blob: 475e9268849e82b50ec42653698a0482bd6fe921 [file] [log] [blame]
/*
* Copyright (C) 2019 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "WasmAirIRGenerator.h"
#if ENABLE(WEBASSEMBLY)
#include "AirCode.h"
#include "AirGenerate.h"
#include "AirOpcodeUtils.h"
#include "AirValidate.h"
#include "AllowMacroScratchRegisterUsageIf.h"
#include "B3CCallValue.h"
#include "B3CheckSpecial.h"
#include "B3CheckValue.h"
#include "B3PatchpointSpecial.h"
#include "B3Procedure.h"
#include "B3ProcedureInlines.h"
#include "BinarySwitch.h"
#include "DisallowMacroScratchRegisterUsage.h"
#include "ScratchRegisterAllocator.h"
#include "VirtualRegister.h"
#include "WasmCallingConvention.h"
#include "WasmContextInlines.h"
#include "WasmExceptionType.h"
#include "WasmFunctionParser.h"
#include "WasmInstance.h"
#include "WasmMemory.h"
#include "WasmOMGPlan.h"
#include "WasmOpcodeOrigin.h"
#include "WasmSignatureInlines.h"
#include "WasmThunks.h"
#include <limits>
#include <wtf/Box.h>
#include <wtf/Optional.h>
#include <wtf/StdLibExtras.h>
namespace JSC { namespace Wasm {
using namespace B3::Air;
struct ConstrainedTmp {
ConstrainedTmp(Tmp tmp)
: ConstrainedTmp(tmp, tmp.isReg() ? B3::ValueRep::reg(tmp.reg()) : B3::ValueRep::SomeRegister)
{ }
ConstrainedTmp(Tmp tmp, B3::ValueRep rep)
: tmp(tmp)
, rep(rep)
{
}
Tmp tmp;
B3::ValueRep rep;
};
class TypedTmp {
public:
constexpr TypedTmp()
: m_tmp()
, m_type(Type::Void)
{ }
TypedTmp(Tmp tmp, Type type)
: m_tmp(tmp)
, m_type(type)
{ }
TypedTmp(const TypedTmp&) = default;
TypedTmp(TypedTmp&&) = default;
TypedTmp& operator=(TypedTmp&&) = default;
TypedTmp& operator=(const TypedTmp&) = default;
bool operator==(const TypedTmp& other) const
{
return m_tmp == other.m_tmp && m_type == other.m_type;
}
bool operator!=(const TypedTmp& other) const
{
return !(*this == other);
}
explicit operator bool() const { return !!tmp(); }
operator Tmp() const { return tmp(); }
operator Arg() const { return Arg(tmp()); }
Tmp tmp() const { return m_tmp; }
Type type() const { return m_type; }
private:
Tmp m_tmp;
Type m_type;
};
class AirIRGenerator {
public:
struct ControlData {
ControlData(B3::Origin origin, Type returnType, TypedTmp resultTmp, BlockType type, BasicBlock* continuation, BasicBlock* special = nullptr)
: blockType(type)
, continuation(continuation)
, special(special)
, returnType(returnType)
{
UNUSED_PARAM(origin); // FIXME: Use origin.
if (resultTmp) {
ASSERT(returnType != Type::Void);
result.append(resultTmp);
} else
ASSERT(returnType == Type::Void);
}
ControlData()
{
}
void dump(PrintStream& out) const
{
switch (type()) {
case BlockType::If:
out.print("If: ");
break;
case BlockType::Block:
out.print("Block: ");
break;
case BlockType::Loop:
out.print("Loop: ");
break;
case BlockType::TopLevel:
out.print("TopLevel: ");
break;
}
out.print("Continuation: ", *continuation, ", Special: ");
if (special)
out.print(*special);
else
out.print("None");
}
BlockType type() const { return blockType; }
Type signature() const { return returnType; }
bool hasNonVoidSignature() const { return result.size(); }
BasicBlock* targetBlockForBranch()
{
if (type() == BlockType::Loop)
return special;
return continuation;
}
void convertIfToBlock()
{
ASSERT(type() == BlockType::If);
blockType = BlockType::Block;
special = nullptr;
}
using ResultList = Vector<TypedTmp, 1>;
ResultList resultForBranch() const
{
if (type() == BlockType::Loop)
return ResultList();
return result;
}
private:
friend class AirIRGenerator;
BlockType blockType;
BasicBlock* continuation;
BasicBlock* special;
ResultList result;
Type returnType;
};
using ExpressionType = TypedTmp;
using ControlType = ControlData;
using ExpressionList = Vector<ExpressionType, 1>;
using ResultList = ControlData::ResultList;
using ControlEntry = FunctionParser<AirIRGenerator>::ControlEntry;
static ExpressionType emptyExpression() { return { }; };
using ErrorType = String;
using UnexpectedResult = Unexpected<ErrorType>;
using Result = Expected<std::unique_ptr<InternalFunction>, ErrorType>;
using PartialResult = Expected<void, ErrorType>;
template <typename ...Args>
NEVER_INLINE UnexpectedResult WARN_UNUSED_RETURN fail(Args... args) const
{
using namespace FailureHelper; // See ADL comment in WasmParser.h.
return UnexpectedResult(makeString("WebAssembly.Module failed compiling: "_s, makeString(args)...));
}
#define WASM_COMPILE_FAIL_IF(condition, ...) do { \
if (UNLIKELY(condition)) \
return fail(__VA_ARGS__); \
} while (0)
AirIRGenerator(const ModuleInformation&, B3::Procedure&, InternalFunction*, Vector<UnlinkedWasmToWasmCall>&, MemoryMode, unsigned functionIndex, TierUpCount*, ThrowWasmException, const Signature&);
PartialResult WARN_UNUSED_RETURN addArguments(const Signature&);
PartialResult WARN_UNUSED_RETURN addLocal(Type, uint32_t);
ExpressionType addConstant(Type, uint64_t);
ExpressionType addConstant(BasicBlock*, Type, uint64_t);
// Locals
PartialResult WARN_UNUSED_RETURN getLocal(uint32_t index, ExpressionType& result);
PartialResult WARN_UNUSED_RETURN setLocal(uint32_t index, ExpressionType value);
// Globals
PartialResult WARN_UNUSED_RETURN getGlobal(uint32_t index, ExpressionType& result);
PartialResult WARN_UNUSED_RETURN setGlobal(uint32_t index, ExpressionType value);
// Memory
PartialResult WARN_UNUSED_RETURN load(LoadOpType, ExpressionType pointer, ExpressionType& result, uint32_t offset);
PartialResult WARN_UNUSED_RETURN store(StoreOpType, ExpressionType pointer, ExpressionType value, uint32_t offset);
PartialResult WARN_UNUSED_RETURN addGrowMemory(ExpressionType delta, ExpressionType& result);
PartialResult WARN_UNUSED_RETURN addCurrentMemory(ExpressionType& result);
// Basic operators
template<OpType>
PartialResult WARN_UNUSED_RETURN addOp(ExpressionType arg, ExpressionType& result);
template<OpType>
PartialResult WARN_UNUSED_RETURN addOp(ExpressionType left, ExpressionType right, ExpressionType& result);
PartialResult WARN_UNUSED_RETURN addSelect(ExpressionType condition, ExpressionType nonZero, ExpressionType zero, ExpressionType& result);
// Control flow
ControlData WARN_UNUSED_RETURN addTopLevel(Type signature);
ControlData WARN_UNUSED_RETURN addBlock(Type signature);
ControlData WARN_UNUSED_RETURN addLoop(Type signature);
PartialResult WARN_UNUSED_RETURN addIf(ExpressionType condition, Type signature, ControlData& result);
PartialResult WARN_UNUSED_RETURN addElse(ControlData&, const ExpressionList&);
PartialResult WARN_UNUSED_RETURN addElseToUnreachable(ControlData&);
PartialResult WARN_UNUSED_RETURN addReturn(const ControlData&, const ExpressionList& returnValues);
PartialResult WARN_UNUSED_RETURN addBranch(ControlData&, ExpressionType condition, const ExpressionList& returnValues);
PartialResult WARN_UNUSED_RETURN addSwitch(ExpressionType condition, const Vector<ControlData*>& targets, ControlData& defaultTargets, const ExpressionList& expressionStack);
PartialResult WARN_UNUSED_RETURN endBlock(ControlEntry&, ExpressionList& expressionStack);
PartialResult WARN_UNUSED_RETURN addEndToUnreachable(ControlEntry&);
// Calls
PartialResult WARN_UNUSED_RETURN addCall(uint32_t calleeIndex, const Signature&, Vector<ExpressionType>& args, ExpressionType& result);
PartialResult WARN_UNUSED_RETURN addCallIndirect(const Signature&, Vector<ExpressionType>& args, ExpressionType& result);
PartialResult WARN_UNUSED_RETURN addUnreachable();
PartialResult addShift(Type, B3::Air::Opcode, ExpressionType value, ExpressionType shift, ExpressionType& result);
PartialResult addIntegerSub(B3::Air::Opcode, ExpressionType lhs, ExpressionType rhs, ExpressionType& result);
PartialResult addFloatingPointAbs(B3::Air::Opcode, ExpressionType value, ExpressionType& result);
PartialResult addFloatingPointBinOp(Type, B3::Air::Opcode, ExpressionType lhs, ExpressionType rhs, ExpressionType& result);
void dump(const Vector<ControlEntry>& controlStack, const ExpressionList* expressionStack);
void setParser(FunctionParser<AirIRGenerator>* parser) { m_parser = parser; };
static Vector<Tmp> toTmpVector(const Vector<TypedTmp>& vector)
{
Vector<Tmp> result;
for (const auto& item : vector)
result.append(item.tmp());
return result;
}
ALWAYS_INLINE void didKill(const ExpressionType& typedTmp)
{
Tmp tmp = typedTmp.tmp();
if (!tmp)
return;
if (tmp.isGP())
m_freeGPs.append(tmp);
else
m_freeFPs.append(tmp);
}
private:
ALWAYS_INLINE void validateInst(Inst& inst)
{
if (!ASSERT_DISABLED) {
if (!inst.isValidForm()) {
dataLogLn(inst);
CRASH();
}
}
}
static Arg extractArg(const TypedTmp& tmp) { return tmp.tmp(); }
static Arg extractArg(const Tmp& tmp) { return Arg(tmp); }
static Arg extractArg(const Arg& arg) { return arg; }
template<typename... Arguments>
void append(BasicBlock* block, Kind kind, Arguments&&... arguments)
{
// FIXME: Find a way to use origin here.
auto& inst = block->append(kind, nullptr, extractArg(arguments)...);
validateInst(inst);
}
template<typename... Arguments>
void append(Kind kind, Arguments&&... arguments)
{
append(m_currentBlock, kind, std::forward<Arguments>(arguments)...);
}
template<typename... Arguments>
void appendEffectful(B3::Air::Opcode op, Arguments&&... arguments)
{
Kind kind = op;
kind.effects = true;
append(m_currentBlock, kind, std::forward<Arguments>(arguments)...);
}
Tmp newTmp(B3::Bank bank)
{
switch (bank) {
case B3::GP:
if (m_freeGPs.size())
return m_freeGPs.takeLast();
break;
case B3::FP:
if (m_freeFPs.size())
return m_freeFPs.takeLast();
break;
}
return m_code.newTmp(bank);
}
TypedTmp g32() { return { newTmp(B3::GP), Type::I32 }; }
TypedTmp g64() { return { newTmp(B3::GP), Type::I64 }; }
TypedTmp f32() { return { newTmp(B3::FP), Type::F32 }; }
TypedTmp f64() { return { newTmp(B3::FP), Type::F64 }; }
TypedTmp tmpForType(Type type)
{
switch (type) {
case Type::I32:
return g32();
case Type::I64:
return g64();
case Type::F32:
return f32();
case Type::F64:
return f64();
case Type::Void:
return { };
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
B3::PatchpointValue* addPatchpoint(B3::Type type)
{
return m_proc.add<B3::PatchpointValue>(type, B3::Origin());
}
template <typename ...Args>
void emitPatchpoint(B3::PatchpointValue* patch, Tmp result, Args... theArgs)
{
emitPatchpoint(m_currentBlock, patch, result, std::forward<Args>(theArgs)...);
}
template <typename ...Args>
void emitPatchpoint(BasicBlock* basicBlock, B3::PatchpointValue* patch, Tmp result, Args... theArgs)
{
emitPatchpoint(basicBlock, patch, result, Vector<ConstrainedTmp, sizeof...(Args)>::from(theArgs...));
}
void emitPatchpoint(BasicBlock* basicBlock, B3::PatchpointValue* patch, Tmp result)
{
emitPatchpoint(basicBlock, patch, result, Vector<ConstrainedTmp>());
}
template <size_t inlineSize>
void emitPatchpoint(BasicBlock* basicBlock, B3::PatchpointValue* patch, Tmp result, Vector<ConstrainedTmp, inlineSize>&& args)
{
if (!m_patchpointSpecial)
m_patchpointSpecial = static_cast<B3::PatchpointSpecial*>(m_code.addSpecial(std::make_unique<B3::PatchpointSpecial>()));
Inst inst(Patch, patch, Arg::special(m_patchpointSpecial));
Inst resultMov;
if (result) {
ASSERT(patch->type() != B3::Void);
switch (patch->resultConstraint.kind()) {
case B3::ValueRep::Register:
inst.args.append(Tmp(patch->resultConstraint.reg()));
resultMov = Inst(result.isGP() ? Move : MoveDouble, nullptr, Tmp(patch->resultConstraint.reg()), result);
break;
case B3::ValueRep::SomeRegister:
inst.args.append(result);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
} else
ASSERT(patch->type() == B3::Void);
for (ConstrainedTmp& tmp : args) {
// FIXME: This is less than ideal to create dummy values just to satisfy Air's
// validation. We should abstrcat Patch enough so ValueRep's don't need to be
// backed by Values.
// https://bugs.webkit.org/show_bug.cgi?id=194040
B3::Value* dummyValue = m_proc.addConstant(B3::Origin(), tmp.tmp.isGP() ? B3::Int64 : B3::Double, 0);
patch->append(dummyValue, tmp.rep);
switch (tmp.rep.kind()) {
case B3::ValueRep::SomeRegister:
inst.args.append(tmp.tmp);
break;
case B3::ValueRep::Register:
patch->earlyClobbered().clear(tmp.rep.reg());
append(basicBlock, tmp.tmp.isGP() ? Move : MoveDouble, tmp.tmp, tmp.rep.reg());
inst.args.append(Tmp(tmp.rep.reg()));
break;
case B3::ValueRep::StackArgument: {
auto arg = Arg::callArg(tmp.rep.offsetFromSP());
append(basicBlock, tmp.tmp.isGP() ? Move : MoveDouble, tmp.tmp, arg);
inst.args.append(arg);
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
if (patch->resultConstraint.isReg())
patch->lateClobbered().clear(patch->resultConstraint.reg());
for (unsigned i = patch->numGPScratchRegisters; i--;)
inst.args.append(g64().tmp());
for (unsigned i = patch->numFPScratchRegisters; i--;)
inst.args.append(f64().tmp());
validateInst(inst);
basicBlock->append(WTFMove(inst));
if (resultMov) {
validateInst(resultMov);
basicBlock->append(WTFMove(resultMov));
}
}
template <typename Branch, typename Generator>
void emitCheck(const Branch& makeBranch, const Generator& generator)
{
// We fail along the truthy edge of 'branch'.
Inst branch = makeBranch();
// FIXME: Make a hashmap of these.
B3::CheckSpecial::Key key(branch);
B3::CheckSpecial* special = static_cast<B3::CheckSpecial*>(m_code.addSpecial(std::make_unique<B3::CheckSpecial>(key)));
// FIXME: Remove the need for dummy values
// https://bugs.webkit.org/show_bug.cgi?id=194040
B3::Value* dummyPredicate = m_proc.addConstant(B3::Origin(), B3::Int32, 42);
B3::CheckValue* checkValue = m_proc.add<B3::CheckValue>(B3::Check, B3::Origin(), dummyPredicate);
checkValue->setGenerator(generator);
Inst inst(Patch, checkValue, Arg::special(special));
inst.args.appendVector(branch.args);
m_currentBlock->append(WTFMove(inst));
}
template <typename Func, typename ...Args>
void emitCCall(Func func, TypedTmp result, Args... args)
{
emitCCall(m_currentBlock, func, result, std::forward<Args>(args)...);
}
template <typename Func, typename ...Args>
void emitCCall(BasicBlock* block, Func func, TypedTmp result, Args... theArgs)
{
B3::Type resultType = B3::Void;
if (result) {
switch (result.type()) {
case Type::I32:
resultType = B3::Int32;
break;
case Type::I64:
resultType = B3::Int64;
break;
case Type::F32:
resultType = B3::Float;
break;
case Type::F64:
resultType = B3::Double;
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
auto makeDummyValue = [&] (Tmp tmp) {
// FIXME: This is less than ideal to create dummy values just to satisfy Air's
// validation. We should abstrcat CCall enough so we're not reliant on arguments
// to the B3::CCallValue.
// https://bugs.webkit.org/show_bug.cgi?id=194040
if (tmp.isGP())
return m_proc.addConstant(B3::Origin(), B3::Int64, 0);
return m_proc.addConstant(B3::Origin(), B3::Double, 0);
};
B3::Value* dummyFunc = m_proc.addConstant(B3::Origin(), B3::Int64, bitwise_cast<uintptr_t>(func));
B3::Value* origin = m_proc.add<B3::CCallValue>(resultType, B3::Origin(), B3::Effects::none(), dummyFunc, makeDummyValue(theArgs)...);
Inst inst(CCall, origin);
Tmp callee = g64();
append(Move, Arg::immPtr(tagCFunctionPtr<void*>(func, B3CCallPtrTag)), callee);
inst.args.append(callee);
if (result)
inst.args.append(result.tmp());
for (Tmp tmp : Vector<Tmp, sizeof...(Args)>::from(theArgs.tmp()...))
inst.args.append(tmp);
block->append(WTFMove(inst));
}
static B3::Air::Opcode moveOpForValueType(Type type)
{
switch (type) {
case Type::I32:
return Move32;
case Type::I64:
return Move;
case Type::F32:
return MoveFloat;
case Type::F64:
return MoveDouble;
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
void emitThrowException(CCallHelpers&, ExceptionType);
void emitTierUpCheck(uint32_t decrementCount, B3::Origin);
ExpressionType emitCheckAndPreparePointer(ExpressionType pointer, uint32_t offset, uint32_t sizeOfOp);
ExpressionType emitLoadOp(LoadOpType, ExpressionType pointer, uint32_t offset);
void emitStoreOp(StoreOpType, ExpressionType pointer, ExpressionType value, uint32_t offset);
void unify(const ExpressionType& dst, const ExpressionType& source);
void unifyValuesWithBlock(const ExpressionList& resultStack, const ResultList& stack);
template <typename IntType>
void emitChecksForModOrDiv(bool isSignedDiv, ExpressionType left, ExpressionType right);
template <typename IntType>
void emitModOrDiv(bool isDiv, ExpressionType lhs, ExpressionType rhs, ExpressionType& result);
enum class MinOrMax { Min, Max };
PartialResult addFloatingPointMinOrMax(Type, MinOrMax, ExpressionType lhs, ExpressionType rhs, ExpressionType& result);
int32_t WARN_UNUSED_RETURN fixupPointerPlusOffset(ExpressionType&, uint32_t);
void restoreWasmContextInstance(BasicBlock*, TypedTmp);
enum class RestoreCachedStackLimit { No, Yes };
void restoreWebAssemblyGlobalState(RestoreCachedStackLimit, const MemoryInformation&, TypedTmp instance, BasicBlock*);
B3::Origin origin();
FunctionParser<AirIRGenerator>* m_parser { nullptr };
const ModuleInformation& m_info;
const MemoryMode m_mode { MemoryMode::BoundsChecking };
const unsigned m_functionIndex { UINT_MAX };
const TierUpCount* m_tierUp { nullptr };
B3::Procedure& m_proc;
Code& m_code;
BasicBlock* m_currentBlock { nullptr };
BasicBlock* m_rootBlock { nullptr };
Vector<TypedTmp> m_locals;
Vector<UnlinkedWasmToWasmCall>& m_unlinkedWasmToWasmCalls; // List each call site and the function index whose address it should be patched with.
GPRReg m_memoryBaseGPR { InvalidGPRReg };
GPRReg m_memorySizeGPR { InvalidGPRReg };
GPRReg m_wasmContextInstanceGPR { InvalidGPRReg };
bool m_makesCalls { false };
Vector<Tmp, 8> m_freeGPs;
Vector<Tmp, 8> m_freeFPs;
TypedTmp m_instanceValue; // Always use the accessor below to ensure the instance value is materialized when used.
bool m_usesInstanceValue { false };
TypedTmp instanceValue()
{
m_usesInstanceValue = true;
return m_instanceValue;
}
uint32_t m_maxNumJSCallArguments { 0 };
B3::PatchpointSpecial* m_patchpointSpecial { nullptr };
};
// Memory accesses in WebAssembly have unsigned 32-bit offsets, whereas they have signed 32-bit offsets in B3.
int32_t AirIRGenerator::fixupPointerPlusOffset(ExpressionType& ptr, uint32_t offset)
{
if (static_cast<uint64_t>(offset) > static_cast<uint64_t>(std::numeric_limits<int32_t>::max())) {
auto previousPtr = ptr;
ptr = g64();
auto constant = g64();
append(Move, Arg::bigImm(offset), constant);
append(Add64, constant, previousPtr, ptr);
return 0;
}
return offset;
}
void AirIRGenerator::restoreWasmContextInstance(BasicBlock* block, TypedTmp instance)
{
if (Context::useFastTLS()) {
auto* patchpoint = addPatchpoint(B3::Void);
if (CCallHelpers::storeWasmContextInstanceNeedsMacroScratchRegister())
patchpoint->clobber(RegisterSet::macroScratchRegisters());
patchpoint->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams& params) {
AllowMacroScratchRegisterUsageIf allowScratch(jit, CCallHelpers::storeWasmContextInstanceNeedsMacroScratchRegister());
jit.storeWasmContextInstance(params[0].gpr());
});
emitPatchpoint(block, patchpoint, Tmp(), instance);
return;
}
// FIXME: Because WasmToWasm call clobbers wasmContextInstance register and does not restore it, we need to restore it in the caller side.
// This prevents us from using ArgumentReg to this (logically) immutable pinned register.
auto* patchpoint = addPatchpoint(B3::Void);
B3::Effects effects = B3::Effects::none();
effects.writesPinned = true;
effects.reads = B3::HeapRange::top();
patchpoint->effects = effects;
patchpoint->clobberLate(RegisterSet(m_wasmContextInstanceGPR));
GPRReg wasmContextInstanceGPR = m_wasmContextInstanceGPR;
patchpoint->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams& param) {
jit.move(param[0].gpr(), wasmContextInstanceGPR);
});
emitPatchpoint(block, patchpoint, Tmp(), instance);
}
AirIRGenerator::AirIRGenerator(const ModuleInformation& info, B3::Procedure& procedure, InternalFunction* compilation, Vector<UnlinkedWasmToWasmCall>& unlinkedWasmToWasmCalls, MemoryMode mode, unsigned functionIndex, TierUpCount* tierUp, ThrowWasmException throwWasmException, const Signature& signature)
: m_info(info)
, m_mode(mode)
, m_functionIndex(functionIndex)
, m_tierUp(tierUp)
, m_proc(procedure)
, m_code(m_proc.code())
, m_unlinkedWasmToWasmCalls(unlinkedWasmToWasmCalls)
{
m_currentBlock = m_code.addBlock();
m_rootBlock = m_currentBlock;
// FIXME we don't really need to pin registers here if there's no memory. It makes wasm -> wasm thunks simpler for now. https://bugs.webkit.org/show_bug.cgi?id=166623
const PinnedRegisterInfo& pinnedRegs = PinnedRegisterInfo::get();
m_memoryBaseGPR = pinnedRegs.baseMemoryPointer;
m_code.pinRegister(m_memoryBaseGPR);
m_wasmContextInstanceGPR = pinnedRegs.wasmContextInstancePointer;
if (!Context::useFastTLS())
m_code.pinRegister(m_wasmContextInstanceGPR);
if (mode != MemoryMode::Signaling) {
m_memorySizeGPR = pinnedRegs.sizeRegister;
m_code.pinRegister(m_memorySizeGPR);
}
if (throwWasmException)
Thunks::singleton().setThrowWasmException(throwWasmException);
if (info.memory) {
switch (m_mode) {
case MemoryMode::BoundsChecking:
break;
case MemoryMode::Signaling:
// Most memory accesses in signaling mode don't do an explicit
// exception check because they can rely on fault handling to detect
// out-of-bounds accesses. FaultSignalHandler nonetheless needs the
// thunk to exist so that it can jump to that thunk.
if (UNLIKELY(!Thunks::singleton().stub(throwExceptionFromWasmThunkGenerator)))
CRASH();
break;
}
}
m_code.setNumEntrypoints(1);
GPRReg contextInstance = Context::useFastTLS() ? wasmCallingConventionAir().prologueScratch(1) : m_wasmContextInstanceGPR;
Ref<B3::Air::PrologueGenerator> prologueGenerator = createSharedTask<B3::Air::PrologueGeneratorFunction>([=] (CCallHelpers& jit, B3::Air::Code& code) {
AllowMacroScratchRegisterUsage allowScratch(jit);
code.emitDefaultPrologue(jit);
{
GPRReg calleeGPR = wasmCallingConventionAir().prologueScratch(0);
auto moveLocation = jit.moveWithPatch(MacroAssembler::TrustedImmPtr(nullptr), calleeGPR);
jit.addLinkTask([compilation, moveLocation] (LinkBuffer& linkBuffer) {
compilation->calleeMoveLocation = linkBuffer.locationOf<WasmEntryPtrTag>(moveLocation);
});
jit.emitPutToCallFrameHeader(calleeGPR, CallFrameSlot::callee);
jit.emitPutToCallFrameHeader(nullptr, CallFrameSlot::codeBlock);
}
{
const Checked<int32_t> wasmFrameSize = m_code.frameSize();
const unsigned minimumParentCheckSize = WTF::roundUpToMultipleOf(stackAlignmentBytes(), 1024);
const unsigned extraFrameSize = WTF::roundUpToMultipleOf(stackAlignmentBytes(), std::max<uint32_t>(
// This allows us to elide stack checks for functions that are terminal nodes in the call
// tree, (e.g they don't make any calls) and have a small enough frame size. This works by
// having any such terminal node have its parent caller include some extra size in its
// own check for it. The goal here is twofold:
// 1. Emit less code.
// 2. Try to speed things up by skipping stack checks.
minimumParentCheckSize,
// This allows us to elide stack checks in the Wasm -> Embedder call IC stub. Since these will
// spill all arguments to the stack, we ensure that a stack check here covers the
// stack that such a stub would use.
(Checked<uint32_t>(m_maxNumJSCallArguments) * sizeof(Register) + jscCallingConvention().headerSizeInBytes()).unsafeGet()
));
const int32_t checkSize = m_makesCalls ? (wasmFrameSize + extraFrameSize).unsafeGet() : wasmFrameSize.unsafeGet();
bool needUnderflowCheck = static_cast<unsigned>(checkSize) > Options::reservedZoneSize();
bool needsOverflowCheck = m_makesCalls || wasmFrameSize >= minimumParentCheckSize || needUnderflowCheck;
// This allows leaf functions to not do stack checks if their frame size is within
// certain limits since their caller would have already done the check.
if (needsOverflowCheck) {
GPRReg scratch = wasmCallingConventionAir().prologueScratch(0);
if (Context::useFastTLS())
jit.loadWasmContextInstance(contextInstance);
jit.addPtr(CCallHelpers::TrustedImm32(-checkSize), GPRInfo::callFrameRegister, scratch);
MacroAssembler::JumpList overflow;
if (UNLIKELY(needUnderflowCheck))
overflow.append(jit.branchPtr(CCallHelpers::Above, scratch, GPRInfo::callFrameRegister));
overflow.append(jit.branchPtr(CCallHelpers::Below, scratch, CCallHelpers::Address(contextInstance, Instance::offsetOfCachedStackLimit())));
jit.addLinkTask([overflow] (LinkBuffer& linkBuffer) {
linkBuffer.link(overflow, CodeLocationLabel<JITThunkPtrTag>(Thunks::singleton().stub(throwStackOverflowFromWasmThunkGenerator).code()));
});
} else if (m_usesInstanceValue && Context::useFastTLS()) {
// No overflow check is needed, but the instance values still needs to be correct.
jit.loadWasmContextInstance(contextInstance);
}
}
});
m_code.setPrologueForEntrypoint(0, WTFMove(prologueGenerator));
if (Context::useFastTLS()) {
m_instanceValue = g64();
// FIXME: Would be nice to only do this if we use instance value.
append(Move, Tmp(contextInstance), m_instanceValue);
} else
m_instanceValue = { Tmp(contextInstance), Type::I64 };
ASSERT(!m_locals.size());
m_locals.grow(signature.argumentCount());
for (unsigned i = 0; i < signature.argumentCount(); ++i) {
Type type = signature.argument(i);
m_locals[i] = tmpForType(type);
}
wasmCallingConventionAir().loadArguments(signature, [&] (const Arg& arg, unsigned i) {
switch (signature.argument(i)) {
case Type::I32:
append(Move32, arg, m_locals[i]);
break;
case Type::I64:
append(Move, arg, m_locals[i]);
break;
case Type::F32:
append(MoveFloat, arg, m_locals[i]);
break;
case Type::F64:
append(MoveDouble, arg, m_locals[i]);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
});
emitTierUpCheck(TierUpCount::functionEntryDecrement(), B3::Origin());
}
void AirIRGenerator::restoreWebAssemblyGlobalState(RestoreCachedStackLimit restoreCachedStackLimit, const MemoryInformation& memory, TypedTmp instance, BasicBlock* block)
{
restoreWasmContextInstance(block, instance);
if (restoreCachedStackLimit == RestoreCachedStackLimit::Yes) {
// The Instance caches the stack limit, but also knows where its canonical location is.
static_assert(sizeof(decltype(static_cast<Instance*>(nullptr)->cachedStackLimit())) == sizeof(uint64_t), "");
RELEASE_ASSERT(Arg::isValidAddrForm(Instance::offsetOfPointerToActualStackLimit(), B3::Width64));
RELEASE_ASSERT(Arg::isValidAddrForm(Instance::offsetOfCachedStackLimit(), B3::Width64));
auto temp = g64();
append(block, Move, Arg::addr(instanceValue(), Instance::offsetOfPointerToActualStackLimit()), temp);
append(block, Move, Arg::addr(temp), temp);
append(block, Move, temp, Arg::addr(instanceValue(), Instance::offsetOfCachedStackLimit()));
}
if (!!memory) {
const PinnedRegisterInfo* pinnedRegs = &PinnedRegisterInfo::get();
RegisterSet clobbers;
clobbers.set(pinnedRegs->baseMemoryPointer);
clobbers.set(pinnedRegs->sizeRegister);
if (!isARM64())
clobbers.set(RegisterSet::macroScratchRegisters());
auto* patchpoint = addPatchpoint(B3::Void);
B3::Effects effects = B3::Effects::none();
effects.writesPinned = true;
effects.reads = B3::HeapRange::top();
patchpoint->effects = effects;
patchpoint->clobber(clobbers);
patchpoint->numGPScratchRegisters = Gigacage::isEnabled(Gigacage::Primitive) ? 1 : 0;
patchpoint->setGenerator([pinnedRegs] (CCallHelpers& jit, const B3::StackmapGenerationParams& params) {
RELEASE_ASSERT(!Gigacage::isEnabled(Gigacage::Primitive) || !isARM64());
AllowMacroScratchRegisterUsageIf allowScratch(jit, !isARM64());
GPRReg baseMemory = pinnedRegs->baseMemoryPointer;
GPRReg scratchOrSize = Gigacage::isEnabled(Gigacage::Primitive) ? params.gpScratch(0) : pinnedRegs->sizeRegister;
jit.loadPtr(CCallHelpers::Address(params[0].gpr(), Instance::offsetOfCachedMemorySize()), pinnedRegs->sizeRegister);
jit.loadPtr(CCallHelpers::Address(params[0].gpr(), Instance::offsetOfCachedMemory()), baseMemory);
jit.cageConditionally(Gigacage::Primitive, baseMemory, scratchOrSize);
});
emitPatchpoint(block, patchpoint, Tmp(), instance);
}
}
void AirIRGenerator::emitThrowException(CCallHelpers& jit, ExceptionType type)
{
jit.move(CCallHelpers::TrustedImm32(static_cast<uint32_t>(type)), GPRInfo::argumentGPR1);
auto jumpToExceptionStub = jit.jump();
jit.addLinkTask([jumpToExceptionStub] (LinkBuffer& linkBuffer) {
linkBuffer.link(jumpToExceptionStub, CodeLocationLabel<JITThunkPtrTag>(Thunks::singleton().stub(throwExceptionFromWasmThunkGenerator).code()));
});
}
auto AirIRGenerator::addLocal(Type type, uint32_t count) -> PartialResult
{
Checked<uint32_t, RecordOverflow> totalBytesChecked = count;
totalBytesChecked += m_locals.size();
uint32_t totalBytes;
WASM_COMPILE_FAIL_IF((totalBytesChecked.safeGet(totalBytes) == CheckedState::DidOverflow) || !m_locals.tryReserveCapacity(totalBytes), "can't allocate memory for ", totalBytes, " locals");
for (uint32_t i = 0; i < count; ++i) {
auto local = tmpForType(type);
m_locals.uncheckedAppend(local);
switch (type) {
case Type::I32:
case Type::I64: {
append(Xor64, local, local);
break;
}
case Type::F32:
case Type::F64: {
auto temp = g64();
// IEEE 754 "0" is just int32/64 zero.
append(Xor64, temp, temp);
append(type == Type::F32 ? Move32ToFloat : Move64ToDouble, temp, local);
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
return { };
}
auto AirIRGenerator::addConstant(Type type, uint64_t value) -> ExpressionType
{
return addConstant(m_currentBlock, type, value);
}
auto AirIRGenerator::addConstant(BasicBlock* block, Type type, uint64_t value) -> ExpressionType
{
auto result = tmpForType(type);
switch (type) {
case Type::I32:
case Type::I64:
append(block, Move, Arg::bigImm(value), result);
break;
case Type::F32:
case Type::F64: {
auto tmp = g64();
append(block, Move, Arg::bigImm(value), tmp);
append(block, type == Type::F32 ? Move32ToFloat : Move64ToDouble, tmp, result);
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
}
return result;
}
auto AirIRGenerator::addArguments(const Signature& signature) -> PartialResult
{
RELEASE_ASSERT(m_locals.size() == signature.argumentCount()); // We handle arguments in the prologue
return { };
}
auto AirIRGenerator::getLocal(uint32_t index, ExpressionType& result) -> PartialResult
{
ASSERT(m_locals[index].tmp());
result = tmpForType(m_locals[index].type());
append(moveOpForValueType(m_locals[index].type()), m_locals[index].tmp(), result);
return { };
}
auto AirIRGenerator::addUnreachable() -> PartialResult
{
B3::PatchpointValue* unreachable = addPatchpoint(B3::Void);
unreachable->setGenerator([this] (CCallHelpers& jit, const B3::StackmapGenerationParams&) {
this->emitThrowException(jit, ExceptionType::Unreachable);
});
unreachable->effects.terminal = true;
emitPatchpoint(unreachable, Tmp());
return { };
}
auto AirIRGenerator::addGrowMemory(ExpressionType delta, ExpressionType& result) -> PartialResult
{
int32_t (*growMemory)(void*, Instance*, int32_t) = [] (void* callFrame, Instance* instance, int32_t delta) -> int32_t {
instance->storeTopCallFrame(callFrame);
if (delta < 0)
return -1;
auto grown = instance->memory()->grow(PageCount(delta));
if (!grown) {
switch (grown.error()) {
case Memory::GrowFailReason::InvalidDelta:
case Memory::GrowFailReason::InvalidGrowSize:
case Memory::GrowFailReason::WouldExceedMaximum:
case Memory::GrowFailReason::OutOfMemory:
return -1;
}
RELEASE_ASSERT_NOT_REACHED();
}
return grown.value().pageCount();
};
result = g32();
emitCCall(growMemory, result, TypedTmp { Tmp(GPRInfo::callFrameRegister), Type::I64 }, instanceValue(), delta);
restoreWebAssemblyGlobalState(RestoreCachedStackLimit::No, m_info.memory, instanceValue(), m_currentBlock);
return { };
}
auto AirIRGenerator::addCurrentMemory(ExpressionType& result) -> PartialResult
{
static_assert(sizeof(decltype(static_cast<Memory*>(nullptr)->size())) == sizeof(uint64_t), "codegen relies on this size");
auto temp1 = g64();
auto temp2 = g64();
RELEASE_ASSERT(Arg::isValidAddrForm(Instance::offsetOfCachedMemorySize(), B3::Width64));
append(Move, Arg::addr(instanceValue(), Instance::offsetOfCachedMemorySize()), temp1);
constexpr uint32_t shiftValue = 16;
static_assert(PageCount::pageSize == 1ull << shiftValue, "This must hold for the code below to be correct.");
append(Move, Arg::imm(16), temp2);
addShift(Type::I32, Urshift64, temp1, temp2, result);
append(Move32, result, result);
return { };
}
auto AirIRGenerator::setLocal(uint32_t index, ExpressionType value) -> PartialResult
{
ASSERT(m_locals[index].tmp());
append(moveOpForValueType(m_locals[index].type()), value, m_locals[index].tmp());
return { };
}
auto AirIRGenerator::getGlobal(uint32_t index, ExpressionType& result) -> PartialResult
{
Type type = m_info.globals[index].type;
result = tmpForType(type);
auto temp = g64();
RELEASE_ASSERT(Arg::isValidAddrForm(Instance::offsetOfGlobals(), B3::Width64));
append(Move, Arg::addr(instanceValue(), Instance::offsetOfGlobals()), temp);
int32_t offset = safeCast<int32_t>(index * sizeof(Register));
if (Arg::isValidAddrForm(offset, B3::widthForType(toB3Type(type))))
append(moveOpForValueType(type), Arg::addr(temp, offset), result);
else {
auto temp2 = g64();
append(Move, Arg::bigImm(offset), temp2);
append(Add64, temp2, temp, temp);
append(moveOpForValueType(type), Arg::addr(temp), result);
}
return { };
}
auto AirIRGenerator::setGlobal(uint32_t index, ExpressionType value) -> PartialResult
{
auto temp = g64();
RELEASE_ASSERT(Arg::isValidAddrForm(Instance::offsetOfGlobals(), B3::Width64));
append(Move, Arg::addr(instanceValue(), Instance::offsetOfGlobals()), temp);
Type type = m_info.globals[index].type;
int32_t offset = safeCast<int32_t>(index * sizeof(Register));
if (Arg::isValidAddrForm(offset, B3::widthForType(toB3Type(type))))
append(moveOpForValueType(type), value, Arg::addr(temp, offset));
else {
auto temp2 = g64();
append(Move, Arg::bigImm(offset), temp2);
append(Add64, temp2, temp, temp);
append(moveOpForValueType(type), value, Arg::addr(temp));
}
return { };
}
inline AirIRGenerator::ExpressionType AirIRGenerator::emitCheckAndPreparePointer(ExpressionType pointer, uint32_t offset, uint32_t sizeOfOperation)
{
ASSERT(m_memoryBaseGPR);
auto result = g64();
append(Move32, pointer, result);
switch (m_mode) {
case MemoryMode::BoundsChecking: {
// We're not using signal handling at all, we must therefore check that no memory access exceeds the current memory size.
ASSERT(m_memorySizeGPR);
ASSERT(sizeOfOperation + offset > offset);
auto temp = g64();
append(Move, Arg::bigImm(static_cast<uint64_t>(sizeOfOperation) + offset - 1), temp);
append(Add64, result, temp);
emitCheck([&] {
return Inst(Branch64, nullptr, Arg::relCond(MacroAssembler::AboveOrEqual), temp, Tmp(m_memorySizeGPR));
}, [=] (CCallHelpers& jit, const B3::StackmapGenerationParams&) {
this->emitThrowException(jit, ExceptionType::OutOfBoundsMemoryAccess);
});
break;
}
case MemoryMode::Signaling: {
// We've virtually mapped 4GiB+redzone for this memory. Only the user-allocated pages are addressable, contiguously in range [0, current],
// and everything above is mapped PROT_NONE. We don't need to perform any explicit bounds check in the 4GiB range because WebAssembly register
// memory accesses are 32-bit. However WebAssembly register + offset accesses perform the addition in 64-bit which can push an access above
// the 32-bit limit (the offset is unsigned 32-bit). The redzone will catch most small offsets, and we'll explicitly bounds check any
// register + large offset access. We don't think this will be generated frequently.
//
// We could check that register + large offset doesn't exceed 4GiB+redzone since that's technically the limit we need to avoid overflowing the
// PROT_NONE region, but it's better if we use a smaller immediate because it can codegens better. We know that anything equal to or greater
// than the declared 'maximum' will trap, so we can compare against that number. If there was no declared 'maximum' then we still know that
// any access equal to or greater than 4GiB will trap, no need to add the redzone.
if (offset >= Memory::fastMappedRedzoneBytes()) {
uint64_t maximum = m_info.memory.maximum() ? m_info.memory.maximum().bytes() : std::numeric_limits<uint32_t>::max();
auto temp = g64();
append(Move, Arg::bigImm(static_cast<uint64_t>(sizeOfOperation) + offset - 1), temp);
append(Add64, result, temp);
auto sizeMax = addConstant(Type::I64, maximum);
emitCheck([&] {
return Inst(Branch64, nullptr, Arg::relCond(MacroAssembler::AboveOrEqual), temp, sizeMax);
}, [=] (CCallHelpers& jit, const B3::StackmapGenerationParams&) {
this->emitThrowException(jit, ExceptionType::OutOfBoundsMemoryAccess);
});
}
break;
}
}
append(Add64, Tmp(m_memoryBaseGPR), result);
return result;
}
inline uint32_t sizeOfLoadOp(LoadOpType op)
{
switch (op) {
case LoadOpType::I32Load8S:
case LoadOpType::I32Load8U:
case LoadOpType::I64Load8S:
case LoadOpType::I64Load8U:
return 1;
case LoadOpType::I32Load16S:
case LoadOpType::I64Load16S:
case LoadOpType::I32Load16U:
case LoadOpType::I64Load16U:
return 2;
case LoadOpType::I32Load:
case LoadOpType::I64Load32S:
case LoadOpType::I64Load32U:
case LoadOpType::F32Load:
return 4;
case LoadOpType::I64Load:
case LoadOpType::F64Load:
return 8;
}
RELEASE_ASSERT_NOT_REACHED();
}
inline TypedTmp AirIRGenerator::emitLoadOp(LoadOpType op, ExpressionType pointer, uint32_t uoffset)
{
uint32_t offset = fixupPointerPlusOffset(pointer, uoffset);
TypedTmp immTmp;
TypedTmp newPtr;
TypedTmp result;
Arg addrArg;
if (Arg::isValidAddrForm(offset, B3::widthForBytes(sizeOfLoadOp(op))))
addrArg = Arg::addr(pointer, offset);
else {
immTmp = g64();
newPtr = g64();
append(Move, Arg::bigImm(offset), immTmp);
append(Add64, immTmp, pointer, newPtr);
addrArg = Arg::addr(newPtr);
}
switch (op) {
case LoadOpType::I32Load8S: {
result = g32();
appendEffectful(Load8SignedExtendTo32, addrArg, result);
break;
}
case LoadOpType::I64Load8S: {
result = g64();
appendEffectful(Load8SignedExtendTo32, addrArg, result);
append(SignExtend32ToPtr, result, result);
break;
}
case LoadOpType::I32Load8U: {
result = g32();
appendEffectful(Load8, addrArg, result);
break;
}
case LoadOpType::I64Load8U: {
result = g64();
appendEffectful(Load8, addrArg, result);
break;
}
case LoadOpType::I32Load16S: {
result = g32();
appendEffectful(Load16SignedExtendTo32, addrArg, result);
break;
}
case LoadOpType::I64Load16S: {
result = g64();
appendEffectful(Load16SignedExtendTo32, addrArg, result);
append(SignExtend32ToPtr, result, result);
break;
}
case LoadOpType::I32Load16U: {
result = g32();
appendEffectful(Load16, addrArg, result);
break;
}
case LoadOpType::I64Load16U: {
result = g64();
appendEffectful(Load16, addrArg, result);
break;
}
case LoadOpType::I32Load:
result = g32();
appendEffectful(Move32, addrArg, result);
break;
case LoadOpType::I64Load32U: {
result = g64();
appendEffectful(Move32, addrArg, result);
break;
}
case LoadOpType::I64Load32S: {
result = g64();
appendEffectful(Move32, addrArg, result);
append(SignExtend32ToPtr, result, result);
break;
}
case LoadOpType::I64Load: {
result = g64();
appendEffectful(Move, addrArg, result);
break;
}
case LoadOpType::F32Load: {
result = f32();
appendEffectful(MoveFloat, addrArg, result);
break;
}
case LoadOpType::F64Load: {
result = f64();
appendEffectful(MoveDouble, addrArg, result);
break;
}
}
return result;
}
auto AirIRGenerator::load(LoadOpType op, ExpressionType pointer, ExpressionType& result, uint32_t offset) -> PartialResult
{
ASSERT(pointer.tmp().isGP());
if (UNLIKELY(sumOverflows<uint32_t>(offset, sizeOfLoadOp(op)))) {
// FIXME: Even though this is provably out of bounds, it's not a validation error, so we have to handle it
// as a runtime exception. However, this may change: https://bugs.webkit.org/show_bug.cgi?id=166435
auto* patch = addPatchpoint(B3::Void);
patch->setGenerator([this] (CCallHelpers& jit, const B3::StackmapGenerationParams&) {
this->emitThrowException(jit, ExceptionType::OutOfBoundsMemoryAccess);
});
emitPatchpoint(patch, Tmp());
// We won't reach here, so we just pick a random reg.
switch (op) {
case LoadOpType::I32Load8S:
case LoadOpType::I32Load16S:
case LoadOpType::I32Load:
case LoadOpType::I32Load16U:
case LoadOpType::I32Load8U:
result = g32();
break;
case LoadOpType::I64Load8S:
case LoadOpType::I64Load8U:
case LoadOpType::I64Load16S:
case LoadOpType::I64Load32U:
case LoadOpType::I64Load32S:
case LoadOpType::I64Load:
case LoadOpType::I64Load16U:
result = g64();
break;
case LoadOpType::F32Load:
result = f32();
break;
case LoadOpType::F64Load:
result = f64();
break;
}
} else
result = emitLoadOp(op, emitCheckAndPreparePointer(pointer, offset, sizeOfLoadOp(op)), offset);
return { };
}
inline uint32_t sizeOfStoreOp(StoreOpType op)
{
switch (op) {
case StoreOpType::I32Store8:
case StoreOpType::I64Store8:
return 1;
case StoreOpType::I32Store16:
case StoreOpType::I64Store16:
return 2;
case StoreOpType::I32Store:
case StoreOpType::I64Store32:
case StoreOpType::F32Store:
return 4;
case StoreOpType::I64Store:
case StoreOpType::F64Store:
return 8;
}
RELEASE_ASSERT_NOT_REACHED();
}
inline void AirIRGenerator::emitStoreOp(StoreOpType op, ExpressionType pointer, ExpressionType value, uint32_t uoffset)
{
uint32_t offset = fixupPointerPlusOffset(pointer, uoffset);
TypedTmp immTmp;
TypedTmp newPtr;
Arg addrArg;
if (Arg::isValidAddrForm(offset, B3::widthForBytes(sizeOfStoreOp(op))))
addrArg = Arg::addr(pointer, offset);
else {
immTmp = g64();
newPtr = g64();
append(Move, Arg::bigImm(offset), immTmp);
append(Add64, immTmp, pointer, newPtr);
addrArg = Arg::addr(newPtr);
}
switch (op) {
case StoreOpType::I64Store8:
case StoreOpType::I32Store8:
append(Store8, value, addrArg);
return;
case StoreOpType::I64Store16:
case StoreOpType::I32Store16:
append(Store16, value, addrArg);
return;
case StoreOpType::I64Store32:
case StoreOpType::I32Store:
append(Move32, value, addrArg);
return;
case StoreOpType::I64Store:
append(Move, value, addrArg);
return;
case StoreOpType::F32Store:
append(MoveFloat, value, addrArg);
return;
case StoreOpType::F64Store:
append(MoveDouble, value, addrArg);
return;
}
RELEASE_ASSERT_NOT_REACHED();
}
auto AirIRGenerator::store(StoreOpType op, ExpressionType pointer, ExpressionType value, uint32_t offset) -> PartialResult
{
ASSERT(pointer.tmp().isGP());
if (UNLIKELY(sumOverflows<uint32_t>(offset, sizeOfStoreOp(op)))) {
// FIXME: Even though this is provably out of bounds, it's not a validation error, so we have to handle it
// as a runtime exception. However, this may change: https://bugs.webkit.org/show_bug.cgi?id=166435
auto* throwException = addPatchpoint(B3::Void);
throwException->setGenerator([this] (CCallHelpers& jit, const B3::StackmapGenerationParams&) {
this->emitThrowException(jit, ExceptionType::OutOfBoundsMemoryAccess);
});
emitPatchpoint(throwException, Tmp());
} else
emitStoreOp(op, emitCheckAndPreparePointer(pointer, offset, sizeOfStoreOp(op)), value, offset);
return { };
}
auto AirIRGenerator::addSelect(ExpressionType condition, ExpressionType nonZero, ExpressionType zero, ExpressionType& result) -> PartialResult
{
ASSERT(nonZero.type() == zero.type());
result = tmpForType(nonZero.type());
append(moveOpForValueType(nonZero.type()), nonZero, result);
BasicBlock* isZero = m_code.addBlock();
BasicBlock* continuation = m_code.addBlock();
append(BranchTest32, Arg::resCond(MacroAssembler::Zero), condition, condition);
m_currentBlock->setSuccessors(isZero, continuation);
append(isZero, moveOpForValueType(zero.type()), zero, result);
append(isZero, Jump);
isZero->setSuccessors(continuation);
m_currentBlock = continuation;
return { };
}
void AirIRGenerator::emitTierUpCheck(uint32_t decrementCount, B3::Origin origin)
{
UNUSED_PARAM(origin);
if (!m_tierUp)
return;
auto countdownPtr = g64();
auto oldCountdown = g64();
auto newCountdown = g64();
append(Move, Arg::bigImm(reinterpret_cast<uint64_t>(m_tierUp)), countdownPtr);
append(Move32, Arg::addr(countdownPtr), oldCountdown);
RELEASE_ASSERT(Arg::isValidImmForm(decrementCount));
append(Move32, oldCountdown, newCountdown);
append(Sub32, Arg::imm(decrementCount), newCountdown);
append(Move32, newCountdown, Arg::addr(countdownPtr));
auto* patch = addPatchpoint(B3::Void);
B3::Effects effects = B3::Effects::none();
effects.reads = B3::HeapRange::top();
effects.writes = B3::HeapRange::top();
patch->effects = effects;
patch->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams& params) {
MacroAssembler::Jump tierUp = jit.branch32(MacroAssembler::Above, params[0].gpr(), params[1].gpr());
MacroAssembler::Label tierUpResume = jit.label();
params.addLatePath([=] (CCallHelpers& jit) {
tierUp.link(&jit);
const unsigned extraPaddingBytes = 0;
RegisterSet registersToSpill = { };
registersToSpill.add(GPRInfo::argumentGPR1);
unsigned numberOfStackBytesUsedForRegisterPreservation = ScratchRegisterAllocator::preserveRegistersToStackForCall(jit, registersToSpill, extraPaddingBytes);
jit.move(MacroAssembler::TrustedImm32(m_functionIndex), GPRInfo::argumentGPR1);
MacroAssembler::Call call = jit.nearCall();
ScratchRegisterAllocator::restoreRegistersFromStackForCall(jit, registersToSpill, RegisterSet(), numberOfStackBytesUsedForRegisterPreservation, extraPaddingBytes);
jit.jump(tierUpResume);
jit.addLinkTask([=] (LinkBuffer& linkBuffer) {
MacroAssembler::repatchNearCall(linkBuffer.locationOfNearCall<NoPtrTag>(call), CodeLocationLabel<JITThunkPtrTag>(Thunks::singleton().stub(triggerOMGTierUpThunkGenerator).code()));
});
});
});
emitPatchpoint(patch, Tmp(), newCountdown, oldCountdown);
}
AirIRGenerator::ControlData AirIRGenerator::addLoop(Type signature)
{
BasicBlock* body = m_code.addBlock();
BasicBlock* continuation = m_code.addBlock();
append(Jump);
m_currentBlock->setSuccessors(body);
m_currentBlock = body;
emitTierUpCheck(TierUpCount::loopDecrement(), origin());
return ControlData(origin(), signature, tmpForType(signature), BlockType::Loop, continuation, body);
}
AirIRGenerator::ControlData AirIRGenerator::addTopLevel(Type signature)
{
return ControlData(B3::Origin(), signature, tmpForType(signature), BlockType::TopLevel, m_code.addBlock());
}
AirIRGenerator::ControlData AirIRGenerator::addBlock(Type signature)
{
return ControlData(origin(), signature, tmpForType(signature), BlockType::Block, m_code.addBlock());
}
auto AirIRGenerator::addIf(ExpressionType condition, Type signature, ControlType& result) -> PartialResult
{
BasicBlock* taken = m_code.addBlock();
BasicBlock* notTaken = m_code.addBlock();
BasicBlock* continuation = m_code.addBlock();
// Wasm bools are i32.
append(BranchTest32, Arg::resCond(MacroAssembler::NonZero), condition, condition);
m_currentBlock->setSuccessors(taken, notTaken);
m_currentBlock = taken;
result = ControlData(origin(), signature, tmpForType(signature), BlockType::If, continuation, notTaken);
return { };
}
auto AirIRGenerator::addElse(ControlData& data, const ExpressionList& currentStack) -> PartialResult
{
unifyValuesWithBlock(currentStack, data.result);
append(Jump);
m_currentBlock->setSuccessors(data.continuation);
return addElseToUnreachable(data);
}
auto AirIRGenerator::addElseToUnreachable(ControlData& data) -> PartialResult
{
ASSERT(data.type() == BlockType::If);
m_currentBlock = data.special;
data.convertIfToBlock();
return { };
}
auto AirIRGenerator::addReturn(const ControlData& data, const ExpressionList& returnValues) -> PartialResult
{
ASSERT(returnValues.size() <= 1);
if (returnValues.size()) {
Tmp returnValueGPR = Tmp(GPRInfo::returnValueGPR);
Tmp returnValueFPR = Tmp(FPRInfo::returnValueFPR);
switch (data.signature()) {
case Type::I32:
append(Move32, returnValues[0], returnValueGPR);
append(Ret32, returnValueGPR);
break;
case Type::I64:
append(Move, returnValues[0], returnValueGPR);
append(Ret64, returnValueGPR);
break;
case Type::F32:
append(MoveFloat, returnValues[0], returnValueFPR);
append(RetFloat, returnValueFPR);
break;
case Type::F64:
append(MoveDouble, returnValues[0], returnValueFPR);
append(RetFloat, returnValueFPR);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
} else
append(RetVoid);
return { };
}
// NOTE: All branches in Wasm are on 32-bit ints
auto AirIRGenerator::addBranch(ControlData& data, ExpressionType condition, const ExpressionList& returnValues) -> PartialResult
{
unifyValuesWithBlock(returnValues, data.resultForBranch());
BasicBlock* target = data.targetBlockForBranch();
if (condition) {
BasicBlock* continuation = m_code.addBlock();
append(BranchTest32, Arg::resCond(MacroAssembler::NonZero), condition, condition);
m_currentBlock->setSuccessors(target, continuation);
m_currentBlock = continuation;
} else {
append(Jump);
m_currentBlock->setSuccessors(target);
}
return { };
}
auto AirIRGenerator::addSwitch(ExpressionType condition, const Vector<ControlData*>& targets, ControlData& defaultTarget, const ExpressionList& expressionStack) -> PartialResult
{
auto& successors = m_currentBlock->successors();
ASSERT(successors.isEmpty());
for (const auto& target : targets) {
unifyValuesWithBlock(expressionStack, target->resultForBranch());
successors.append(target->targetBlockForBranch());
}
unifyValuesWithBlock(expressionStack, defaultTarget.resultForBranch());
successors.append(defaultTarget.targetBlockForBranch());
ASSERT(condition.type() == Type::I32);
// FIXME: We should consider dynamically switching between a jump table
// and a binary switch depending on the number of successors.
// https://bugs.webkit.org/show_bug.cgi?id=194477
size_t numTargets = targets.size();
auto* patchpoint = addPatchpoint(B3::Void);
patchpoint->effects = B3::Effects::none();
patchpoint->effects.terminal = true;
patchpoint->clobber(RegisterSet::macroScratchRegisters());
patchpoint->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams& params) {
AllowMacroScratchRegisterUsage allowScratch(jit);
Vector<int64_t> cases;
cases.reserveInitialCapacity(numTargets);
for (size_t i = 0; i < numTargets; ++i)
cases.uncheckedAppend(i);
GPRReg valueReg = params[0].gpr();
BinarySwitch binarySwitch(valueReg, cases, BinarySwitch::Int32);
Vector<CCallHelpers::Jump> caseJumps;
caseJumps.resize(numTargets);
while (binarySwitch.advance(jit)) {
unsigned value = binarySwitch.caseValue();
unsigned index = binarySwitch.caseIndex();
ASSERT_UNUSED(value, value == index);
ASSERT(index < numTargets);
caseJumps[index] = jit.jump();
}
CCallHelpers::JumpList fallThrough = binarySwitch.fallThrough();
Vector<Box<CCallHelpers::Label>> successorLabels = params.successorLabels();
ASSERT(successorLabels.size() == caseJumps.size() + 1);
params.addLatePath([=, caseJumps = WTFMove(caseJumps), successorLabels = WTFMove(successorLabels)] (CCallHelpers& jit) {
for (size_t i = 0; i < numTargets; ++i)
caseJumps[i].linkTo(*successorLabels[i], &jit);
fallThrough.linkTo(*successorLabels[numTargets], &jit);
});
});
emitPatchpoint(patchpoint, TypedTmp(), condition);
return { };
}
auto AirIRGenerator::endBlock(ControlEntry& entry, ExpressionList& expressionStack) -> PartialResult
{
ControlData& data = entry.controlData;
unifyValuesWithBlock(expressionStack, data.result);
append(Jump);
m_currentBlock->setSuccessors(data.continuation);
return addEndToUnreachable(entry);
}
auto AirIRGenerator::addEndToUnreachable(ControlEntry& entry) -> PartialResult
{
ControlData& data = entry.controlData;
m_currentBlock = data.continuation;
if (data.type() == BlockType::If) {
append(data.special, Jump);
data.special->setSuccessors(m_currentBlock);
}
for (const auto& result : data.result)
entry.enclosedExpressionStack.append(result);
// TopLevel does not have any code after this so we need to make sure we emit a return here.
if (data.type() == BlockType::TopLevel)
return addReturn(data, entry.enclosedExpressionStack);
return { };
}
auto AirIRGenerator::addCall(uint32_t functionIndex, const Signature& signature, Vector<ExpressionType>& args, ExpressionType& result) -> PartialResult
{
ASSERT(signature.argumentCount() == args.size());
m_makesCalls = true;
Type returnType = signature.returnType();
if (returnType != Type::Void)
result = tmpForType(returnType);
Vector<UnlinkedWasmToWasmCall>* unlinkedWasmToWasmCalls = &m_unlinkedWasmToWasmCalls;
if (m_info.isImportedFunctionFromFunctionIndexSpace(functionIndex)) {
m_maxNumJSCallArguments = std::max(m_maxNumJSCallArguments, static_cast<uint32_t>(args.size()));
auto currentInstance = g64();
append(Move, instanceValue(), currentInstance);
auto targetInstance = g64();
// FIXME: We should have better isel here.
// https://bugs.webkit.org/show_bug.cgi?id=193999
append(Move, Arg::bigImm(Instance::offsetOfTargetInstance(functionIndex)), targetInstance);
append(Add64, instanceValue(), targetInstance);
append(Move, Arg::addr(targetInstance), targetInstance);
BasicBlock* isWasmBlock = m_code.addBlock();
BasicBlock* isEmbedderBlock = m_code.addBlock();
BasicBlock* continuation = m_code.addBlock();
append(BranchTest64, Arg::resCond(MacroAssembler::NonZero), targetInstance, targetInstance);
m_currentBlock->setSuccessors(isWasmBlock, isEmbedderBlock);
{
auto* patchpoint = addPatchpoint(toB3Type(returnType));
patchpoint->effects.writesPinned = true;
patchpoint->effects.readsPinned = true;
// We need to clobber all potential pinned registers since we might be leaving the instance.
// We pessimistically assume we could be calling to something that is bounds checking.
// FIXME: We shouldn't have to do this: https://bugs.webkit.org/show_bug.cgi?id=172181
patchpoint->clobberLate(PinnedRegisterInfo::get().toSave(MemoryMode::BoundsChecking));
Vector<ConstrainedTmp> patchArgs;
wasmCallingConventionAir().setupCall(m_code, returnType, patchpoint, toTmpVector(args), [&] (Tmp tmp, B3::ValueRep rep) {
patchArgs.append({ tmp, rep });
});
patchpoint->setGenerator([unlinkedWasmToWasmCalls, functionIndex] (CCallHelpers& jit, const B3::StackmapGenerationParams&) {
AllowMacroScratchRegisterUsage allowScratch(jit);
CCallHelpers::Call call = jit.threadSafePatchableNearCall();
jit.addLinkTask([unlinkedWasmToWasmCalls, call, functionIndex] (LinkBuffer& linkBuffer) {
unlinkedWasmToWasmCalls->append({ linkBuffer.locationOfNearCall<WasmEntryPtrTag>(call), functionIndex });
});
});
emitPatchpoint(isWasmBlock, patchpoint, result, WTFMove(patchArgs));
append(isWasmBlock, Jump);
isWasmBlock->setSuccessors(continuation);
}
{
auto jumpDestination = g64();
append(isEmbedderBlock, Move, Arg::bigImm(Instance::offsetOfWasmToEmbedderStub(functionIndex)), jumpDestination);
append(isEmbedderBlock, Add64, instanceValue(), jumpDestination);
append(isEmbedderBlock, Move, Arg::addr(jumpDestination), jumpDestination);
auto* patchpoint = addPatchpoint(toB3Type(returnType));
patchpoint->effects.writesPinned = true;
patchpoint->effects.readsPinned = true;
// We need to clobber all potential pinned registers since we might be leaving the instance.
// We pessimistically assume we could be calling to something that is bounds checking.
// FIXME: We shouldn't have to do this: https://bugs.webkit.org/show_bug.cgi?id=172181
patchpoint->clobberLate(PinnedRegisterInfo::get().toSave(MemoryMode::BoundsChecking));
Vector<ConstrainedTmp> patchArgs;
patchArgs.append(jumpDestination);
wasmCallingConventionAir().setupCall(m_code, returnType, patchpoint, toTmpVector(args), [&] (Tmp tmp, B3::ValueRep rep) {
patchArgs.append({ tmp, rep });
});
patchpoint->setGenerator([returnType] (CCallHelpers& jit, const B3::StackmapGenerationParams& params) {
AllowMacroScratchRegisterUsage allowScratch(jit);
jit.call(params[returnType == Void ? 0 : 1].gpr(), WasmEntryPtrTag);
});
emitPatchpoint(isEmbedderBlock, patchpoint, result, WTFMove(patchArgs));
append(isEmbedderBlock, Jump);
isEmbedderBlock->setSuccessors(continuation);
}
m_currentBlock = continuation;
// The call could have been to another WebAssembly instance, and / or could have modified our Memory.
restoreWebAssemblyGlobalState(RestoreCachedStackLimit::Yes, m_info.memory, currentInstance, continuation);
} else {
auto* patchpoint = addPatchpoint(toB3Type(returnType));
patchpoint->effects.writesPinned = true;
patchpoint->effects.readsPinned = true;
Vector<ConstrainedTmp> patchArgs;
wasmCallingConventionAir().setupCall(m_code, returnType, patchpoint, toTmpVector(args), [&] (Tmp tmp, B3::ValueRep rep) {
patchArgs.append({ tmp, rep });
});
patchpoint->setGenerator([unlinkedWasmToWasmCalls, functionIndex] (CCallHelpers& jit, const B3::StackmapGenerationParams&) {
AllowMacroScratchRegisterUsage allowScratch(jit);
CCallHelpers::Call call = jit.threadSafePatchableNearCall();
jit.addLinkTask([unlinkedWasmToWasmCalls, call, functionIndex] (LinkBuffer& linkBuffer) {
unlinkedWasmToWasmCalls->append({ linkBuffer.locationOfNearCall<WasmEntryPtrTag>(call), functionIndex });
});
});
emitPatchpoint(m_currentBlock, patchpoint, result, WTFMove(patchArgs));
}
return { };
}
auto AirIRGenerator::addCallIndirect(const Signature& signature, Vector<ExpressionType>& args, ExpressionType& result) -> PartialResult
{
ExpressionType calleeIndex = args.takeLast();
ASSERT(signature.argumentCount() == args.size());
m_makesCalls = true;
// Note: call indirect can call either WebAssemblyFunction or WebAssemblyWrapperFunction. Because
// WebAssemblyWrapperFunction is like calling into the embedder, we conservatively assume all call indirects
// can be to the embedder for our stack check calculation.
m_maxNumJSCallArguments = std::max(m_maxNumJSCallArguments, static_cast<uint32_t>(args.size()));
auto currentInstance = g64();
append(Move, instanceValue(), currentInstance);
ExpressionType callableFunctionBuffer = g64();
ExpressionType instancesBuffer = g64();
ExpressionType callableFunctionBufferLength = g64();
{
RELEASE_ASSERT(Arg::isValidAddrForm(Instance::offsetOfTable(), B3::Width64));
RELEASE_ASSERT(Arg::isValidAddrForm(Table::offsetOfFunctions(), B3::Width64));
RELEASE_ASSERT(Arg::isValidAddrForm(Table::offsetOfInstances(), B3::Width64));
RELEASE_ASSERT(Arg::isValidAddrForm(Table::offsetOfLength(), B3::Width64));
append(Move, Arg::addr(instanceValue(), Instance::offsetOfTable()), callableFunctionBufferLength);
append(Move, Arg::addr(callableFunctionBufferLength, Table::offsetOfFunctions()), callableFunctionBuffer);
append(Move, Arg::addr(callableFunctionBufferLength, Table::offsetOfInstances()), instancesBuffer);
append(Move32, Arg::addr(callableFunctionBufferLength, Table::offsetOfLength()), callableFunctionBufferLength);
}
append(Move32, calleeIndex, calleeIndex);
// Check the index we are looking for is valid.
emitCheck([&] {
return Inst(Branch32, nullptr, Arg::relCond(MacroAssembler::AboveOrEqual), calleeIndex, callableFunctionBufferLength);
}, [=] (CCallHelpers& jit, const B3::StackmapGenerationParams&) {
this->emitThrowException(jit, ExceptionType::OutOfBoundsCallIndirect);
});
ExpressionType calleeCode = g64();
{
ExpressionType calleeSignatureIndex = g64();
// Compute the offset in the table index space we are looking for.
append(Move, Arg::imm(sizeof(WasmToWasmImportableFunction)), calleeSignatureIndex);
append(Mul64, calleeIndex, calleeSignatureIndex);
append(Add64, callableFunctionBuffer, calleeSignatureIndex);
append(Move, Arg::addr(calleeSignatureIndex, WasmToWasmImportableFunction::offsetOfEntrypointLoadLocation()), calleeCode); // Pointer to callee code.
// Check that the WasmToWasmImportableFunction is initialized. We trap if it isn't. An "invalid" SignatureIndex indicates it's not initialized.
// FIXME: when we have trap handlers, we can just let the call fail because Signature::invalidIndex is 0. https://bugs.webkit.org/show_bug.cgi?id=177210
static_assert(sizeof(WasmToWasmImportableFunction::signatureIndex) == sizeof(uint64_t), "Load codegen assumes i64");
// FIXME: This seems dumb to do two checks just for a nicer error message.
// We should move just to use a single branch and then figure out what
// error to use in the exception handler.
append(Move, Arg::addr(calleeSignatureIndex, WasmToWasmImportableFunction::offsetOfSignatureIndex()), calleeSignatureIndex);
emitCheck([&] {
static_assert(Signature::invalidIndex == 0, "");
return Inst(BranchTest64, nullptr, Arg::resCond(MacroAssembler::Zero), calleeSignatureIndex, calleeSignatureIndex);
}, [=] (CCallHelpers& jit, const B3::StackmapGenerationParams&) {
this->emitThrowException(jit, ExceptionType::NullTableEntry);
});
ExpressionType expectedSignatureIndex = g64();
append(Move, Arg::bigImm(SignatureInformation::get(signature)), expectedSignatureIndex);
emitCheck([&] {
return Inst(Branch64, nullptr, Arg::relCond(MacroAssembler::NotEqual), calleeSignatureIndex, expectedSignatureIndex);
}, [=] (CCallHelpers& jit, const B3::StackmapGenerationParams&) {
this->emitThrowException(jit, ExceptionType::BadSignature);
});
}
// Do a context switch if needed.
{
auto newContextInstance = g64();
append(Move, Arg::index(instancesBuffer, calleeIndex, 8, 0), newContextInstance);
BasicBlock* doContextSwitch = m_code.addBlock();
BasicBlock* continuation = m_code.addBlock();
append(Branch64, Arg::relCond(MacroAssembler::Equal), newContextInstance, instanceValue());
m_currentBlock->setSuccessors(continuation, doContextSwitch);
auto* patchpoint = addPatchpoint(B3::Void);
patchpoint->effects.writesPinned = true;
// We pessimistically assume we're calling something with BoundsChecking memory.
// FIXME: We shouldn't have to do this: https://bugs.webkit.org/show_bug.cgi?id=172181
patchpoint->clobber(PinnedRegisterInfo::get().toSave(MemoryMode::BoundsChecking));
patchpoint->clobber(RegisterSet::macroScratchRegisters());
patchpoint->numGPScratchRegisters = Gigacage::isEnabled(Gigacage::Primitive) ? 1 : 0;
patchpoint->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams& params) {
AllowMacroScratchRegisterUsage allowScratch(jit);
GPRReg newContextInstance = params[0].gpr();
GPRReg oldContextInstance = params[1].gpr();
const PinnedRegisterInfo& pinnedRegs = PinnedRegisterInfo::get();
GPRReg baseMemory = pinnedRegs.baseMemoryPointer;
ASSERT(newContextInstance != baseMemory);
jit.loadPtr(CCallHelpers::Address(oldContextInstance, Instance::offsetOfCachedStackLimit()), baseMemory);
jit.storePtr(baseMemory, CCallHelpers::Address(newContextInstance, Instance::offsetOfCachedStackLimit()));
jit.storeWasmContextInstance(newContextInstance);
// FIXME: We should support more than one memory size register
// see: https://bugs.webkit.org/show_bug.cgi?id=162952
ASSERT(pinnedRegs.sizeRegister != newContextInstance);
GPRReg scratchOrSize = Gigacage::isEnabled(Gigacage::Primitive) ? params.gpScratch(0) : pinnedRegs.sizeRegister;
jit.loadPtr(CCallHelpers::Address(newContextInstance, Instance::offsetOfCachedMemorySize()), pinnedRegs.sizeRegister); // Memory size.
jit.loadPtr(CCallHelpers::Address(newContextInstance, Instance::offsetOfCachedMemory()), baseMemory); // Memory::void*.
jit.cageConditionally(Gigacage::Primitive, baseMemory, scratchOrSize);
});
emitPatchpoint(doContextSwitch, patchpoint, Tmp(), newContextInstance, instanceValue());
append(doContextSwitch, Jump);
doContextSwitch->setSuccessors(continuation);
m_currentBlock = continuation;
}
append(Move, Arg::addr(calleeCode), calleeCode);
Type returnType = signature.returnType();
if (returnType != Type::Void)
result = tmpForType(returnType);
auto* patch = addPatchpoint(toB3Type(returnType));
patch->effects.writesPinned = true;
patch->effects.readsPinned = true;
// We need to clobber all potential pinned registers since we might be leaving the instance.
// We pessimistically assume we're always calling something that is bounds checking so
// because the wasm->wasm thunk unconditionally overrides the size registers.
// FIXME: We should not have to do this, but the wasm->wasm stub assumes it can
// use all the pinned registers as scratch: https://bugs.webkit.org/show_bug.cgi?id=172181
patch->clobberLate(PinnedRegisterInfo::get().toSave(MemoryMode::BoundsChecking));
Vector<ConstrainedTmp> emitArgs;
emitArgs.append(calleeCode);
wasmCallingConventionAir().setupCall(m_code, returnType, patch, toTmpVector(args), [&] (Tmp tmp, B3::ValueRep rep) {
emitArgs.append({ tmp, rep });
});
patch->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams& params) {
AllowMacroScratchRegisterUsage allowScratch(jit);
jit.call(params[returnType == Void ? 0 : 1].gpr(), WasmEntryPtrTag);
});
emitPatchpoint(m_currentBlock, patch, result, WTFMove(emitArgs));
// The call could have been to another WebAssembly instance, and / or could have modified our Memory.
restoreWebAssemblyGlobalState(RestoreCachedStackLimit::Yes, m_info.memory, currentInstance, m_currentBlock);
return { };
}
void AirIRGenerator::unify(const ExpressionType& dst, const ExpressionType& source)
{
ASSERT(dst.type() == source.type());
append(moveOpForValueType(dst.type()), source, dst);
}
void AirIRGenerator::unifyValuesWithBlock(const ExpressionList& resultStack, const ResultList& result)
{
ASSERT(result.size() <= resultStack.size());
for (size_t i = 0; i < result.size(); ++i)
unify(result[result.size() - 1 - i], resultStack[resultStack.size() - 1 - i]);
}
void AirIRGenerator::dump(const Vector<ControlEntry>&, const ExpressionList*)
{
}
auto AirIRGenerator::origin() -> B3::Origin
{
// FIXME: We should implement a way to give Inst's an origin.
return B3::Origin();
}
Expected<std::unique_ptr<InternalFunction>, String> parseAndCompileAir(CompilationContext& compilationContext, const uint8_t* functionStart, size_t functionLength, const Signature& signature, Vector<UnlinkedWasmToWasmCall>& unlinkedWasmToWasmCalls, const ModuleInformation& info, MemoryMode mode, uint32_t functionIndex, TierUpCount* tierUp, ThrowWasmException throwWasmException)
{
auto result = std::make_unique<InternalFunction>();
compilationContext.embedderEntrypointJIT = std::make_unique<CCallHelpers>();
compilationContext.wasmEntrypointJIT = std::make_unique<CCallHelpers>();
B3::Procedure procedure;
Code& code = procedure.code();
procedure.setOriginPrinter([] (PrintStream& out, B3::Origin origin) {
if (origin.data())
out.print("Wasm: ", bitwise_cast<OpcodeOrigin>(origin));
});
// This means we cannot use either StackmapGenerationParams::usedRegisters() or
// StackmapGenerationParams::unavailableRegisters(). In exchange for this concession, we
// don't strictly need to run Air::reportUsedRegisters(), which saves a bit of CPU time at
// optLevel=1.
procedure.setNeedsUsedRegisters(false);
procedure.setOptLevel(Options::webAssemblyBBQOptimizationLevel());
AirIRGenerator irGenerator(info, procedure, result.get(), unlinkedWasmToWasmCalls, mode, functionIndex, tierUp, throwWasmException, signature);
FunctionParser<AirIRGenerator> parser(irGenerator, functionStart, functionLength, signature, info);
WASM_FAIL_IF_HELPER_FAILS(parser.parse());
for (BasicBlock* block : code) {
for (size_t i = 0; i < block->numSuccessors(); ++i)
block->successorBlock(i)->addPredecessor(block);
}
{
B3::Air::prepareForGeneration(code);
B3::Air::generate(code, *compilationContext.wasmEntrypointJIT);
compilationContext.wasmEntrypointByproducts = procedure.releaseByproducts();
result->entrypoint.calleeSaveRegisters = code.calleeSaveRegisterAtOffsetList();
}
return result;
}
template <typename IntType>
void AirIRGenerator::emitChecksForModOrDiv(bool isSignedDiv, ExpressionType left, ExpressionType right)
{
static_assert(sizeof(IntType) == 4 || sizeof(IntType) == 8, "");
emitCheck([&] {
return Inst(sizeof(IntType) == 4 ? BranchTest32 : BranchTest64, nullptr, Arg::resCond(MacroAssembler::Zero), right, right);
}, [=] (CCallHelpers& jit, const B3::StackmapGenerationParams&) {
this->emitThrowException(jit, ExceptionType::DivisionByZero);
});
if (isSignedDiv) {
ASSERT(std::is_signed<IntType>::value);
IntType min = std::numeric_limits<IntType>::min();
// FIXME: Better isel for compare with imms here.
// https://bugs.webkit.org/show_bug.cgi?id=193999
auto minTmp = sizeof(IntType) == 4 ? g32() : g64();
auto negOne = sizeof(IntType) == 4 ? g32() : g64();
B3::Air::Opcode op = sizeof(IntType) == 4 ? Compare32 : Compare64;
append(Move, Arg::bigImm(static_cast<uint64_t>(min)), minTmp);
append(op, Arg::relCond(MacroAssembler::Equal), left, minTmp, minTmp);
append(Move, Arg::imm(-1), negOne);
append(op, Arg::relCond(MacroAssembler::Equal), right, negOne, negOne);
emitCheck([&] {
return Inst(BranchTest32, nullptr, Arg::resCond(MacroAssembler::NonZero), minTmp, negOne);
},
[=] (CCallHelpers& jit, const B3::StackmapGenerationParams&) {
this->emitThrowException(jit, ExceptionType::IntegerOverflow);
});
}
}
template <typename IntType>
void AirIRGenerator::emitModOrDiv(bool isDiv, ExpressionType lhs, ExpressionType rhs, ExpressionType& result)
{
static_assert(sizeof(IntType) == 4 || sizeof(IntType) == 8, "");
result = sizeof(IntType) == 4 ? g32() : g64();
bool isSigned = std::is_signed<IntType>::value;
if (isARM64()) {
B3::Air::Opcode div;
switch (sizeof(IntType)) {
case 4:
div = isSigned ? Div32 : UDiv32;
break;
case 8:
div = isSigned ? Div64 : UDiv64;
break;
}
append(div, lhs, rhs, result);
if (!isDiv) {
append(sizeof(IntType) == 4 ? Mul32 : Mul64, result, rhs, result);
append(sizeof(IntType) == 4 ? Sub32 : Sub64, lhs, result, result);
}
return;
}
#if CPU(X86) || CPU(X86_64)
Tmp eax(X86Registers::eax);
Tmp edx(X86Registers::edx);
if (isSigned) {
B3::Air::Opcode convertToDoubleWord;
B3::Air::Opcode div;
switch (sizeof(IntType)) {
case 4:
convertToDoubleWord = X86ConvertToDoubleWord32;
div = X86Div32;
break;
case 8:
convertToDoubleWord = X86ConvertToQuadWord64;
div = X86Div64;
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
// We implement "res = Div<Chill>/Mod<Chill>(num, den)" as follows:
//
// if (den + 1 <=_unsigned 1) {
// if (!den) {
// res = 0;
// goto done;
// }
// if (num == -2147483648) {
// res = isDiv ? num : 0;
// goto done;
// }
// }
// res = num (/ or %) dev;
// done:
BasicBlock* denIsGood = m_code.addBlock();
BasicBlock* denMayBeBad = m_code.addBlock();
BasicBlock* denNotZero = m_code.addBlock();
BasicBlock* continuation = m_code.addBlock();
auto temp = sizeof(IntType) == 4 ? g32() : g64();
auto one = addConstant(sizeof(IntType) == 4 ? Type::I32 : Type::I64, 1);
append(sizeof(IntType) == 4 ? Add32 : Add64, rhs, one, temp);
append(sizeof(IntType) == 4 ? Branch32 : Branch64, Arg::relCond(MacroAssembler::Above), temp, one);
m_currentBlock->setSuccessors(denIsGood, denMayBeBad);
append(denMayBeBad, Xor64, result, result);
append(denMayBeBad, sizeof(IntType) == 4 ? BranchTest32 : BranchTest64, Arg::resCond(MacroAssembler::Zero), rhs, rhs);
denMayBeBad->setSuccessors(continuation, denNotZero);
auto min = addConstant(denNotZero, sizeof(IntType) == 4 ? Type::I32 : Type::I64, std::numeric_limits<IntType>::min());
if (isDiv)
append(denNotZero, sizeof(IntType) == 4 ? Move32 : Move, min, result);
else {
// Result is zero, as set above...
}
append(denNotZero, sizeof(IntType) == 4 ? Branch32 : Branch64, Arg::relCond(MacroAssembler::Equal), lhs, min);
denNotZero->setSuccessors(continuation, denIsGood);
auto divResult = isDiv ? eax : edx;
append(denIsGood, Move, lhs, eax);
append(denIsGood, convertToDoubleWord, eax, edx);
append(denIsGood, div, eax, edx, rhs);
append(denIsGood, sizeof(IntType) == 4 ? Move32 : Move, divResult, result);
append(denIsGood, Jump);
denIsGood->setSuccessors(continuation);
m_currentBlock = continuation;
return;
}
B3::Air::Opcode div = sizeof(IntType) == 4 ? X86UDiv32 : X86UDiv64;
Tmp divResult = isDiv ? eax : edx;
append(Move, lhs, eax);
append(Xor64, edx, edx);
append(div, eax, edx, rhs);
append(sizeof(IntType) == 4 ? Move32 : Move, divResult, result);
#else
RELEASE_ASSERT_NOT_REACHED();
#endif
}
template<>
auto AirIRGenerator::addOp<OpType::I32DivS>(ExpressionType left, ExpressionType right, ExpressionType& result) -> PartialResult
{
emitChecksForModOrDiv<int32_t>(true, left, right);
emitModOrDiv<int32_t>(true, left, right, result);
return { };
}
template<>
auto AirIRGenerator::addOp<OpType::I32RemS>(ExpressionType left, ExpressionType right, ExpressionType& result) -> PartialResult
{
emitChecksForModOrDiv<int32_t>(false, left, right);
emitModOrDiv<int32_t>(false, left, right, result);
return { };
}
template<>
auto AirIRGenerator::addOp<OpType::I32DivU>(ExpressionType left, ExpressionType right, ExpressionType& result) -> PartialResult
{
emitChecksForModOrDiv<uint32_t>(false, left, right);
emitModOrDiv<uint32_t>(true, left, right, result);
return { };
}
template<>
auto AirIRGenerator::addOp<OpType::I32RemU>(ExpressionType left, ExpressionType right, ExpressionType& result) -> PartialResult
{
emitChecksForModOrDiv<uint32_t>(false, left, right);
emitModOrDiv<uint32_t>(false, left, right, result);
return { };
}
template<>
auto AirIRGenerator::addOp<OpType::I64DivS>(ExpressionType left, ExpressionType right, ExpressionType& result) -> PartialResult
{
emitChecksForModOrDiv<int64_t>(true, left, right);
emitModOrDiv<int64_t>(true, left, right, result);
return { };
}
template<>
auto AirIRGenerator::addOp<OpType::I64RemS>(ExpressionType left, ExpressionType right, ExpressionType& result) -> PartialResult
{
emitChecksForModOrDiv<int64_t>(false, left, right);
emitModOrDiv<int64_t>(false, left, right, result);
return { };
}
template<>
auto AirIRGenerator::addOp<OpType::I64DivU>(ExpressionType left, ExpressionType right, ExpressionType& result) -> PartialResult
{
emitChecksForModOrDiv<uint64_t>(false, left, right);
emitModOrDiv<uint64_t>(true, left, right, result);
return { };
}
template<>
auto AirIRGenerator::addOp<OpType::I64RemU>(ExpressionType left, ExpressionType right, ExpressionType& result) -> PartialResult
{
emitChecksForModOrDiv<uint64_t>(false, left, right);
emitModOrDiv<uint64_t>(false, left, right, result);
return { };
}
template<>
auto AirIRGenerator::addOp<OpType::I32Ctz>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
auto* patchpoint = addPatchpoint(B3::Int32);
patchpoint->effects = B3::Effects::none();
patchpoint->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams& params) {
jit.countTrailingZeros32(params[1].gpr(), params[0].gpr());
});
result = g32();
emitPatchpoint(patchpoint, result, arg);
return { };
}
template<>
auto AirIRGenerator::addOp<OpType::I64Ctz>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
auto* patchpoint = addPatchpoint(B3::Int64);
patchpoint->effects = B3::Effects::none();
patchpoint->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams& params) {
jit.countTrailingZeros64(params[1].gpr(), params[0].gpr());
});
result = g64();
emitPatchpoint(patchpoint, result, arg);
return { };
}
template<>
auto AirIRGenerator::addOp<OpType::I32Popcnt>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
result = g32();
#if CPU(X86_64)
if (MacroAssembler::supportsCountPopulation()) {
auto* patchpoint = addPatchpoint(B3::Int32);
patchpoint->effects = B3::Effects::none();
patchpoint->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams& params) {
jit.countPopulation32(params[1].gpr(), params[0].gpr());
});
emitPatchpoint(patchpoint, result, arg);
return { };
}
#endif
uint32_t (*popcount)(int32_t) = [] (int32_t value) -> uint32_t { return __builtin_popcount(value); };
emitCCall(popcount, result, arg);
return { };
}
template<>
auto AirIRGenerator::addOp<OpType::I64Popcnt>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
result = g64();
#if CPU(X86_64)
if (MacroAssembler::supportsCountPopulation()) {
auto* patchpoint = addPatchpoint(B3::Int64);
patchpoint->effects = B3::Effects::none();
patchpoint->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams& params) {
jit.countPopulation64(params[1].gpr(), params[0].gpr());
});
emitPatchpoint(patchpoint, result, arg);
return { };
}
#endif
uint64_t (*popcount)(int64_t) = [] (int64_t value) -> uint64_t { return __builtin_popcountll(value); };
emitCCall(popcount, result, arg);
return { };
}
template<>
auto AirIRGenerator::addOp<F64ConvertUI64>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
auto* patchpoint = addPatchpoint(B3::Double);
patchpoint->effects = B3::Effects::none();
if (isX86())
patchpoint->numGPScratchRegisters = 1;
patchpoint->clobber(RegisterSet::macroScratchRegisters());
patchpoint->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams& params) {
AllowMacroScratchRegisterUsage allowScratch(jit);
#if CPU(X86_64)
jit.convertUInt64ToDouble(params[1].gpr(), params[0].fpr(), params.gpScratch(0));
#else
jit.convertUInt64ToDouble(params[1].gpr(), params[0].fpr());
#endif
});
result = f64();
emitPatchpoint(patchpoint, result, arg);
return { };
}
template<>
auto AirIRGenerator::addOp<OpType::F32ConvertUI64>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
auto* patchpoint = addPatchpoint(B3::Float);
patchpoint->effects = B3::Effects::none();
if (isX86())
patchpoint->numGPScratchRegisters = 1;
patchpoint->clobber(RegisterSet::macroScratchRegisters());
patchpoint->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams& params) {
AllowMacroScratchRegisterUsage allowScratch(jit);
#if CPU(X86_64)
jit.convertUInt64ToFloat(params[1].gpr(), params[0].fpr(), params.gpScratch(0));
#else
jit.convertUInt64ToFloat(params[1].gpr(), params[0].fpr());
#endif
});
result = f32();
emitPatchpoint(patchpoint, result, arg);
return { };
}
template<>
auto AirIRGenerator::addOp<OpType::F64Nearest>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
auto* patchpoint = addPatchpoint(B3::Double);
patchpoint->effects = B3::Effects::none();
patchpoint->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams& params) {
jit.roundTowardNearestIntDouble(params[1].fpr(), params[0].fpr());
});
result = f64();
emitPatchpoint(patchpoint, result, arg);
return { };
}
template<>
auto AirIRGenerator::addOp<OpType::F32Nearest>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
auto* patchpoint = addPatchpoint(B3::Float);
patchpoint->effects = B3::Effects::none();
patchpoint->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams& params) {
jit.roundTowardNearestIntFloat(params[1].fpr(), params[0].fpr());
});
result = f32();
emitPatchpoint(patchpoint, result, arg);
return { };
}
template<>
auto AirIRGenerator::addOp<OpType::F64Trunc>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
auto* patchpoint = addPatchpoint(B3::Double);
patchpoint->effects = B3::Effects::none();
patchpoint->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams& params) {
jit.roundTowardZeroDouble(params[1].fpr(), params[0].fpr());
});
result = f64();
emitPatchpoint(patchpoint, result, arg);
return { };
}
template<>
auto AirIRGenerator::addOp<OpType::F32Trunc>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
auto* patchpoint = addPatchpoint(B3::Float);
patchpoint->effects = B3::Effects::none();
patchpoint->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams& params) {
jit.roundTowardZeroFloat(params[1].fpr(), params[0].fpr());
});
result = f32();
emitPatchpoint(patchpoint, result, arg);
return { };
}
template<>
auto AirIRGenerator::addOp<OpType::I32TruncSF64>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
auto max = addConstant(Type::F64, bitwise_cast<uint64_t>(-static_cast<double>(std::numeric_limits<int32_t>::min())));
auto min = addConstant(Type::F64, bitwise_cast<uint64_t>(static_cast<double>(std::numeric_limits<int32_t>::min())));
auto temp1 = g32();
auto temp2 = g32();
append(CompareDouble, Arg::doubleCond(MacroAssembler::DoubleLessThanOrUnordered), arg, min, temp1);
append(CompareDouble, Arg::doubleCond(MacroAssembler::DoubleGreaterThanOrEqualOrUnordered), arg, max, temp2);
append(Or32, temp1, temp2);
emitCheck([&] {
return Inst(BranchTest32, nullptr, Arg::resCond(MacroAssembler::NonZero), temp2, temp2);
}, [=] (CCallHelpers& jit, const B3::StackmapGenerationParams&) {
this->emitThrowException(jit, ExceptionType::OutOfBoundsTrunc);
});
auto* patchpoint = addPatchpoint(B3::Int32);
patchpoint->effects = B3::Effects::none();
patchpoint->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams& params) {
jit.truncateDoubleToInt32(params[1].fpr(), params[0].gpr());
});
result = g32();
emitPatchpoint(patchpoint, result, arg);
return { };
}
template<>
auto AirIRGenerator::addOp<OpType::I32TruncSF32>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
auto max = addConstant(Type::F32, bitwise_cast<uint32_t>(-static_cast<float>(std::numeric_limits<int32_t>::min())));
auto min = addConstant(Type::F32, bitwise_cast<uint32_t>(static_cast<float>(std::numeric_limits<int32_t>::min())));
auto temp1 = g32();
auto temp2 = g32();
append(CompareFloat, Arg::doubleCond(MacroAssembler::DoubleLessThanOrUnordered), arg, min, temp1);
append(CompareFloat, Arg::doubleCond(MacroAssembler::DoubleGreaterThanOrEqualOrUnordered), arg, max, temp2);
append(Or32, temp1, temp2);
emitCheck([&] {
return Inst(BranchTest32, nullptr, Arg::resCond(MacroAssembler::NonZero), temp2, temp2);
}, [=] (CCallHelpers& jit, const B3::StackmapGenerationParams&) {
this->emitThrowException(jit, ExceptionType::OutOfBoundsTrunc);
});
auto* patchpoint = addPatchpoint(B3::Int32);
patchpoint->effects = B3::Effects::none();
patchpoint->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams& params) {
jit.truncateFloatToInt32(params[1].fpr(), params[0].gpr());
});
result = g32();
emitPatchpoint(patchpoint, result, arg);
return { };
}
template<>
auto AirIRGenerator::addOp<OpType::I32TruncUF64>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
auto max = addConstant(Type::F64, bitwise_cast<uint64_t>(static_cast<double>(std::numeric_limits<int32_t>::min()) * -2.0));
auto min = addConstant(Type::F64, bitwise_cast<uint64_t>(-1.0));
auto temp1 = g32();
auto temp2 = g32();
append(CompareDouble, Arg::doubleCond(MacroAssembler::DoubleLessThanOrEqualOrUnordered), arg, min, temp1);
append(CompareDouble, Arg::doubleCond(MacroAssembler::DoubleGreaterThanOrEqualOrUnordered), arg, max, temp2);
append(Or32, temp1, temp2);
emitCheck([&] {
return Inst(BranchTest32, nullptr, Arg::resCond(MacroAssembler::NonZero), temp2, temp2);
}, [=] (CCallHelpers& jit, const B3::StackmapGenerationParams&) {
this->emitThrowException(jit, ExceptionType::OutOfBoundsTrunc);
});
auto* patchpoint = addPatchpoint(B3::Int32);
patchpoint->effects = B3::Effects::none();
patchpoint->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams& params) {
jit.truncateDoubleToUint32(params[1].fpr(), params[0].gpr());
});
result = g32();
emitPatchpoint(patchpoint, result, arg);
return { };
}
template<>
auto AirIRGenerator::addOp<OpType::I32TruncUF32>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
auto max = addConstant(Type::F32, bitwise_cast<uint32_t>(static_cast<float>(std::numeric_limits<int32_t>::min()) * static_cast<float>(-2.0)));
auto min = addConstant(Type::F32, bitwise_cast<uint32_t>(static_cast<float>(-1.0)));
auto temp1 = g32();
auto temp2 = g32();
append(CompareFloat, Arg::doubleCond(MacroAssembler::DoubleLessThanOrEqualOrUnordered), arg, min, temp1);
append(CompareFloat, Arg::doubleCond(MacroAssembler::DoubleGreaterThanOrEqualOrUnordered), arg, max, temp2);
append(Or32, temp1, temp2);
emitCheck([&] {
return Inst(BranchTest32, nullptr, Arg::resCond(MacroAssembler::NonZero), temp2, temp2);
}, [=] (CCallHelpers& jit, const B3::StackmapGenerationParams&) {
this->emitThrowException(jit, ExceptionType::OutOfBoundsTrunc);
});
auto* patchpoint = addPatchpoint(B3::Int32);
patchpoint->effects = B3::Effects::none();
patchpoint->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams& params) {
jit.truncateFloatToUint32(params[1].fpr(), params[0].gpr());
});
result = g32();
emitPatchpoint(patchpoint, result, arg);
return { };
}
template<>
auto AirIRGenerator::addOp<OpType::I64TruncSF64>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
auto max = addConstant(Type::F64, bitwise_cast<uint64_t>(-static_cast<double>(std::numeric_limits<int64_t>::min())));
auto min = addConstant(Type::F64, bitwise_cast<uint64_t>(static_cast<double>(std::numeric_limits<int64_t>::min())));
auto temp1 = g32();
auto temp2 = g32();
append(CompareDouble, Arg::doubleCond(MacroAssembler::DoubleLessThanOrUnordered), arg, min, temp1);
append(CompareDouble, Arg::doubleCond(MacroAssembler::DoubleGreaterThanOrEqualOrUnordered), arg, max, temp2);
append(Or32, temp1, temp2);
emitCheck([&] {
return Inst(BranchTest32, nullptr, Arg::resCond(MacroAssembler::NonZero), temp2, temp2);
}, [=] (CCallHelpers& jit, const B3::StackmapGenerationParams&) {
this->emitThrowException(jit, ExceptionType::OutOfBoundsTrunc);
});
auto* patchpoint = addPatchpoint(B3::Int64);
patchpoint->effects = B3::Effects::none();
patchpoint->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams& params) {
jit.truncateDoubleToInt64(params[1].fpr(), params[0].gpr());
});
result = g64();
emitPatchpoint(patchpoint, result, arg);
return { };
}
template<>
auto AirIRGenerator::addOp<OpType::I64TruncUF64>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
auto max = addConstant(Type::F64, bitwise_cast<uint64_t>(static_cast<double>(std::numeric_limits<int64_t>::min()) * -2.0));
auto min = addConstant(Type::F64, bitwise_cast<uint64_t>(-1.0));
auto temp1 = g32();
auto temp2 = g32();
append(CompareDouble, Arg::doubleCond(MacroAssembler::DoubleLessThanOrEqualOrUnordered), arg, min, temp1);
append(CompareDouble, Arg::doubleCond(MacroAssembler::DoubleGreaterThanOrEqualOrUnordered), arg, max, temp2);
append(Or32, temp1, temp2);
emitCheck([&] {
return Inst(BranchTest32, nullptr, Arg::resCond(MacroAssembler::NonZero), temp2, temp2);
}, [=] (CCallHelpers& jit, const B3::StackmapGenerationParams&) {
this->emitThrowException(jit, ExceptionType::OutOfBoundsTrunc);
});
TypedTmp signBitConstant;
if (isX86())
signBitConstant = addConstant(Type::F64, bitwise_cast<uint64_t>(static_cast<double>(std::numeric_limits<uint64_t>::max() - std::numeric_limits<int64_t>::max())));
Vector<ConstrainedTmp> args;
auto* patchpoint = addPatchpoint(B3::Int64);
patchpoint->effects = B3::Effects::none();
patchpoint->clobber(RegisterSet::macroScratchRegisters());
args.append(arg);
if (isX86()) {
args.append(signBitConstant);
patchpoint->numFPScratchRegisters = 1;
}
patchpoint->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams& params) {
AllowMacroScratchRegisterUsage allowScratch(jit);
FPRReg scratch = InvalidFPRReg;
FPRReg constant = InvalidFPRReg;
if (isX86()) {
scratch = params.fpScratch(0);
constant = params[2].fpr();
}
jit.truncateDoubleToUint64(params[1].fpr(), params[0].gpr(), scratch, constant);
});
result = g64();
emitPatchpoint(m_currentBlock, patchpoint, result, WTFMove(args));
return { };
}
template<>
auto AirIRGenerator::addOp<OpType::I64TruncSF32>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
auto max = addConstant(Type::F32, bitwise_cast<uint32_t>(-static_cast<float>(std::numeric_limits<int64_t>::min())));
auto min = addConstant(Type::F32, bitwise_cast<uint32_t>(static_cast<float>(std::numeric_limits<int64_t>::min())));
auto temp1 = g32();
auto temp2 = g32();
append(CompareFloat, Arg::doubleCond(MacroAssembler::DoubleLessThanOrUnordered), arg, min, temp1);
append(CompareFloat, Arg::doubleCond(MacroAssembler::DoubleGreaterThanOrEqualOrUnordered), arg, max, temp2);
append(Or32, temp1, temp2);
emitCheck([&] {
return Inst(BranchTest32, nullptr, Arg::resCond(MacroAssembler::NonZero), temp2, temp2);
}, [=] (CCallHelpers& jit, const B3::StackmapGenerationParams&) {
this->emitThrowException(jit, ExceptionType::OutOfBoundsTrunc);
});
auto* patchpoint = addPatchpoint(B3::Int64);
patchpoint->effects = B3::Effects::none();
patchpoint->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams& params) {
jit.truncateFloatToInt64(params[1].fpr(), params[0].gpr());
});
result = g64();
emitPatchpoint(patchpoint, result, arg);
return { };
}
template<>
auto AirIRGenerator::addOp<OpType::I64TruncUF32>(ExpressionType arg, ExpressionType& result) -> PartialResult
{
auto max = addConstant(Type::F32, bitwise_cast<uint32_t>(static_cast<float>(std::numeric_limits<int64_t>::min()) * static_cast<float>(-2.0)));
auto min = addConstant(Type::F32, bitwise_cast<uint32_t>(static_cast<float>(-1.0)));
auto temp1 = g32();
auto temp2 = g32();
append(CompareFloat, Arg::doubleCond(MacroAssembler::DoubleLessThanOrEqualOrUnordered), arg, min, temp1);
append(CompareFloat, Arg::doubleCond(MacroAssembler::DoubleGreaterThanOrEqualOrUnordered), arg, max, temp2);
append(Or32, temp1, temp2);
emitCheck([&] {
return Inst(BranchTest32, nullptr, Arg::resCond(MacroAssembler::NonZero), temp2, temp2);
}, [=] (CCallHelpers& jit, const B3::StackmapGenerationParams&) {
this->emitThrowException(jit, ExceptionType::OutOfBoundsTrunc);
});
TypedTmp signBitConstant;
if (isX86())
signBitConstant = addConstant(Type::F32, bitwise_cast<uint32_t>(static_cast<float>(std::numeric_limits<uint64_t>::max() - std::numeric_limits<int64_t>::max())));
auto* patchpoint = addPatchpoint(B3::Int64);
patchpoint->effects = B3::Effects::none();
patchpoint->clobber(RegisterSet::macroScratchRegisters());
Vector<ConstrainedTmp> args;
args.append(arg);
if (isX86()) {
args.append(signBitConstant);
patchpoint->numFPScratchRegisters = 1;
}
patchpoint->setGenerator([=] (CCallHelpers& jit, const B3::StackmapGenerationParams& params) {
AllowMacroScratchRegisterUsage allowScratch(jit);
FPRReg scratch = InvalidFPRReg;
FPRReg constant = InvalidFPRReg;
if (isX86()) {
scratch = params.fpScratch(0);
constant = params[2].fpr();
}
jit.truncateFloatToUint64(params[1].fpr(), params[0].gpr(), scratch, constant);
});
result = g64();
emitPatchpoint(m_currentBlock, patchpoint, result, WTFMove(args));
return { };
}
auto AirIRGenerator::addShift(Type type, B3::Air::Opcode op, ExpressionType value, ExpressionType shift, ExpressionType& result) -> PartialResult
{
ASSERT(type == Type::I64 || type == Type::I32);
result = tmpForType(type);
if (isValidForm(op, Arg::Tmp, Arg::Tmp, Arg::Tmp)) {
append(op, value, shift, result);
return { };
}
#if CPU(X86_64)
Tmp ecx = Tmp(X86Registers::ecx);
append(Move, value, result);
append(Move, shift, ecx);
append(op, ecx, result);
#else
RELEASE_ASSERT_NOT_REACHED();
#endif
return { };
}
auto AirIRGenerator::addIntegerSub(B3::Air::Opcode op, ExpressionType lhs, ExpressionType rhs, ExpressionType& result) -> PartialResult
{
ASSERT(op == Sub32 || op == Sub64);
result = op == Sub32 ? g32() : g64();
if (isValidForm(op, Arg::Tmp, Arg::Tmp, Arg::Tmp)) {
append(op, lhs, rhs, result);
return { };
}
RELEASE_ASSERT(isX86());
// Sub a, b
// means
// b = b Sub a
append(Move, lhs, result);
append(op, rhs, result);
return { };
}
auto AirIRGenerator::addFloatingPointAbs(B3::Air::Opcode op, ExpressionType value, ExpressionType& result) -> PartialResult
{
RELEASE_ASSERT(op == AbsFloat || op == AbsDouble);
result = op == AbsFloat ? f32() : f64();
if (isValidForm(op, Arg::Tmp, Arg::Tmp)) {
append(op, value, result);
return { };
}
RELEASE_ASSERT(isX86());
if (op == AbsFloat) {
auto constant = g32();
append(Move, Arg::imm(static_cast<uint32_t>(~(1ull << 31))), constant);
append(Move32ToFloat, constant, result);
append(AndFloat, value, result);
} else {
auto constant = g64();
append(Move, Arg::bigImm(~(1ull << 63)), constant);
append(Move64ToDouble, constant, result);
append(AndDouble, value, result);
}
return { };
}
auto AirIRGenerator::addFloatingPointBinOp(Type type, B3::Air::Opcode op, ExpressionType lhs, ExpressionType rhs, ExpressionType& result) -> PartialResult
{
ASSERT(type == Type::F32 || type == Type::F64);
result = tmpForType(type);
if (isValidForm(op, Arg::Tmp, Arg::Tmp, Arg::Tmp)) {
append(op, lhs, rhs, result);
return { };
}
RELEASE_ASSERT(isX86());
// Op a, b
// means
// b = b Op a
append(moveOpForValueType(type), lhs, result);
append(op, rhs, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F32Ceil>(ExpressionType arg0, ExpressionType& result) -> PartialResult
{
result = f32();
append(CeilFloat, arg0, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I32Mul>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(Mul32, arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I32Sub>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
return addIntegerSub(Sub32, arg0, arg1, result);
}
template<> auto AirIRGenerator::addOp<OpType::F64Le>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(CompareDouble, Arg::doubleCond(MacroAssembler::DoubleLessThanOrEqual), arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F32DemoteF64>(ExpressionType arg0, ExpressionType& result) -> PartialResult
{
result = f32();
append(ConvertDoubleToFloat, arg0, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F32Min>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
return addFloatingPointMinOrMax(F32, MinOrMax::Min, arg0, arg1, result);
}
template<> auto AirIRGenerator::addOp<OpType::F64Ne>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(CompareDouble, Arg::doubleCond(MacroAssembler::DoubleNotEqualOrUnordered), arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F64Lt>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(CompareDouble, Arg::doubleCond(MacroAssembler::DoubleLessThan), arg0, arg1, result);
return { };
}
auto AirIRGenerator::addFloatingPointMinOrMax(Type floatType, MinOrMax minOrMax, ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
ASSERT(floatType == F32 || floatType == F64);
result = tmpForType(floatType);
BasicBlock* isEqual = m_code.addBlock();
BasicBlock* notEqual = m_code.addBlock();
BasicBlock* isLessThan = m_code.addBlock();
BasicBlock* notLessThan = m_code.addBlock();
BasicBlock* isGreaterThan = m_code.addBlock();
BasicBlock* isNaN = m_code.addBlock();
BasicBlock* continuation = m_code.addBlock();
auto branchOp = floatType == F32 ? BranchFloat : BranchDouble;
append(m_currentBlock, branchOp, Arg::doubleCond(MacroAssembler::DoubleEqual), arg0, arg1);
m_currentBlock->setSuccessors(isEqual, notEqual);
append(notEqual, branchOp, Arg::doubleCond(MacroAssembler::DoubleLessThan), arg0, arg1);
notEqual->setSuccessors(isLessThan, notLessThan);
append(notLessThan, branchOp, Arg::doubleCond(MacroAssembler::DoubleGreaterThan), arg0, arg1);
notLessThan->setSuccessors(isGreaterThan, isNaN);
auto andOp = floatType == F32 ? AndFloat : AndDouble;
auto orOp = floatType == F32 ? OrFloat : OrDouble;
append(isEqual, minOrMax == MinOrMax::Max ? andOp : orOp, arg0, arg1, result);
append(isEqual, Jump);
isEqual->setSuccessors(continuation);
auto isLessThanResult = minOrMax == MinOrMax::Max ? arg1 : arg0;
append(isLessThan, moveOpForValueType(floatType), isLessThanResult, result);
append(isLessThan, Jump);
isLessThan->setSuccessors(continuation);
auto isGreaterThanResult = minOrMax == MinOrMax::Max ? arg0 : arg1;
append(isGreaterThan, moveOpForValueType(floatType), isGreaterThanResult, result);
append(isGreaterThan, Jump);
isGreaterThan->setSuccessors(continuation);
auto addOp = floatType == F32 ? AddFloat : AddDouble;
append(isNaN, addOp, arg0, arg1, result);
append(isNaN, Jump);
isNaN->setSuccessors(continuation);
m_currentBlock = continuation;
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F32Max>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
return addFloatingPointMinOrMax(F32, MinOrMax::Max, arg0, arg1, result);
}
template<> auto AirIRGenerator::addOp<OpType::F64Mul>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
return addFloatingPointBinOp(Type::F64, MulDouble, arg0, arg1, result);
}
template<> auto AirIRGenerator::addOp<OpType::F32Div>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
return addFloatingPointBinOp(Type::F32, DivFloat, arg0, arg1, result);
}
template<> auto AirIRGenerator::addOp<OpType::I32Clz>(ExpressionType arg0, ExpressionType& result) -> PartialResult
{
result = g32();
append(CountLeadingZeros32, arg0, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F32Copysign>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
// FIXME: We can have better codegen here for the imms and two operand forms on x86
// https://bugs.webkit.org/show_bug.cgi?id=193999
result = f32();
auto temp1 = g32();
auto sign = g32();
auto value = g32();
// FIXME: Try to use Imm where possible:
// https://bugs.webkit.org/show_bug.cgi?id=193999
append(MoveFloatTo32, arg1, temp1);
append(Move, Arg::bigImm(0x80000000), sign);
append(And32, temp1, sign, sign);
append(MoveDoubleTo64, arg0, temp1);
append(Move, Arg::bigImm(0x7fffffff), value);
append(And32, temp1, value, value);
append(Or32, sign, value, value);
append(Move32ToFloat, value, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F64ConvertUI32>(ExpressionType arg0, ExpressionType& result) -> PartialResult
{
result = f64();
auto temp = g64();
append(Move32, arg0, temp);
append(ConvertInt64ToDouble, temp, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F32ReinterpretI32>(ExpressionType arg0, ExpressionType& result) -> PartialResult
{
result = f32();
append(Move32ToFloat, arg0, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I64And>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g64();
append(And64, arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F32Ne>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(CompareFloat, Arg::doubleCond(MacroAssembler::DoubleNotEqualOrUnordered), arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F64Gt>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(CompareDouble, Arg::doubleCond(MacroAssembler::DoubleGreaterThan), arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F32Sqrt>(ExpressionType arg0, ExpressionType& result) -> PartialResult
{
result = f32();
append(SqrtFloat, arg0, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F64Ge>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(CompareDouble, Arg::doubleCond(MacroAssembler::DoubleGreaterThanOrEqual), arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I64GtS>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(Compare64, Arg::relCond(MacroAssembler::GreaterThan), arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I64GtU>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(Compare64, Arg::relCond(MacroAssembler::Above), arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I64Eqz>(ExpressionType arg0, ExpressionType& result) -> PartialResult
{
result = g32();
append(Test64, Arg::resCond(MacroAssembler::Zero), arg0, arg0, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F64Div>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
return addFloatingPointBinOp(Type::F64, DivDouble, arg0, arg1, result);
}
template<> auto AirIRGenerator::addOp<OpType::F32Add>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = f32();
append(AddFloat, arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I64Or>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g64();
append(Or64, arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I32LeU>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(Compare32, Arg::relCond(MacroAssembler::BelowOrEqual), arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I32LeS>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(Compare32, Arg::relCond(MacroAssembler::LessThanOrEqual), arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I64Ne>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(Compare64, Arg::relCond(MacroAssembler::NotEqual), arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I64Clz>(ExpressionType arg0, ExpressionType& result) -> PartialResult
{
result = g64();
append(CountLeadingZeros64, arg0, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F32Neg>(ExpressionType arg0, ExpressionType& result) -> PartialResult
{
result = f32();
if (isValidForm(NegateFloat, Arg::Tmp, Arg::Tmp))
append(NegateFloat, arg0, result);
else {
auto constant = addConstant(Type::I32, bitwise_cast<uint32_t>(static_cast<float>(-0.0)));
auto temp = g32();
append(MoveFloatTo32, arg0, temp);
append(Xor32, constant, temp);
append(Move32ToFloat, temp, result);
}
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I32And>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(And32, arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I32LtU>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(Compare32, Arg::relCond(MacroAssembler::Below), arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I64Rotr>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
return addShift(Type::I64, RotateRight64, arg0, arg1, result);
}
template<> auto AirIRGenerator::addOp<OpType::F64Abs>(ExpressionType arg0, ExpressionType& result) -> PartialResult
{
return addFloatingPointAbs(AbsDouble, arg0, result);
}
template<> auto AirIRGenerator::addOp<OpType::I32LtS>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(Compare32, Arg::relCond(MacroAssembler::LessThan), arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I32Eq>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(Compare32, Arg::relCond(MacroAssembler::Equal), arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F64Copysign>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
// FIXME: We can have better codegen here for the imms and two operand forms on x86
// https://bugs.webkit.org/show_bug.cgi?id=193999
result = f64();
auto temp1 = g64();
auto sign = g64();
auto value = g64();
append(MoveDoubleTo64, arg1, temp1);
append(Move, Arg::bigImm(0x8000000000000000), sign);
append(And64, temp1, sign, sign);
append(MoveDoubleTo64, arg0, temp1);
append(Move, Arg::bigImm(0x7fffffffffffffff), value);
append(And64, temp1, value, value);
append(Or64, sign, value, value);
append(Move64ToDouble, value, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F32ConvertSI64>(ExpressionType arg0, ExpressionType& result) -> PartialResult
{
result = f32();
append(ConvertInt64ToFloat, arg0, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I64Rotl>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
if (isARM64()) {
// ARM64 doesn't have a rotate left.
auto newShift = g64();
append(Move, arg1, newShift);
append(Neg64, newShift);
return addShift(Type::I64, RotateRight64, arg0, newShift, result);
} else
return addShift(Type::I64, RotateLeft64, arg0, arg1, result);
}
template<> auto AirIRGenerator::addOp<OpType::F32Lt>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(CompareFloat, Arg::doubleCond(MacroAssembler::DoubleLessThan), arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F64ConvertSI32>(ExpressionType arg0, ExpressionType& result) -> PartialResult
{
result = f64();
append(ConvertInt32ToDouble, arg0, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F64Eq>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(CompareDouble, Arg::doubleCond(MacroAssembler::DoubleEqual), arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F32Le>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(CompareFloat, Arg::doubleCond(MacroAssembler::DoubleLessThanOrEqual), arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F32Ge>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(CompareFloat, Arg::doubleCond(MacroAssembler::DoubleGreaterThanOrEqual), arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I32ShrU>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
return addShift(Type::I32, Urshift32, arg0, arg1, result);
}
template<> auto AirIRGenerator::addOp<OpType::F32ConvertUI32>(ExpressionType arg0, ExpressionType& result) -> PartialResult
{
result = f32();
auto temp = g64();
append(Move32, arg0, temp);
append(ConvertInt64ToFloat, temp, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I32ShrS>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
return addShift(Type::I32, Rshift32, arg0, arg1, result);
}
template<> auto AirIRGenerator::addOp<OpType::I32GeU>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(Compare32, Arg::relCond(MacroAssembler::AboveOrEqual), arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F64Ceil>(ExpressionType arg0, ExpressionType& result) -> PartialResult
{
result = f64();
append(CeilDouble, arg0, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I32GeS>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(Compare32, Arg::relCond(MacroAssembler::GreaterThanOrEqual), arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I32Shl>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
return addShift(Type::I32, Lshift32, arg0, arg1, result);
}
template<> auto AirIRGenerator::addOp<OpType::F64Floor>(ExpressionType arg0, ExpressionType& result) -> PartialResult
{
result = f64();
append(FloorDouble, arg0, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I32Xor>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(Xor32, arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F32Abs>(ExpressionType arg0, ExpressionType& result) -> PartialResult
{
return addFloatingPointAbs(AbsFloat, arg0, result);
}
template<> auto AirIRGenerator::addOp<OpType::F64Min>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
return addFloatingPointMinOrMax(F64, MinOrMax::Min, arg0, arg1, result);
}
template<> auto AirIRGenerator::addOp<OpType::F32Mul>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = f32();
append(MulFloat, arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I64Sub>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
return addIntegerSub(Sub64, arg0, arg1, result);
}
template<> auto AirIRGenerator::addOp<OpType::I32ReinterpretF32>(ExpressionType arg0, ExpressionType& result) -> PartialResult
{
result = g32();
append(MoveFloatTo32, arg0, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I32Add>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(Add32, arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F64Sub>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
return addFloatingPointBinOp(Type::F64, SubDouble, arg0, arg1, result);
}
template<> auto AirIRGenerator::addOp<OpType::I32Or>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(Or32, arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I64LtU>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(Compare64, Arg::relCond(MacroAssembler::Below), arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I64LtS>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(Compare64, Arg::relCond(MacroAssembler::LessThan), arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F64ConvertSI64>(ExpressionType arg0, ExpressionType& result) -> PartialResult
{
result = f64();
append(ConvertInt64ToDouble, arg0, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I64Xor>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g64();
append(Xor64, arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I64GeU>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(Compare64, Arg::relCond(MacroAssembler::AboveOrEqual), arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I64Mul>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g64();
append(Mul64, arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F32Sub>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = f32();
if (isValidForm(SubFloat, Arg::Tmp, Arg::Tmp, Arg::Tmp))
append(SubFloat, arg0, arg1, result);
else {
RELEASE_ASSERT(isX86());
append(MoveFloat, arg0, result);
append(SubFloat, arg1, result);
}
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F64PromoteF32>(ExpressionType arg0, ExpressionType& result) -> PartialResult
{
result = f64();
append(ConvertFloatToDouble, arg0, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F64Add>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = f64();
append(AddDouble, arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I64GeS>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(Compare64, Arg::relCond(MacroAssembler::GreaterThanOrEqual), arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I64ExtendUI32>(ExpressionType arg0, ExpressionType& result) -> PartialResult
{
result = g64();
append(Move32, arg0, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I32Ne>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
RELEASE_ASSERT(arg0 && arg1);
append(Compare32, Arg::relCond(MacroAssembler::NotEqual), arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F64ReinterpretI64>(ExpressionType arg0, ExpressionType& result) -> PartialResult
{
result = f64();
append(Move64ToDouble, arg0, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F32Eq>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(CompareFloat, Arg::doubleCond(MacroAssembler::DoubleEqual), arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I64Eq>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(Compare64, Arg::relCond(MacroAssembler::Equal), arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F32Floor>(ExpressionType arg0, ExpressionType& result) -> PartialResult
{
result = f32();
append(FloorFloat, arg0, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F32ConvertSI32>(ExpressionType arg0, ExpressionType& result) -> PartialResult
{
result = f32();
append(ConvertInt32ToFloat, arg0, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I32Eqz>(ExpressionType arg0, ExpressionType& result) -> PartialResult
{
result = g32();
append(Test32, Arg::resCond(MacroAssembler::Zero), arg0, arg0, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I64ReinterpretF64>(ExpressionType arg0, ExpressionType& result) -> PartialResult
{
result = g64();
append(MoveDoubleTo64, arg0, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I64ShrS>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
return addShift(Type::I64, Rshift64, arg0, arg1, result);
}
template<> auto AirIRGenerator::addOp<OpType::I64ShrU>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
return addShift(Type::I64, Urshift64, arg0, arg1, result);
}
template<> auto AirIRGenerator::addOp<OpType::F64Sqrt>(ExpressionType arg0, ExpressionType& result) -> PartialResult
{
result = f64();
append(SqrtDouble, arg0, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I64Shl>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
return addShift(Type::I64, Lshift64, arg0, arg1, result);
}
template<> auto AirIRGenerator::addOp<OpType::F32Gt>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(CompareFloat, Arg::doubleCond(MacroAssembler::DoubleGreaterThan), arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I32WrapI64>(ExpressionType arg0, ExpressionType& result) -> PartialResult
{
result = g32();
append(Move32, arg0, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I32Rotl>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
if (isARM64()) {
// ARM64 doesn't have a rotate left.
auto newShift = g64();
append(Move, arg1, newShift);
append(Neg64, newShift);
return addShift(Type::I32, RotateRight32, arg0, newShift, result);
} else
return addShift(Type::I32, RotateLeft32, arg0, arg1, result);
}
template<> auto AirIRGenerator::addOp<OpType::I32Rotr>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
return addShift(Type::I32, RotateRight32, arg0, arg1, result);
}
template<> auto AirIRGenerator::addOp<OpType::I32GtU>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(Compare32, Arg::relCond(MacroAssembler::Above), arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I64ExtendSI32>(ExpressionType arg0, ExpressionType& result) -> PartialResult
{
result = g64();
append(SignExtend32ToPtr, arg0, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I32GtS>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(Compare32, Arg::relCond(MacroAssembler::GreaterThan), arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F64Neg>(ExpressionType arg0, ExpressionType& result) -> PartialResult
{
result = f64();
if (isValidForm(NegateDouble, Arg::Tmp, Arg::Tmp))
append(NegateDouble, arg0, result);
else {
auto constant = addConstant(Type::I64, bitwise_cast<uint64_t>(static_cast<double>(-0.0)));
auto temp = g64();
append(MoveDoubleTo64, arg0, temp);
append(Xor64, constant, temp);
append(Move64ToDouble, temp, result);
}
return { };
}
template<> auto AirIRGenerator::addOp<OpType::F64Max>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
return addFloatingPointMinOrMax(F64, MinOrMax::Max, arg0, arg1, result);
}
template<> auto AirIRGenerator::addOp<OpType::I64LeU>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(Compare64, Arg::relCond(MacroAssembler::BelowOrEqual), arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I64LeS>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g32();
append(Compare64, Arg::relCond(MacroAssembler::LessThanOrEqual), arg0, arg1, result);
return { };
}
template<> auto AirIRGenerator::addOp<OpType::I64Add>(ExpressionType arg0, ExpressionType arg1, ExpressionType& result) -> PartialResult
{
result = g64();
append(Add64, arg0, arg1, result);
return { };
}
} } // namespace JSC::Wasm
#endif // ENABLE(WEBASSEMBLY)