| /* |
| * Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012 Apple Inc. All rights reserved. |
| * Copyright (C) 2008, 2010 Nokia Corporation and/or its subsidiary(-ies) |
| * Copyright (C) 2007 Alp Toker <alp@atoker.com> |
| * Copyright (C) 2008 Eric Seidel <eric@webkit.org> |
| * Copyright (C) 2008 Dirk Schulze <krit@webkit.org> |
| * Copyright (C) 2010 Torch Mobile (Beijing) Co. Ltd. All rights reserved. |
| * Copyright (C) 2012 Intel Corporation. All rights reserved. |
| * Copyright (C) 2012, 2013 Adobe Systems Incorporated. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER "AS IS" AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE |
| * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, |
| * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR |
| * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF |
| * THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "CanvasPath.h" |
| |
| #include "AffineTransform.h" |
| #include "DOMPointInit.h" |
| #include "FloatRect.h" |
| #include "FloatRoundedRect.h" |
| #include "FloatSize.h" |
| #include <algorithm> |
| #include <wtf/MathExtras.h> |
| |
| namespace WebCore { |
| |
| void CanvasPath::closePath() |
| { |
| if (m_path.isEmpty()) |
| return; |
| |
| FloatRect boundRect = m_path.fastBoundingRect(); |
| if (boundRect.width() || boundRect.height()) |
| m_path.closeSubpath(); |
| } |
| |
| void CanvasPath::moveTo(float x, float y) |
| { |
| if (!std::isfinite(x) || !std::isfinite(y)) |
| return; |
| if (!hasInvertibleTransform()) |
| return; |
| m_path.moveTo(FloatPoint(x, y)); |
| } |
| |
| void CanvasPath::lineTo(FloatPoint point) |
| { |
| lineTo(point.x(), point.y()); |
| } |
| |
| void CanvasPath::lineTo(float x, float y) |
| { |
| if (!std::isfinite(x) || !std::isfinite(y)) |
| return; |
| if (!hasInvertibleTransform()) |
| return; |
| |
| FloatPoint p1 = FloatPoint(x, y); |
| if (!m_path.hasCurrentPoint()) |
| m_path.moveTo(p1); |
| else if (p1 != m_path.currentPoint()) |
| m_path.addLineTo(p1); |
| } |
| |
| void CanvasPath::quadraticCurveTo(float cpx, float cpy, float x, float y) |
| { |
| if (!std::isfinite(cpx) || !std::isfinite(cpy) || !std::isfinite(x) || !std::isfinite(y)) |
| return; |
| if (!hasInvertibleTransform()) |
| return; |
| if (!m_path.hasCurrentPoint()) |
| m_path.moveTo(FloatPoint(cpx, cpy)); |
| |
| FloatPoint p1 = FloatPoint(x, y); |
| FloatPoint cp = FloatPoint(cpx, cpy); |
| if (p1 != m_path.currentPoint() || p1 != cp) |
| m_path.addQuadCurveTo(cp, p1); |
| } |
| |
| void CanvasPath::bezierCurveTo(float cp1x, float cp1y, float cp2x, float cp2y, float x, float y) |
| { |
| if (!std::isfinite(cp1x) || !std::isfinite(cp1y) || !std::isfinite(cp2x) || !std::isfinite(cp2y) || !std::isfinite(x) || !std::isfinite(y)) |
| return; |
| if (!hasInvertibleTransform()) |
| return; |
| if (!m_path.hasCurrentPoint()) |
| m_path.moveTo(FloatPoint(cp1x, cp1y)); |
| |
| FloatPoint p1 = FloatPoint(x, y); |
| FloatPoint cp1 = FloatPoint(cp1x, cp1y); |
| FloatPoint cp2 = FloatPoint(cp2x, cp2y); |
| if (p1 != m_path.currentPoint() || p1 != cp1 || p1 != cp2) |
| m_path.addBezierCurveTo(cp1, cp2, p1); |
| } |
| |
| ExceptionOr<void> CanvasPath::arcTo(float x1, float y1, float x2, float y2, float r) |
| { |
| if (!std::isfinite(x1) || !std::isfinite(y1) || !std::isfinite(x2) || !std::isfinite(y2) || !std::isfinite(r)) |
| return { }; |
| |
| if (r < 0) |
| return Exception { IndexSizeError }; |
| |
| if (!hasInvertibleTransform()) |
| return { }; |
| |
| FloatPoint p1 = FloatPoint(x1, y1); |
| FloatPoint p2 = FloatPoint(x2, y2); |
| |
| if (!m_path.hasCurrentPoint()) |
| m_path.moveTo(p1); |
| else if (p1 == m_path.currentPoint() || p1 == p2 || !r) |
| lineTo(x1, y1); |
| else |
| m_path.addArcTo(p1, p2, r); |
| |
| return { }; |
| } |
| |
| static void normalizeAngles(float& startAngle, float& endAngle, bool anticlockwise) |
| { |
| float newStartAngle = startAngle; |
| if (newStartAngle < 0) |
| newStartAngle = (2 * piFloat) + fmodf(newStartAngle, -(2 * piFloat)); |
| else |
| newStartAngle = fmodf(newStartAngle, 2 * piFloat); |
| |
| float delta = newStartAngle - startAngle; |
| startAngle = newStartAngle; |
| endAngle = endAngle + delta; |
| ASSERT(newStartAngle >= 0 && (newStartAngle < 2 * piFloat || WTF::areEssentiallyEqual<float>(newStartAngle, 2 * piFloat))); |
| |
| if (anticlockwise && startAngle - endAngle >= 2 * piFloat) |
| endAngle = startAngle - 2 * piFloat; |
| else if (!anticlockwise && endAngle - startAngle >= 2 * piFloat) |
| endAngle = startAngle + 2 * piFloat; |
| } |
| |
| ExceptionOr<void> CanvasPath::arc(float x, float y, float radius, float startAngle, float endAngle, bool anticlockwise) |
| { |
| if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(radius) || !std::isfinite(startAngle) || !std::isfinite(endAngle)) |
| return { }; |
| |
| if (radius < 0) |
| return Exception { IndexSizeError }; |
| |
| if (!hasInvertibleTransform()) |
| return { }; |
| |
| normalizeAngles(startAngle, endAngle, anticlockwise); |
| |
| if (!radius || startAngle == endAngle) { |
| // The arc is empty but we still need to draw the connecting line. |
| lineTo(x + radius * cosf(startAngle), y + radius * sinf(startAngle)); |
| return { }; |
| } |
| |
| m_path.addArc(FloatPoint(x, y), radius, startAngle, endAngle, anticlockwise); |
| return { }; |
| } |
| |
| ExceptionOr<void> CanvasPath::ellipse(float x, float y, float radiusX, float radiusY, float rotation, float startAngle, float endAngle, bool anticlockwise) |
| { |
| if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(radiusX) || !std::isfinite(radiusY) || !std::isfinite(rotation) || !std::isfinite(startAngle) || !std::isfinite(endAngle)) |
| return { }; |
| |
| if (radiusX < 0 || radiusY < 0) |
| return Exception { IndexSizeError }; |
| |
| if (!hasInvertibleTransform()) |
| return { }; |
| |
| normalizeAngles(startAngle, endAngle, anticlockwise); |
| |
| if ((!radiusX && !radiusY) || startAngle == endAngle) { |
| AffineTransform transform; |
| transform.translate(x, y).rotate(rad2deg(rotation)); |
| |
| lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(startAngle), radiusY * sinf(startAngle)))); |
| return { }; |
| } |
| |
| if (!radiusX || !radiusY) { |
| AffineTransform transform; |
| transform.translate(x, y).rotate(rad2deg(rotation)); |
| |
| lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(startAngle), radiusY * sinf(startAngle)))); |
| |
| if (!anticlockwise) { |
| for (float angle = startAngle - fmodf(startAngle, piOverTwoFloat) + piOverTwoFloat; angle < endAngle; angle += piOverTwoFloat) |
| lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(angle), radiusY * sinf(angle)))); |
| } else { |
| for (float angle = startAngle - fmodf(startAngle, piOverTwoFloat); angle > endAngle; angle -= piOverTwoFloat) |
| lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(angle), radiusY * sinf(angle)))); |
| } |
| |
| lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(endAngle), radiusY * sinf(endAngle)))); |
| return { }; |
| } |
| |
| m_path.addEllipse(FloatPoint(x, y), radiusX, radiusY, rotation, startAngle, endAngle, anticlockwise); |
| return { }; |
| } |
| |
| void CanvasPath::rect(float x, float y, float width, float height) |
| { |
| if (!hasInvertibleTransform()) |
| return; |
| |
| if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(width) || !std::isfinite(height)) |
| return; |
| |
| if (!width && !height) { |
| m_path.moveTo(FloatPoint(x, y)); |
| return; |
| } |
| |
| m_path.addRect(FloatRect(x, y, width, height)); |
| } |
| |
| ExceptionOr<void> CanvasPath::roundRect(float x, float y, float width, float height, const RadiusVariant& radii) |
| { |
| return roundRect(x, y, width, height, Span { &radii, 1 }); |
| } |
| |
| ExceptionOr<void> CanvasPath::roundRect(float x, float y, float width, float height, const Span<const RadiusVariant>& radii) |
| { |
| // Based on Nov 5th 2021 version of https://html.spec.whatwg.org/multipage/canvas.html#dom-context-2d-roundrect |
| // 1. If any of x, y, w, or h are infinite or NaN, then return. |
| |
| if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(width) || !std::isfinite(height)) |
| return { }; |
| |
| // 2. If radii is not a list of size one, two, three, or four, then throw a RangeError. |
| if (radii.size() > 4 || radii.empty()) |
| return Exception { RangeError, makeString("radii must contain at least 1 element, up to 4. It contained ", radii.size(), " elements.") }; |
| |
| // 3. Let normalizedRadii be an empty list. |
| Vector<FloatPoint, 4> normalizedRadii; |
| |
| // 4. For each radius of radii: |
| for (auto& radius : radii) { |
| auto shouldReturnSilently = false; |
| auto exception = WTF::switchOn(radius, |
| // 4.1 If radius is a DOMPointInit: |
| [&normalizedRadii, &shouldReturnSilently](DOMPointInit point) -> ExceptionOr<void> { |
| // 4.1.1 If radius["x"] or radius["y"] is infinite or NaN, then return. |
| if (!std::isfinite(point.x) || !std::isfinite(point.y)) { |
| shouldReturnSilently = true; |
| return { }; |
| } |
| |
| // 4.1.2 If radius["x"] or radius["y"] is negative, then throw a RangeError. |
| if (point.x < 0 || point.y < 0) |
| return Exception { RangeError, makeString("radius point coordinates must be positive") }; |
| |
| // 4.1.3 Otherwise, append radius to normalizedRadii. |
| normalizedRadii.append({ static_cast<float>(point.x), static_cast<float>(point.y) }); |
| return { }; |
| }, |
| // 4.2 If radius is a unrestricted double: |
| [&normalizedRadii, &shouldReturnSilently](double radiusValue) -> ExceptionOr<void> { |
| |
| // 4.2.1 If radius is infinite or NaN, then return. |
| if (!std::isfinite(radiusValue)) { |
| shouldReturnSilently = true; |
| return { }; |
| } |
| |
| // 4.2.2 If radius is negative, then throw a RangeError. |
| if (radiusValue < 0) |
| return Exception { RangeError, makeString("radius value must be positive") }; |
| |
| // 4.2.3 Otherwise append «[ "x" → radius, "y" → radius ]» to normalizedRadii. |
| normalizedRadii.append({ static_cast<float>(radiusValue), static_cast<float>(radiusValue) }); |
| return { }; |
| } |
| ); |
| if (exception.hasException() || shouldReturnSilently) |
| return exception; |
| } |
| |
| // Degenerate case, fall back to regular rect. |
| // We do not do this before parsing the radii in order to make sure the Exceptions can be raised. |
| if (!width || !height) { |
| rect(x, y, width, height); |
| return { }; |
| } |
| |
| // 5. Let upperLeft, upperRight, lowerRight, and lowerLeft be null. |
| FloatPoint upperLeft, upperRight, lowerRight, lowerLeft; |
| |
| switch (normalizedRadii.size()) { |
| case 4: |
| // 6. If normalizedRadii's size is 4, then set upperLeft to normalizedRadii[0], set upperRight to normalizedRadii[1], set lowerRight to normalizedRadii[2], and set lowerLeft to normalizedRadii[3]. |
| upperLeft = normalizedRadii[0]; |
| upperRight = normalizedRadii[1]; |
| lowerRight = normalizedRadii[2]; |
| lowerLeft = normalizedRadii[3]; |
| break; |
| case 3: |
| // 7. If normalizedRadii's size is 3, then set upperLeft to normalizedRadii[0], set upperRight and lowerLeft to normalizedRadii[1], and set lowerRight to normalizedRadii[2]. |
| upperLeft = normalizedRadii[0]; |
| upperRight = normalizedRadii[1]; |
| lowerRight = normalizedRadii[2]; |
| lowerLeft = normalizedRadii[1]; |
| break; |
| case 2: |
| // 8. If normalizedRadii's size is 2, then set upperLeft and lowerRight to normalizedRadii[0] and set upperRight and lowerLeft to normalizedRadii[1]. |
| upperLeft = normalizedRadii[0]; |
| upperRight = normalizedRadii[1]; |
| lowerRight = normalizedRadii[0]; |
| lowerLeft = normalizedRadii[1]; |
| break; |
| case 1: |
| // 9. If normalizedRadii's size is 1, then set upperLeft, upperRight, lowerRight, and lowerLeft to normalizedRadii[0]. |
| upperLeft = normalizedRadii[0]; |
| upperRight = normalizedRadii[0]; |
| lowerRight = normalizedRadii[0]; |
| lowerLeft = normalizedRadii[0]; |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| |
| // Must handle clockwise and counter-clockwise directions properly so path winding works correctly. |
| bool clockwise = true; |
| if (width < 0) { |
| clockwise = !clockwise; |
| width = std::abs(width); |
| x -= width; |
| std::swap(upperLeft, upperRight); |
| std::swap(lowerLeft, lowerRight); |
| } |
| |
| if (height < 0) { |
| clockwise = !clockwise; |
| height = std::abs(height); |
| y -= height; |
| std::swap(upperLeft, lowerLeft); |
| std::swap(upperRight, lowerRight); |
| } |
| |
| // 10. Corner curves must not overlap. Scale all radii to prevent this: |
| |
| // 10.1 Let top be upperLeft["x"] + upperRight["x"]. |
| auto top = upperLeft.x() + upperRight.x(); |
| |
| // 10.2 Let right be upperRight["y"] + lowerRight["y"]. |
| auto right = upperRight.y() + lowerRight.y(); |
| |
| // 10.3 Let bottom be lowerRight["x"] + lowerLeft["x"]. |
| auto bottom = lowerRight.x() + lowerLeft.x(); |
| |
| // 10.4 Let left be upperLeft["y"] + lowerLeft["y"]. |
| auto left = upperLeft.y() + lowerLeft.y(); |
| |
| // 10.5 Let scale be the minimum value of the ratios w / top, h / right, w / bottom, h / left. |
| auto scale = std::min({ width / top, height / right, width / bottom, height / left }); |
| |
| // 10.6 If scale is less than 1, then set the x and y members of upperLeft, upperRight, lowerLeft, and lowerRight to their current values multiplied by scale. |
| if (scale < 1) { |
| upperLeft.scale(scale); |
| upperRight.scale(scale); |
| lowerLeft.scale(scale); |
| lowerRight.scale(scale); |
| } |
| |
| // 11. Create a new subpath: |
| m_path.moveTo({ x + upperLeft.x(), y }); |
| |
| // The 11.x clockwise substeps are handled by Path::addRoundedRect directly. |
| if (clockwise) { |
| m_path.addRoundedRect({ FloatRect(x, y, width, height), |
| { static_cast<float>(upperLeft.x()), static_cast<float>(upperLeft.y()) }, |
| { static_cast<float>(upperRight.x()), static_cast<float>(upperRight.y()) }, |
| { static_cast<float>(lowerLeft.x()), static_cast<float>(lowerLeft.y()) }, |
| { static_cast<float>(lowerRight.x()), static_cast<float>(lowerRight.y()) }, |
| }); |
| } else { |
| // Top Left corner |
| if (upperLeft.x() > 0 || upperLeft.y() > 0) { |
| m_path.addBezierCurveTo({ x + upperLeft.x() * m_path.circleControlPoint(), y }, |
| { x, y + upperLeft.y() * m_path.circleControlPoint() }, |
| { x, y + upperLeft.y() }); |
| } |
| // Left edge |
| m_path.addLineTo({ x, y + height - lowerLeft.y() }); |
| // Bottom left corner |
| if (lowerLeft.x() > 0 || lowerLeft.y() > 0) { |
| m_path.addBezierCurveTo({ x, y + height - lowerLeft.y() * m_path.circleControlPoint() }, |
| { x + lowerLeft.x() * m_path.circleControlPoint(), y + height }, |
| { x + lowerLeft.x(), y + height }); |
| } |
| // Bottom edge |
| m_path.addLineTo({ x + width - lowerRight.x(), y + height }); |
| // Bottom right corner |
| if (lowerRight.x() > 0 || lowerRight.y() > 0) { |
| m_path.addBezierCurveTo({ x + width - lowerRight.x() * m_path.circleControlPoint(), y + height }, |
| { x + width, y + height - lowerRight.y() * m_path.circleControlPoint() }, |
| { x + width, y + height - lowerRight.y() }); |
| } |
| // Right edge |
| m_path.addLineTo({ x + width, y + upperRight.y() }); |
| // Top right corner |
| if (upperRight.x() > 0 || upperRight.y() > 0) { |
| m_path.addBezierCurveTo({ x + width, y + upperRight.y() * m_path.circleControlPoint() }, |
| { x + width - upperRight.x() * m_path.circleControlPoint(), y }, |
| { x + width - upperRight.x(), y }); |
| } |
| // Top edge |
| m_path.addLineTo({ x + upperLeft.x(), y }); |
| } |
| |
| // 12. Mark the subpath as closed. |
| m_path.closeSubpath(); |
| |
| // 13. Create a new subpath with the point (x, y) as the only point in the subpath. |
| m_path.moveTo({ x, y }); |
| |
| return { }; |
| } |
| |
| float CanvasPath::currentX() const |
| { |
| return m_path.currentPoint().x(); |
| } |
| |
| float CanvasPath::currentY() const |
| { |
| return m_path.currentPoint().y(); |
| } |
| |
| } |