| /* |
| * Copyright (C) 2008-2019 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #pragma once |
| |
| #if ENABLE(ASSEMBLER) |
| |
| #include "JSCJSValue.h" |
| |
| #if CPU(ARM_THUMB2) |
| #define TARGET_ASSEMBLER ARMv7Assembler |
| #define TARGET_MACROASSEMBLER MacroAssemblerARMv7 |
| #include "MacroAssemblerARMv7.h" |
| namespace JSC { typedef MacroAssemblerARMv7 MacroAssemblerBase; }; |
| |
| #elif CPU(ARM64E) |
| #define TARGET_ASSEMBLER ARM64EAssembler |
| #define TARGET_MACROASSEMBLER MacroAssemblerARM64E |
| #include "MacroAssemblerARM64E.h" |
| |
| #elif CPU(ARM64) |
| #define TARGET_ASSEMBLER ARM64Assembler |
| #define TARGET_MACROASSEMBLER MacroAssemblerARM64 |
| #include "MacroAssemblerARM64.h" |
| |
| #elif CPU(MIPS) |
| #define TARGET_ASSEMBLER MIPSAssembler |
| #define TARGET_MACROASSEMBLER MacroAssemblerMIPS |
| #include "MacroAssemblerMIPS.h" |
| |
| #elif CPU(X86) |
| #define TARGET_ASSEMBLER X86Assembler |
| #define TARGET_MACROASSEMBLER MacroAssemblerX86 |
| #include "MacroAssemblerX86.h" |
| |
| #elif CPU(X86_64) |
| #define TARGET_ASSEMBLER X86Assembler |
| #define TARGET_MACROASSEMBLER MacroAssemblerX86_64 |
| #include "MacroAssemblerX86_64.h" |
| |
| #else |
| #error "The MacroAssembler is not supported on this platform." |
| #endif |
| |
| #include "MacroAssemblerHelpers.h" |
| |
| namespace WTF { |
| |
| template<typename FunctionType> |
| class ScopedLambda; |
| |
| } // namespace WTF |
| |
| namespace JSC { |
| |
| #if ENABLE(MASM_PROBE) |
| namespace Probe { |
| |
| class Context; |
| typedef void (*Function)(Context&); |
| |
| } // namespace Probe |
| #endif // ENABLE(MASM_PROBE) |
| |
| namespace Printer { |
| |
| struct PrintRecord; |
| typedef Vector<PrintRecord> PrintRecordList; |
| |
| } // namespace Printer |
| |
| using MacroAssemblerBase = TARGET_MACROASSEMBLER; |
| |
| class MacroAssembler : public MacroAssemblerBase { |
| public: |
| |
| static constexpr RegisterID nextRegister(RegisterID reg) |
| { |
| return static_cast<RegisterID>(reg + 1); |
| } |
| |
| static constexpr FPRegisterID nextFPRegister(FPRegisterID reg) |
| { |
| return static_cast<FPRegisterID>(reg + 1); |
| } |
| |
| static constexpr unsigned registerIndex(RegisterID reg) |
| { |
| return reg - firstRegister(); |
| } |
| |
| static constexpr unsigned fpRegisterIndex(FPRegisterID reg) |
| { |
| return reg - firstFPRegister(); |
| } |
| |
| static constexpr unsigned registerIndex(FPRegisterID reg) |
| { |
| return fpRegisterIndex(reg) + numberOfRegisters(); |
| } |
| |
| static constexpr unsigned totalNumberOfRegisters() |
| { |
| return numberOfRegisters() + numberOfFPRegisters(); |
| } |
| |
| using MacroAssemblerBase::pop; |
| using MacroAssemblerBase::jump; |
| using MacroAssemblerBase::farJump; |
| using MacroAssemblerBase::branch32; |
| using MacroAssemblerBase::compare32; |
| using MacroAssemblerBase::move; |
| using MacroAssemblerBase::moveDouble; |
| using MacroAssemblerBase::add32; |
| using MacroAssemblerBase::mul32; |
| using MacroAssemblerBase::and32; |
| using MacroAssemblerBase::branchAdd32; |
| using MacroAssemblerBase::branchMul32; |
| #if CPU(ARM64) || CPU(ARM_THUMB2) || CPU(X86_64) || CPU(MIPS) |
| using MacroAssemblerBase::branchPtr; |
| #endif |
| using MacroAssemblerBase::branchSub32; |
| using MacroAssemblerBase::lshift32; |
| using MacroAssemblerBase::or32; |
| using MacroAssemblerBase::rshift32; |
| using MacroAssemblerBase::store32; |
| using MacroAssemblerBase::sub32; |
| using MacroAssemblerBase::urshift32; |
| using MacroAssemblerBase::xor32; |
| |
| static bool isPtrAlignedAddressOffset(ptrdiff_t value) |
| { |
| return value == static_cast<int32_t>(value); |
| } |
| |
| static const double twoToThe32; // This is super useful for some double code. |
| |
| // Utilities used by the DFG JIT. |
| using AbstractMacroAssemblerBase::invert; |
| using MacroAssemblerBase::invert; |
| |
| static DoubleCondition invert(DoubleCondition cond) |
| { |
| switch (cond) { |
| case DoubleEqual: |
| return DoubleNotEqualOrUnordered; |
| case DoubleNotEqual: |
| return DoubleEqualOrUnordered; |
| case DoubleGreaterThan: |
| return DoubleLessThanOrEqualOrUnordered; |
| case DoubleGreaterThanOrEqual: |
| return DoubleLessThanOrUnordered; |
| case DoubleLessThan: |
| return DoubleGreaterThanOrEqualOrUnordered; |
| case DoubleLessThanOrEqual: |
| return DoubleGreaterThanOrUnordered; |
| case DoubleEqualOrUnordered: |
| return DoubleNotEqual; |
| case DoubleNotEqualOrUnordered: |
| return DoubleEqual; |
| case DoubleGreaterThanOrUnordered: |
| return DoubleLessThanOrEqual; |
| case DoubleGreaterThanOrEqualOrUnordered: |
| return DoubleLessThan; |
| case DoubleLessThanOrUnordered: |
| return DoubleGreaterThanOrEqual; |
| case DoubleLessThanOrEqualOrUnordered: |
| return DoubleGreaterThan; |
| } |
| RELEASE_ASSERT_NOT_REACHED(); |
| return DoubleEqual; // make compiler happy |
| } |
| |
| static bool isInvertible(ResultCondition cond) |
| { |
| switch (cond) { |
| case Zero: |
| case NonZero: |
| case Signed: |
| case PositiveOrZero: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static ResultCondition invert(ResultCondition cond) |
| { |
| switch (cond) { |
| case Zero: |
| return NonZero; |
| case NonZero: |
| return Zero; |
| case Signed: |
| return PositiveOrZero; |
| case PositiveOrZero: |
| return Signed; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| return Zero; // Make compiler happy for release builds. |
| } |
| } |
| |
| static RelationalCondition flip(RelationalCondition cond) |
| { |
| switch (cond) { |
| case Equal: |
| case NotEqual: |
| return cond; |
| case Above: |
| return Below; |
| case AboveOrEqual: |
| return BelowOrEqual; |
| case Below: |
| return Above; |
| case BelowOrEqual: |
| return AboveOrEqual; |
| case GreaterThan: |
| return LessThan; |
| case GreaterThanOrEqual: |
| return LessThanOrEqual; |
| case LessThan: |
| return GreaterThan; |
| case LessThanOrEqual: |
| return GreaterThanOrEqual; |
| } |
| |
| RELEASE_ASSERT_NOT_REACHED(); |
| return Equal; |
| } |
| |
| static bool isSigned(RelationalCondition cond) |
| { |
| return MacroAssemblerHelpers::isSigned<MacroAssembler>(cond); |
| } |
| |
| static bool isUnsigned(RelationalCondition cond) |
| { |
| return MacroAssemblerHelpers::isUnsigned<MacroAssembler>(cond); |
| } |
| |
| static bool isSigned(ResultCondition cond) |
| { |
| return MacroAssemblerHelpers::isSigned<MacroAssembler>(cond); |
| } |
| |
| static bool isUnsigned(ResultCondition cond) |
| { |
| return MacroAssemblerHelpers::isUnsigned<MacroAssembler>(cond); |
| } |
| |
| // Platform agnostic convenience functions, |
| // described in terms of other macro assembly methods. |
| void pop() |
| { |
| addPtr(TrustedImm32(sizeof(void*)), stackPointerRegister); |
| } |
| |
| void peek(RegisterID dest, int index = 0) |
| { |
| loadPtr(Address(stackPointerRegister, (index * sizeof(void*))), dest); |
| } |
| |
| Address addressForPoke(int index) |
| { |
| return Address(stackPointerRegister, (index * sizeof(void*))); |
| } |
| |
| void poke(RegisterID src, int index = 0) |
| { |
| storePtr(src, addressForPoke(index)); |
| } |
| |
| void poke(TrustedImm32 value, int index = 0) |
| { |
| store32(value, addressForPoke(index)); |
| } |
| |
| void poke(TrustedImmPtr imm, int index = 0) |
| { |
| storePtr(imm, addressForPoke(index)); |
| } |
| |
| void poke(FPRegisterID src, int index = 0) |
| { |
| storeDouble(src, addressForPoke(index)); |
| } |
| |
| #if !CPU(ARM64) |
| void pushToSave(RegisterID src) |
| { |
| push(src); |
| } |
| void pushToSaveImmediateWithoutTouchingRegisters(TrustedImm32 imm) |
| { |
| push(imm); |
| } |
| void popToRestore(RegisterID dest) |
| { |
| pop(dest); |
| } |
| void pushToSave(FPRegisterID src) |
| { |
| subPtr(TrustedImm32(sizeof(double)), stackPointerRegister); |
| storeDouble(src, stackPointerRegister); |
| } |
| void popToRestore(FPRegisterID dest) |
| { |
| loadDouble(stackPointerRegister, dest); |
| addPtr(TrustedImm32(sizeof(double)), stackPointerRegister); |
| } |
| |
| static ptrdiff_t pushToSaveByteOffset() { return sizeof(void*); } |
| #endif // !CPU(ARM64) |
| |
| #if CPU(X86_64) || CPU(ARM64) |
| void peek64(RegisterID dest, int index = 0) |
| { |
| load64(Address(stackPointerRegister, (index * sizeof(void*))), dest); |
| } |
| |
| void poke(TrustedImm64 value, int index = 0) |
| { |
| store64(value, addressForPoke(index)); |
| } |
| |
| void poke64(RegisterID src, int index = 0) |
| { |
| store64(src, addressForPoke(index)); |
| } |
| #endif |
| |
| // Immediate shifts only have 5 controllable bits |
| // so we'll consider them safe for now. |
| TrustedImm32 trustedImm32ForShift(Imm32 imm) |
| { |
| return TrustedImm32(imm.asTrustedImm32().m_value & 31); |
| } |
| |
| // Backwards banches, these are currently all implemented using existing forwards branch mechanisms. |
| void branchPtr(RelationalCondition cond, RegisterID op1, TrustedImmPtr imm, Label target) |
| { |
| branchPtr(cond, op1, imm).linkTo(target, this); |
| } |
| void branchPtr(RelationalCondition cond, RegisterID op1, ImmPtr imm, Label target) |
| { |
| branchPtr(cond, op1, imm).linkTo(target, this); |
| } |
| |
| Jump branch32(RelationalCondition cond, RegisterID left, AbsoluteAddress right) |
| { |
| return branch32(flip(cond), right, left); |
| } |
| |
| void branch32(RelationalCondition cond, RegisterID op1, RegisterID op2, Label target) |
| { |
| branch32(cond, op1, op2).linkTo(target, this); |
| } |
| |
| void branch32(RelationalCondition cond, RegisterID op1, TrustedImm32 imm, Label target) |
| { |
| branch32(cond, op1, imm).linkTo(target, this); |
| } |
| |
| void branch32(RelationalCondition cond, RegisterID op1, Imm32 imm, Label target) |
| { |
| branch32(cond, op1, imm).linkTo(target, this); |
| } |
| |
| void branch32(RelationalCondition cond, RegisterID left, Address right, Label target) |
| { |
| branch32(cond, left, right).linkTo(target, this); |
| } |
| |
| Jump branch32(RelationalCondition cond, TrustedImm32 left, RegisterID right) |
| { |
| return branch32(commute(cond), right, left); |
| } |
| |
| Jump branch32(RelationalCondition cond, Imm32 left, RegisterID right) |
| { |
| return branch32(commute(cond), right, left); |
| } |
| |
| void compare32(RelationalCondition cond, Imm32 left, RegisterID right, RegisterID dest) |
| { |
| compare32(commute(cond), right, left, dest); |
| } |
| |
| void branchTestPtr(ResultCondition cond, RegisterID reg, Label target) |
| { |
| branchTestPtr(cond, reg).linkTo(target, this); |
| } |
| |
| #if !CPU(ARM_THUMB2) && !CPU(ARM64) |
| PatchableJump patchableBranchPtr(RelationalCondition cond, Address left, TrustedImmPtr right = TrustedImmPtr(nullptr)) |
| { |
| return PatchableJump(branchPtr(cond, left, right)); |
| } |
| |
| PatchableJump patchableBranchPtrWithPatch(RelationalCondition cond, Address left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(nullptr)) |
| { |
| return PatchableJump(branchPtrWithPatch(cond, left, dataLabel, initialRightValue)); |
| } |
| |
| PatchableJump patchableBranch32WithPatch(RelationalCondition cond, Address left, DataLabel32& dataLabel, TrustedImm32 initialRightValue = TrustedImm32(0)) |
| { |
| return PatchableJump(branch32WithPatch(cond, left, dataLabel, initialRightValue)); |
| } |
| |
| PatchableJump patchableJump() |
| { |
| return PatchableJump(jump()); |
| } |
| |
| PatchableJump patchableBranchTest32(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1)) |
| { |
| return PatchableJump(branchTest32(cond, reg, mask)); |
| } |
| |
| PatchableJump patchableBranch32(RelationalCondition cond, RegisterID reg, TrustedImm32 imm) |
| { |
| return PatchableJump(branch32(cond, reg, imm)); |
| } |
| |
| PatchableJump patchableBranch8(RelationalCondition cond, Address address, TrustedImm32 imm) |
| { |
| return PatchableJump(branch8(cond, address, imm)); |
| } |
| |
| PatchableJump patchableBranch32(RelationalCondition cond, Address address, TrustedImm32 imm) |
| { |
| return PatchableJump(branch32(cond, address, imm)); |
| } |
| #endif |
| |
| void jump(Label target) |
| { |
| jump().linkTo(target, this); |
| } |
| |
| // Commute a relational condition, returns a new condition that will produce |
| // the same results given the same inputs but with their positions exchanged. |
| static RelationalCondition commute(RelationalCondition condition) |
| { |
| switch (condition) { |
| case Above: |
| return Below; |
| case AboveOrEqual: |
| return BelowOrEqual; |
| case Below: |
| return Above; |
| case BelowOrEqual: |
| return AboveOrEqual; |
| case GreaterThan: |
| return LessThan; |
| case GreaterThanOrEqual: |
| return LessThanOrEqual; |
| case LessThan: |
| return GreaterThan; |
| case LessThanOrEqual: |
| return GreaterThanOrEqual; |
| default: |
| break; |
| } |
| |
| ASSERT(condition == Equal || condition == NotEqual); |
| return condition; |
| } |
| |
| void oops() |
| { |
| abortWithReason(B3Oops); |
| } |
| |
| // B3 has additional pseudo-opcodes for returning, when it wants to signal that the return |
| // consumes some register in some way. |
| void retVoid() { ret(); } |
| void ret32(RegisterID) { ret(); } |
| void ret64(RegisterID) { ret(); } |
| void retFloat(FPRegisterID) { ret(); } |
| void retDouble(FPRegisterID) { ret(); } |
| |
| static constexpr unsigned BlindingModulus = 64; |
| bool shouldConsiderBlinding() |
| { |
| return !(random() & (BlindingModulus - 1)); |
| } |
| |
| void move(Address src, Address dest, RegisterID scratch) |
| { |
| loadPtr(src, scratch); |
| storePtr(scratch, dest); |
| } |
| |
| void move32(Address src, Address dest, RegisterID scratch) |
| { |
| load32(src, scratch); |
| store32(scratch, dest); |
| } |
| |
| void moveFloat(Address src, Address dest, FPRegisterID scratch) |
| { |
| loadFloat(src, scratch); |
| storeFloat(scratch, dest); |
| } |
| |
| // Overload mostly for use in templates. |
| void move(FPRegisterID src, FPRegisterID dest) |
| { |
| moveDouble(src, dest); |
| } |
| |
| void moveDouble(Address src, Address dest, FPRegisterID scratch) |
| { |
| loadDouble(src, scratch); |
| storeDouble(scratch, dest); |
| } |
| |
| // Ptr methods |
| // On 32-bit platforms (i.e. x86), these methods directly map onto their 32-bit equivalents. |
| // FIXME: should this use a test for 32-bitness instead of this specific exception? |
| #if !CPU(X86_64) && !CPU(ARM64) |
| void addPtr(Address src, RegisterID dest) |
| { |
| add32(src, dest); |
| } |
| |
| void addPtr(AbsoluteAddress src, RegisterID dest) |
| { |
| add32(src, dest); |
| } |
| |
| void addPtr(RegisterID src, RegisterID dest) |
| { |
| add32(src, dest); |
| } |
| |
| void addPtr(RegisterID left, RegisterID right, RegisterID dest) |
| { |
| add32(left, right, dest); |
| } |
| |
| void addPtr(TrustedImm32 imm, RegisterID srcDest) |
| { |
| add32(imm, srcDest); |
| } |
| |
| void addPtr(TrustedImmPtr imm, RegisterID dest) |
| { |
| add32(TrustedImm32(imm), dest); |
| } |
| |
| void addPtr(TrustedImm32 imm, RegisterID src, RegisterID dest) |
| { |
| add32(imm, src, dest); |
| } |
| |
| void addPtr(TrustedImm32 imm, AbsoluteAddress address) |
| { |
| add32(imm, address); |
| } |
| |
| void andPtr(RegisterID src, RegisterID dest) |
| { |
| and32(src, dest); |
| } |
| |
| void andPtr(TrustedImm32 imm, RegisterID srcDest) |
| { |
| and32(imm, srcDest); |
| } |
| |
| void andPtr(TrustedImmPtr imm, RegisterID srcDest) |
| { |
| and32(TrustedImm32(imm), srcDest); |
| } |
| |
| void lshiftPtr(Imm32 imm, RegisterID srcDest) |
| { |
| lshift32(trustedImm32ForShift(imm), srcDest); |
| } |
| |
| void lshiftPtr(TrustedImm32 imm, RegisterID srcDest) |
| { |
| lshift32(imm, srcDest); |
| } |
| |
| void rshiftPtr(Imm32 imm, RegisterID srcDest) |
| { |
| rshift32(trustedImm32ForShift(imm), srcDest); |
| } |
| |
| void rshiftPtr(TrustedImm32 imm, RegisterID srcDest) |
| { |
| rshift32(imm, srcDest); |
| } |
| |
| void urshiftPtr(Imm32 imm, RegisterID srcDest) |
| { |
| urshift32(trustedImm32ForShift(imm), srcDest); |
| } |
| |
| void urshiftPtr(RegisterID shiftAmmount, RegisterID srcDest) |
| { |
| urshift32(shiftAmmount, srcDest); |
| } |
| |
| void negPtr(RegisterID dest) |
| { |
| neg32(dest); |
| } |
| |
| void negPtr(RegisterID src, RegisterID dest) |
| { |
| neg32(src, dest); |
| } |
| |
| void orPtr(RegisterID src, RegisterID dest) |
| { |
| or32(src, dest); |
| } |
| |
| void orPtr(RegisterID op1, RegisterID op2, RegisterID dest) |
| { |
| or32(op1, op2, dest); |
| } |
| |
| void orPtr(TrustedImmPtr imm, RegisterID dest) |
| { |
| or32(TrustedImm32(imm), dest); |
| } |
| |
| void orPtr(TrustedImm32 imm, RegisterID dest) |
| { |
| or32(imm, dest); |
| } |
| |
| void subPtr(RegisterID src, RegisterID dest) |
| { |
| sub32(src, dest); |
| } |
| |
| void subPtr(TrustedImm32 imm, RegisterID dest) |
| { |
| sub32(imm, dest); |
| } |
| |
| void subPtr(TrustedImmPtr imm, RegisterID dest) |
| { |
| sub32(TrustedImm32(imm), dest); |
| } |
| |
| void xorPtr(RegisterID src, RegisterID dest) |
| { |
| xor32(src, dest); |
| } |
| |
| void xorPtr(TrustedImm32 imm, RegisterID srcDest) |
| { |
| xor32(imm, srcDest); |
| } |
| |
| void xorPtr(TrustedImmPtr imm, RegisterID srcDest) |
| { |
| xor32(TrustedImm32(imm), srcDest); |
| } |
| |
| void xorPtr(Address src, RegisterID dest) |
| { |
| xor32(src, dest); |
| } |
| |
| void loadPtr(ImplicitAddress address, RegisterID dest) |
| { |
| load32(address, dest); |
| } |
| |
| void loadPtr(BaseIndex address, RegisterID dest) |
| { |
| load32(address, dest); |
| } |
| |
| void loadPtr(const void* address, RegisterID dest) |
| { |
| load32(address, dest); |
| } |
| |
| #if ENABLE(FAST_TLS_JIT) |
| void loadFromTLSPtr(uint32_t offset, RegisterID dst) |
| { |
| loadFromTLS32(offset, dst); |
| } |
| |
| void storeToTLSPtr(RegisterID src, uint32_t offset) |
| { |
| storeToTLS32(src, offset); |
| } |
| #endif |
| |
| DataLabel32 loadPtrWithAddressOffsetPatch(Address address, RegisterID dest) |
| { |
| return load32WithAddressOffsetPatch(address, dest); |
| } |
| |
| DataLabelCompact loadPtrWithCompactAddressOffsetPatch(Address address, RegisterID dest) |
| { |
| return load32WithCompactAddressOffsetPatch(address, dest); |
| } |
| |
| void move(ImmPtr imm, RegisterID dest) |
| { |
| move(Imm32(imm.asTrustedImmPtr()), dest); |
| } |
| |
| void comparePtr(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest) |
| { |
| compare32(cond, left, right, dest); |
| } |
| |
| void comparePtr(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID dest) |
| { |
| compare32(cond, left, right, dest); |
| } |
| |
| void storePtr(RegisterID src, ImplicitAddress address) |
| { |
| store32(src, address); |
| } |
| |
| void storePtr(RegisterID src, BaseIndex address) |
| { |
| store32(src, address); |
| } |
| |
| void storePtr(RegisterID src, void* address) |
| { |
| store32(src, address); |
| } |
| |
| void storePtr(TrustedImmPtr imm, ImplicitAddress address) |
| { |
| store32(TrustedImm32(imm), address); |
| } |
| |
| void storePtr(ImmPtr imm, Address address) |
| { |
| store32(Imm32(imm.asTrustedImmPtr()), address); |
| } |
| |
| void storePtr(TrustedImmPtr imm, void* address) |
| { |
| store32(TrustedImm32(imm), address); |
| } |
| |
| void storePtr(TrustedImm32 imm, ImplicitAddress address) |
| { |
| store32(imm, address); |
| } |
| |
| void storePtr(TrustedImmPtr imm, BaseIndex address) |
| { |
| store32(TrustedImm32(imm), address); |
| } |
| |
| DataLabel32 storePtrWithAddressOffsetPatch(RegisterID src, Address address) |
| { |
| return store32WithAddressOffsetPatch(src, address); |
| } |
| |
| Jump branchPtr(RelationalCondition cond, RegisterID left, RegisterID right) |
| { |
| return branch32(cond, left, right); |
| } |
| |
| Jump branchPtr(RelationalCondition cond, RegisterID left, TrustedImmPtr right) |
| { |
| return branch32(cond, left, TrustedImm32(right)); |
| } |
| |
| Jump branchPtr(RelationalCondition cond, RegisterID left, ImmPtr right) |
| { |
| return branch32(cond, left, Imm32(right.asTrustedImmPtr())); |
| } |
| |
| Jump branchPtr(RelationalCondition cond, RegisterID left, Address right) |
| { |
| return branch32(cond, left, right); |
| } |
| |
| Jump branchPtr(RelationalCondition cond, Address left, RegisterID right) |
| { |
| return branch32(cond, left, right); |
| } |
| |
| Jump branchPtr(RelationalCondition cond, AbsoluteAddress left, RegisterID right) |
| { |
| return branch32(cond, left, right); |
| } |
| |
| Jump branchPtr(RelationalCondition cond, Address left, TrustedImmPtr right) |
| { |
| return branch32(cond, left, TrustedImm32(right)); |
| } |
| |
| Jump branchPtr(RelationalCondition cond, AbsoluteAddress left, TrustedImmPtr right) |
| { |
| return branch32(cond, left, TrustedImm32(right)); |
| } |
| |
| Jump branchSubPtr(ResultCondition cond, RegisterID src, RegisterID dest) |
| { |
| return branchSub32(cond, src, dest); |
| } |
| |
| Jump branchTestPtr(ResultCondition cond, RegisterID reg, RegisterID mask) |
| { |
| return branchTest32(cond, reg, mask); |
| } |
| |
| Jump branchTestPtr(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1)) |
| { |
| return branchTest32(cond, reg, mask); |
| } |
| |
| Jump branchTestPtr(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1)) |
| { |
| return branchTest32(cond, address, mask); |
| } |
| |
| Jump branchTestPtr(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1)) |
| { |
| return branchTest32(cond, address, mask); |
| } |
| |
| Jump branchAddPtr(ResultCondition cond, RegisterID src, RegisterID dest) |
| { |
| return branchAdd32(cond, src, dest); |
| } |
| |
| Jump branchSubPtr(ResultCondition cond, TrustedImm32 imm, RegisterID dest) |
| { |
| return branchSub32(cond, imm, dest); |
| } |
| using MacroAssemblerBase::branchTest8; |
| Jump branchTest8(ResultCondition cond, ExtendedAddress address, TrustedImm32 mask = TrustedImm32(-1)) |
| { |
| return MacroAssemblerBase::branchTest8(cond, Address(address.base, address.offset), mask); |
| } |
| |
| #else // !CPU(X86_64) && !CPU(ARM64) |
| |
| void addPtr(RegisterID src, RegisterID dest) |
| { |
| add64(src, dest); |
| } |
| |
| void addPtr(RegisterID left, RegisterID right, RegisterID dest) |
| { |
| add64(left, right, dest); |
| } |
| |
| void addPtr(Address src, RegisterID dest) |
| { |
| add64(src, dest); |
| } |
| |
| void addPtr(TrustedImm32 imm, RegisterID srcDest) |
| { |
| add64(imm, srcDest); |
| } |
| |
| void addPtr(TrustedImm32 imm, RegisterID src, RegisterID dest) |
| { |
| add64(imm, src, dest); |
| } |
| |
| void addPtr(TrustedImm32 imm, Address address) |
| { |
| add64(imm, address); |
| } |
| |
| void addPtr(AbsoluteAddress src, RegisterID dest) |
| { |
| add64(src, dest); |
| } |
| |
| void addPtr(TrustedImmPtr imm, RegisterID dest) |
| { |
| add64(TrustedImm64(imm), dest); |
| } |
| |
| void addPtr(TrustedImm32 imm, AbsoluteAddress address) |
| { |
| add64(imm, address); |
| } |
| |
| void andPtr(RegisterID src, RegisterID dest) |
| { |
| and64(src, dest); |
| } |
| |
| void andPtr(TrustedImm32 imm, RegisterID srcDest) |
| { |
| and64(imm, srcDest); |
| } |
| |
| void andPtr(TrustedImmPtr imm, RegisterID srcDest) |
| { |
| and64(imm, srcDest); |
| } |
| |
| void lshiftPtr(Imm32 imm, RegisterID srcDest) |
| { |
| lshift64(trustedImm32ForShift(imm), srcDest); |
| } |
| |
| void lshiftPtr(TrustedImm32 imm, RegisterID srcDest) |
| { |
| lshift64(imm, srcDest); |
| } |
| |
| void rshiftPtr(Imm32 imm, RegisterID srcDest) |
| { |
| rshift64(trustedImm32ForShift(imm), srcDest); |
| } |
| |
| void rshiftPtr(TrustedImm32 imm, RegisterID srcDest) |
| { |
| rshift64(imm, srcDest); |
| } |
| |
| void urshiftPtr(Imm32 imm, RegisterID srcDest) |
| { |
| urshift64(trustedImm32ForShift(imm), srcDest); |
| } |
| |
| void urshiftPtr(RegisterID shiftAmmount, RegisterID srcDest) |
| { |
| urshift64(shiftAmmount, srcDest); |
| } |
| |
| void negPtr(RegisterID dest) |
| { |
| neg64(dest); |
| } |
| |
| void negPtr(RegisterID src, RegisterID dest) |
| { |
| neg64(src, dest); |
| } |
| |
| void orPtr(RegisterID src, RegisterID dest) |
| { |
| or64(src, dest); |
| } |
| |
| void orPtr(TrustedImm32 imm, RegisterID dest) |
| { |
| or64(imm, dest); |
| } |
| |
| void orPtr(TrustedImmPtr imm, RegisterID dest) |
| { |
| or64(TrustedImm64(imm), dest); |
| } |
| |
| void orPtr(RegisterID op1, RegisterID op2, RegisterID dest) |
| { |
| or64(op1, op2, dest); |
| } |
| |
| void orPtr(TrustedImm32 imm, RegisterID src, RegisterID dest) |
| { |
| or64(imm, src, dest); |
| } |
| |
| void rotateRightPtr(TrustedImm32 imm, RegisterID srcDst) |
| { |
| rotateRight64(imm, srcDst); |
| } |
| |
| void subPtr(RegisterID src, RegisterID dest) |
| { |
| sub64(src, dest); |
| } |
| |
| void subPtr(TrustedImm32 imm, RegisterID dest) |
| { |
| sub64(imm, dest); |
| } |
| |
| void subPtr(TrustedImmPtr imm, RegisterID dest) |
| { |
| sub64(TrustedImm64(imm), dest); |
| } |
| |
| void xorPtr(RegisterID src, RegisterID dest) |
| { |
| xor64(src, dest); |
| } |
| |
| void xorPtr(Address src, RegisterID dest) |
| { |
| xor64(src, dest); |
| } |
| |
| void xorPtr(RegisterID src, Address dest) |
| { |
| xor64(src, dest); |
| } |
| |
| void xorPtr(TrustedImm32 imm, RegisterID srcDest) |
| { |
| xor64(imm, srcDest); |
| } |
| |
| // FIXME: Look into making the need for a scratch register explicit, or providing the option to specify a scratch register. |
| void xorPtr(TrustedImmPtr imm, RegisterID srcDest) |
| { |
| xor64(TrustedImm64(imm), srcDest); |
| } |
| |
| void loadPtr(ImplicitAddress address, RegisterID dest) |
| { |
| load64(address, dest); |
| } |
| |
| void loadPtr(BaseIndex address, RegisterID dest) |
| { |
| load64(address, dest); |
| } |
| |
| void loadPtr(const void* address, RegisterID dest) |
| { |
| load64(address, dest); |
| } |
| |
| #if ENABLE(FAST_TLS_JIT) |
| void loadFromTLSPtr(uint32_t offset, RegisterID dst) |
| { |
| loadFromTLS64(offset, dst); |
| } |
| void storeToTLSPtr(RegisterID src, uint32_t offset) |
| { |
| storeToTLS64(src, offset); |
| } |
| #endif |
| |
| DataLabel32 loadPtrWithAddressOffsetPatch(Address address, RegisterID dest) |
| { |
| return load64WithAddressOffsetPatch(address, dest); |
| } |
| |
| DataLabelCompact loadPtrWithCompactAddressOffsetPatch(Address address, RegisterID dest) |
| { |
| return load64WithCompactAddressOffsetPatch(address, dest); |
| } |
| |
| void storePtr(RegisterID src, ImplicitAddress address) |
| { |
| store64(src, address); |
| } |
| |
| void storePtr(RegisterID src, BaseIndex address) |
| { |
| store64(src, address); |
| } |
| |
| void storePtr(RegisterID src, void* address) |
| { |
| store64(src, address); |
| } |
| |
| void storePtr(TrustedImmPtr imm, ImplicitAddress address) |
| { |
| store64(TrustedImm64(imm), address); |
| } |
| |
| void storePtr(TrustedImm32 imm, ImplicitAddress address) |
| { |
| store64(imm, address); |
| } |
| |
| void storePtr(TrustedImmPtr imm, BaseIndex address) |
| { |
| store64(TrustedImm64(imm), address); |
| } |
| |
| DataLabel32 storePtrWithAddressOffsetPatch(RegisterID src, Address address) |
| { |
| return store64WithAddressOffsetPatch(src, address); |
| } |
| |
| void comparePtr(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest) |
| { |
| compare64(cond, left, right, dest); |
| } |
| |
| void comparePtr(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID dest) |
| { |
| compare64(cond, left, right, dest); |
| } |
| |
| void testPtr(ResultCondition cond, RegisterID reg, TrustedImm32 mask, RegisterID dest) |
| { |
| test64(cond, reg, mask, dest); |
| } |
| |
| void testPtr(ResultCondition cond, RegisterID reg, RegisterID mask, RegisterID dest) |
| { |
| test64(cond, reg, mask, dest); |
| } |
| |
| Jump branchPtr(RelationalCondition cond, RegisterID left, RegisterID right) |
| { |
| return branch64(cond, left, right); |
| } |
| |
| Jump branchPtr(RelationalCondition cond, RegisterID left, TrustedImmPtr right) |
| { |
| return branch64(cond, left, TrustedImm64(right)); |
| } |
| |
| Jump branchPtr(RelationalCondition cond, RegisterID left, Address right) |
| { |
| return branch64(cond, left, right); |
| } |
| |
| Jump branchPtr(RelationalCondition cond, Address left, RegisterID right) |
| { |
| return branch64(cond, left, right); |
| } |
| |
| Jump branchPtr(RelationalCondition cond, AbsoluteAddress left, RegisterID right) |
| { |
| return branch64(cond, left, right); |
| } |
| |
| Jump branchPtr(RelationalCondition cond, Address left, TrustedImmPtr right) |
| { |
| return branch64(cond, left, TrustedImm64(right)); |
| } |
| |
| Jump branchTestPtr(ResultCondition cond, RegisterID reg, RegisterID mask) |
| { |
| return branchTest64(cond, reg, mask); |
| } |
| |
| Jump branchTestPtr(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1)) |
| { |
| return branchTest64(cond, reg, mask); |
| } |
| |
| Jump branchTestPtr(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1)) |
| { |
| return branchTest64(cond, address, mask); |
| } |
| |
| Jump branchTestPtr(ResultCondition cond, Address address, RegisterID reg) |
| { |
| return branchTest64(cond, address, reg); |
| } |
| |
| Jump branchTestPtr(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1)) |
| { |
| return branchTest64(cond, address, mask); |
| } |
| |
| Jump branchTestPtr(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1)) |
| { |
| return branchTest64(cond, address, mask); |
| } |
| |
| Jump branchAddPtr(ResultCondition cond, TrustedImm32 imm, RegisterID dest) |
| { |
| return branchAdd64(cond, imm, dest); |
| } |
| |
| Jump branchAddPtr(ResultCondition cond, RegisterID src, RegisterID dest) |
| { |
| return branchAdd64(cond, src, dest); |
| } |
| |
| Jump branchSubPtr(ResultCondition cond, TrustedImm32 imm, RegisterID dest) |
| { |
| return branchSub64(cond, imm, dest); |
| } |
| |
| Jump branchSubPtr(ResultCondition cond, RegisterID src, RegisterID dest) |
| { |
| return branchSub64(cond, src, dest); |
| } |
| |
| Jump branchSubPtr(ResultCondition cond, RegisterID src1, TrustedImm32 src2, RegisterID dest) |
| { |
| return branchSub64(cond, src1, src2, dest); |
| } |
| |
| using MacroAssemblerBase::and64; |
| using MacroAssemblerBase::convertInt32ToDouble; |
| using MacroAssemblerBase::store64; |
| bool shouldBlindDouble(double value) |
| { |
| // Don't trust NaN or +/-Infinity |
| if (!std::isfinite(value)) |
| return shouldConsiderBlinding(); |
| |
| // Try to force normalisation, and check that there's no change |
| // in the bit pattern |
| if (bitwise_cast<uint64_t>(value * 1.0) != bitwise_cast<uint64_t>(value)) |
| return shouldConsiderBlinding(); |
| |
| value = fabs(value); |
| // Only allow a limited set of fractional components |
| double scaledValue = value * 8; |
| if (scaledValue / 8 != value) |
| return shouldConsiderBlinding(); |
| double frac = scaledValue - floor(scaledValue); |
| if (frac != 0.0) |
| return shouldConsiderBlinding(); |
| |
| return value > 0xff; |
| } |
| |
| bool shouldBlindPointerForSpecificArch(uintptr_t value) |
| { |
| if (sizeof(void*) == 4) |
| return shouldBlindForSpecificArch(static_cast<uint32_t>(value)); |
| return shouldBlindForSpecificArch(static_cast<uint64_t>(value)); |
| } |
| |
| bool shouldBlind(ImmPtr imm) |
| { |
| if (!canBlind()) |
| return false; |
| |
| #if ENABLE(FORCED_JIT_BLINDING) |
| UNUSED_PARAM(imm); |
| // Debug always blind all constants, if only so we know |
| // if we've broken blinding during patch development. |
| return true; |
| #endif |
| |
| // First off we'll special case common, "safe" values to avoid hurting |
| // performance too much |
| uint64_t value = imm.asTrustedImmPtr().asIntptr(); |
| switch (value) { |
| case 0xffff: |
| case 0xffffff: |
| case 0xffffffffL: |
| case 0xffffffffffL: |
| case 0xffffffffffffL: |
| case 0xffffffffffffffL: |
| case 0xffffffffffffffffL: |
| return false; |
| default: { |
| if (value <= 0xff) |
| return false; |
| if (~value <= 0xff) |
| return false; |
| } |
| } |
| |
| if (!shouldConsiderBlinding()) |
| return false; |
| |
| return shouldBlindPointerForSpecificArch(static_cast<uintptr_t>(value)); |
| } |
| |
| uint8_t generateRotationSeed(size_t widthInBits) |
| { |
| // Generate the seed in [1, widthInBits - 1]. We should not generate widthInBits or 0 |
| // since it leads to `<< widthInBits` or `>> widthInBits`, which cause undefined behaviors. |
| return (random() % (widthInBits - 1)) + 1; |
| } |
| |
| struct RotatedImmPtr { |
| RotatedImmPtr(uintptr_t v1, uint8_t v2) |
| : value(v1) |
| , rotation(v2) |
| { |
| } |
| TrustedImmPtr value; |
| TrustedImm32 rotation; |
| }; |
| |
| RotatedImmPtr rotationBlindConstant(ImmPtr imm) |
| { |
| uint8_t rotation = generateRotationSeed(sizeof(void*) * 8); |
| uintptr_t value = imm.asTrustedImmPtr().asIntptr(); |
| value = (value << rotation) | (value >> (sizeof(void*) * 8 - rotation)); |
| return RotatedImmPtr(value, rotation); |
| } |
| |
| void loadRotationBlindedConstant(RotatedImmPtr constant, RegisterID dest) |
| { |
| move(constant.value, dest); |
| rotateRightPtr(constant.rotation, dest); |
| } |
| |
| bool shouldBlind(Imm64 imm) |
| { |
| #if ENABLE(FORCED_JIT_BLINDING) |
| UNUSED_PARAM(imm); |
| // Debug always blind all constants, if only so we know |
| // if we've broken blinding during patch development. |
| return true; |
| #endif |
| |
| // First off we'll special case common, "safe" values to avoid hurting |
| // performance too much |
| uint64_t value = imm.asTrustedImm64().m_value; |
| switch (value) { |
| case 0xffff: |
| case 0xffffff: |
| case 0xffffffffL: |
| case 0xffffffffffL: |
| case 0xffffffffffffL: |
| case 0xffffffffffffffL: |
| case 0xffffffffffffffffL: |
| return false; |
| default: { |
| if (value <= 0xff) |
| return false; |
| if (~value <= 0xff) |
| return false; |
| |
| JSValue jsValue = JSValue::decode(value); |
| if (jsValue.isInt32()) |
| return shouldBlind(Imm32(jsValue.asInt32())); |
| if (jsValue.isDouble() && !shouldBlindDouble(jsValue.asDouble())) |
| return false; |
| |
| if (!shouldBlindDouble(bitwise_cast<double>(value))) |
| return false; |
| } |
| } |
| |
| if (!shouldConsiderBlinding()) |
| return false; |
| |
| return shouldBlindForSpecificArch(value); |
| } |
| |
| struct RotatedImm64 { |
| RotatedImm64(uint64_t v1, uint8_t v2) |
| : value(v1) |
| , rotation(v2) |
| { |
| } |
| TrustedImm64 value; |
| TrustedImm32 rotation; |
| }; |
| |
| RotatedImm64 rotationBlindConstant(Imm64 imm) |
| { |
| uint8_t rotation = generateRotationSeed(sizeof(int64_t) * 8); |
| uint64_t value = imm.asTrustedImm64().m_value; |
| value = (value << rotation) | (value >> (sizeof(int64_t) * 8 - rotation)); |
| return RotatedImm64(value, rotation); |
| } |
| |
| void loadRotationBlindedConstant(RotatedImm64 constant, RegisterID dest) |
| { |
| move(constant.value, dest); |
| rotateRight64(constant.rotation, dest); |
| } |
| |
| void convertInt32ToDouble(Imm32 imm, FPRegisterID dest) |
| { |
| if (shouldBlind(imm) && haveScratchRegisterForBlinding()) { |
| RegisterID scratchRegister = scratchRegisterForBlinding(); |
| loadXorBlindedConstant(xorBlindConstant(imm), scratchRegister); |
| convertInt32ToDouble(scratchRegister, dest); |
| } else |
| convertInt32ToDouble(imm.asTrustedImm32(), dest); |
| } |
| |
| void move(ImmPtr imm, RegisterID dest) |
| { |
| if (shouldBlind(imm)) |
| loadRotationBlindedConstant(rotationBlindConstant(imm), dest); |
| else |
| move(imm.asTrustedImmPtr(), dest); |
| } |
| |
| void move(Imm64 imm, RegisterID dest) |
| { |
| if (shouldBlind(imm)) |
| loadRotationBlindedConstant(rotationBlindConstant(imm), dest); |
| else |
| move(imm.asTrustedImm64(), dest); |
| } |
| |
| #if CPU(X86_64) || CPU(ARM64) |
| void moveDouble(Imm64 imm, FPRegisterID dest) |
| { |
| move(imm, scratchRegister()); |
| move64ToDouble(scratchRegister(), dest); |
| } |
| #endif |
| |
| void and64(Imm32 imm, RegisterID dest) |
| { |
| if (shouldBlind(imm)) { |
| BlindedImm32 key = andBlindedConstant(imm); |
| and64(key.value1, dest); |
| and64(key.value2, dest); |
| } else |
| and64(imm.asTrustedImm32(), dest); |
| } |
| |
| Jump branchPtr(RelationalCondition cond, RegisterID left, ImmPtr right) |
| { |
| if (shouldBlind(right) && haveScratchRegisterForBlinding()) { |
| RegisterID scratchRegister = scratchRegisterForBlinding(); |
| loadRotationBlindedConstant(rotationBlindConstant(right), scratchRegister); |
| return branchPtr(cond, left, scratchRegister); |
| } |
| return branchPtr(cond, left, right.asTrustedImmPtr()); |
| } |
| |
| void storePtr(ImmPtr imm, Address dest) |
| { |
| if (shouldBlind(imm) && haveScratchRegisterForBlinding()) { |
| RegisterID scratchRegister = scratchRegisterForBlinding(); |
| loadRotationBlindedConstant(rotationBlindConstant(imm), scratchRegister); |
| storePtr(scratchRegister, dest); |
| } else |
| storePtr(imm.asTrustedImmPtr(), dest); |
| } |
| |
| void store64(Imm64 imm, Address dest) |
| { |
| if (shouldBlind(imm) && haveScratchRegisterForBlinding()) { |
| RegisterID scratchRegister = scratchRegisterForBlinding(); |
| loadRotationBlindedConstant(rotationBlindConstant(imm), scratchRegister); |
| store64(scratchRegister, dest); |
| } else |
| store64(imm.asTrustedImm64(), dest); |
| } |
| |
| #endif // !CPU(X86_64) |
| |
| #if !CPU(X86) && !CPU(X86_64) && !CPU(ARM64) |
| // We should implement this the right way eventually, but for now, it's fine because it arises so |
| // infrequently. |
| void compareDouble(DoubleCondition cond, FPRegisterID left, FPRegisterID right, RegisterID dest) |
| { |
| move(TrustedImm32(0), dest); |
| Jump falseCase = branchDouble(invert(cond), left, right); |
| move(TrustedImm32(1), dest); |
| falseCase.link(this); |
| } |
| #endif |
| |
| void lea32(Address address, RegisterID dest) |
| { |
| add32(TrustedImm32(address.offset), address.base, dest); |
| } |
| |
| #if CPU(X86_64) || CPU(ARM64) |
| void lea64(Address address, RegisterID dest) |
| { |
| add64(TrustedImm32(address.offset), address.base, dest); |
| } |
| #endif // CPU(X86_64) || CPU(ARM64) |
| |
| bool shouldBlind(Imm32 imm) |
| { |
| #if ENABLE(FORCED_JIT_BLINDING) |
| UNUSED_PARAM(imm); |
| // Debug always blind all constants, if only so we know |
| // if we've broken blinding during patch development. |
| return true; |
| #else // ENABLE(FORCED_JIT_BLINDING) |
| |
| // First off we'll special case common, "safe" values to avoid hurting |
| // performance too much |
| uint32_t value = imm.asTrustedImm32().m_value; |
| switch (value) { |
| case 0xffff: |
| case 0xffffff: |
| case 0xffffffff: |
| return false; |
| default: |
| if (value <= 0xff) |
| return false; |
| if (~value <= 0xff) |
| return false; |
| } |
| |
| if (!shouldConsiderBlinding()) |
| return false; |
| |
| return shouldBlindForSpecificArch(value); |
| #endif // ENABLE(FORCED_JIT_BLINDING) |
| } |
| |
| struct BlindedImm32 { |
| BlindedImm32(int32_t v1, int32_t v2) |
| : value1(v1) |
| , value2(v2) |
| { |
| } |
| TrustedImm32 value1; |
| TrustedImm32 value2; |
| }; |
| |
| uint32_t keyForConstant(uint32_t value, uint32_t& mask) |
| { |
| uint32_t key = random(); |
| if (value <= 0xff) |
| mask = 0xff; |
| else if (value <= 0xffff) |
| mask = 0xffff; |
| else if (value <= 0xffffff) |
| mask = 0xffffff; |
| else |
| mask = 0xffffffff; |
| return key & mask; |
| } |
| |
| uint32_t keyForConstant(uint32_t value) |
| { |
| uint32_t mask = 0; |
| return keyForConstant(value, mask); |
| } |
| |
| BlindedImm32 xorBlindConstant(Imm32 imm) |
| { |
| uint32_t baseValue = imm.asTrustedImm32().m_value; |
| uint32_t key = keyForConstant(baseValue); |
| return BlindedImm32(baseValue ^ key, key); |
| } |
| |
| BlindedImm32 additionBlindedConstant(Imm32 imm) |
| { |
| // The addition immediate may be used as a pointer offset. Keep aligned based on "imm". |
| static const uint32_t maskTable[4] = { 0xfffffffc, 0xffffffff, 0xfffffffe, 0xffffffff }; |
| |
| uint32_t baseValue = imm.asTrustedImm32().m_value; |
| uint32_t key = keyForConstant(baseValue) & maskTable[baseValue & 3]; |
| if (key > baseValue) |
| key = key - baseValue; |
| return BlindedImm32(baseValue - key, key); |
| } |
| |
| BlindedImm32 andBlindedConstant(Imm32 imm) |
| { |
| uint32_t baseValue = imm.asTrustedImm32().m_value; |
| uint32_t mask = 0; |
| uint32_t key = keyForConstant(baseValue, mask); |
| ASSERT((baseValue & mask) == baseValue); |
| return BlindedImm32(((baseValue & key) | ~key) & mask, ((baseValue & ~key) | key) & mask); |
| } |
| |
| BlindedImm32 orBlindedConstant(Imm32 imm) |
| { |
| uint32_t baseValue = imm.asTrustedImm32().m_value; |
| uint32_t mask = 0; |
| uint32_t key = keyForConstant(baseValue, mask); |
| ASSERT((baseValue & mask) == baseValue); |
| return BlindedImm32((baseValue & key) & mask, (baseValue & ~key) & mask); |
| } |
| |
| void loadXorBlindedConstant(BlindedImm32 constant, RegisterID dest) |
| { |
| move(constant.value1, dest); |
| xor32(constant.value2, dest); |
| } |
| |
| void add32(Imm32 imm, RegisterID dest) |
| { |
| if (shouldBlind(imm)) { |
| BlindedImm32 key = additionBlindedConstant(imm); |
| add32(key.value1, dest); |
| add32(key.value2, dest); |
| } else |
| add32(imm.asTrustedImm32(), dest); |
| } |
| |
| void add32(Imm32 imm, RegisterID src, RegisterID dest) |
| { |
| if (shouldBlind(imm)) { |
| BlindedImm32 key = additionBlindedConstant(imm); |
| add32(key.value1, src, dest); |
| add32(key.value2, dest); |
| } else |
| add32(imm.asTrustedImm32(), src, dest); |
| } |
| |
| void addPtr(Imm32 imm, RegisterID dest) |
| { |
| if (shouldBlind(imm)) { |
| BlindedImm32 key = additionBlindedConstant(imm); |
| addPtr(key.value1, dest); |
| addPtr(key.value2, dest); |
| } else |
| addPtr(imm.asTrustedImm32(), dest); |
| } |
| |
| void mul32(Imm32 imm, RegisterID src, RegisterID dest) |
| { |
| if (shouldBlind(imm)) { |
| if (src != dest || haveScratchRegisterForBlinding()) { |
| if (src == dest) { |
| move(src, scratchRegisterForBlinding()); |
| src = scratchRegisterForBlinding(); |
| } |
| loadXorBlindedConstant(xorBlindConstant(imm), dest); |
| mul32(src, dest); |
| return; |
| } |
| // If we don't have a scratch register available for use, we'll just |
| // place a random number of nops. |
| uint32_t nopCount = random() & 3; |
| while (nopCount--) |
| nop(); |
| } |
| mul32(imm.asTrustedImm32(), src, dest); |
| } |
| |
| void and32(Imm32 imm, RegisterID dest) |
| { |
| if (shouldBlind(imm)) { |
| BlindedImm32 key = andBlindedConstant(imm); |
| and32(key.value1, dest); |
| and32(key.value2, dest); |
| } else |
| and32(imm.asTrustedImm32(), dest); |
| } |
| |
| void andPtr(Imm32 imm, RegisterID dest) |
| { |
| if (shouldBlind(imm)) { |
| BlindedImm32 key = andBlindedConstant(imm); |
| andPtr(key.value1, dest); |
| andPtr(key.value2, dest); |
| } else |
| andPtr(imm.asTrustedImm32(), dest); |
| } |
| |
| void and32(Imm32 imm, RegisterID src, RegisterID dest) |
| { |
| if (shouldBlind(imm)) { |
| if (src == dest) |
| return and32(imm.asTrustedImm32(), dest); |
| loadXorBlindedConstant(xorBlindConstant(imm), dest); |
| and32(src, dest); |
| } else |
| and32(imm.asTrustedImm32(), src, dest); |
| } |
| |
| void move(Imm32 imm, RegisterID dest) |
| { |
| if (shouldBlind(imm)) |
| loadXorBlindedConstant(xorBlindConstant(imm), dest); |
| else |
| move(imm.asTrustedImm32(), dest); |
| } |
| |
| void or32(Imm32 imm, RegisterID src, RegisterID dest) |
| { |
| if (shouldBlind(imm)) { |
| if (src == dest) |
| return or32(imm, dest); |
| loadXorBlindedConstant(xorBlindConstant(imm), dest); |
| or32(src, dest); |
| } else |
| or32(imm.asTrustedImm32(), src, dest); |
| } |
| |
| void or32(Imm32 imm, RegisterID dest) |
| { |
| if (shouldBlind(imm)) { |
| BlindedImm32 key = orBlindedConstant(imm); |
| or32(key.value1, dest); |
| or32(key.value2, dest); |
| } else |
| or32(imm.asTrustedImm32(), dest); |
| } |
| |
| void poke(Imm32 value, int index = 0) |
| { |
| store32(value, addressForPoke(index)); |
| } |
| |
| void poke(ImmPtr value, int index = 0) |
| { |
| storePtr(value, addressForPoke(index)); |
| } |
| |
| #if CPU(X86_64) || CPU(ARM64) |
| void poke(Imm64 value, int index = 0) |
| { |
| store64(value, addressForPoke(index)); |
| } |
| #endif // CPU(X86_64) |
| |
| void store32(Imm32 imm, Address dest) |
| { |
| if (shouldBlind(imm)) { |
| #if CPU(X86) || CPU(X86_64) |
| BlindedImm32 blind = xorBlindConstant(imm); |
| store32(blind.value1, dest); |
| xor32(blind.value2, dest); |
| #else // CPU(X86) || CPU(X86_64) |
| if (haveScratchRegisterForBlinding()) { |
| loadXorBlindedConstant(xorBlindConstant(imm), scratchRegisterForBlinding()); |
| store32(scratchRegisterForBlinding(), dest); |
| } else { |
| // If we don't have a scratch register available for use, we'll just |
| // place a random number of nops. |
| uint32_t nopCount = random() & 3; |
| while (nopCount--) |
| nop(); |
| store32(imm.asTrustedImm32(), dest); |
| } |
| #endif // CPU(X86) || CPU(X86_64) |
| } else |
| store32(imm.asTrustedImm32(), dest); |
| } |
| |
| void sub32(Imm32 imm, RegisterID dest) |
| { |
| if (shouldBlind(imm)) { |
| BlindedImm32 key = additionBlindedConstant(imm); |
| sub32(key.value1, dest); |
| sub32(key.value2, dest); |
| } else |
| sub32(imm.asTrustedImm32(), dest); |
| } |
| |
| void subPtr(Imm32 imm, RegisterID dest) |
| { |
| if (shouldBlind(imm)) { |
| BlindedImm32 key = additionBlindedConstant(imm); |
| subPtr(key.value1, dest); |
| subPtr(key.value2, dest); |
| } else |
| subPtr(imm.asTrustedImm32(), dest); |
| } |
| |
| void xor32(Imm32 imm, RegisterID src, RegisterID dest) |
| { |
| if (shouldBlind(imm)) { |
| BlindedImm32 blind = xorBlindConstant(imm); |
| xor32(blind.value1, src, dest); |
| xor32(blind.value2, dest); |
| } else |
| xor32(imm.asTrustedImm32(), src, dest); |
| } |
| |
| void xor32(Imm32 imm, RegisterID dest) |
| { |
| if (shouldBlind(imm)) { |
| BlindedImm32 blind = xorBlindConstant(imm); |
| xor32(blind.value1, dest); |
| xor32(blind.value2, dest); |
| } else |
| xor32(imm.asTrustedImm32(), dest); |
| } |
| |
| Jump branch32(RelationalCondition cond, RegisterID left, Imm32 right) |
| { |
| if (shouldBlind(right)) { |
| if (haveScratchRegisterForBlinding()) { |
| loadXorBlindedConstant(xorBlindConstant(right), scratchRegisterForBlinding()); |
| return branch32(cond, left, scratchRegisterForBlinding()); |
| } |
| // If we don't have a scratch register available for use, we'll just |
| // place a random number of nops. |
| uint32_t nopCount = random() & 3; |
| while (nopCount--) |
| nop(); |
| return branch32(cond, left, right.asTrustedImm32()); |
| } |
| |
| return branch32(cond, left, right.asTrustedImm32()); |
| } |
| |
| void compare32(RelationalCondition cond, RegisterID left, Imm32 right, RegisterID dest) |
| { |
| if (shouldBlind(right)) { |
| if (left != dest || haveScratchRegisterForBlinding()) { |
| RegisterID blindedConstantReg = dest; |
| if (left == dest) |
| blindedConstantReg = scratchRegisterForBlinding(); |
| loadXorBlindedConstant(xorBlindConstant(right), blindedConstantReg); |
| compare32(cond, left, blindedConstantReg, dest); |
| return; |
| } |
| // If we don't have a scratch register available for use, we'll just |
| // place a random number of nops. |
| uint32_t nopCount = random() & 3; |
| while (nopCount--) |
| nop(); |
| compare32(cond, left, right.asTrustedImm32(), dest); |
| return; |
| } |
| |
| compare32(cond, left, right.asTrustedImm32(), dest); |
| } |
| |
| Jump branchAdd32(ResultCondition cond, RegisterID src, Imm32 imm, RegisterID dest) |
| { |
| if (shouldBlind(imm)) { |
| if (src != dest || haveScratchRegisterForBlinding()) { |
| if (src == dest) { |
| move(src, scratchRegisterForBlinding()); |
| src = scratchRegisterForBlinding(); |
| } |
| loadXorBlindedConstant(xorBlindConstant(imm), dest); |
| return branchAdd32(cond, src, dest); |
| } |
| // If we don't have a scratch register available for use, we'll just |
| // place a random number of nops. |
| uint32_t nopCount = random() & 3; |
| while (nopCount--) |
| nop(); |
| } |
| return branchAdd32(cond, src, imm.asTrustedImm32(), dest); |
| } |
| |
| Jump branchMul32(ResultCondition cond, RegisterID src, Imm32 imm, RegisterID dest) |
| { |
| if (src == dest) |
| ASSERT(haveScratchRegisterForBlinding()); |
| |
| if (shouldBlind(imm)) { |
| if (src == dest) { |
| move(src, scratchRegisterForBlinding()); |
| src = scratchRegisterForBlinding(); |
| } |
| loadXorBlindedConstant(xorBlindConstant(imm), dest); |
| return branchMul32(cond, src, dest); |
| } |
| return branchMul32(cond, src, imm.asTrustedImm32(), dest); |
| } |
| |
| // branchSub32 takes a scratch register as 32 bit platforms make use of this, |
| // with src == dst, and on x86-32 we don't have a platform scratch register. |
| Jump branchSub32(ResultCondition cond, RegisterID src, Imm32 imm, RegisterID dest, RegisterID scratch) |
| { |
| if (shouldBlind(imm)) { |
| ASSERT(scratch != dest); |
| ASSERT(scratch != src); |
| loadXorBlindedConstant(xorBlindConstant(imm), scratch); |
| return branchSub32(cond, src, scratch, dest); |
| } |
| return branchSub32(cond, src, imm.asTrustedImm32(), dest); |
| } |
| |
| void lshift32(Imm32 imm, RegisterID dest) |
| { |
| lshift32(trustedImm32ForShift(imm), dest); |
| } |
| |
| void lshift32(RegisterID src, Imm32 amount, RegisterID dest) |
| { |
| lshift32(src, trustedImm32ForShift(amount), dest); |
| } |
| |
| void rshift32(Imm32 imm, RegisterID dest) |
| { |
| rshift32(trustedImm32ForShift(imm), dest); |
| } |
| |
| void rshift32(RegisterID src, Imm32 amount, RegisterID dest) |
| { |
| rshift32(src, trustedImm32ForShift(amount), dest); |
| } |
| |
| void urshift32(Imm32 imm, RegisterID dest) |
| { |
| urshift32(trustedImm32ForShift(imm), dest); |
| } |
| |
| void urshift32(RegisterID src, Imm32 amount, RegisterID dest) |
| { |
| urshift32(src, trustedImm32ForShift(amount), dest); |
| } |
| |
| void mul32(TrustedImm32 imm, RegisterID src, RegisterID dest) |
| { |
| if (hasOneBitSet(imm.m_value)) { |
| lshift32(src, TrustedImm32(getLSBSet(imm.m_value)), dest); |
| return; |
| } |
| MacroAssemblerBase::mul32(imm, src, dest); |
| } |
| |
| // If the result jump is taken that means the assert passed. |
| void jitAssert(const WTF::ScopedLambda<Jump(void)>&); |
| |
| #if ENABLE(MASM_PROBE) |
| // This function emits code to preserve the CPUState (e.g. registers), |
| // call a user supplied probe function, and restore the CPUState before |
| // continuing with other JIT generated code. |
| // |
| // The user supplied probe function will be called with a single pointer to |
| // a Probe::State struct (defined below) which contains, among other things, |
| // the preserved CPUState. This allows the user probe function to inspect |
| // the CPUState at that point in the JIT generated code. |
| // |
| // If the user probe function alters the register values in the Probe::State, |
| // the altered values will be loaded into the CPU registers when the probe |
| // returns. |
| // |
| // The Probe::State is stack allocated and is only valid for the duration |
| // of the call to the user probe function. |
| // |
| // The probe function may choose to move the stack pointer (in any direction). |
| // To do this, the probe function needs to set the new sp value in the CPUState. |
| // |
| // The probe function may also choose to fill stack space with some values. |
| // To do this, the probe function must first: |
| // 1. Set the new sp value in the Probe::State's CPUState. |
| // 2. Set the Probe::State's initializeStackFunction to a Probe::Function callback |
| // which will do the work of filling in the stack values after the probe |
| // trampoline has adjusted the machine stack pointer. |
| // 3. Set the Probe::State's initializeStackArgs to any value that the client wants |
| // to pass to the initializeStackFunction callback. |
| // 4. Return from the probe function. |
| // |
| // Upon returning from the probe function, the probe trampoline will adjust the |
| // the stack pointer based on the sp value in CPUState. If initializeStackFunction |
| // is not set, the probe trampoline will restore registers and return to its caller. |
| // |
| // If initializeStackFunction is set, the trampoline will move the Probe::State |
| // beyond the range of the stack pointer i.e. it will place the new Probe::State at |
| // an address lower than where CPUState.sp() points. This ensures that the |
| // Probe::State will not be trashed by the initializeStackFunction when it writes to |
| // the stack. Then, the trampoline will call back to the initializeStackFunction |
| // Probe::Function to let it fill in the stack values as desired. The |
| // initializeStackFunction Probe::Function will be passed the moved Probe::State at |
| // the new location. |
| // |
| // initializeStackFunction may now write to the stack at addresses greater or |
| // equal to CPUState.sp(), but not below that. initializeStackFunction is also |
| // not allowed to change CPUState.sp(). If the initializeStackFunction does not |
| // abide by these rules, then behavior is undefined, and bad things may happen. |
| // |
| // Note: this version of probe() should be implemented by the target specific |
| // MacroAssembler. |
| void probe(Probe::Function, void* arg); |
| |
| JS_EXPORT_PRIVATE void probe(Function<void(Probe::Context&)>); |
| |
| // Let's you print from your JIT generated code. |
| // See comments in MacroAssemblerPrinter.h for examples of how to use this. |
| template<typename... Arguments> |
| void print(Arguments&&... args); |
| |
| void print(Printer::PrintRecordList*); |
| #endif // ENABLE(MASM_PROBE) |
| }; |
| |
| } // namespace JSC |
| |
| namespace WTF { |
| |
| class PrintStream; |
| |
| void printInternal(PrintStream&, JSC::MacroAssembler::RelationalCondition); |
| void printInternal(PrintStream&, JSC::MacroAssembler::ResultCondition); |
| void printInternal(PrintStream&, JSC::MacroAssembler::DoubleCondition); |
| |
| } // namespace WTF |
| |
| #else // ENABLE(ASSEMBLER) |
| |
| namespace JSC { |
| |
| // If there is no assembler for this platform, at least allow code to make references to |
| // some of the things it would otherwise define, albeit without giving that code any way |
| // of doing anything useful. |
| class MacroAssembler { |
| private: |
| MacroAssembler() { } |
| |
| public: |
| |
| enum RegisterID : int8_t { NoRegister, InvalidGPRReg = -1 }; |
| enum FPRegisterID : int8_t { NoFPRegister, InvalidFPRReg = -1 }; |
| }; |
| |
| } // namespace JSC |
| |
| #endif // ENABLE(ASSEMBLER) |