blob: 14b2247f71e35b7c2e34b5b4c7f48b8706863d19 [file] [log] [blame]
// Copyright (c) 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ---
// Author: Sanjay Ghemawat <opensource@google.com>
//
// A malloc that uses a per-thread cache to satisfy small malloc requests.
// (The time for malloc/free of a small object drops from 300 ns to 50 ns.)
//
// See doc/tcmalloc.html for a high-level
// description of how this malloc works.
//
// SYNCHRONIZATION
// 1. The thread-specific lists are accessed without acquiring any locks.
// This is safe because each such list is only accessed by one thread.
// 2. We have a lock per central free-list, and hold it while manipulating
// the central free list for a particular size.
// 3. The central page allocator is protected by "pageheap_lock".
// 4. The pagemap (which maps from page-number to descriptor),
// can be read without holding any locks, and written while holding
// the "pageheap_lock".
//
// This multi-threaded access to the pagemap is safe for fairly
// subtle reasons. We basically assume that when an object X is
// allocated by thread A and deallocated by thread B, there must
// have been appropriate synchronization in the handoff of object
// X from thread A to thread B.
//
// TODO: Bias reclamation to larger addresses
// TODO: implement mallinfo/mallopt
// TODO: Better testing
// TODO: Return memory to system
//
// 9/28/2003 (new page-level allocator replaces ptmalloc2):
// * malloc/free of small objects goes from ~300 ns to ~50 ns.
// * allocation of a reasonably complicated struct
// goes from about 1100 ns to about 300 ns.
#include "config.h"
#include "FastMalloc.h"
#include "Assertions.h"
#if USE(MULTIPLE_THREADS)
#include <pthread.h>
#endif
#if !defined(USE_SYSTEM_MALLOC) && defined(NDEBUG)
#define FORCE_SYSTEM_MALLOC 0
#else
#define FORCE_SYSTEM_MALLOC 1
#endif
#ifndef NDEBUG
namespace WTF {
#if USE(MULTIPLE_THREADS)
static pthread_key_t isForbiddenKey;
static pthread_once_t isForbiddenKeyOnce = PTHREAD_ONCE_INIT;
static void initializeIsForbiddenKey()
{
pthread_key_create(&isForbiddenKey, 0);
}
static bool isForbidden()
{
pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
return !!pthread_getspecific(isForbiddenKey);
}
void fastMallocForbid()
{
pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
pthread_setspecific(isForbiddenKey, &isForbiddenKey);
}
void fastMallocAllow()
{
pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
pthread_setspecific(isForbiddenKey, 0);
}
#else
static bool staticIsForbidden;
static bool isForbidden()
{
return staticIsForbidden;
}
void fastMallocForbid()
{
staticIsForbidden = true;
}
void fastMallocAllow()
{
staticIsForbidden = false;
}
#endif // USE(MULTIPLE_THREADS)
} // namespace WTF
#endif // NDEBUG
#if FORCE_SYSTEM_MALLOC
#include <stdlib.h>
#if !PLATFORM(WIN_OS)
#include <pthread.h>
#endif
namespace WTF {
void *fastMalloc(size_t n)
{
ASSERT(!isForbidden());
return malloc(n);
}
void *fastCalloc(size_t n_elements, size_t element_size)
{
ASSERT(!isForbidden());
return calloc(n_elements, element_size);
}
void fastFree(void* p)
{
ASSERT(!isForbidden());
free(p);
}
void *fastRealloc(void* p, size_t n)
{
ASSERT(!isForbidden());
return realloc(p, n);
}
void fastMallocSetIsMultiThreaded()
{
}
} // namespace WTF
#else
#if HAVE(STDINT_H)
#include <stdint.h>
#elif HAVE(INTTYPES_H)
#include <inttypes.h>
#else
#include <sys/types.h>
#endif
#include "AlwaysInline.h"
#include "Assertions.h"
#include "TCPageMap.h"
#include "TCSpinLock.h"
#include "TCSystemAlloc.h"
#include <errno.h>
#include <new>
#include <pthread.h>
#include <stdarg.h>
#include <stddef.h>
#include <stdio.h>
#include <string.h>
#if WTF_CHANGES
namespace WTF {
#define malloc fastMalloc
#define calloc fastCalloc
#define free fastFree
#define realloc fastRealloc
#define MESSAGE LOG_ERROR
#define CHECK_CONDITION ASSERT
#endif
#if HAVE(INTTYPES_H)
#define __STDC_FORMAT_MACROS
#include <inttypes.h>
#define LLU PRIu64
#else
#define LLU "llu" // hope for the best
#endif
//-------------------------------------------------------------------
// Configuration
//-------------------------------------------------------------------
// Not all possible combinations of the following parameters make
// sense. In particular, if kMaxSize increases, you may have to
// increase kNumClasses as well.
static const size_t kPageShift = 12;
static const size_t kPageSize = 1 << kPageShift;
static const size_t kMaxSize = 8u * kPageSize;
static const size_t kAlignShift = 3;
static const size_t kAlignment = 1 << kAlignShift;
static const size_t kNumClasses = 170;
static const size_t kMaxTinySize = 1 << 8;
// Minimum number of pages to fetch from system at a time. Must be
// significantly bigger than kBlockSize to amortize system-call
// overhead, and also to reduce external fragementation. Also, we
// should keep this value big because various incarnations of Linux
// have small limits on the number of mmap() regions per
// address-space.
static const size_t kMinSystemAlloc = 1 << (20 - kPageShift);
// Number of objects to move between a per-thread list and a central
// list in one shot. We want this to be not too small so we can
// amortize the lock overhead for accessing the central list. Making
// it too big may temporarily cause unnecessary memory wastage in the
// per-thread free list until the scavenger cleans up the list.
static const int kNumObjectsToMove = 32;
// Maximum length we allow a per-thread free-list to have before we
// move objects from it into the corresponding central free-list. We
// want this big to avoid locking the central free-list too often. It
// should not hurt to make this list somewhat big because the
// scavenging code will shrink it down when its contents are not in use.
static const int kMaxFreeListLength = 256;
// Lower and upper bounds on the per-thread cache sizes
static const size_t kMinThreadCacheSize = kMaxSize * 2;
static const size_t kMaxThreadCacheSize = 2 << 20;
// Default bound on the total amount of thread caches
static const size_t kDefaultOverallThreadCacheSize = 16 << 20;
// For all span-lengths < kMaxPages we keep an exact-size list.
// REQUIRED: kMaxPages >= kMinSystemAlloc;
static const size_t kMaxPages = kMinSystemAlloc;
// Twice the approximate gap between sampling actions.
// I.e., we take one sample approximately once every
// kSampleParameter/2
// bytes of allocation, i.e., ~ once every 128KB.
// Must be a prime number.
static const size_t kSampleParameter = 266053;
//-------------------------------------------------------------------
// Mapping from size to size_class and vice versa
//-------------------------------------------------------------------
// A pair of arrays we use for implementing the mapping from a size to
// its size class. Indexed by "floor(lg(size))".
static const int kSizeBits = 8 * sizeof(size_t);
static unsigned char size_base[kSizeBits];
static unsigned char size_shift[kSizeBits];
// Mapping from size class to size
static size_t class_to_size[kNumClasses];
// Mapping from size class to number of pages to allocate at a time
static size_t class_to_pages[kNumClasses];
// Return floor(log2(n)) for n > 0.
#if PLATFORM(X86) && COMPILER(GCC)
static ALWAYS_INLINE int LgFloor(size_t n) {
// "ro" for the input spec means the input can come from either a
// register ("r") or offsetable memory ("o").
int result;
__asm__("bsrl %1, %0"
: "=r" (result) // Output spec
: "ro" (n) // Input spec
: "cc" // Clobbers condition-codes
);
return result;
}
#elif PLATFORM(PPC) && COMPILER(GCC)
static ALWAYS_INLINE int LgFloor(size_t n) {
// "r" for the input spec means the input must come from a
// register ("r")
int result;
__asm__ ("{cntlz|cntlzw} %0,%1"
: "=r" (result) // Output spec
: "r" (n)); // Input spec
return 31 - result;
}
#else
// Note: the following only works for "n"s that fit in 32-bits, but
// that is fine since we only use it for small sizes.
static inline int LgFloor(size_t n) {
int log = 0;
for (int i = 4; i >= 0; --i) {
int shift = (1 << i);
size_t x = n >> shift;
if (x != 0) {
n = x;
log += shift;
}
}
ASSERT(n == 1);
return log;
}
#endif
static ALWAYS_INLINE size_t SizeClass(size_t size) {
size += !size; // change 0 to 1 (with no branches)
const int lg = LgFloor(size);
const int align = size_shift[lg];
return size_base[lg] + ((size-1) >> align);
}
// Get the byte-size for a specified class
static ALWAYS_INLINE size_t ByteSizeForClass(size_t cl) {
return class_to_size[cl];
}
// Initialize the mapping arrays
static void InitSizeClasses() {
// Special initialization for small sizes
for (size_t lg = 0; lg < kAlignShift; lg++) {
size_base[lg] = 1;
size_shift[lg] = kAlignShift;
}
size_t next_class = 1;
unsigned char alignshift = kAlignShift;
int last_lg = -1;
for (size_t size = kAlignment; size <= kMaxSize; size += (1 << alignshift)) {
int lg = LgFloor(size);
if (lg > last_lg) {
// Increase alignment every so often.
//
// Since we double the alignment every time size doubles and
// size >= 256, this means that space wasted due to alignment is
// at most 16/256 i.e., 6.25%. Plus we cap the alignment at 512
// bytes, so the space wasted as a percentage starts falling for
// sizes > 4K.
if ((lg >= 8) && (alignshift < 9)) {
alignshift++;
}
size_base[lg] = static_cast<unsigned char>(next_class - ((size-1) >> alignshift));
size_shift[lg] = alignshift;
}
class_to_size[next_class] = size;
last_lg = lg;
next_class++;
}
if (next_class >= kNumClasses) {
MESSAGE("used up too many size classes: %d\n", next_class);
abort();
}
// Initialize the number of pages we should allocate to split into
// small objects for a given class.
for (size_t cl = 1; cl < next_class; cl++) {
// Allocate enough pages so leftover is less than 1/16 of total.
// This bounds wasted space to at most 6.25%.
size_t psize = kPageSize;
const size_t s = class_to_size[cl];
while ((psize % s) > (psize >> 4)) {
psize += kPageSize;
}
class_to_pages[cl] = psize >> kPageShift;
}
// Double-check sizes just to be safe
for (size_t size = 0; size <= kMaxSize; size++) {
const size_t sc = SizeClass(size);
if (sc == 0) {
MESSAGE("Bad size class %d for %" PRIuS "\n", sc, size);
abort();
}
if (sc > 1 && size <= class_to_size[sc-1]) {
MESSAGE("Allocating unnecessarily large class %d for %" PRIuS
"\n", sc, size);
abort();
}
if (sc >= kNumClasses) {
MESSAGE("Bad size class %d for %" PRIuS "\n", sc, size);
abort();
}
const size_t s = class_to_size[sc];
if (size > s) {
MESSAGE("Bad size %" PRIuS " for %" PRIuS " (sc = %d)\n", s, size, sc);
abort();
}
if (s == 0) {
MESSAGE("Bad size %" PRIuS " for %" PRIuS " (sc = %d)\n", s, size, sc);
abort();
}
}
}
// -------------------------------------------------------------------------
// Simple allocator for objects of a specified type. External locking
// is required before accessing one of these objects.
// -------------------------------------------------------------------------
// Metadata allocator -- keeps stats about how many bytes allocated
static uint64_t metadata_system_bytes = 0;
static void* MetaDataAlloc(size_t bytes) {
void* result = TCMalloc_SystemAlloc(bytes);
if (result != NULL) {
metadata_system_bytes += bytes;
}
return result;
}
template <class T>
class PageHeapAllocator {
private:
// How much to allocate from system at a time
static const size_t kAllocIncrement = 32 << 10;
// Aligned size of T
static const size_t kAlignedSize
= (((sizeof(T) + kAlignment - 1) / kAlignment) * kAlignment);
// Free area from which to carve new objects
char* free_area_;
size_t free_avail_;
// Free list of already carved objects
void* free_list_;
// Number of allocated but unfreed objects
int inuse_;
public:
void Init() {
ASSERT(kAlignedSize <= kAllocIncrement);
inuse_ = 0;
free_area_ = NULL;
free_avail_ = 0;
free_list_ = NULL;
}
T* New() {
// Consult free list
void* result;
if (free_list_ != NULL) {
result = free_list_;
free_list_ = *(reinterpret_cast<void**>(result));
} else {
if (free_avail_ < kAlignedSize) {
// Need more room
free_area_ = reinterpret_cast<char*>(MetaDataAlloc(kAllocIncrement));
if (free_area_ == NULL) abort();
free_avail_ = kAllocIncrement;
}
result = free_area_;
free_area_ += kAlignedSize;
free_avail_ -= kAlignedSize;
}
inuse_++;
return reinterpret_cast<T*>(result);
}
void Delete(T* p) {
*(reinterpret_cast<void**>(p)) = free_list_;
free_list_ = p;
inuse_--;
}
int inuse() const { return inuse_; }
};
// -------------------------------------------------------------------------
// Span - a contiguous run of pages
// -------------------------------------------------------------------------
// Type that can hold a page number
typedef uintptr_t PageID;
// Type that can hold the length of a run of pages
typedef uintptr_t Length;
// Convert byte size into pages
static inline Length pages(size_t bytes) {
return ((bytes + kPageSize - 1) >> kPageShift);
}
// Convert a user size into the number of bytes that will actually be
// allocated
static size_t AllocationSize(size_t bytes) {
if (bytes > kMaxSize) {
// Large object: we allocate an integral number of pages
return pages(bytes) << kPageShift;
} else {
// Small object: find the size class to which it belongs
return ByteSizeForClass(SizeClass(bytes));
}
}
// Information kept for a span (a contiguous run of pages).
struct Span {
PageID start; // Starting page number
Length length; // Number of pages in span
Span* next; // Used when in link list
Span* prev; // Used when in link list
void* objects; // Linked list of free objects
unsigned int free : 1; // Is the span free
unsigned int sample : 1; // Sampled object?
unsigned int sizeclass : 8; // Size-class for small objects (or 0)
unsigned int refcount : 11; // Number of non-free objects
#undef SPAN_HISTORY
#ifdef SPAN_HISTORY
// For debugging, we can keep a log events per span
int nexthistory;
char history[64];
int value[64];
#endif
};
#ifdef SPAN_HISTORY
void Event(Span* span, char op, int v = 0) {
span->history[span->nexthistory] = op;
span->value[span->nexthistory] = v;
span->nexthistory++;
if (span->nexthistory == sizeof(span->history)) span->nexthistory = 0;
}
#else
#define Event(s,o,v) ((void) 0)
#endif
// Allocator/deallocator for spans
static PageHeapAllocator<Span> span_allocator;
static Span* NewSpan(PageID p, Length len) {
Span* result = span_allocator.New();
memset(result, 0, sizeof(*result));
result->start = p;
result->length = len;
#ifdef SPAN_HISTORY
result->nexthistory = 0;
#endif
return result;
}
static inline void DeleteSpan(Span* span) {
#ifndef NDEBUG
// In debug mode, trash the contents of deleted Spans
memset(span, 0x3f, sizeof(*span));
#endif
span_allocator.Delete(span);
}
// -------------------------------------------------------------------------
// Doubly linked list of spans.
// -------------------------------------------------------------------------
static inline void DLL_Init(Span* list) {
list->next = list;
list->prev = list;
}
static inline void DLL_Remove(Span* span) {
span->prev->next = span->next;
span->next->prev = span->prev;
span->prev = NULL;
span->next = NULL;
}
static ALWAYS_INLINE bool DLL_IsEmpty(const Span* list) {
return list->next == list;
}
#ifndef WTF_CHANGES
static int DLL_Length(const Span* list) {
int result = 0;
for (Span* s = list->next; s != list; s = s->next) {
result++;
}
return result;
}
#endif
#if 0 /* Not needed at the moment -- causes compiler warnings if not used */
static void DLL_Print(const char* label, const Span* list) {
MESSAGE("%-10s %p:", label, list);
for (const Span* s = list->next; s != list; s = s->next) {
MESSAGE(" <%p,%u,%u>", s, s->start, s->length);
}
MESSAGE("\n");
}
#endif
static inline void DLL_Prepend(Span* list, Span* span) {
ASSERT(span->next == NULL);
ASSERT(span->prev == NULL);
span->next = list->next;
span->prev = list;
list->next->prev = span;
list->next = span;
}
static void DLL_InsertOrdered(Span* list, Span* span) {
ASSERT(span->next == NULL);
ASSERT(span->prev == NULL);
// Look for appropriate place to insert
Span* x = list;
while ((x->next != list) && (x->next->start < span->start)) {
x = x->next;
}
span->next = x->next;
span->prev = x;
x->next->prev = span;
x->next = span;
}
// -------------------------------------------------------------------------
// Stack traces kept for sampled allocations
// The following state is protected by pageheap_lock_.
// -------------------------------------------------------------------------
static const int kMaxStackDepth = 31;
struct StackTrace {
uintptr_t size; // Size of object
int depth; // Number of PC values stored in array below
void* stack[kMaxStackDepth];
};
static PageHeapAllocator<StackTrace> stacktrace_allocator;
static Span sampled_objects;
// -------------------------------------------------------------------------
// Map from page-id to per-page data
// -------------------------------------------------------------------------
// We use PageMap2<> for 32-bit and PageMap3<> for 64-bit machines.
// Selector class -- general selector uses 3-level map
template <int BITS> class MapSelector {
public:
typedef TCMalloc_PageMap3<BITS-kPageShift> Type;
};
// A two-level map for 32-bit machines
template <> class MapSelector<32> {
public:
typedef TCMalloc_PageMap2<32-kPageShift> Type;
};
// -------------------------------------------------------------------------
// Page-level allocator
// * Eager coalescing
//
// Heap for page-level allocation. We allow allocating and freeing a
// contiguous runs of pages (called a "span").
// -------------------------------------------------------------------------
class TCMalloc_PageHeap {
public:
void init();
// Allocate a run of "n" pages. Returns zero if out of memory.
Span* New(Length n);
// Delete the span "[p, p+n-1]".
// REQUIRES: span was returned by earlier call to New() and
// has not yet been deleted.
void Delete(Span* span);
// Mark an allocated span as being used for small objects of the
// specified size-class.
// REQUIRES: span was returned by an earlier call to New()
// and has not yet been deleted.
void RegisterSizeClass(Span* span, size_t sc);
// Split an allocated span into two spans: one of length "n" pages
// followed by another span of length "span->length - n" pages.
// Modifies "*span" to point to the first span of length "n" pages.
// Returns a pointer to the second span.
//
// REQUIRES: "0 < n < span->length"
// REQUIRES: !span->free
// REQUIRES: span->sizeclass == 0
Span* Split(Span* span, Length n);
// Return the descriptor for the specified page.
inline Span* GetDescriptor(PageID p) const {
return reinterpret_cast<Span*>(pagemap_.get(p));
}
// Dump state to stderr
#ifndef WTF_CHANGES
void Dump(TCMalloc_Printer* out);
#endif
// Return number of bytes allocated from system
inline uint64_t SystemBytes() const { return system_bytes_; }
// Return number of free bytes in heap
uint64_t FreeBytes() const {
return (static_cast<uint64_t>(free_pages_) << kPageShift);
}
bool Check();
bool CheckList(Span* list, Length min_pages, Length max_pages);
private:
// Pick the appropriate map type based on pointer size
typedef MapSelector<8*sizeof(uintptr_t)>::Type PageMap;
PageMap pagemap_;
// List of free spans of length >= kMaxPages
Span large_;
// Array mapping from span length to a doubly linked list of free spans
Span free_[kMaxPages];
// Number of pages kept in free lists
uintptr_t free_pages_;
// Bytes allocated from system
uint64_t system_bytes_;
bool GrowHeap(Length n);
// REQUIRES span->length >= n
// Remove span from its free list, and move any leftover part of
// span into appropriate free lists. Also update "span" to have
// length exactly "n" and mark it as non-free so it can be returned
// to the client.
void Carve(Span* span, Length n);
void RecordSpan(Span* span) {
pagemap_.set(span->start, span);
if (span->length > 1) {
pagemap_.set(span->start + span->length - 1, span);
}
}
};
void TCMalloc_PageHeap::init()
{
pagemap_.init(MetaDataAlloc);
free_pages_ = 0;
system_bytes_ = 0;
DLL_Init(&large_);
for (size_t i = 0; i < kMaxPages; i++) {
DLL_Init(&free_[i]);
}
}
inline Span* TCMalloc_PageHeap::New(Length n) {
ASSERT(Check());
if (n == 0) n = 1;
// Find first size >= n that has a non-empty list
for (size_t s = n; s < kMaxPages; s++) {
if (!DLL_IsEmpty(&free_[s])) {
Span* result = free_[s].next;
Carve(result, n);
ASSERT(Check());
free_pages_ -= n;
return result;
}
}
// Look in large list. If we first do not find something, we try to
// grow the heap and try again.
for (int i = 0; i < 2; i++) {
// find the best span (closest to n in size)
Span *best = NULL;
for (Span* span = large_.next; span != &large_; span = span->next) {
if (span->length >= n &&
(best == NULL || span->length < best->length)) {
best = span;
}
}
if (best != NULL) {
Carve(best, n);
ASSERT(Check());
free_pages_ -= n;
return best;
}
if (i == 0) {
// Nothing suitable in large list. Grow the heap and look again.
if (!GrowHeap(n)) {
ASSERT(Check());
return NULL;
}
}
}
return NULL;
}
Span* TCMalloc_PageHeap::Split(Span* span, Length n) {
ASSERT(0 < n);
ASSERT(n < span->length);
ASSERT(!span->free);
ASSERT(span->sizeclass == 0);
Event(span, 'T', n);
const Length extra = span->length - n;
Span* leftover = NewSpan(span->start + n, extra);
Event(leftover, 'U', extra);
RecordSpan(leftover);
pagemap_.set(span->start + n - 1, span); // Update map from pageid to span
span->length = n;
return leftover;
}
inline void TCMalloc_PageHeap::Carve(Span* span, Length n) {
ASSERT(n > 0);
DLL_Remove(span);
span->free = 0;
Event(span, 'A', n);
const size_t extra = span->length - n;
ASSERT(extra >= 0);
if (extra > 0) {
Span* leftover = NewSpan(span->start + n, extra);
leftover->free = 1;
Event(leftover, 'S', extra);
RecordSpan(leftover);
if (extra < kMaxPages) {
DLL_Prepend(&free_[extra], leftover);
} else {
DLL_InsertOrdered(&large_, leftover);
}
span->length = n;
pagemap_.set(span->start + n - 1, span);
}
}
inline void TCMalloc_PageHeap::Delete(Span* span) {
ASSERT(Check());
ASSERT(!span->free);
ASSERT(span->length > 0);
ASSERT(GetDescriptor(span->start) == span);
ASSERT(GetDescriptor(span->start + span->length - 1) == span);
span->sizeclass = 0;
span->sample = 0;
// Coalesce -- we guarantee that "p" != 0, so no bounds checking
// necessary. We do not bother resetting the stale pagemap
// entries for the pieces we are merging together because we only
// care about the pagemap entries for the boundaries.
const PageID p = span->start;
const Length n = span->length;
Span* prev = GetDescriptor(p-1);
if (prev != NULL && prev->free) {
// Merge preceding span into this span
ASSERT(prev->start + prev->length == p);
const Length len = prev->length;
DLL_Remove(prev);
DeleteSpan(prev);
span->start -= len;
span->length += len;
pagemap_.set(span->start, span);
Event(span, 'L', len);
}
Span* next = GetDescriptor(p+n);
if (next != NULL && next->free) {
// Merge next span into this span
ASSERT(next->start == p+n);
const Length len = next->length;
DLL_Remove(next);
DeleteSpan(next);
span->length += len;
pagemap_.set(span->start + span->length - 1, span);
Event(span, 'R', len);
}
Event(span, 'D', span->length);
span->free = 1;
if (span->length < kMaxPages) {
DLL_Prepend(&free_[span->length], span);
} else {
DLL_InsertOrdered(&large_, span);
}
free_pages_ += n;
ASSERT(Check());
}
void TCMalloc_PageHeap::RegisterSizeClass(Span* span, size_t sc) {
// Associate span object with all interior pages as well
ASSERT(!span->free);
ASSERT(GetDescriptor(span->start) == span);
ASSERT(GetDescriptor(span->start+span->length-1) == span);
Event(span, 'C', sc);
span->sizeclass = static_cast<unsigned int>(sc);
for (Length i = 1; i < span->length-1; i++) {
pagemap_.set(span->start+i, span);
}
}
#ifndef WTF_CHANGES
void TCMalloc_PageHeap::Dump(TCMalloc_Printer* out) {
int nonempty_sizes = 0;
for (int s = 0; s < kMaxPages; s++) {
if (!DLL_IsEmpty(&free_[s])) nonempty_sizes++;
}
out->printf("------------------------------------------------\n");
out->printf("PageHeap: %d sizes; %6.1f MB free\n", nonempty_sizes,
(static_cast<double>(free_pages_) * kPageSize) / 1048576.0);
out->printf("------------------------------------------------\n");
uint64_t cumulative = 0;
for (int s = 0; s < kMaxPages; s++) {
if (!DLL_IsEmpty(&free_[s])) {
const int list_length = DLL_Length(&free_[s]);
uint64_t s_pages = s * list_length;
cumulative += s_pages;
out->printf("%6u pages * %6u spans ~ %6.1f MB; %6.1f MB cum\n",
s, list_length,
(s_pages << kPageShift) / 1048576.0,
(cumulative << kPageShift) / 1048576.0);
}
}
uint64_t large_pages = 0;
int large_spans = 0;
for (Span* s = large_.next; s != &large_; s = s->next) {
out->printf(" [ %6" PRIuS " spans ]\n", s->length);
large_pages += s->length;
large_spans++;
}
cumulative += large_pages;
out->printf(">255 large * %6u spans ~ %6.1f MB; %6.1f MB cum\n",
large_spans,
(large_pages << kPageShift) / 1048576.0,
(cumulative << kPageShift) / 1048576.0);
}
#endif
bool TCMalloc_PageHeap::GrowHeap(Length n) {
ASSERT(kMaxPages >= kMinSystemAlloc);
Length ask = (n>kMinSystemAlloc) ? n : static_cast<Length>(kMinSystemAlloc);
void* ptr = TCMalloc_SystemAlloc(ask << kPageShift, kPageSize);
if (ptr == NULL) {
if (n < ask) {
// Try growing just "n" pages
ask = n;
ptr = TCMalloc_SystemAlloc(ask << kPageShift, kPageSize);
}
if (ptr == NULL) return false;
}
system_bytes_ += (ask << kPageShift);
const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
ASSERT(p > 0);
// Make sure pagemap_ has entries for all of the new pages.
// Plus ensure one before and one after so coalescing code
// does not need bounds-checking.
if (pagemap_.Ensure(p-1, ask+2)) {
// Pretend the new area is allocated and then Delete() it to
// cause any necessary coalescing to occur.
//
// We do not adjust free_pages_ here since Delete() will do it for us.
Span* span = NewSpan(p, ask);
RecordSpan(span);
Delete(span);
ASSERT(Check());
return true;
} else {
// We could not allocate memory within "pagemap_"
// TODO: Once we can return memory to the system, return the new span
return false;
}
}
bool TCMalloc_PageHeap::Check() {
ASSERT(free_[0].next == &free_[0]);
CheckList(&large_, kMaxPages, 1000000000);
for (Length s = 1; s < kMaxPages; s++) {
CheckList(&free_[s], s, s);
}
return true;
}
#if ASSERT_DISABLED
bool TCMalloc_PageHeap::CheckList(Span*, Length, Length) {
return true;
}
#else
bool TCMalloc_PageHeap::CheckList(Span* list, Length min_pages, Length max_pages) {
for (Span* s = list->next; s != list; s = s->next) {
CHECK_CONDITION(s->free);
CHECK_CONDITION(s->length >= min_pages);
CHECK_CONDITION(s->length <= max_pages);
CHECK_CONDITION(GetDescriptor(s->start) == s);
CHECK_CONDITION(GetDescriptor(s->start+s->length-1) == s);
}
return true;
}
#endif
//-------------------------------------------------------------------
// Free list
//-------------------------------------------------------------------
class TCMalloc_ThreadCache_FreeList {
private:
void* list_; // Linked list of nodes
uint16_t length_; // Current length
uint16_t lowater_; // Low water mark for list length
public:
void Init() {
list_ = NULL;
length_ = 0;
lowater_ = 0;
}
// Return current length of list
int length() const {
return length_;
}
// Is list empty?
bool empty() const {
return list_ == NULL;
}
// Low-water mark management
int lowwatermark() const { return lowater_; }
void clear_lowwatermark() { lowater_ = length_; }
ALWAYS_INLINE void Push(void* ptr) {
*(reinterpret_cast<void**>(ptr)) = list_;
list_ = ptr;
length_++;
}
ALWAYS_INLINE void* Pop() {
ASSERT(list_ != NULL);
void* result = list_;
list_ = *(reinterpret_cast<void**>(result));
length_--;
if (length_ < lowater_) lowater_ = length_;
return result;
}
};
//-------------------------------------------------------------------
// Data kept per thread
//-------------------------------------------------------------------
class TCMalloc_ThreadCache {
private:
typedef TCMalloc_ThreadCache_FreeList FreeList;
size_t size_; // Combined size of data
pthread_t tid_; // Which thread owns it
bool setspecific_; // Called pthread_setspecific?
FreeList list_[kNumClasses]; // Array indexed by size-class
// We sample allocations, biased by the size of the allocation
uint32_t rnd_; // Cheap random number generator
size_t bytes_until_sample_; // Bytes until we sample next
public:
// All ThreadCache objects are kept in a linked list (for stats collection)
TCMalloc_ThreadCache* next_;
TCMalloc_ThreadCache* prev_;
void Init(pthread_t tid);
void Cleanup();
// Accessors (mostly just for printing stats)
int freelist_length(size_t cl) const { return list_[cl].length(); }
// Total byte size in cache
size_t Size() const { return size_; }
void* Allocate(size_t size);
void Deallocate(void* ptr, size_t size_class);
void FetchFromCentralCache(size_t cl, size_t allocationSize);
void ReleaseToCentralCache(size_t cl, int N);
void Scavenge();
void Print() const;
// Record allocation of "k" bytes. Return true iff allocation
// should be sampled
bool SampleAllocation(size_t k);
// Pick next sampling point
void PickNextSample();
static void InitModule();
static void InitTSD();
static TCMalloc_ThreadCache* GetCache();
static TCMalloc_ThreadCache* GetCacheIfPresent();
static void* CreateCacheIfNecessary();
static void DeleteCache(void* ptr);
static void RecomputeThreadCacheSize();
};
//-------------------------------------------------------------------
// Data kept per size-class in central cache
//-------------------------------------------------------------------
class TCMalloc_Central_FreeList {
public:
void Init(size_t cl);
// REQUIRES: lock_ is held
// Insert object.
// May temporarily release lock_.
void Insert(void* object);
// REQUIRES: lock_ is held
// Remove object from cache and return.
// Return NULL if no free entries in cache.
void* Remove();
// REQUIRES: lock_ is held
// Populate cache by fetching from the page heap.
// May temporarily release lock_.
void Populate();
// REQUIRES: lock_ is held
// Number of free objects in cache
size_t length() const { return counter_; }
// Lock -- exposed because caller grabs it before touching this object
SpinLock lock_;
private:
// We keep linked lists of empty and non-emoty spans.
size_t size_class_; // My size class
Span empty_; // Dummy header for list of empty spans
Span nonempty_; // Dummy header for list of non-empty spans
size_t counter_; // Number of free objects in cache entry
};
// Pad each CentralCache object to multiple of 64 bytes
class TCMalloc_Central_FreeListPadded : public TCMalloc_Central_FreeList {
private:
char pad_[(64 - (sizeof(TCMalloc_Central_FreeList) % 64)) % 64];
};
//-------------------------------------------------------------------
// Global variables
//-------------------------------------------------------------------
// Central cache -- a collection of free-lists, one per size-class.
// We have a separate lock per free-list to reduce contention.
static TCMalloc_Central_FreeListPadded central_cache[kNumClasses];
// Page-level allocator
static SpinLock pageheap_lock = SPINLOCK_INITIALIZER;
static void* pageheap_memory[(sizeof(TCMalloc_PageHeap) + sizeof(void*) - 1) / sizeof(void*)];
static bool phinited = false;
// Avoid extra level of indirection by making "pageheap" be just an alias
// of pageheap_memory.
typedef union {
void* m_memory;
TCMalloc_PageHeap m_pageHeap;
} PageHeapUnion;
static inline TCMalloc_PageHeap* getPageHeap()
{
return &reinterpret_cast<PageHeapUnion*>(&pageheap_memory[0])->m_pageHeap;
}
#define pageheap getPageHeap()
// Thread-specific key. Initialization here is somewhat tricky
// because some Linux startup code invokes malloc() before it
// is in a good enough state to handle pthread_keycreate().
// Therefore, we use TSD keys only after tsd_inited is set to true.
// Until then, we use a slow path to get the heap object.
static bool tsd_inited = false;
static pthread_key_t heap_key;
// Allocator for thread heaps
static PageHeapAllocator<TCMalloc_ThreadCache> threadheap_allocator;
// Linked list of heap objects. Protected by pageheap_lock.
static TCMalloc_ThreadCache* thread_heaps = NULL;
static int thread_heap_count = 0;
// Overall thread cache size. Protected by pageheap_lock.
static size_t overall_thread_cache_size = kDefaultOverallThreadCacheSize;
// Global per-thread cache size. Writes are protected by
// pageheap_lock. Reads are done without any locking, which should be
// fine as long as size_t can be written atomically and we don't place
// invariants between this variable and other pieces of state.
static volatile size_t per_thread_cache_size = kMaxThreadCacheSize;
//-------------------------------------------------------------------
// Central cache implementation
//-------------------------------------------------------------------
void TCMalloc_Central_FreeList::Init(size_t cl) {
lock_.Init();
size_class_ = cl;
DLL_Init(&empty_);
DLL_Init(&nonempty_);
counter_ = 0;
}
ALWAYS_INLINE void TCMalloc_Central_FreeList::Insert(void* object) {
const PageID p = reinterpret_cast<uintptr_t>(object) >> kPageShift;
Span* span = pageheap->GetDescriptor(p);
ASSERT(span != NULL);
ASSERT(span->refcount > 0);
// If span is empty, move it to non-empty list
if (span->objects == NULL) {
DLL_Remove(span);
DLL_Prepend(&nonempty_, span);
Event(span, 'N', 0);
}
// The following check is expensive, so it is disabled by default
if (false) {
// Check that object does not occur in list
int got = 0;
for (void* p = span->objects; p != NULL; p = *((void**) p)) {
ASSERT(p != object);
got++;
}
ASSERT(got + span->refcount ==
(span->length<<kPageShift)/ByteSizeForClass(span->sizeclass));
}
counter_++;
span->refcount--;
if (span->refcount == 0) {
Event(span, '#', 0);
counter_ -= (span->length<<kPageShift) / ByteSizeForClass(span->sizeclass);
DLL_Remove(span);
// Release central list lock while operating on pageheap
lock_.Unlock();
{
SpinLockHolder h(&pageheap_lock);
pageheap->Delete(span);
}
lock_.Lock();
} else {
*(reinterpret_cast<void**>(object)) = span->objects;
span->objects = object;
}
}
ALWAYS_INLINE void* TCMalloc_Central_FreeList::Remove() {
if (DLL_IsEmpty(&nonempty_)) return NULL;
Span* span = nonempty_.next;
ASSERT(span->objects != NULL);
span->refcount++;
void* result = span->objects;
span->objects = *(reinterpret_cast<void**>(result));
if (span->objects == NULL) {
// Move to empty list
DLL_Remove(span);
DLL_Prepend(&empty_, span);
Event(span, 'E', 0);
}
counter_--;
return result;
}
// Fetch memory from the system and add to the central cache freelist.
ALWAYS_INLINE void TCMalloc_Central_FreeList::Populate() {
// Release central list lock while operating on pageheap
lock_.Unlock();
const size_t npages = class_to_pages[size_class_];
Span* span;
{
SpinLockHolder h(&pageheap_lock);
span = pageheap->New(npages);
if (span) pageheap->RegisterSizeClass(span, size_class_);
}
if (span == NULL) {
MESSAGE("allocation failed: %d\n", errno);
lock_.Lock();
return;
}
// Split the block into pieces and add to the free-list
// TODO: coloring of objects to avoid cache conflicts?
void** tail = &span->objects;
char* ptr = reinterpret_cast<char*>(span->start << kPageShift);
char* limit = ptr + (npages << kPageShift);
const size_t size = ByteSizeForClass(size_class_);
int num = 0;
char* nptr;
while ((nptr = ptr + size) <= limit) {
*tail = ptr;
tail = reinterpret_cast<void**>(ptr);
ptr = nptr;
num++;
}
ASSERT(ptr <= limit);
*tail = NULL;
span->refcount = 0; // No sub-object in use yet
// Add span to list of non-empty spans
lock_.Lock();
DLL_Prepend(&nonempty_, span);
counter_ += num;
}
//-------------------------------------------------------------------
// TCMalloc_ThreadCache implementation
//-------------------------------------------------------------------
inline bool TCMalloc_ThreadCache::SampleAllocation(size_t k) {
if (bytes_until_sample_ < k) {
PickNextSample();
return true;
} else {
bytes_until_sample_ -= k;
return false;
}
}
void TCMalloc_ThreadCache::Init(pthread_t tid) {
size_ = 0;
next_ = NULL;
prev_ = NULL;
tid_ = tid;
setspecific_ = false;
for (size_t cl = 0; cl < kNumClasses; ++cl) {
list_[cl].Init();
}
// Initialize RNG -- run it for a bit to get to good values
rnd_ = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(this));
for (int i = 0; i < 100; i++) {
PickNextSample();
}
}
void TCMalloc_ThreadCache::Cleanup() {
// Put unused memory back into central cache
for (size_t cl = 0; cl < kNumClasses; ++cl) {
FreeList* src = &list_[cl];
TCMalloc_Central_FreeList* dst = &central_cache[cl];
SpinLockHolder h(&dst->lock_);
while (!src->empty()) {
dst->Insert(src->Pop());
}
}
}
ALWAYS_INLINE void* TCMalloc_ThreadCache::Allocate(size_t size) {
ASSERT(size <= kMaxSize);
const size_t cl = SizeClass(size);
FreeList* list = &list_[cl];
size_t allocationSize = (size <= kMaxTinySize) ? (size + 7) & ~0x7 : ByteSizeForClass(cl);
if (list->empty()) {
FetchFromCentralCache(cl, allocationSize);
if (list->empty()) return NULL;
}
size_ -= allocationSize;
return list->Pop();
}
inline void TCMalloc_ThreadCache::Deallocate(void* ptr, size_t cl) {
size_ += ByteSizeForClass(cl);
FreeList* list = &list_[cl];
list->Push(ptr);
// If enough data is free, put back into central cache
if (list->length() > kMaxFreeListLength) {
ReleaseToCentralCache(cl, kNumObjectsToMove);
}
if (size_ >= per_thread_cache_size) Scavenge();
}
// Remove some objects of class "cl" from central cache and add to thread heap
ALWAYS_INLINE void TCMalloc_ThreadCache::FetchFromCentralCache(size_t cl, size_t byteSize) {
TCMalloc_Central_FreeList* src = &central_cache[cl];
FreeList* dst = &list_[cl];
SpinLockHolder h(&src->lock_);
for (int i = 0; i < kNumObjectsToMove; i++) {
void* object = src->Remove();
if (object == NULL) {
if (i == 0) {
src->Populate(); // Temporarily releases src->lock_
object = src->Remove();
}
if (object == NULL) {
break;
}
}
dst->Push(object);
size_ += byteSize;
}
}
// Remove some objects of class "cl" from thread heap and add to central cache
inline void TCMalloc_ThreadCache::ReleaseToCentralCache(size_t cl, int N) {
FreeList* src = &list_[cl];
TCMalloc_Central_FreeList* dst = &central_cache[cl];
SpinLockHolder h(&dst->lock_);
if (N > src->length()) N = src->length();
size_ -= N*ByteSizeForClass(cl);
while (N-- > 0) {
void* ptr = src->Pop();
dst->Insert(ptr);
}
}
// Release idle memory to the central cache
inline void TCMalloc_ThreadCache::Scavenge() {
// If the low-water mark for the free list is L, it means we would
// not have had to allocate anything from the central cache even if
// we had reduced the free list size by L. We aim to get closer to
// that situation by dropping L/2 nodes from the free list. This
// may not release much memory, but if so we will call scavenge again
// pretty soon and the low-water marks will be high on that call.
#ifndef WTF_CHANGES
int64 start = CycleClock::Now();
#endif
for (size_t cl = 0; cl < kNumClasses; cl++) {
FreeList* list = &list_[cl];
const int lowmark = list->lowwatermark();
if (lowmark > 0) {
const int drop = (lowmark > 1) ? lowmark/2 : 1;
ReleaseToCentralCache(cl, drop);
}
list->clear_lowwatermark();
}
#ifndef WTF_CHANGES
int64 finish = CycleClock::Now();
CycleTimer ct;
MESSAGE("GC: %.0f ns\n", ct.CyclesToUsec(finish-start)*1000.0);
#endif
}
#ifdef WTF_CHANGES
bool isMultiThreaded;
TCMalloc_ThreadCache *mainThreadCache;
void fastMallocSetIsMultiThreaded()
{
// We lock when writing mainThreadCache but not when reading it. It's OK if
// the main thread reads a stale, non-NULL value for mainThreadCache because
// mainThreadCache is the same as the main thread's thread-specific cache.
// Other threads can't read a stale, non-NULL value for mainThreadCache because
// clients must call this function before allocating on other threads, so they'll
// have synchronized before reading mainThreadCache.
// A similar principle applies to isMultiThreaded. It's OK for the main thread
// in GetCache() to read a stale, false value for isMultiThreaded because
// doing so will just cause it to make an unnecessary call to InitModule(),
// which will synchronize it.
// To save a branch in some cases, mainThreadCache is only set when
// isMultiThreaded is false.
{
SpinLockHolder lock(&pageheap_lock);
isMultiThreaded = true;
mainThreadCache = 0;
}
TCMalloc_ThreadCache::InitModule();
}
#endif
ALWAYS_INLINE TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetCache() {
void* ptr = NULL;
#ifndef WTF_CHANGES
if (!tsd_inited) {
InitModule();
} else {
ptr = pthread_getspecific(heap_key);
}
#else
if (mainThreadCache) // fast path for single-threaded mode
return mainThreadCache;
if (isMultiThreaded) // fast path for multi-threaded mode -- heap_key already initialized
ptr = pthread_getspecific(heap_key);
else // slow path for possible first-time init
InitModule();
#endif
if (ptr == NULL) ptr = CreateCacheIfNecessary();
return reinterpret_cast<TCMalloc_ThreadCache*>(ptr);
}
// In deletion paths, we do not try to create a thread-cache. This is
// because we may be in the thread destruction code and may have
// already cleaned up the cache for this thread.
inline TCMalloc_ThreadCache* TCMalloc_ThreadCache::GetCacheIfPresent() {
if (mainThreadCache)
return mainThreadCache;
if (!tsd_inited) return NULL;
return reinterpret_cast<TCMalloc_ThreadCache*>
(pthread_getspecific(heap_key));
}
void TCMalloc_ThreadCache::PickNextSample() {
// Make next "random" number
// x^32+x^22+x^2+x^1+1 is a primitive polynomial for random numbers
static const uint32_t kPoly = (1 << 22) | (1 << 2) | (1 << 1) | (1 << 0);
uint32_t r = rnd_;
rnd_ = (r << 1) ^ ((static_cast<int32_t>(r) >> 31) & kPoly);
// Next point is "rnd_ % (2*sample_period)". I.e., average
// increment is "sample_period".
bytes_until_sample_ = rnd_ % kSampleParameter;
}
void TCMalloc_ThreadCache::InitModule() {
// There is a slight potential race here because of double-checked
// locking idiom. However, as long as the program does a small
// allocation before switching to multi-threaded mode, we will be
// fine. We increase the chances of doing such a small allocation
// by doing one in the constructor of the module_enter_exit_hook
// object declared below.
SpinLockHolder h(&pageheap_lock);
if (!phinited) {
#ifdef WTF_CHANGES
InitTSD();
#endif
InitSizeClasses();
threadheap_allocator.Init();
span_allocator.Init();
span_allocator.New(); // Reduce cache conflicts
span_allocator.New(); // Reduce cache conflicts
stacktrace_allocator.Init();
DLL_Init(&sampled_objects);
for (size_t i = 0; i < kNumClasses; ++i) {
central_cache[i].Init(i);
}
pageheap->init();
phinited = 1;
}
}
void TCMalloc_ThreadCache::InitTSD() {
ASSERT(!tsd_inited);
pthread_key_create(&heap_key, DeleteCache);
tsd_inited = true;
// We may have used a fake pthread_t for the main thread. Fix it.
pthread_t zero;
memset(&zero, 0, sizeof(zero));
#ifndef WTF_CHANGES
SpinLockHolder h(&pageheap_lock);
#else
ASSERT(pageheap_lock.IsLocked());
#endif
for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) {
if (pthread_equal(h->tid_, zero)) {
h->tid_ = pthread_self();
}
}
}
void* TCMalloc_ThreadCache::CreateCacheIfNecessary() {
// Initialize per-thread data if necessary
TCMalloc_ThreadCache* heap = NULL;
{
SpinLockHolder h(&pageheap_lock);
// Early on in glibc's life, we cannot even call pthread_self()
pthread_t me;
if (!tsd_inited) {
memset(&me, 0, sizeof(me));
} else {
me = pthread_self();
}
// This may be a recursive malloc call from pthread_setspecific()
// In that case, the heap for this thread has already been created
// and added to the linked list. So we search for that first.
for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) {
if (pthread_equal(h->tid_, me)) {
heap = h;
break;
}
}
if (heap == NULL) {
// Create the heap and add it to the linked list
heap = threadheap_allocator.New();
heap->Init(me);
heap->next_ = thread_heaps;
heap->prev_ = NULL;
if (thread_heaps != NULL) thread_heaps->prev_ = heap;
thread_heaps = heap;
thread_heap_count++;
RecomputeThreadCacheSize();
if (!isMultiThreaded)
mainThreadCache = heap;
}
}
// We call pthread_setspecific() outside the lock because it may
// call malloc() recursively. The recursive call will never get
// here again because it will find the already allocated heap in the
// linked list of heaps.
if (!heap->setspecific_ && tsd_inited) {
heap->setspecific_ = true;
pthread_setspecific(heap_key, heap);
}
return heap;
}
void TCMalloc_ThreadCache::DeleteCache(void* ptr) {
// Remove all memory from heap
TCMalloc_ThreadCache* heap;
heap = reinterpret_cast<TCMalloc_ThreadCache*>(ptr);
heap->Cleanup();
// Remove from linked list
SpinLockHolder h(&pageheap_lock);
if (heap->next_ != NULL) heap->next_->prev_ = heap->prev_;
if (heap->prev_ != NULL) heap->prev_->next_ = heap->next_;
if (thread_heaps == heap) thread_heaps = heap->next_;
thread_heap_count--;
RecomputeThreadCacheSize();
threadheap_allocator.Delete(heap);
}
void TCMalloc_ThreadCache::RecomputeThreadCacheSize() {
// Divide available space across threads
int n = thread_heap_count > 0 ? thread_heap_count : 1;
size_t space = overall_thread_cache_size / n;
// Limit to allowed range
if (space < kMinThreadCacheSize) space = kMinThreadCacheSize;
if (space > kMaxThreadCacheSize) space = kMaxThreadCacheSize;
per_thread_cache_size = space;
}
void TCMalloc_ThreadCache::Print() const {
for (size_t cl = 0; cl < kNumClasses; ++cl) {
MESSAGE(" %5" PRIuS " : %4d len; %4d lo\n",
ByteSizeForClass(cl),
list_[cl].length(),
list_[cl].lowwatermark());
}
}
// Extract interesting stats
struct TCMallocStats {
uint64_t system_bytes; // Bytes alloced from system
uint64_t thread_bytes; // Bytes in thread caches
uint64_t central_bytes; // Bytes in central cache
uint64_t pageheap_bytes; // Bytes in page heap
uint64_t metadata_bytes; // Bytes alloced for metadata
};
#ifndef WTF_CHANGES
// Get stats into "r". Also get per-size-class counts if class_count != NULL
static void ExtractStats(TCMallocStats* r, uint64_t* class_count) {
r->central_bytes = 0;
for (size_t cl = 0; cl < kNumClasses; ++cl) {
SpinLockHolder h(&central_cache[cl].lock_);
const int length = central_cache[cl].length();
r->central_bytes += static_cast<uint64_t>(ByteSizeForClass(cl)) * length;
if (class_count) class_count[cl] = length;
}
// Add stats from per-thread heaps
r->thread_bytes = 0;
{ // scope
SpinLockHolder h(&pageheap_lock);
for (TCMalloc_ThreadCache* h = thread_heaps; h != NULL; h = h->next_) {
r->thread_bytes += h->Size();
if (class_count) {
for (size_t cl = 0; cl < kNumClasses; ++cl) {
class_count[cl] += h->freelist_length(cl);
}
}
}
}
{ //scope
SpinLockHolder h(&pageheap_lock);
r->system_bytes = pageheap->SystemBytes();
r->metadata_bytes = metadata_system_bytes;
r->pageheap_bytes = pageheap->FreeBytes();
}
}
#endif
#ifndef WTF_CHANGES
// WRITE stats to "out"
static void DumpStats(TCMalloc_Printer* out, int level) {
TCMallocStats stats;
uint64_t class_count[kNumClasses];
ExtractStats(&stats, (level >= 2 ? class_count : NULL));
if (level >= 2) {
out->printf("------------------------------------------------\n");
uint64_t cumulative = 0;
for (int cl = 0; cl < kNumClasses; ++cl) {
if (class_count[cl] > 0) {
uint64_t class_bytes = class_count[cl] * ByteSizeForClass(cl);
cumulative += class_bytes;
out->printf("class %3d [ %8" PRIuS " bytes ] : "
"%8" LLU " objs; %5.1f MB; %5.1f cum MB\n",
cl, ByteSizeForClass(cl),
class_count[cl],
class_bytes / 1048576.0,
cumulative / 1048576.0);
}
}
SpinLockHolder h(&pageheap_lock);
pageheap->Dump(out);
}
const uint64_t bytes_in_use = stats.system_bytes
- stats.pageheap_bytes
- stats.central_bytes
- stats.thread_bytes;
out->printf("------------------------------------------------\n"
"MALLOC: %12" LLU " Heap size\n"
"MALLOC: %12" LLU " Bytes in use by application\n"
"MALLOC: %12" LLU " Bytes free in page heap\n"
"MALLOC: %12" LLU " Bytes free in central cache\n"
"MALLOC: %12" LLU " Bytes free in thread caches\n"
"MALLOC: %12" LLU " Spans in use\n"
"MALLOC: %12" LLU " Thread heaps in use\n"
"MALLOC: %12" LLU " Metadata allocated\n"
"------------------------------------------------\n",
stats.system_bytes,
bytes_in_use,
stats.pageheap_bytes,
stats.central_bytes,
stats.thread_bytes,
uint64_t(span_allocator.inuse()),
uint64_t(threadheap_allocator.inuse()),
stats.metadata_bytes);
}
static void PrintStats(int level) {
const int kBufferSize = 16 << 10;
char* buffer = new char[kBufferSize];
TCMalloc_Printer printer(buffer, kBufferSize);
DumpStats(&printer, level);
write(STDERR_FILENO, buffer, strlen(buffer));
delete[] buffer;
}
static void** DumpStackTraces() {
// Count how much space we need
int needed_slots = 0;
{
SpinLockHolder h(&pageheap_lock);
for (Span* s = sampled_objects.next; s != &sampled_objects; s = s->next) {
StackTrace* stack = reinterpret_cast<StackTrace*>(s->objects);
needed_slots += 3 + stack->depth;
}
needed_slots += 100; // Slop in case sample grows
needed_slots += needed_slots/8; // An extra 12.5% slop
}
void** result = new void*[needed_slots];
if (result == NULL) {
MESSAGE("tcmalloc: could not allocate %d slots for stack traces\n",
needed_slots);
return NULL;
}
SpinLockHolder h(&pageheap_lock);
int used_slots = 0;
for (Span* s = sampled_objects.next; s != &sampled_objects; s = s->next) {
ASSERT(used_slots < needed_slots); // Need to leave room for terminator
StackTrace* stack = reinterpret_cast<StackTrace*>(s->objects);
if (used_slots + 3 + stack->depth >= needed_slots) {
// No more room
break;
}
result[used_slots+0] = reinterpret_cast<void*>(1);
result[used_slots+1] = reinterpret_cast<void*>(stack->size);
result[used_slots+2] = reinterpret_cast<void*>(stack->depth);
for (int d = 0; d < stack->depth; d++) {
result[used_slots+3+d] = stack->stack[d];
}
used_slots += 3 + stack->depth;
}
result[used_slots] = reinterpret_cast<void*>(0);
return result;
}
#endif
#ifndef WTF_CHANGES
// TCMalloc's support for extra malloc interfaces
class TCMallocImplementation : public MallocExtension {
public:
virtual void GetStats(char* buffer, int buffer_length) {
ASSERT(buffer_length > 0);
TCMalloc_Printer printer(buffer, buffer_length);
// Print level one stats unless lots of space is available
if (buffer_length < 10000) {
DumpStats(&printer, 1);
} else {
DumpStats(&printer, 2);
}
}
virtual void** ReadStackTraces() {
return DumpStackTraces();
}
virtual bool GetNumericProperty(const char* name, size_t* value) {
ASSERT(name != NULL);
if (strcmp(name, "generic.current_allocated_bytes") == 0) {
TCMallocStats stats;
ExtractStats(&stats, NULL);
*value = stats.system_bytes
- stats.thread_bytes
- stats.central_bytes
- stats.pageheap_bytes;
return true;
}
if (strcmp(name, "generic.heap_size") == 0) {
TCMallocStats stats;
ExtractStats(&stats, NULL);
*value = stats.system_bytes;
return true;
}
if (strcmp(name, "tcmalloc.slack_bytes") == 0) {
// We assume that bytes in the page heap are not fragmented too
// badly, and are therefore available for allocation.
SpinLockHolder l(&pageheap_lock);
*value = pageheap->FreeBytes();
return true;
}
if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
SpinLockHolder l(&pageheap_lock);
*value = overall_thread_cache_size;
return true;
}
if (strcmp(name, "tcmalloc.current_total_thread_cache_bytes") == 0) {
TCMallocStats stats;
ExtractStats(&stats, NULL);
*value = stats.thread_bytes;
return true;
}
return false;
}
virtual bool SetNumericProperty(const char* name, size_t value) {
ASSERT(name != NULL);
if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
// Clip the value to a reasonable range
if (value < kMinThreadCacheSize) value = kMinThreadCacheSize;
if (value > (1<<30)) value = (1<<30); // Limit to 1GB
SpinLockHolder l(&pageheap_lock);
overall_thread_cache_size = static_cast<size_t>(value);
TCMalloc_ThreadCache::RecomputeThreadCacheSize();
return true;
}
return false;
}
};
#endif
// RedHat 9's pthread manager allocates an object directly by calling
// a __libc_XXX() routine. This memory block is not known to tcmalloc.
// At cleanup time, the pthread manager calls free() on this
// pointer, which then crashes.
//
// We hack around this problem by disabling all deallocations
// after a global object destructor in this module has been called.
#ifndef WTF_CHANGES
static bool tcmalloc_is_destroyed = false;
#endif
//-------------------------------------------------------------------
// Helpers for the exported routines below
//-------------------------------------------------------------------
#ifndef WTF_CHANGES
static Span* DoSampledAllocation(size_t size) {
SpinLockHolder h(&pageheap_lock);
// Allocate span
Span* span = pageheap->New(pages(size == 0 ? 1 : size));
if (span == NULL) {
return NULL;
}
// Allocate stack trace
StackTrace* stack = stacktrace_allocator.New();
if (stack == NULL) {
// Sampling failed because of lack of memory
return span;
}
// Fill stack trace and record properly
stack->depth = GetStackTrace(stack->stack, kMaxStackDepth, 2);
stack->size = size;
span->sample = 1;
span->objects = stack;
DLL_Prepend(&sampled_objects, span);
return span;
}
#endif
static ALWAYS_INLINE void* do_malloc(size_t size) {
#ifdef WTF_CHANGES
ASSERT(isMultiThreaded || pthread_main_np());
ASSERT(!isForbidden());
#endif
#ifndef WTF_CHANGES
if (TCMallocDebug::level >= TCMallocDebug::kVerbose)
MESSAGE("In tcmalloc do_malloc(%" PRIuS")\n", size);
#endif
// The following call forces module initialization
TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCache();
#ifndef WTF_CHANGES
if (heap->SampleAllocation(size)) {
Span* span = DoSampledAllocation(size);
if (span == NULL) return NULL;
return reinterpret_cast<void*>(span->start << kPageShift);
} else
#endif
if (size > kMaxSize) {
// Use page-level allocator
SpinLockHolder h(&pageheap_lock);
Span* span = pageheap->New(pages(size));
if (span == NULL) return NULL;
return reinterpret_cast<void*>(span->start << kPageShift);
} else {
return heap->Allocate(size);
}
}
static ALWAYS_INLINE void do_free(void* ptr) {
#ifndef WTF_CHANGES
if (TCMallocDebug::level >= TCMallocDebug::kVerbose)
MESSAGE("In tcmalloc do_free(%p)\n", ptr);
#endif
#if WTF_CHANGES
if (ptr == NULL) return;
#else
if (ptr == NULL || tcmalloc_is_destroyed) return;
#endif
ASSERT(pageheap != NULL); // Should not call free() before malloc()
const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
Span* span = pageheap->GetDescriptor(p);
#ifndef WTF_CHANGES
if (span == NULL) {
// We've seen systems where a piece of memory allocated using the
// allocator built in to libc is deallocated using free() and
// therefore ends up inside tcmalloc which can't find the
// corresponding span. We silently throw this object on the floor
// instead of crashing.
MESSAGE("tcmalloc: ignoring potential glibc-2.3.5 induced free "
"of an unknown object %p\n", ptr);
return;
}
#endif
ASSERT(span != NULL);
ASSERT(!span->free);
const size_t cl = span->sizeclass;
if (cl != 0) {
ASSERT(!span->sample);
TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCacheIfPresent();
if (heap != NULL) {
heap->Deallocate(ptr, cl);
} else {
// Delete directly into central cache
SpinLockHolder h(&central_cache[cl].lock_);
central_cache[cl].Insert(ptr);
}
} else {
SpinLockHolder h(&pageheap_lock);
ASSERT(reinterpret_cast<uintptr_t>(ptr) % kPageSize == 0);
ASSERT(span->start == p);
if (span->sample) {
DLL_Remove(span);
stacktrace_allocator.Delete(reinterpret_cast<StackTrace*>(span->objects));
span->objects = NULL;
}
pageheap->Delete(span);
}
}
#ifndef WTF_CHANGES
// For use by exported routines below that want specific alignments
//
// Note: this code can be slow, and can significantly fragment memory.
// The expectation is that memalign/posix_memalign/valloc/pvalloc will
// not be invoked very often. This requirement simplifies our
// implementation and allows us to tune for expected allocation
// patterns.
static void* do_memalign(size_t align, size_t size) {
ASSERT((align & (align - 1)) == 0);
ASSERT(align > 0);
if (pageheap == NULL) TCMalloc_ThreadCache::InitModule();
// Allocate at least one byte to avoid boundary conditions below
if (size == 0) size = 1;
if (size <= kMaxSize && align < kPageSize) {
// Search through acceptable size classes looking for one with
// enough alignment. This depends on the fact that
// InitSizeClasses() currently produces several size classes that
// are aligned at powers of two. We will waste time and space if
// we miss in the size class array, but that is deemed acceptable
// since memalign() should be used rarely.
size_t cl = SizeClass(size);
while (cl < kNumClasses && ((class_to_size[cl] & (align - 1)) != 0)) {
cl++;
}
if (cl < kNumClasses) {
TCMalloc_ThreadCache* heap = TCMalloc_ThreadCache::GetCache();
return heap->Allocate(class_to_size[cl]);
}
}
// We will allocate directly from the page heap
SpinLockHolder h(&pageheap_lock);
if (align <= kPageSize) {
// Any page-level allocation will be fine
// TODO: We could put the rest of this page in the appropriate
// TODO: cache but it does not seem worth it.
Span* span = pageheap->New(pages(size));
if (span == NULL) return NULL;
return reinterpret_cast<void*>(span->start << kPageShift);
}
// Allocate extra pages and carve off an aligned portion
const int alloc = pages(size + align);
Span* span = pageheap->New(alloc);
if (span == NULL) return NULL;
// Skip starting portion so that we end up aligned
int skip = 0;
while ((((span->start+skip) << kPageShift) & (align - 1)) != 0) {
skip++;
}
ASSERT(skip < alloc);
if (skip > 0) {
Span* rest = pageheap->Split(span, skip);
pageheap->Delete(span);
span = rest;
}
// Skip trailing portion that we do not need to return
const size_t needed = pages(size);
ASSERT(span->length >= needed);
if (span->length > needed) {
Span* trailer = pageheap->Split(span, needed);
pageheap->Delete(trailer);
}
return reinterpret_cast<void*>(span->start << kPageShift);
}
#endif
// The constructor allocates an object to ensure that initialization
// runs before main(), and therefore we do not have a chance to become
// multi-threaded before initialization. We also create the TSD key
// here. Presumably by the time this constructor runs, glibc is in
// good enough shape to handle pthread_key_create().
//
// The constructor also takes the opportunity to tell STL to use
// tcmalloc. We want to do this early, before construct time, so
// all user STL allocations go through tcmalloc (which works really
// well for STL).
//
// The destructor prints stats when the program exits.
class TCMallocGuard {
public:
TCMallocGuard() {
#ifndef WTF_CHANGES
char *envval;
if ((envval = getenv("TCMALLOC_DEBUG"))) {
TCMallocDebug::level = atoi(envval);
MESSAGE("Set tcmalloc debugging level to %d\n", TCMallocDebug::level);
}
#endif
do_free(do_malloc(1));
TCMalloc_ThreadCache::InitTSD();
do_free(do_malloc(1));
#ifndef WTF_CHANGES
MallocExtension::Register(new TCMallocImplementation);
#endif
}
#ifndef WTF_CHANGES
~TCMallocGuard() {
const char* env = getenv("MALLOCSTATS");
if (env != NULL) {
int level = atoi(env);
if (level < 1) level = 1;
PrintStats(level);
}
}
#endif
};
#ifndef WTF_CHANGES
static TCMallocGuard module_enter_exit_hook;
#endif
//-------------------------------------------------------------------
// Exported routines
//-------------------------------------------------------------------
// CAVEAT: The code structure below ensures that MallocHook methods are always
// called from the stack frame of the invoked allocation function.
// heap-checker.cc depends on this to start a stack trace from
// the call to the (de)allocation function.
#ifndef WTF_CHANGES
extern "C"
#endif
void* malloc(size_t size) {
void* result = do_malloc(size);
#ifndef WTF_CHANGES
MallocHook::InvokeNewHook(result, size);
#endif
return result;
}
#ifndef WTF_CHANGES
extern "C"
#endif
void free(void* ptr) {
#ifndef WTF_CHANGES
MallocHook::InvokeDeleteHook(ptr);
#endif
do_free(ptr);
}
#ifndef WTF_CHANGES
extern "C"
#endif
void* calloc(size_t n, size_t elem_size) {
void* result = do_malloc(n * elem_size);
if (result != NULL) {
memset(result, 0, n * elem_size);
}
#ifndef WTF_CHANGES
MallocHook::InvokeNewHook(result, n * elem_size);
#endif
return result;
}
#ifndef WTF_CHANGES
extern "C"
#endif
void cfree(void* ptr) {
#ifndef WTF_CHANGES
MallocHook::InvokeDeleteHook(ptr);
#endif
do_free(ptr);
}
#ifndef WTF_CHANGES
extern "C"
#endif
void* realloc(void* old_ptr, size_t new_size) {
if (old_ptr == NULL) {
void* result = do_malloc(new_size);
#ifndef WTF_CHANGES
MallocHook::InvokeNewHook(result, new_size);
#endif
return result;
}
if (new_size == 0) {
#ifndef WTF_CHANGES
MallocHook::InvokeDeleteHook(old_ptr);
#endif
free(old_ptr);
return NULL;
}
// Get the size of the old entry
const PageID p = reinterpret_cast<uintptr_t>(old_ptr) >> kPageShift;
Span* span = pageheap->GetDescriptor(p);
size_t old_size;
if (span->sizeclass != 0) {
old_size = ByteSizeForClass(span->sizeclass);
} else {
old_size = span->length << kPageShift;
}
// Reallocate if the new size is larger than the old size,
// or if the new size is significantly smaller than the old size.
if ((new_size > old_size) || (AllocationSize(new_size) < old_size)) {
// Need to reallocate
void* new_ptr = do_malloc(new_size);
if (new_ptr == NULL) {
return NULL;
}
#ifndef WTF_CHANGES
MallocHook::InvokeNewHook(new_ptr, new_size);
#endif
memcpy(new_ptr, old_ptr, ((old_size < new_size) ? old_size : new_size));
#ifndef WTF_CHANGES
MallocHook::InvokeDeleteHook(old_ptr);
#endif
free(old_ptr);
return new_ptr;
} else {
return old_ptr;
}
}
#ifndef COMPILER_INTEL
#define OPNEW_THROW
#define OPDELETE_THROW
#else
#define OPNEW_THROW throw(std::bad_alloc)
#define OPDELETE_THROW throw()
#endif
#ifndef WTF_CHANGES
void* operator new(size_t size) OPNEW_THROW {
void* p = do_malloc(size);
if (p == NULL) {
MESSAGE("Unable to allocate %" PRIuS " bytes: new failed\n", size);
abort();
}
MallocHook::InvokeNewHook(p, size);
return p;
}
void operator delete(void* p) OPDELETE_THROW {
MallocHook::InvokeDeleteHook(p);
do_free(p);
}
void* operator new[](size_t size) OPNEW_THROW {
void* p = do_malloc(size);
if (p == NULL) {
MESSAGE("Unable to allocate %" PRIuS " bytes: new failed\n", size);
abort();
}
MallocHook::InvokeNewHook(p, size);
return p;
}
void operator delete[](void* p) OPDELETE_THROW {
MallocHook::InvokeDeleteHook(p);
do_free(p);
}
extern "C" void* memalign(size_t align, size_t size) {
void* result = do_memalign(align, size);
MallocHook::InvokeNewHook(result, size);
return result;
}
extern "C" int posix_memalign(void** result_ptr, size_t align, size_t size) {
if (((align % sizeof(void*)) != 0) ||
((align & (align - 1)) != 0) ||
(align == 0)) {
return EINVAL;
}
void* result = do_memalign(align, size);
MallocHook::InvokeNewHook(result, size);
if (result == NULL) {
return ENOMEM;
} else {
*result_ptr = result;
return 0;
}
}
static size_t pagesize = 0;
extern "C" void* valloc(size_t size) {
// Allocate page-aligned object of length >= size bytes
if (pagesize == 0) pagesize = getpagesize();
void* result = do_memalign(pagesize, size);
MallocHook::InvokeNewHook(result, size);
return result;
}
extern "C" void* pvalloc(size_t size) {
// Round up size to a multiple of pagesize
if (pagesize == 0) pagesize = getpagesize();
size = (size + pagesize - 1) & ~(pagesize - 1);
void* result = do_memalign(pagesize, size);
MallocHook::InvokeNewHook(result, size);
return result;
}
extern "C" void malloc_stats(void) {
PrintStats(1);
}
extern "C" int mallopt(int cmd, int value) {
return 1; // Indicates error
}
extern "C" struct mallinfo mallinfo(void) {
TCMallocStats stats;
ExtractStats(&stats, NULL);
// Just some of the fields are filled in.
struct mallinfo info;
memset(&info, 0, sizeof(info));
// Unfortunately, the struct contains "int" field, so some of the
// size values will be truncated.
info.arena = static_cast<int>(stats.system_bytes);
info.fsmblks = static_cast<int>(stats.thread_bytes + stats.central_bytes);
info.fordblks = static_cast<int>(stats.pageheap_bytes);
info.uordblks = static_cast<int>(stats.system_bytes
- stats.thread_bytes
- stats.central_bytes
- stats.pageheap_bytes);
return info;
}
//-------------------------------------------------------------------
// Some library routines on RedHat 9 allocate memory using malloc()
// and free it using __libc_free() (or vice-versa). Since we provide
// our own implementations of malloc/free, we need to make sure that
// the __libc_XXX variants also point to the same implementations.
//-------------------------------------------------------------------
extern "C" {
#if COMPILER(GCC) && HAVE(__ATTRIBUTE__)
// Potentially faster variants that use the gcc alias extension
#define ALIAS(x) __attribute__ ((weak, alias (x)))
void* __libc_malloc(size_t size) ALIAS("malloc");
void __libc_free(void* ptr) ALIAS("free");
void* __libc_realloc(void* ptr, size_t size) ALIAS("realloc");
void* __libc_calloc(size_t n, size_t size) ALIAS("calloc");
void __libc_cfree(void* ptr) ALIAS("cfree");
void* __libc_memalign(size_t align, size_t s) ALIAS("memalign");
void* __libc_valloc(size_t size) ALIAS("valloc");
void* __libc_pvalloc(size_t size) ALIAS("pvalloc");
int __posix_memalign(void** r, size_t a, size_t s) ALIAS("posix_memalign");
#undef ALIAS
#else
// Portable wrappers
void* __libc_malloc(size_t size) { return malloc(size); }
void __libc_free(void* ptr) { free(ptr); }
void* __libc_realloc(void* ptr, size_t size) { return realloc(ptr, size); }
void* __libc_calloc(size_t n, size_t size) { return calloc(n, size); }
void __libc_cfree(void* ptr) { cfree(ptr); }
void* __libc_memalign(size_t align, size_t s) { return memalign(align, s); }
void* __libc_valloc(size_t size) { return valloc(size); }
void* __libc_pvalloc(size_t size) { return pvalloc(size); }
int __posix_memalign(void** r, size_t a, size_t s) {
return posix_memalign(r, a, s);
}
#endif
}
#endif
#if WTF_CHANGES
} // namespace WTF
#endif
#endif // USE_SYSTEM_MALLOC