blob: 99d0708b7fd561e887fe07abe58c5540a0161f2a [file] [log] [blame]
/*
* Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012 Apple Inc. All rights reserved.
* Copyright (C) 2008, 2010 Nokia Corporation and/or its subsidiary(-ies)
* Copyright (C) 2007 Alp Toker <alp@atoker.com>
* Copyright (C) 2008 Eric Seidel <eric@webkit.org>
* Copyright (C) 2008 Dirk Schulze <krit@webkit.org>
* Copyright (C) 2010 Torch Mobile (Beijing) Co. Ltd. All rights reserved.
* Copyright (C) 2012 Intel Corporation. All rights reserved.
* Copyright (C) 2012, 2013 Adobe Systems Incorporated. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "config.h"
#include "CanvasPath.h"
#include "AffineTransform.h"
#include "DOMPointInit.h"
#include "FloatRect.h"
#include "FloatRoundedRect.h"
#include "FloatSize.h"
#include <algorithm>
#include <wtf/MathExtras.h>
namespace WebCore {
void CanvasPath::closePath()
{
if (m_path.isEmpty())
return;
FloatRect boundRect = m_path.fastBoundingRect();
if (boundRect.width() || boundRect.height())
m_path.closeSubpath();
}
void CanvasPath::moveTo(float x, float y)
{
if (!std::isfinite(x) || !std::isfinite(y))
return;
if (!hasInvertibleTransform())
return;
m_path.moveTo(FloatPoint(x, y));
}
void CanvasPath::lineTo(FloatPoint point)
{
lineTo(point.x(), point.y());
}
void CanvasPath::lineTo(float x, float y)
{
if (!std::isfinite(x) || !std::isfinite(y))
return;
if (!hasInvertibleTransform())
return;
FloatPoint p1 = FloatPoint(x, y);
if (!m_path.hasCurrentPoint())
m_path.moveTo(p1);
else if (p1 != m_path.currentPoint())
m_path.addLineTo(p1);
}
void CanvasPath::quadraticCurveTo(float cpx, float cpy, float x, float y)
{
if (!std::isfinite(cpx) || !std::isfinite(cpy) || !std::isfinite(x) || !std::isfinite(y))
return;
if (!hasInvertibleTransform())
return;
if (!m_path.hasCurrentPoint())
m_path.moveTo(FloatPoint(cpx, cpy));
FloatPoint p1 = FloatPoint(x, y);
FloatPoint cp = FloatPoint(cpx, cpy);
if (p1 != m_path.currentPoint() || p1 != cp)
m_path.addQuadCurveTo(cp, p1);
}
void CanvasPath::bezierCurveTo(float cp1x, float cp1y, float cp2x, float cp2y, float x, float y)
{
if (!std::isfinite(cp1x) || !std::isfinite(cp1y) || !std::isfinite(cp2x) || !std::isfinite(cp2y) || !std::isfinite(x) || !std::isfinite(y))
return;
if (!hasInvertibleTransform())
return;
if (!m_path.hasCurrentPoint())
m_path.moveTo(FloatPoint(cp1x, cp1y));
FloatPoint p1 = FloatPoint(x, y);
FloatPoint cp1 = FloatPoint(cp1x, cp1y);
FloatPoint cp2 = FloatPoint(cp2x, cp2y);
if (p1 != m_path.currentPoint() || p1 != cp1 || p1 != cp2)
m_path.addBezierCurveTo(cp1, cp2, p1);
}
ExceptionOr<void> CanvasPath::arcTo(float x1, float y1, float x2, float y2, float r)
{
if (!std::isfinite(x1) || !std::isfinite(y1) || !std::isfinite(x2) || !std::isfinite(y2) || !std::isfinite(r))
return { };
if (r < 0)
return Exception { IndexSizeError };
if (!hasInvertibleTransform())
return { };
FloatPoint p1 = FloatPoint(x1, y1);
FloatPoint p2 = FloatPoint(x2, y2);
if (!m_path.hasCurrentPoint())
m_path.moveTo(p1);
else if (p1 == m_path.currentPoint() || p1 == p2 || !r)
lineTo(x1, y1);
else
m_path.addArcTo(p1, p2, r);
return { };
}
static void normalizeAngles(float& startAngle, float& endAngle, bool anticlockwise)
{
float newStartAngle = startAngle;
if (newStartAngle < 0)
newStartAngle = (2 * piFloat) + fmodf(newStartAngle, -(2 * piFloat));
else
newStartAngle = fmodf(newStartAngle, 2 * piFloat);
float delta = newStartAngle - startAngle;
startAngle = newStartAngle;
endAngle = endAngle + delta;
ASSERT(newStartAngle >= 0 && (newStartAngle < 2 * piFloat || WTF::areEssentiallyEqual<float>(newStartAngle, 2 * piFloat)));
if (anticlockwise && startAngle - endAngle >= 2 * piFloat)
endAngle = startAngle - 2 * piFloat;
else if (!anticlockwise && endAngle - startAngle >= 2 * piFloat)
endAngle = startAngle + 2 * piFloat;
}
ExceptionOr<void> CanvasPath::arc(float x, float y, float radius, float startAngle, float endAngle, bool anticlockwise)
{
if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(radius) || !std::isfinite(startAngle) || !std::isfinite(endAngle))
return { };
if (radius < 0)
return Exception { IndexSizeError };
if (!hasInvertibleTransform())
return { };
normalizeAngles(startAngle, endAngle, anticlockwise);
if (!radius || startAngle == endAngle) {
// The arc is empty but we still need to draw the connecting line.
lineTo(x + radius * cosf(startAngle), y + radius * sinf(startAngle));
return { };
}
m_path.addArc(FloatPoint(x, y), radius, startAngle, endAngle, anticlockwise);
return { };
}
ExceptionOr<void> CanvasPath::ellipse(float x, float y, float radiusX, float radiusY, float rotation, float startAngle, float endAngle, bool anticlockwise)
{
if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(radiusX) || !std::isfinite(radiusY) || !std::isfinite(rotation) || !std::isfinite(startAngle) || !std::isfinite(endAngle))
return { };
if (radiusX < 0 || radiusY < 0)
return Exception { IndexSizeError };
if (!hasInvertibleTransform())
return { };
normalizeAngles(startAngle, endAngle, anticlockwise);
if ((!radiusX && !radiusY) || startAngle == endAngle) {
AffineTransform transform;
transform.translate(x, y).rotate(rad2deg(rotation));
lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(startAngle), radiusY * sinf(startAngle))));
return { };
}
if (!radiusX || !radiusY) {
AffineTransform transform;
transform.translate(x, y).rotate(rad2deg(rotation));
lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(startAngle), radiusY * sinf(startAngle))));
if (!anticlockwise) {
for (float angle = startAngle - fmodf(startAngle, piOverTwoFloat) + piOverTwoFloat; angle < endAngle; angle += piOverTwoFloat)
lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(angle), radiusY * sinf(angle))));
} else {
for (float angle = startAngle - fmodf(startAngle, piOverTwoFloat); angle > endAngle; angle -= piOverTwoFloat)
lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(angle), radiusY * sinf(angle))));
}
lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(endAngle), radiusY * sinf(endAngle))));
return { };
}
m_path.addEllipse(FloatPoint(x, y), radiusX, radiusY, rotation, startAngle, endAngle, anticlockwise);
return { };
}
void CanvasPath::rect(float x, float y, float width, float height)
{
if (!hasInvertibleTransform())
return;
if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(width) || !std::isfinite(height))
return;
if (!width && !height) {
m_path.moveTo(FloatPoint(x, y));
return;
}
m_path.addRect(FloatRect(x, y, width, height));
}
ExceptionOr<void> CanvasPath::roundRect(float x, float y, float width, float height, const RadiusVariant& radii)
{
return roundRect(x, y, width, height, Span { &radii, 1 });
}
ExceptionOr<void> CanvasPath::roundRect(float x, float y, float width, float height, const Span<const RadiusVariant>& radii)
{
// Based on Nov 5th 2021 version of https://html.spec.whatwg.org/multipage/canvas.html#dom-context-2d-roundrect
// 1. If any of x, y, w, or h are infinite or NaN, then return.
if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(width) || !std::isfinite(height))
return { };
// 2. If radii is not a list of size one, two, three, or four, then throw a RangeError.
if (radii.size() > 4 || radii.empty())
return Exception { RangeError, makeString("radii must contain at least 1 element, up to 4. It contained ", radii.size(), " elements.") };
// 3. Let normalizedRadii be an empty list.
Vector<FloatPoint, 4> normalizedRadii;
// 4. For each radius of radii:
for (auto& radius : radii) {
auto shouldReturnSilently = false;
auto exception = WTF::switchOn(radius,
// 4.1 If radius is a DOMPointInit:
[&normalizedRadii, &shouldReturnSilently](DOMPointInit point) -> ExceptionOr<void> {
// 4.1.1 If radius["x"] or radius["y"] is infinite or NaN, then return.
if (!std::isfinite(point.x) || !std::isfinite(point.y)) {
shouldReturnSilently = true;
return { };
}
// 4.1.2 If radius["x"] or radius["y"] is negative, then throw a RangeError.
if (point.x < 0 || point.y < 0)
return Exception { RangeError, makeString("radius point coordinates must be positive") };
// 4.1.3 Otherwise, append radius to normalizedRadii.
normalizedRadii.append({ static_cast<float>(point.x), static_cast<float>(point.y) });
return { };
},
// 4.2 If radius is a unrestricted double:
[&normalizedRadii, &shouldReturnSilently](double radiusValue) -> ExceptionOr<void> {
// 4.2.1 If radius is infinite or NaN, then return.
if (!std::isfinite(radiusValue)) {
shouldReturnSilently = true;
return { };
}
// 4.2.2 If radius is negative, then throw a RangeError.
if (radiusValue < 0)
return Exception { RangeError, makeString("radius value must be positive") };
// 4.2.3 Otherwise append «[ "x" → radius, "y" → radius ]» to normalizedRadii.
normalizedRadii.append({ static_cast<float>(radiusValue), static_cast<float>(radiusValue) });
return { };
}
);
if (exception.hasException() || shouldReturnSilently)
return exception;
}
// Degenerate case, fall back to regular rect.
// We do not do this before parsing the radii in order to make sure the Exceptions can be raised.
if (!width || !height) {
rect(x, y, width, height);
return { };
}
// 5. Let upperLeft, upperRight, lowerRight, and lowerLeft be null.
FloatPoint upperLeft, upperRight, lowerRight, lowerLeft;
switch (normalizedRadii.size()) {
case 4:
// 6. If normalizedRadii's size is 4, then set upperLeft to normalizedRadii[0], set upperRight to normalizedRadii[1], set lowerRight to normalizedRadii[2], and set lowerLeft to normalizedRadii[3].
upperLeft = normalizedRadii[0];
upperRight = normalizedRadii[1];
lowerRight = normalizedRadii[2];
lowerLeft = normalizedRadii[3];
break;
case 3:
// 7. If normalizedRadii's size is 3, then set upperLeft to normalizedRadii[0], set upperRight and lowerLeft to normalizedRadii[1], and set lowerRight to normalizedRadii[2].
upperLeft = normalizedRadii[0];
upperRight = normalizedRadii[1];
lowerRight = normalizedRadii[2];
lowerLeft = normalizedRadii[1];
break;
case 2:
// 8. If normalizedRadii's size is 2, then set upperLeft and lowerRight to normalizedRadii[0] and set upperRight and lowerLeft to normalizedRadii[1].
upperLeft = normalizedRadii[0];
upperRight = normalizedRadii[1];
lowerRight = normalizedRadii[0];
lowerLeft = normalizedRadii[1];
break;
case 1:
// 9. If normalizedRadii's size is 1, then set upperLeft, upperRight, lowerRight, and lowerLeft to normalizedRadii[0].
upperLeft = normalizedRadii[0];
upperRight = normalizedRadii[0];
lowerRight = normalizedRadii[0];
lowerLeft = normalizedRadii[0];
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
// Must handle clockwise and counter-clockwise directions properly so path winding works correctly.
bool clockwise = true;
if (width < 0) {
clockwise = !clockwise;
width = std::abs(width);
x -= width;
std::swap(upperLeft, upperRight);
std::swap(lowerLeft, lowerRight);
}
if (height < 0) {
clockwise = !clockwise;
height = std::abs(height);
y -= height;
std::swap(upperLeft, lowerLeft);
std::swap(upperRight, lowerRight);
}
// 10. Corner curves must not overlap. Scale all radii to prevent this:
// 10.1 Let top be upperLeft["x"] + upperRight["x"].
auto top = upperLeft.x() + upperRight.x();
// 10.2 Let right be upperRight["y"] + lowerRight["y"].
auto right = upperRight.y() + lowerRight.y();
// 10.3 Let bottom be lowerRight["x"] + lowerLeft["x"].
auto bottom = lowerRight.x() + lowerLeft.x();
// 10.4 Let left be upperLeft["y"] + lowerLeft["y"].
auto left = upperLeft.y() + lowerLeft.y();
// 10.5 Let scale be the minimum value of the ratios w / top, h / right, w / bottom, h / left.
auto scale = std::min({ width / top, height / right, width / bottom, height / left });
// 10.6 If scale is less than 1, then set the x and y members of upperLeft, upperRight, lowerLeft, and lowerRight to their current values multiplied by scale.
if (scale < 1) {
upperLeft.scale(scale);
upperRight.scale(scale);
lowerLeft.scale(scale);
lowerRight.scale(scale);
}
// 11. Create a new subpath:
m_path.moveTo({ x + upperLeft.x(), y });
// The 11.x clockwise substeps are handled by Path::addRoundedRect directly.
if (clockwise) {
m_path.addRoundedRect({ FloatRect(x, y, width, height),
{ static_cast<float>(upperLeft.x()), static_cast<float>(upperLeft.y()) },
{ static_cast<float>(upperRight.x()), static_cast<float>(upperRight.y()) },
{ static_cast<float>(lowerLeft.x()), static_cast<float>(lowerLeft.y()) },
{ static_cast<float>(lowerRight.x()), static_cast<float>(lowerRight.y()) },
});
} else {
// Top Left corner
if (upperLeft.x() > 0 || upperLeft.y() > 0) {
m_path.addBezierCurveTo({ x + upperLeft.x() * m_path.circleControlPoint(), y },
{ x, y + upperLeft.y() * m_path.circleControlPoint() },
{ x, y + upperLeft.y() });
}
// Left edge
m_path.addLineTo({ x, y + height - lowerLeft.y() });
// Bottom left corner
if (lowerLeft.x() > 0 || lowerLeft.y() > 0) {
m_path.addBezierCurveTo({ x, y + height - lowerLeft.y() * m_path.circleControlPoint() },
{ x + lowerLeft.x() * m_path.circleControlPoint(), y + height },
{ x + lowerLeft.x(), y + height });
}
// Bottom edge
m_path.addLineTo({ x + width - lowerRight.x(), y + height });
// Bottom right corner
if (lowerRight.x() > 0 || lowerRight.y() > 0) {
m_path.addBezierCurveTo({ x + width - lowerRight.x() * m_path.circleControlPoint(), y + height },
{ x + width, y + height - lowerRight.y() * m_path.circleControlPoint() },
{ x + width, y + height - lowerRight.y() });
}
// Right edge
m_path.addLineTo({ x + width, y + upperRight.y() });
// Top right corner
if (upperRight.x() > 0 || upperRight.y() > 0) {
m_path.addBezierCurveTo({ x + width, y + upperRight.y() * m_path.circleControlPoint() },
{ x + width - upperRight.x() * m_path.circleControlPoint(), y },
{ x + width - upperRight.x(), y });
}
// Top edge
m_path.addLineTo({ x + upperLeft.x(), y });
}
// 12. Mark the subpath as closed.
m_path.closeSubpath();
// 13. Create a new subpath with the point (x, y) as the only point in the subpath.
m_path.moveTo({ x, y });
return { };
}
float CanvasPath::currentX() const
{
return m_path.currentPoint().x();
}
float CanvasPath::currentY() const
{
return m_path.currentPoint().y();
}
}