(RegisterID id) { return MacroAssembler::gprName(id); }
static inline const char* sprName(SPRegisterID id) { return MacroAssembler::sprName(id); }
static inline const char* fprName(FPRegisterID id) { return MacroAssembler::fprName(id); }
inline UCPURegister& gpr(RegisterID);
inline UCPURegister& spr(SPRegisterID);
inline double& fpr(FPRegisterID);
template<typename T> T gpr(RegisterID) const;
template<typename T> T spr(SPRegisterID) const;
template<typename T> T fpr(FPRegisterID) const;
void*& pc();
void*& fp();
void*& sp();
template<typename T> T pc() const;
template<typename T> T fp() const;
template<typename T> T sp() const;
UCPURegister gprs[MacroAssembler::numberOfRegisters()];
UCPURegister sprs[MacroAssembler::numberOfSPRegisters()];
double fprs[MacroAssembler::numberOfFPRegisters()];
};
inline UCPURegister& CPUState::gpr(RegisterID id)
{
ASSERT(id >= MacroAssembler::firstRegister() && id <= MacroAssembler::lastRegister());
return gprs[id];
}
inline UCPURegister& CPUState::spr(SPRegisterID id)
{
ASSERT(id >= MacroAssembler::firstSPRegister() && id <= MacroAssembler::lastSPRegister());
return sprs[id];
}
inline double& CPUState::fpr(FPRegisterID id)
{
ASSERT(id >= MacroAssembler::firstFPRegister() && id <= MacroAssembler::lastFPRegister());
return fprs[id];
}
template<typename T>
T CPUState::gpr(RegisterID id) const
{
CPUState* cpu = const_cast<CPUState*>(this);
auto& from = cpu->gpr(id);
typename std::remove_const<T>::type to { };
std::memcpy(static_cast<void*>(&to), &from, sizeof(to)); // Use std::memcpy to avoid strict aliasing issues.
return to;
}
template<typename T>
T CPUState::spr(SPRegisterID id) const
{
CPUState* cpu = const_cast<CPUState*>(this);
auto& from = cpu->spr(id);
typename std::remove_const<T>::type to { };
std::memcpy(static_cast<void*>(&to), &from, sizeof(to)); // Use std::memcpy to avoid strict aliasing issues.
return to;
}
template<typename T>
T CPUState::fpr(FPRegisterID id) const
{
CPUState* cpu = const_cast<CPUState*>(this);
return bitwise_cast<T>(cpu->fpr(id));
}
inline void*& CPUState::pc()
{
#if CPU(X86) || CPU(X86_64)
return *reinterpret_cast<void**>(&spr(X86Registers::eip));
#elif CPU(ARM64)
return *reinterpret_cast<void**>(&spr(ARM64Registers::pc));
#elif CPU(ARM_THUMB2)
return *reinterpret_cast<void**>(&gpr(ARMRegisters::pc));
#elif CPU(MIPS)
return *reinterpret_cast<void**>(&spr(MIPSRegisters::pc));
#else
#error "Unsupported CPU"
#endif
}
inline void*& CPUState::fp()
{
#if CPU(X86) || CPU(X86_64)
return *reinterpret_cast<void**>(&gpr(X86Registers::ebp));
#elif CPU(ARM64)
return *reinterpret_cast<void**>(&gpr(ARM64Registers::fp));
#elif CPU(ARM_THUMB2)
return *reinterpret_cast<void**>(&gpr(ARMRegisters::fp));
#elif CPU(MIPS)
return *reinterpret_cast<void**>(&gpr(MIPSRegisters::fp));
#else
#error "Unsupported CPU"
#endif
}
inline void*& CPUState::sp()
{
#if CPU(X86) || CPU(X86_64)
return *reinterpret_cast<void**>(&gpr(X86Registers::esp));
#elif CPU(ARM64)
return *reinterpret_cast<void**>(&gpr(ARM64Registers::sp));
#elif CPU(ARM_THUMB2)
return *reinterpret_cast<void**>(&gpr(ARMRegisters::sp));
#elif CPU(MIPS)
return *reinterpret_cast<void**>(&gpr(MIPSRegisters::sp));
#else
#error "Unsupported CPU"
#endif
}
template<typename T>
T CPUState::pc() const
{
CPUState* cpu = const_cast<CPUState*>(this);
return reinterpret_cast<T>(cpu->pc());
}
template<typename T>
T CPUState::fp() const
{
CPUState* cpu = const_cast<CPUState*>(this);
return reinterpret_cast<T>(cpu->fp());
}
template<typename T>
T CPUState::sp() const
{
CPUState* cpu = const_cast<CPUState*>(this);
return reinterpret_cast<T>(cpu->sp());
}
struct State;
typedef void (*StackInitializationFunction)(State*);
struct State {
Probe::Function probeFunction;
void* arg;
StackInitializationFunction initializeStackFunction;
void* initializeStackArg;
CPUState cpu;
};
class Context {
WTF_MAKE_FAST_ALLOCATED;
public:
using RegisterID = MacroAssembler::RegisterID;
using SPRegisterID = MacroAssembler::SPRegisterID;
using FPRegisterID = MacroAssembler::FPRegisterID;
Context(State* state)
: cpu(state->cpu)
, m_state(state)
{ }
template<typename T>
T arg() { return reinterpret_cast<T>(m_state->arg); }
UCPURegister& gpr(RegisterID id) { return cpu.gpr(id); }
UCPURegister& spr(SPRegisterID id) { return cpu.spr(id); }
double& fpr(FPRegisterID id) { return cpu.fpr(id); }
const char* gprName(RegisterID id) { return cpu.gprName(id); }
const char* sprName(SPRegisterID id) { return cpu.sprName(id); }
const char* fprName(FPRegisterID id) { return cpu.fprName(id); }
template<typename T> T gpr(RegisterID id) const { return cpu.gpr<T>(id); }
template<typename T> T spr(SPRegisterID id) const { return cpu.spr<T>(id); }
template<typename T> T fpr(FPRegisterID id) const { return cpu.fpr<T>(id); }
void*& pc() { return cpu.pc(); }
void*& fp() { return cpu.fp(); }
void*& sp() { return cpu.sp(); }
template<typename T> T pc() { return cpu.pc<T>(); }
template<typename T> T fp() { return cpu.fp<T>(); }
template<typename T> T sp() { return cpu.sp<T>(); }
Stack& stack()
{
ASSERT(m_stack.isValid());
return m_stack;
};
bool hasWritesToFlush() { return m_stack.hasWritesToFlush(); }
Stack* releaseStack() { return new Stack(WTFMove(m_stack)); }
CPUState& cpu;
private:
State* m_state;
Stack m_stack;
friend JS_EXPORT_PRIVATE void* probeStateForContext(Context&); // Not for general use. This should only be for writing tests.
};
void executeProbe(State*);
} // namespace Probe
} // namespace JSC
#endif // ENABLE(MASM_PROBE)