| /* |
| * Copyright (C) 2013-2019 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "FTLOSRExitCompiler.h" |
| |
| #if ENABLE(FTL_JIT) |
| |
| #include "BytecodeStructs.h" |
| #include "DFGOSRExitCompilerCommon.h" |
| #include "FTLExitArgumentForOperand.h" |
| #include "FTLJITCode.h" |
| #include "FTLLocation.h" |
| #include "FTLOSRExit.h" |
| #include "FTLOperations.h" |
| #include "FTLState.h" |
| #include "FTLSaveRestore.h" |
| #include "LinkBuffer.h" |
| #include "MaxFrameExtentForSlowPathCall.h" |
| #include "OperandsInlines.h" |
| #include "JSCInlines.h" |
| |
| namespace JSC { namespace FTL { |
| |
| using namespace DFG; |
| |
| static void reboxAccordingToFormat( |
| DataFormat format, AssemblyHelpers& jit, GPRReg value, GPRReg scratch1, GPRReg scratch2) |
| { |
| switch (format) { |
| case DataFormatInt32: { |
| jit.zeroExtend32ToPtr(value, value); |
| jit.or64(GPRInfo::numberTagRegister, value); |
| break; |
| } |
| |
| case DataFormatInt52: { |
| jit.rshift64(AssemblyHelpers::TrustedImm32(JSValue::int52ShiftAmount), value); |
| jit.moveDoubleTo64(FPRInfo::fpRegT0, scratch2); |
| jit.boxInt52(value, value, scratch1, FPRInfo::fpRegT0); |
| jit.move64ToDouble(scratch2, FPRInfo::fpRegT0); |
| break; |
| } |
| |
| case DataFormatStrictInt52: { |
| jit.moveDoubleTo64(FPRInfo::fpRegT0, scratch2); |
| jit.boxInt52(value, value, scratch1, FPRInfo::fpRegT0); |
| jit.move64ToDouble(scratch2, FPRInfo::fpRegT0); |
| break; |
| } |
| |
| case DataFormatBoolean: { |
| jit.zeroExtend32ToPtr(value, value); |
| jit.or32(MacroAssembler::TrustedImm32(JSValue::ValueFalse), value); |
| break; |
| } |
| |
| case DataFormatJS: { |
| // Done already! |
| break; |
| } |
| |
| case DataFormatDouble: { |
| jit.moveDoubleTo64(FPRInfo::fpRegT0, scratch1); |
| jit.move64ToDouble(value, FPRInfo::fpRegT0); |
| jit.purifyNaN(FPRInfo::fpRegT0); |
| jit.boxDouble(FPRInfo::fpRegT0, value); |
| jit.move64ToDouble(scratch1, FPRInfo::fpRegT0); |
| break; |
| } |
| |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| } |
| |
| static void compileRecovery( |
| CCallHelpers& jit, const ExitValue& value, |
| Vector<B3::ValueRep>& valueReps, |
| char* registerScratch, |
| const HashMap<ExitTimeObjectMaterialization*, EncodedJSValue*>& materializationToPointer) |
| { |
| switch (value.kind()) { |
| case ExitValueDead: |
| jit.move(MacroAssembler::TrustedImm64(JSValue::encode(jsUndefined())), GPRInfo::regT0); |
| break; |
| |
| case ExitValueConstant: |
| jit.move(MacroAssembler::TrustedImm64(JSValue::encode(value.constant())), GPRInfo::regT0); |
| break; |
| |
| case ExitValueArgument: |
| Location::forValueRep(valueReps[value.exitArgument().argument()]).restoreInto( |
| jit, registerScratch, GPRInfo::regT0); |
| break; |
| |
| case ExitValueInJSStack: |
| case ExitValueInJSStackAsInt32: |
| case ExitValueInJSStackAsInt52: |
| case ExitValueInJSStackAsDouble: |
| jit.load64(AssemblyHelpers::addressFor(value.virtualRegister()), GPRInfo::regT0); |
| break; |
| |
| case ExitValueMaterializeNewObject: |
| jit.loadPtr(materializationToPointer.get(value.objectMaterialization()), GPRInfo::regT0); |
| break; |
| |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| |
| reboxAccordingToFormat( |
| value.dataFormat(), jit, GPRInfo::regT0, GPRInfo::regT1, GPRInfo::regT2); |
| } |
| |
| static void compileStub(VM& vm, unsigned exitID, JITCode* jitCode, OSRExit& exit, CodeBlock* codeBlock) |
| { |
| // This code requires framePointerRegister is the same as callFrameRegister |
| static_assert(MacroAssembler::framePointerRegister == GPRInfo::callFrameRegister, "MacroAssembler::framePointerRegister and GPRInfo::callFrameRegister must be the same"); |
| |
| CCallHelpers jit(codeBlock); |
| |
| // The first thing we need to do is restablish our frame in the case of an exception. |
| if (exit.isGenericUnwindHandler()) { |
| RELEASE_ASSERT(vm.callFrameForCatch); // The first time we hit this exit, like at all other times, this field should be non-null. |
| jit.restoreCalleeSavesFromEntryFrameCalleeSavesBuffer(vm.topEntryFrame); |
| jit.loadPtr(vm.addressOfCallFrameForCatch(), MacroAssembler::framePointerRegister); |
| jit.addPtr(CCallHelpers::TrustedImm32(codeBlock->stackPointerOffset() * sizeof(Register)), |
| MacroAssembler::framePointerRegister, CCallHelpers::stackPointerRegister); |
| |
| // Do a pushToSave because that's what the exit compiler below expects the stack |
| // to look like because that's the last thing the ExitThunkGenerator does. The code |
| // below doesn't actually use the value that was pushed, but it does rely on the |
| // general shape of the stack being as it is in the non-exception OSR case. |
| jit.pushToSaveImmediateWithoutTouchingRegisters(CCallHelpers::TrustedImm32(0xbadbeef)); |
| } |
| |
| // We need scratch space to save all registers, to build up the JS stack, to deal with unwind |
| // fixup, pointers to all of the objects we materialize, and the elements inside those objects |
| // that we materialize. |
| |
| // Figure out how much space we need for those object allocations. |
| unsigned numMaterializations = 0; |
| size_t maxMaterializationNumArguments = 0; |
| for (ExitTimeObjectMaterialization* materialization : exit.m_descriptor->m_materializations) { |
| numMaterializations++; |
| |
| maxMaterializationNumArguments = std::max( |
| maxMaterializationNumArguments, |
| materialization->properties().size()); |
| } |
| |
| ScratchBuffer* scratchBuffer = vm.scratchBufferForSize( |
| sizeof(EncodedJSValue) * ( |
| exit.m_descriptor->m_values.size() + numMaterializations + maxMaterializationNumArguments) + |
| requiredScratchMemorySizeInBytes() + |
| codeBlock->calleeSaveRegisters()->size() * sizeof(uint64_t)); |
| EncodedJSValue* scratch = scratchBuffer ? static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()) : 0; |
| EncodedJSValue* materializationPointers = scratch + exit.m_descriptor->m_values.size(); |
| EncodedJSValue* materializationArguments = materializationPointers + numMaterializations; |
| char* registerScratch = bitwise_cast<char*>(materializationArguments + maxMaterializationNumArguments); |
| uint64_t* unwindScratch = bitwise_cast<uint64_t*>(registerScratch + requiredScratchMemorySizeInBytes()); |
| |
| HashMap<ExitTimeObjectMaterialization*, EncodedJSValue*> materializationToPointer; |
| unsigned materializationCount = 0; |
| for (ExitTimeObjectMaterialization* materialization : exit.m_descriptor->m_materializations) { |
| materializationToPointer.add( |
| materialization, materializationPointers + materializationCount++); |
| } |
| |
| auto recoverValue = [&] (const ExitValue& value) { |
| compileRecovery( |
| jit, value, |
| exit.m_valueReps, |
| registerScratch, materializationToPointer); |
| }; |
| |
| // Note that we come in here, the stack used to be as B3 left it except that someone called pushToSave(). |
| // We don't care about the value they saved. But, we do appreciate the fact that they did it, because we use |
| // that slot for saveAllRegisters(). |
| |
| saveAllRegisters(jit, registerScratch); |
| |
| if (validateDFGDoesGC) { |
| // We're about to exit optimized code. So, there's no longer any optimized |
| // code running that expects no GC. We need to set this before object |
| // materialization below. |
| |
| // Even though we set Heap::m_expectDoesGC in compileFTLOSRExit(), we also need |
| // to set it here because compileFTLOSRExit() is only called on the first time |
| // we exit from this site, but all subsequent exits will take this compiled |
| // ramp without calling compileFTLOSRExit() first. |
| jit.store8(CCallHelpers::TrustedImm32(true), vm.heap.addressOfExpectDoesGC()); |
| } |
| |
| // Bring the stack back into a sane form and assert that it's sane. |
| jit.popToRestore(GPRInfo::regT0); |
| jit.checkStackPointerAlignment(); |
| |
| if (UNLIKELY(vm.m_perBytecodeProfiler && jitCode->dfgCommon()->compilation)) { |
| Profiler::Database& database = *vm.m_perBytecodeProfiler; |
| Profiler::Compilation* compilation = jitCode->dfgCommon()->compilation.get(); |
| |
| Profiler::OSRExit* profilerExit = compilation->addOSRExit( |
| exitID, Profiler::OriginStack(database, codeBlock, exit.m_codeOrigin), |
| exit.m_kind, exit.m_kind == UncountableInvalidation); |
| jit.add64(CCallHelpers::TrustedImm32(1), CCallHelpers::AbsoluteAddress(profilerExit->counterAddress())); |
| } |
| |
| // The remaining code assumes that SP/FP are in the same state that they were in the FTL's |
| // call frame. |
| |
| // Get the call frame and tag thingies. |
| // Restore the exiting function's callFrame value into a regT4 |
| jit.move(MacroAssembler::TrustedImm64(JSValue::NumberTag), GPRInfo::numberTagRegister); |
| jit.move(MacroAssembler::TrustedImm64(JSValue::NotCellMask), GPRInfo::notCellMaskRegister); |
| |
| // Do some value profiling. |
| if (exit.m_descriptor->m_profileDataFormat != DataFormatNone) { |
| Location::forValueRep(exit.m_valueReps[0]).restoreInto(jit, registerScratch, GPRInfo::regT0); |
| reboxAccordingToFormat( |
| exit.m_descriptor->m_profileDataFormat, jit, GPRInfo::regT0, GPRInfo::regT1, GPRInfo::regT2); |
| |
| if (exit.m_kind == BadCache || exit.m_kind == BadIndexingType) { |
| CodeOrigin codeOrigin = exit.m_codeOriginForExitProfile; |
| CodeBlock* codeBlock = jit.baselineCodeBlockFor(codeOrigin); |
| if (ArrayProfile* arrayProfile = codeBlock->getArrayProfile(codeOrigin.bytecodeIndex())) { |
| const Instruction* instruction = codeBlock->instructions().at(codeOrigin.bytecodeIndex()).ptr(); |
| CCallHelpers::Jump skipProfile; |
| if (instruction->is<OpGetById>()) { |
| auto& metadata = instruction->as<OpGetById>().metadata(codeBlock); |
| skipProfile = jit.branch8(CCallHelpers::NotEqual, CCallHelpers::AbsoluteAddress(&metadata.m_modeMetadata.mode), CCallHelpers::TrustedImm32(static_cast<uint8_t>(GetByIdMode::ArrayLength))); |
| } |
| |
| jit.load32(MacroAssembler::Address(GPRInfo::regT0, JSCell::structureIDOffset()), GPRInfo::regT1); |
| jit.store32(GPRInfo::regT1, arrayProfile->addressOfLastSeenStructureID()); |
| |
| jit.load8(MacroAssembler::Address(GPRInfo::regT0, JSCell::typeInfoTypeOffset()), GPRInfo::regT2); |
| jit.sub32(MacroAssembler::TrustedImm32(FirstTypedArrayType), GPRInfo::regT2); |
| auto notTypedArray = jit.branch32(MacroAssembler::AboveOrEqual, GPRInfo::regT2, MacroAssembler::TrustedImm32(NumberOfTypedArrayTypesExcludingDataView)); |
| jit.move(MacroAssembler::TrustedImmPtr(typedArrayModes), GPRInfo::regT1); |
| jit.load32(MacroAssembler::BaseIndex(GPRInfo::regT1, GPRInfo::regT2, MacroAssembler::TimesFour), GPRInfo::regT2); |
| auto storeArrayModes = jit.jump(); |
| |
| notTypedArray.link(&jit); |
| jit.load8(MacroAssembler::Address(GPRInfo::regT0, JSCell::indexingTypeAndMiscOffset()), GPRInfo::regT1); |
| jit.and32(MacroAssembler::TrustedImm32(IndexingModeMask), GPRInfo::regT1); |
| jit.move(MacroAssembler::TrustedImm32(1), GPRInfo::regT2); |
| jit.lshift32(GPRInfo::regT1, GPRInfo::regT2); |
| storeArrayModes.link(&jit); |
| jit.or32(GPRInfo::regT2, MacroAssembler::AbsoluteAddress(arrayProfile->addressOfArrayModes())); |
| |
| if (skipProfile.isSet()) |
| skipProfile.link(&jit); |
| } |
| } |
| |
| if (exit.m_descriptor->m_valueProfile) |
| exit.m_descriptor->m_valueProfile.emitReportValue(jit, JSValueRegs(GPRInfo::regT0)); |
| } |
| |
| // Materialize all objects. Don't materialize an object until all |
| // of the objects it needs have been materialized. We break cycles |
| // by populating objects late - we only consider an object as |
| // needing another object if the later is needed for the |
| // allocation of the former. |
| |
| HashSet<ExitTimeObjectMaterialization*> toMaterialize; |
| for (ExitTimeObjectMaterialization* materialization : exit.m_descriptor->m_materializations) |
| toMaterialize.add(materialization); |
| |
| while (!toMaterialize.isEmpty()) { |
| unsigned previousToMaterializeSize = toMaterialize.size(); |
| |
| Vector<ExitTimeObjectMaterialization*> worklist; |
| worklist.appendRange(toMaterialize.begin(), toMaterialize.end()); |
| for (ExitTimeObjectMaterialization* materialization : worklist) { |
| // Check if we can do anything about this right now. |
| bool allGood = true; |
| for (ExitPropertyValue value : materialization->properties()) { |
| if (!value.value().isObjectMaterialization()) |
| continue; |
| if (!value.location().neededForMaterialization()) |
| continue; |
| if (toMaterialize.contains(value.value().objectMaterialization())) { |
| // Gotta skip this one, since it needs a |
| // materialization that hasn't been materialized. |
| allGood = false; |
| break; |
| } |
| } |
| if (!allGood) |
| continue; |
| |
| // All systems go for materializing the object. First we |
| // recover the values of all of its fields and then we |
| // call a function to actually allocate the beast. |
| // We only recover the fields that are needed for the allocation. |
| for (unsigned propertyIndex = materialization->properties().size(); propertyIndex--;) { |
| const ExitPropertyValue& property = materialization->properties()[propertyIndex]; |
| if (!property.location().neededForMaterialization()) |
| continue; |
| |
| recoverValue(property.value()); |
| jit.storePtr(GPRInfo::regT0, materializationArguments + propertyIndex); |
| } |
| |
| static_assert(FunctionTraits<decltype(operationMaterializeObjectInOSR)>::arity < GPRInfo::numberOfArgumentRegisters, "This call assumes that we don't pass arguments on the stack."); |
| jit.setupArguments<decltype(operationMaterializeObjectInOSR)>( |
| CCallHelpers::TrustedImmPtr(codeBlock->globalObjectFor(materialization->origin())), |
| CCallHelpers::TrustedImmPtr(materialization), |
| CCallHelpers::TrustedImmPtr(materializationArguments)); |
| jit.prepareCallOperation(vm); |
| jit.move(CCallHelpers::TrustedImmPtr(tagCFunctionPtr<OperationPtrTag>(operationMaterializeObjectInOSR)), GPRInfo::nonArgGPR0); |
| jit.call(GPRInfo::nonArgGPR0, OperationPtrTag); |
| jit.storePtr(GPRInfo::returnValueGPR, materializationToPointer.get(materialization)); |
| |
| // Let everyone know that we're done. |
| toMaterialize.remove(materialization); |
| } |
| |
| // We expect progress! This ensures that we crash rather than looping infinitely if there |
| // is something broken about this fixpoint. Or, this could happen if we ever violate the |
| // "materializations form a DAG" rule. |
| RELEASE_ASSERT(toMaterialize.size() < previousToMaterializeSize); |
| } |
| |
| // Now that all the objects have been allocated, we populate them |
| // with the correct values. This time we can recover all the |
| // fields, including those that are only needed for the allocation. |
| for (ExitTimeObjectMaterialization* materialization : exit.m_descriptor->m_materializations) { |
| for (unsigned propertyIndex = materialization->properties().size(); propertyIndex--;) { |
| recoverValue(materialization->properties()[propertyIndex].value()); |
| jit.storePtr(GPRInfo::regT0, materializationArguments + propertyIndex); |
| } |
| |
| static_assert(FunctionTraits<decltype(operationPopulateObjectInOSR)>::arity < GPRInfo::numberOfArgumentRegisters, "This call assumes that we don't pass arguments on the stack."); |
| jit.setupArguments<decltype(operationPopulateObjectInOSR)>( |
| CCallHelpers::TrustedImmPtr(codeBlock->globalObjectFor(materialization->origin())), |
| CCallHelpers::TrustedImmPtr(materialization), |
| CCallHelpers::TrustedImmPtr(materializationToPointer.get(materialization)), |
| CCallHelpers::TrustedImmPtr(materializationArguments)); |
| jit.prepareCallOperation(vm); |
| jit.move(CCallHelpers::TrustedImmPtr(tagCFunctionPtr<OperationPtrTag>(operationPopulateObjectInOSR)), GPRInfo::nonArgGPR0); |
| jit.call(GPRInfo::nonArgGPR0, OperationPtrTag); |
| } |
| |
| // Save all state from wherever the exit data tells us it was, into the appropriate place in |
| // the scratch buffer. This also does the reboxing. |
| |
| for (unsigned index = exit.m_descriptor->m_values.size(); index--;) { |
| recoverValue(exit.m_descriptor->m_values[index]); |
| jit.store64(GPRInfo::regT0, scratch + index); |
| } |
| |
| // Henceforth we make it look like the exiting function was called through a register |
| // preservation wrapper. This implies that FP must be nudged down by a certain amount. Then |
| // we restore the various things according to either exit.m_descriptor->m_values or by copying from the |
| // old frame, and finally we save the various callee-save registers into where the |
| // restoration thunk would restore them from. |
| |
| // Before we start messing with the frame, we need to set aside any registers that the |
| // FTL code was preserving. |
| for (unsigned i = codeBlock->calleeSaveRegisters()->size(); i--;) { |
| RegisterAtOffset entry = codeBlock->calleeSaveRegisters()->at(i); |
| jit.load64( |
| MacroAssembler::Address(MacroAssembler::framePointerRegister, entry.offset()), |
| GPRInfo::regT0); |
| jit.store64(GPRInfo::regT0, unwindScratch + i); |
| } |
| |
| CodeBlock* baselineCodeBlock = jit.baselineCodeBlockFor(exit.m_codeOrigin); |
| |
| // First set up SP so that our data doesn't get clobbered by signals. |
| unsigned conservativeStackDelta = |
| (exit.m_descriptor->m_values.numberOfLocals() + baselineCodeBlock->calleeSaveSpaceAsVirtualRegisters()) * sizeof(Register) + |
| maxFrameExtentForSlowPathCall; |
| conservativeStackDelta = WTF::roundUpToMultipleOf( |
| stackAlignmentBytes(), conservativeStackDelta); |
| jit.addPtr( |
| MacroAssembler::TrustedImm32(-conservativeStackDelta), |
| MacroAssembler::framePointerRegister, MacroAssembler::stackPointerRegister); |
| jit.checkStackPointerAlignment(); |
| |
| RegisterSet allFTLCalleeSaves = RegisterSet::ftlCalleeSaveRegisters(); |
| const RegisterAtOffsetList* baselineCalleeSaves = baselineCodeBlock->calleeSaveRegisters(); |
| RegisterAtOffsetList* vmCalleeSaves = RegisterSet::vmCalleeSaveRegisterOffsets(); |
| RegisterSet vmCalleeSavesToSkip = RegisterSet::stackRegisters(); |
| if (exit.isExceptionHandler()) { |
| jit.loadPtr(&vm.topEntryFrame, GPRInfo::regT1); |
| jit.addPtr(CCallHelpers::TrustedImm32(EntryFrame::calleeSaveRegistersBufferOffset()), GPRInfo::regT1); |
| } |
| |
| for (Reg reg = Reg::first(); reg <= Reg::last(); reg = reg.next()) { |
| if (!allFTLCalleeSaves.get(reg)) { |
| if (exit.isExceptionHandler()) |
| RELEASE_ASSERT(!vmCalleeSaves->find(reg)); |
| continue; |
| } |
| unsigned unwindIndex = codeBlock->calleeSaveRegisters()->indexOf(reg); |
| const RegisterAtOffset* baselineRegisterOffset = baselineCalleeSaves->find(reg); |
| RegisterAtOffset* vmCalleeSave = nullptr; |
| if (exit.isExceptionHandler()) |
| vmCalleeSave = vmCalleeSaves->find(reg); |
| |
| if (reg.isGPR()) { |
| GPRReg regToLoad = baselineRegisterOffset ? GPRInfo::regT0 : reg.gpr(); |
| RELEASE_ASSERT(regToLoad != GPRInfo::regT1); |
| |
| if (unwindIndex == UINT_MAX) { |
| // The FTL compilation didn't preserve this register. This means that it also |
| // didn't use the register. So its value at the beginning of OSR exit should be |
| // preserved by the thunk. Luckily, we saved all registers into the register |
| // scratch buffer, so we can restore them from there. |
| jit.load64(registerScratch + offsetOfReg(reg), regToLoad); |
| } else { |
| // The FTL compilation preserved the register. Its new value is therefore |
| // irrelevant, but we can get the value that was preserved by using the unwind |
| // data. We've already copied all unwind-able preserved registers into the unwind |
| // scratch buffer, so we can get it from there. |
| jit.load64(unwindScratch + unwindIndex, regToLoad); |
| } |
| |
| if (baselineRegisterOffset) |
| jit.store64(regToLoad, MacroAssembler::Address(MacroAssembler::framePointerRegister, baselineRegisterOffset->offset())); |
| if (vmCalleeSave && !vmCalleeSavesToSkip.get(vmCalleeSave->reg())) |
| jit.store64(regToLoad, MacroAssembler::Address(GPRInfo::regT1, vmCalleeSave->offset())); |
| } else { |
| FPRReg fpRegToLoad = baselineRegisterOffset ? FPRInfo::fpRegT0 : reg.fpr(); |
| |
| if (unwindIndex == UINT_MAX) |
| jit.loadDouble(MacroAssembler::TrustedImmPtr(registerScratch + offsetOfReg(reg)), fpRegToLoad); |
| else |
| jit.loadDouble(MacroAssembler::TrustedImmPtr(unwindScratch + unwindIndex), fpRegToLoad); |
| |
| if (baselineRegisterOffset) |
| jit.storeDouble(fpRegToLoad, MacroAssembler::Address(MacroAssembler::framePointerRegister, baselineRegisterOffset->offset())); |
| if (vmCalleeSave && !vmCalleeSavesToSkip.get(vmCalleeSave->reg())) |
| jit.storeDouble(fpRegToLoad, MacroAssembler::Address(GPRInfo::regT1, vmCalleeSave->offset())); |
| } |
| } |
| |
| if (exit.isExceptionHandler()) { |
| RegisterAtOffset* vmCalleeSave = vmCalleeSaves->find(GPRInfo::numberTagRegister); |
| jit.store64(GPRInfo::numberTagRegister, MacroAssembler::Address(GPRInfo::regT1, vmCalleeSave->offset())); |
| |
| vmCalleeSave = vmCalleeSaves->find(GPRInfo::notCellMaskRegister); |
| jit.store64(GPRInfo::notCellMaskRegister, MacroAssembler::Address(GPRInfo::regT1, vmCalleeSave->offset())); |
| } |
| |
| size_t baselineVirtualRegistersForCalleeSaves = baselineCodeBlock->calleeSaveSpaceAsVirtualRegisters(); |
| |
| // Now get state out of the scratch buffer and place it back into the stack. The values are |
| // already reboxed so we just move them. |
| for (unsigned index = exit.m_descriptor->m_values.size(); index--;) { |
| VirtualRegister reg = exit.m_descriptor->m_values.virtualRegisterForIndex(index); |
| |
| if (reg.isLocal() && reg.toLocal() < static_cast<int>(baselineVirtualRegistersForCalleeSaves)) |
| continue; |
| |
| jit.load64(scratch + index, GPRInfo::regT0); |
| jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(reg)); |
| } |
| |
| handleExitCounts(vm, jit, exit); |
| reifyInlinedCallFrames(jit, exit); |
| adjustAndJumpToTarget(vm, jit, exit); |
| |
| LinkBuffer patchBuffer(jit, codeBlock); |
| exit.m_code = FINALIZE_CODE_IF( |
| shouldDumpDisassembly() || Options::verboseOSR() || Options::verboseFTLOSRExit(), |
| patchBuffer, OSRExitPtrTag, |
| "FTL OSR exit #%u (%s, %s) from %s, with operands = %s", |
| exitID, toCString(exit.m_codeOrigin).data(), |
| exitKindToString(exit.m_kind), toCString(*codeBlock).data(), |
| toCString(ignoringContext<DumpContext>(exit.m_descriptor->m_values)).data() |
| ); |
| } |
| |
| extern "C" JIT_OPERATION void* operationCompileFTLOSRExit(CallFrame* callFrame, unsigned exitID) |
| { |
| if (shouldDumpDisassembly() || Options::verboseOSR() || Options::verboseFTLOSRExit()) |
| dataLog("Compiling OSR exit with exitID = ", exitID, "\n"); |
| |
| VM& vm = callFrame->deprecatedVM(); |
| |
| if (validateDFGDoesGC) { |
| // We're about to exit optimized code. So, there's no longer any optimized |
| // code running that expects no GC. |
| vm.heap.setExpectDoesGC(true); |
| } |
| |
| if (vm.callFrameForCatch) |
| RELEASE_ASSERT(vm.callFrameForCatch == callFrame); |
| |
| CodeBlock* codeBlock = callFrame->codeBlock(); |
| |
| ASSERT(codeBlock); |
| ASSERT(codeBlock->jitType() == JITType::FTLJIT); |
| |
| // It's sort of preferable that we don't GC while in here. Anyways, doing so wouldn't |
| // really be profitable. |
| DeferGCForAWhile deferGC(vm.heap); |
| |
| JITCode* jitCode = codeBlock->jitCode()->ftl(); |
| OSRExit& exit = jitCode->osrExit[exitID]; |
| |
| if (shouldDumpDisassembly() || Options::verboseOSR() || Options::verboseFTLOSRExit()) { |
| dataLog(" Owning block: ", pointerDump(codeBlock), "\n"); |
| dataLog(" Origin: ", exit.m_codeOrigin, "\n"); |
| if (exit.m_codeOriginForExitProfile != exit.m_codeOrigin) |
| dataLog(" Origin for exit profile: ", exit.m_codeOriginForExitProfile, "\n"); |
| dataLog(" Current call site index: ", callFrame->callSiteIndex().bits(), "\n"); |
| dataLog(" Exit is exception handler: ", exit.isExceptionHandler(), "\n"); |
| dataLog(" Is unwind handler: ", exit.isGenericUnwindHandler(), "\n"); |
| dataLog(" Exit values: ", exit.m_descriptor->m_values, "\n"); |
| dataLog(" Value reps: ", listDump(exit.m_valueReps), "\n"); |
| if (!exit.m_descriptor->m_materializations.isEmpty()) { |
| dataLog(" Materializations:\n"); |
| for (ExitTimeObjectMaterialization* materialization : exit.m_descriptor->m_materializations) |
| dataLog(" ", pointerDump(materialization), "\n"); |
| } |
| } |
| |
| compileStub(vm, exitID, jitCode, exit, codeBlock); |
| |
| MacroAssembler::repatchJump( |
| exit.codeLocationForRepatch(codeBlock), CodeLocationLabel<OSRExitPtrTag>(exit.m_code.code())); |
| |
| return exit.m_code.code().executableAddress(); |
| } |
| |
| } } // namespace JSC::FTL |
| |
| #endif // ENABLE(FTL_JIT) |
| |