blob: db3407edd0aea5316633a61208e3060ef9197205 [file] [log] [blame]
/*
* Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
* Copyright (C) 2003, 2007, 2008 Apple Inc. All rights reserved.
* Copyright (C) 2003 Peter Kelly (pmk@post.com)
* Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include "config.h"
#include "JSArray.h"
#include "ArrayPrototype.h"
#include "PropertyNameArray.h"
#include <wtf/AVLTree.h>
#include <wtf/Assertions.h>
#define CHECK_ARRAY_CONSISTENCY 0
using namespace std;
namespace KJS {
typedef HashMap<unsigned, JSValue*> SparseArrayValueMap;
struct ArrayStorage {
unsigned m_numValuesInVector;
SparseArrayValueMap* m_sparseValueMap;
void* lazyCreationData; // An JSArray subclass can use this to fill the vector lazily.
JSValue* m_vector[1];
};
// 0xFFFFFFFF is a bit weird -- is not an array index even though it's an integer.
static const unsigned maxArrayIndex = 0xFFFFFFFEU;
// Our policy for when to use a vector and when to use a sparse map.
// For all array indices under sparseArrayCutoff, we always use a vector.
// When indices greater than sparseArrayCutoff are involved, we use a vector
// as long as it is 1/8 full. If more sparse than that, we use a map.
// This value has to be a macro to be used in max() and min() without introducing
// a PIC branch in Mach-O binaries, see <rdar://problem/5971391>.
#define sparseArrayCutoff 10000U
static const unsigned minDensityMultiplier = 8;
const ClassInfo JSArray::info = {"Array", 0, 0, 0};
static inline size_t storageSize(unsigned vectorLength)
{
return sizeof(ArrayStorage) - sizeof(JSValue*) + vectorLength * sizeof(JSValue*);
}
static inline unsigned increasedVectorLength(unsigned newLength)
{
return (newLength * 3 + 1) / 2;
}
static inline bool isDenseEnoughForVector(unsigned length, unsigned numValues)
{
return length / minDensityMultiplier <= numValues;
}
#if !CHECK_ARRAY_CONSISTENCY
inline void JSArray::checkConsistency(ConsistencyCheckType)
{
}
#endif
JSArray::JSArray(JSObject* prototype, unsigned initialLength)
: JSObject(prototype)
{
unsigned initialCapacity = min(initialLength, sparseArrayCutoff);
m_length = initialLength;
m_vectorLength = initialCapacity;
m_storage = static_cast<ArrayStorage*>(fastZeroedMalloc(storageSize(initialCapacity)));
Heap::heap(this)->reportExtraMemoryCost(initialCapacity * sizeof(JSValue*));
checkConsistency();
}
JSArray::JSArray(JSObject* prototype, const ArgList& list)
: JSObject(prototype)
{
unsigned length = list.size();
m_length = length;
m_vectorLength = length;
ArrayStorage* storage = static_cast<ArrayStorage*>(fastMalloc(storageSize(length)));
storage->m_numValuesInVector = length;
storage->m_sparseValueMap = 0;
size_t i = 0;
ArgList::const_iterator end = list.end();
for (ArgList::const_iterator it = list.begin(); it != end; ++it, ++i)
storage->m_vector[i] = *it;
m_storage = storage;
// When the array is created non-empty, its cells are filled, so it's really no worse than
// a property map. Therefore don't report extra memory cost.
checkConsistency();
}
JSArray::~JSArray()
{
checkConsistency(DestructorConsistencyCheck);
delete m_storage->m_sparseValueMap;
fastFree(m_storage);
}
JSValue* JSArray::getItem(unsigned i) const
{
ASSERT(i <= maxArrayIndex);
ArrayStorage* storage = m_storage;
if (i < m_vectorLength) {
JSValue* value = storage->m_vector[i];
return value ? value : jsUndefined();
}
SparseArrayValueMap* map = storage->m_sparseValueMap;
if (!map)
return jsUndefined();
JSValue* value = map->get(i);
return value ? value : jsUndefined();
}
JSValue* JSArray::lengthGetter(ExecState* exec, const Identifier&, const PropertySlot& slot)
{
return jsNumber(exec, static_cast<JSArray*>(slot.slotBase())->m_length);
}
ALWAYS_INLINE bool JSArray::inlineGetOwnPropertySlot(ExecState* exec, unsigned i, PropertySlot& slot)
{
ArrayStorage* storage = m_storage;
if (UNLIKELY(i >= m_length)) {
if (i > maxArrayIndex)
return getOwnPropertySlot(exec, Identifier::from(exec, i), slot);
return false;
}
if (i < m_vectorLength) {
JSValue*& valueSlot = storage->m_vector[i];
if (valueSlot) {
slot.setValueSlot(&valueSlot);
return true;
}
} else if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
if (i >= sparseArrayCutoff) {
SparseArrayValueMap::iterator it = map->find(i);
if (it != map->end()) {
slot.setValueSlot(&it->second);
return true;
}
}
}
return false;
}
bool JSArray::getOwnPropertySlot(ExecState* exec, const Identifier& propertyName, PropertySlot& slot)
{
if (propertyName == exec->propertyNames().length) {
slot.setCustom(this, lengthGetter);
return true;
}
bool isArrayIndex;
unsigned i = propertyName.toArrayIndex(&isArrayIndex);
if (isArrayIndex)
return inlineGetOwnPropertySlot(exec, i, slot);
return JSObject::getOwnPropertySlot(exec, propertyName, slot);
}
bool JSArray::getOwnPropertySlot(ExecState* exec, unsigned i, PropertySlot& slot)
{
return inlineGetOwnPropertySlot(exec, i, slot);
}
// ECMA 15.4.5.1
void JSArray::put(ExecState* exec, const Identifier& propertyName, JSValue* value)
{
bool isArrayIndex;
unsigned i = propertyName.toArrayIndex(&isArrayIndex);
if (isArrayIndex) {
put(exec, i, value);
return;
}
if (propertyName == exec->propertyNames().length) {
unsigned newLength = value->toUInt32(exec);
if (value->toNumber(exec) != static_cast<double>(newLength)) {
throwError(exec, RangeError, "Invalid array length.");
return;
}
setLength(newLength);
return;
}
JSObject::put(exec, propertyName, value);
}
void JSArray::put(ExecState* exec, unsigned i, JSValue* value)
{
checkConsistency();
unsigned length = m_length;
if (i >= length) {
if (i > maxArrayIndex) {
put(exec, Identifier::from(exec, i), value);
return;
}
length = i + 1;
m_length = length;
}
ArrayStorage* storage = m_storage;
if (i < m_vectorLength) {
JSValue*& valueSlot = storage->m_vector[i];
storage->m_numValuesInVector += !valueSlot;
valueSlot = value;
checkConsistency();
return;
}
SparseArrayValueMap* map = storage->m_sparseValueMap;
if (i >= sparseArrayCutoff) {
// We miss some cases where we could compact the storage, such as a large array that is being filled from the end
// (which will only be compacted as we reach indices that are less than cutoff) - but this makes the check much faster.
if (!isDenseEnoughForVector(i + 1, storage->m_numValuesInVector + 1)) {
if (!map) {
map = new SparseArrayValueMap;
storage->m_sparseValueMap = map;
}
map->set(i, value);
return;
}
}
// We have decided that we'll put the new item into the vector.
// Fast case is when there is no sparse map, so we can increase the vector size without moving values from it.
if (!map || map->isEmpty()) {
increaseVectorLength(i + 1);
storage = m_storage;
++storage->m_numValuesInVector;
storage->m_vector[i] = value;
checkConsistency();
return;
}
// Decide how many values it would be best to move from the map.
unsigned newNumValuesInVector = storage->m_numValuesInVector + 1;
unsigned newVectorLength = increasedVectorLength(i + 1);
for (unsigned j = max(m_vectorLength, sparseArrayCutoff); j < newVectorLength; ++j)
newNumValuesInVector += map->contains(j);
if (i >= sparseArrayCutoff)
newNumValuesInVector -= map->contains(i);
if (isDenseEnoughForVector(newVectorLength, newNumValuesInVector)) {
unsigned proposedNewNumValuesInVector = newNumValuesInVector;
while (true) {
unsigned proposedNewVectorLength = increasedVectorLength(newVectorLength + 1);
for (unsigned j = max(newVectorLength, sparseArrayCutoff); j < proposedNewVectorLength; ++j)
proposedNewNumValuesInVector += map->contains(j);
if (!isDenseEnoughForVector(proposedNewVectorLength, proposedNewNumValuesInVector))
break;
newVectorLength = proposedNewVectorLength;
newNumValuesInVector = proposedNewNumValuesInVector;
}
}
storage = static_cast<ArrayStorage*>(fastRealloc(storage, storageSize(newVectorLength)));
unsigned vectorLength = m_vectorLength;
if (newNumValuesInVector == storage->m_numValuesInVector + 1) {
for (unsigned j = vectorLength; j < newVectorLength; ++j)
storage->m_vector[j] = 0;
if (i > sparseArrayCutoff)
map->remove(i);
} else {
for (unsigned j = vectorLength; j < max(vectorLength, sparseArrayCutoff); ++j)
storage->m_vector[j] = 0;
for (unsigned j = max(vectorLength, sparseArrayCutoff); j < newVectorLength; ++j)
storage->m_vector[j] = map->take(j);
}
storage->m_vector[i] = value;
m_vectorLength = newVectorLength;
storage->m_numValuesInVector = newNumValuesInVector;
m_storage = storage;
checkConsistency();
}
bool JSArray::deleteProperty(ExecState* exec, const Identifier& propertyName)
{
bool isArrayIndex;
unsigned i = propertyName.toArrayIndex(&isArrayIndex);
if (isArrayIndex)
return deleteProperty(exec, i);
if (propertyName == exec->propertyNames().length)
return false;
return JSObject::deleteProperty(exec, propertyName);
}
bool JSArray::deleteProperty(ExecState* exec, unsigned i)
{
checkConsistency();
ArrayStorage* storage = m_storage;
if (i < m_vectorLength) {
JSValue*& valueSlot = storage->m_vector[i];
bool hadValue = valueSlot;
valueSlot = 0;
storage->m_numValuesInVector -= hadValue;
checkConsistency();
return hadValue;
}
if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
if (i >= sparseArrayCutoff) {
SparseArrayValueMap::iterator it = map->find(i);
if (it != map->end()) {
map->remove(it);
checkConsistency();
return true;
}
}
}
checkConsistency();
if (i > maxArrayIndex)
return deleteProperty(exec, Identifier::from(exec, i));
return false;
}
void JSArray::getPropertyNames(ExecState* exec, PropertyNameArray& propertyNames)
{
// FIXME: Filling PropertyNameArray with an identifier for every integer
// is incredibly inefficient for large arrays. We need a different approach,
// which almost certainly means a different structure for PropertyNameArray.
ArrayStorage* storage = m_storage;
unsigned usedVectorLength = min(m_length, m_vectorLength);
for (unsigned i = 0; i < usedVectorLength; ++i) {
if (storage->m_vector[i])
propertyNames.add(Identifier::from(exec, i));
}
if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
SparseArrayValueMap::iterator end = map->end();
for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it)
propertyNames.add(Identifier::from(exec, it->first));
}
JSObject::getPropertyNames(exec, propertyNames);
}
bool JSArray::increaseVectorLength(unsigned newLength)
{
// This function leaves the array in an internally inconsistent state, because it does not move any values from sparse value map
// to the vector. Callers have to account for that, because they can do it more efficiently.
ArrayStorage* storage = m_storage;
unsigned vectorLength = m_vectorLength;
ASSERT(newLength > vectorLength);
unsigned newVectorLength = increasedVectorLength(newLength);
storage = static_cast<ArrayStorage*>(fastRealloc(storage, storageSize(newVectorLength)));
if (!storage)
return false;
m_vectorLength = newVectorLength;
for (unsigned i = vectorLength; i < newVectorLength; ++i)
storage->m_vector[i] = 0;
m_storage = storage;
return true;
}
void JSArray::setLength(unsigned newLength)
{
checkConsistency();
ArrayStorage* storage = m_storage;
unsigned length = m_length;
if (newLength < length) {
unsigned usedVectorLength = min(length, m_vectorLength);
for (unsigned i = newLength; i < usedVectorLength; ++i) {
JSValue*& valueSlot = storage->m_vector[i];
bool hadValue = valueSlot;
valueSlot = 0;
storage->m_numValuesInVector -= hadValue;
}
if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
SparseArrayValueMap copy = *map;
SparseArrayValueMap::iterator end = copy.end();
for (SparseArrayValueMap::iterator it = copy.begin(); it != end; ++it) {
if (it->first >= newLength)
map->remove(it->first);
}
if (map->isEmpty()) {
delete map;
storage->m_sparseValueMap = 0;
}
}
}
m_length = newLength;
checkConsistency();
}
void JSArray::mark()
{
JSObject::mark();
ArrayStorage* storage = m_storage;
unsigned usedVectorLength = min(m_length, m_vectorLength);
for (unsigned i = 0; i < usedVectorLength; ++i) {
JSValue* value = storage->m_vector[i];
if (value && !value->marked())
value->mark();
}
if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
SparseArrayValueMap::iterator end = map->end();
for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) {
JSValue* value = it->second;
if (!value->marked())
value->mark();
}
}
}
typedef std::pair<JSValue*, UString> ArrayQSortPair;
static int compareByStringPairForQSort(const void* a, const void* b)
{
const ArrayQSortPair* va = static_cast<const ArrayQSortPair*>(a);
const ArrayQSortPair* vb = static_cast<const ArrayQSortPair*>(b);
return compare(va->second, vb->second);
}
void JSArray::sort(ExecState* exec)
{
unsigned lengthNotIncludingUndefined = compactForSorting();
if (m_storage->m_sparseValueMap) {
exec->setException(Error::create(exec, GeneralError, "Out of memory"));
return;
}
if (!lengthNotIncludingUndefined)
return;
// Converting JavaScript values to strings can be expensive, so we do it once up front and sort based on that.
// This is a considerable improvement over doing it twice per comparison, though it requires a large temporary
// buffer. Besides, this protects us from crashing if some objects have custom toString methods that return
// random or otherwise changing results, effectively making compare function inconsistent.
Vector<ArrayQSortPair> values(lengthNotIncludingUndefined);
if (!values.begin()) {
exec->setException(Error::create(exec, GeneralError, "Out of memory"));
return;
}
for (size_t i = 0; i < lengthNotIncludingUndefined; i++) {
JSValue* value = m_storage->m_vector[i];
ASSERT(!value->isUndefined());
values[i].first = value;
}
// FIXME: While calling these toString functions, the array could be mutated.
// In that case, objects pointed to by values in this vector might get garbage-collected!
// FIXME: The following loop continues to call toString on subsequent values even after
// a toString call raises an exception.
for (size_t i = 0; i < lengthNotIncludingUndefined; i++)
values[i].second = values[i].first->toString(exec);
if (exec->hadException())
return;
// FIXME: Since we sort by string value, a fast algorithm might be to use a radix sort. That would be O(N) rather
// than O(N log N).
#if HAVE(MERGESORT)
mergesort(values.begin(), values.size(), sizeof(ArrayQSortPair), compareByStringPairForQSort);
#else
// FIXME: The qsort library function is likely to not be a stable sort.
// ECMAScript-262 does not specify a stable sort, but in practice, browsers perform a stable sort.
qsort(values.begin(), values.size(), sizeof(ArrayQSortPair), compareByStringPairForQSort);
#endif
// FIXME: If the toString function changed the length of the array, this might be
// modifying the vector incorrectly.
for (size_t i = 0; i < lengthNotIncludingUndefined; i++)
m_storage->m_vector[i] = values[i].first;
checkConsistency(SortConsistencyCheck);
}
struct AVLTreeNodeForArrayCompare {
JSValue* value;
// Child pointers. The high bit of gt is robbed and used as the
// balance factor sign. The high bit of lt is robbed and used as
// the magnitude of the balance factor.
int32_t gt;
int32_t lt;
};
struct AVLTreeAbstractorForArrayCompare {
typedef int32_t handle; // Handle is an index into m_nodes vector.
typedef JSValue* key;
typedef int32_t size;
Vector<AVLTreeNodeForArrayCompare> m_nodes;
ExecState* m_exec;
JSValue* m_compareFunction;
CallType m_compareCallType;
const CallData* m_compareCallData;
JSValue* m_globalThisValue;
handle get_less(handle h) { return m_nodes[h].lt & 0x7FFFFFFF; }
void set_less(handle h, handle lh) { m_nodes[h].lt &= 0x80000000; m_nodes[h].lt |= lh; }
handle get_greater(handle h) { return m_nodes[h].gt & 0x7FFFFFFF; }
void set_greater(handle h, handle gh) { m_nodes[h].gt &= 0x80000000; m_nodes[h].gt |= gh; }
int get_balance_factor(handle h)
{
if (m_nodes[h].gt & 0x80000000)
return -1;
return static_cast<unsigned>(m_nodes[h].lt) >> 31;
}
void set_balance_factor(handle h, int bf)
{
if (bf == 0) {
m_nodes[h].lt &= 0x7FFFFFFF;
m_nodes[h].gt &= 0x7FFFFFFF;
} else {
m_nodes[h].lt |= 0x80000000;
if (bf < 0)
m_nodes[h].gt |= 0x80000000;
else
m_nodes[h].gt &= 0x7FFFFFFF;
}
}
int compare_key_key(key va, key vb)
{
ASSERT(!va->isUndefined());
ASSERT(!vb->isUndefined());
if (m_exec->hadException())
return 1;
ArgList arguments;
arguments.append(va);
arguments.append(vb);
double compareResult = call(m_exec, m_compareFunction, m_compareCallType, *m_compareCallData, m_globalThisValue, arguments)->toNumber(m_exec);
return (compareResult < 0) ? -1 : 1; // Not passing equality through, because we need to store all values, even if equivalent.
}
int compare_key_node(key k, handle h) { return compare_key_key(k, m_nodes[h].value); }
int compare_node_node(handle h1, handle h2) { return compare_key_key(m_nodes[h1].value, m_nodes[h2].value); }
static handle null() { return 0x7FFFFFFF; }
};
void JSArray::sort(ExecState* exec, JSValue* compareFunction, CallType callType, const CallData& callData)
{
checkConsistency();
// FIXME: This ignores exceptions raised in the compare function or in toNumber.
// The maximum tree depth is compiled in - but the caller is clearly up to no good
// if a larger array is passed.
ASSERT(m_length <= static_cast<unsigned>(std::numeric_limits<int>::max()));
if (m_length > static_cast<unsigned>(std::numeric_limits<int>::max()))
return;
if (!m_length)
return;
unsigned usedVectorLength = min(m_length, m_vectorLength);
AVLTree<AVLTreeAbstractorForArrayCompare, 44> tree; // Depth 44 is enough for 2^31 items
tree.abstractor().m_exec = exec;
tree.abstractor().m_compareFunction = compareFunction;
tree.abstractor().m_compareCallType = callType;
tree.abstractor().m_compareCallData = &callData;
tree.abstractor().m_globalThisValue = exec->globalThisValue();
tree.abstractor().m_nodes.resize(usedVectorLength + (m_storage->m_sparseValueMap ? m_storage->m_sparseValueMap->size() : 0));
if (!tree.abstractor().m_nodes.begin()) {
exec->setException(Error::create(exec, GeneralError, "Out of memory"));
return;
}
// FIXME: If the compare function modifies the array, the vector, map, etc. could be modified
// right out from under us while we're building the tree here.
unsigned numDefined = 0;
unsigned numUndefined = 0;
// Iterate over the array, ignoring missing values, counting undefined ones, and inserting all other ones into the tree.
for (; numDefined < usedVectorLength; ++numDefined) {
JSValue* v = m_storage->m_vector[numDefined];
if (!v || v->isUndefined())
break;
tree.abstractor().m_nodes[numDefined].value = v;
tree.insert(numDefined);
}
for (unsigned i = numDefined; i < usedVectorLength; ++i) {
if (JSValue* v = m_storage->m_vector[i]) {
if (v->isUndefined())
++numUndefined;
else {
tree.abstractor().m_nodes[numDefined].value = v;
tree.insert(numDefined);
++numDefined;
}
}
}
unsigned newUsedVectorLength = numDefined + numUndefined;
if (SparseArrayValueMap* map = m_storage->m_sparseValueMap) {
newUsedVectorLength += map->size();
if (newUsedVectorLength > m_vectorLength) {
if (!increaseVectorLength(newUsedVectorLength)) {
exec->setException(Error::create(exec, GeneralError, "Out of memory"));
return;
}
}
SparseArrayValueMap::iterator end = map->end();
for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it) {
tree.abstractor().m_nodes[numDefined].value = it->second;
tree.insert(numDefined);
++numDefined;
}
delete map;
m_storage->m_sparseValueMap = 0;
}
ASSERT(tree.abstractor().m_nodes.size() >= numDefined);
// FIXME: If the compare function changed the length of the array, the following might be
// modifying the vector incorrectly.
// Copy the values back into m_storage.
AVLTree<AVLTreeAbstractorForArrayCompare, 44>::Iterator iter;
iter.start_iter_least(tree);
for (unsigned i = 0; i < numDefined; ++i) {
m_storage->m_vector[i] = tree.abstractor().m_nodes[*iter].value;
++iter;
}
// Put undefined values back in.
for (unsigned i = numDefined; i < newUsedVectorLength; ++i)
m_storage->m_vector[i] = jsUndefined();
// Ensure that unused values in the vector are zeroed out.
for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i)
m_storage->m_vector[i] = 0;
m_storage->m_numValuesInVector = newUsedVectorLength;
checkConsistency(SortConsistencyCheck);
}
unsigned JSArray::compactForSorting()
{
checkConsistency();
ArrayStorage* storage = m_storage;
unsigned usedVectorLength = min(m_length, m_vectorLength);
unsigned numDefined = 0;
unsigned numUndefined = 0;
for (; numDefined < usedVectorLength; ++numDefined) {
JSValue* v = storage->m_vector[numDefined];
if (!v || v->isUndefined())
break;
}
for (unsigned i = numDefined; i < usedVectorLength; ++i) {
if (JSValue* v = storage->m_vector[i]) {
if (v->isUndefined())
++numUndefined;
else
storage->m_vector[numDefined++] = v;
}
}
unsigned newUsedVectorLength = numDefined + numUndefined;
if (SparseArrayValueMap* map = storage->m_sparseValueMap) {
newUsedVectorLength += map->size();
if (newUsedVectorLength > m_vectorLength) {
if (!increaseVectorLength(newUsedVectorLength))
return 0;
storage = m_storage;
}
SparseArrayValueMap::iterator end = map->end();
for (SparseArrayValueMap::iterator it = map->begin(); it != end; ++it)
storage->m_vector[numDefined++] = it->second;
delete map;
storage->m_sparseValueMap = 0;
}
for (unsigned i = numDefined; i < newUsedVectorLength; ++i)
storage->m_vector[i] = jsUndefined();
for (unsigned i = newUsedVectorLength; i < usedVectorLength; ++i)
storage->m_vector[i] = 0;
storage->m_numValuesInVector = newUsedVectorLength;
checkConsistency(SortConsistencyCheck);
return numDefined;
}
void* JSArray::lazyCreationData()
{
return m_storage->lazyCreationData;
}
void JSArray::setLazyCreationData(void* d)
{
m_storage->lazyCreationData = d;
}
#if CHECK_ARRAY_CONSISTENCY
void JSArray::checkConsistency(ConsistencyCheckType type)
{
ASSERT(m_storage);
if (type == SortConsistencyCheck)
ASSERT(!m_storage->m_sparseValueMap);
unsigned numValuesInVector = 0;
for (unsigned i = 0; i < m_vectorLength; ++i) {
if (JSValue* value = m_storage->m_vector[i]) {
ASSERT(i < m_length);
if (type != DestructorConsistencyCheck)
value->type(); // Likely to crash if the object was deallocated.
++numValuesInVector;
} else {
if (type == SortConsistencyCheck)
ASSERT(i >= m_storage->m_numValuesInVector);
}
}
ASSERT(numValuesInVector == m_storage->m_numValuesInVector);
if (m_storage->m_sparseValueMap) {
SparseArrayValueMap::iterator end = m_storage->m_sparseValueMap->end();
for (SparseArrayValueMap::iterator it = m_storage->m_sparseValueMap->begin(); it != end; ++it) {
unsigned index = it->first;
ASSERT(index < m_length);
ASSERT(index >= m_vectorLength);
ASSERT(index <= maxArrayIndex);
ASSERT(it->second);
if (type != DestructorConsistencyCheck)
it->second->type(); // Likely to crash if the object was deallocated.
}
}
}
#endif
JSArray* constructEmptyArray(ExecState* exec)
{
return new (exec) JSArray(exec->lexicalGlobalObject()->arrayPrototype(), 0);
}
JSArray* constructEmptyArray(ExecState* exec, unsigned initialLength)
{
return new (exec) JSArray(exec->lexicalGlobalObject()->arrayPrototype(), initialLength);
}
JSArray* constructArray(ExecState* exec, JSValue* singleItemValue)
{
ArgList values;
values.append(singleItemValue);
return new (exec) JSArray(exec->lexicalGlobalObject()->arrayPrototype(), values);
}
JSArray* constructArray(ExecState* exec, const ArgList& values)
{
return new (exec) JSArray(exec->lexicalGlobalObject()->arrayPrototype(), values);
}
}