blob: faddd8ad1a314117a2e108ae7c51b980a0aa0603 [file] [log] [blame]
// -*- c-basic-offset: 2 -*-
/*
* This file is part of the KDE libraries
* Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
* Copyright (C) 2004 Apple Computer, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef _KJS_USTRING_H_
#define _KJS_USTRING_H_
#include "JSLock.h"
#include <stdint.h>
#include <wtf/Assertions.h>
#include <wtf/FastMalloc.h>
#include <wtf/PassRefPtr.h>
#include <wtf/RefPtr.h>
/* On ARM some versions of GCC don't pack structures by default so sizeof(UChar)
will end up being != 2 which causes crashes since the code depends on that. */
#if COMPILER(GCC) && PLATFORM(ARM)
#define PACK_STRUCT __attribute__((packed))
#else
#define PACK_STRUCT
#endif
/**
* @internal
*/
namespace DOM {
class DOMString;
class AtomicString;
}
class KJScript;
namespace KJS {
class UCharReference;
class UString;
/**
* @short Unicode character.
*
* UChar represents a 16 bit Unicode character. It's internal data
* representation is compatible to XChar2b and QChar. It's therefore
* possible to exchange data with X and Qt with shallow copies.
*/
struct UChar {
/**
* Construct a character with uninitialized value.
*/
UChar();
/**
* Construct a character with the value denoted by the arguments.
* @param h higher byte
* @param l lower byte
*/
UChar(unsigned char h , unsigned char l);
/**
* Construct a character with the given value.
* @param u 16 bit Unicode value
*/
UChar(char u);
UChar(unsigned char u);
UChar(unsigned short u);
UChar(const UCharReference &c);
/**
* @return The higher byte of the character.
*/
unsigned char high() const { return static_cast<unsigned char>(uc >> 8); }
/**
* @return The lower byte of the character.
*/
unsigned char low() const { return static_cast<unsigned char>(uc); }
/**
* @return the 16 bit Unicode value of the character
*/
unsigned short unicode() const { return uc; }
unsigned short uc;
} PACK_STRUCT;
inline UChar::UChar() { }
inline UChar::UChar(unsigned char h , unsigned char l) : uc(h << 8 | l) { }
inline UChar::UChar(char u) : uc((unsigned char)u) { }
inline UChar::UChar(unsigned char u) : uc(u) { }
inline UChar::UChar(unsigned short u) : uc(u) { }
/**
* @short Dynamic reference to a string character.
*
* UCharReference is the dynamic counterpart of UChar. It's used when
* characters retrieved via index from a UString are used in an
* assignment expression (and therefore can't be treated as being const):
* \code
* UString s("hello world");
* s[0] = 'H';
* \endcode
*
* If that sounds confusing your best bet is to simply forget about the
* existence of this class and treat is as being identical to UChar.
*/
class UCharReference {
friend class UString;
UCharReference(UString *s, unsigned int off) : str(s), offset(off) { }
public:
/**
* Set the referenced character to c.
*/
UCharReference& operator=(UChar c);
/**
* Same operator as above except the argument that it takes.
*/
UCharReference& operator=(char c) { return operator=(UChar(c)); }
/**
* @return Unicode value.
*/
unsigned short unicode() const { return ref().uc; }
/**
* @return Lower byte.
*/
unsigned char low() const { return static_cast<unsigned char>(ref().uc); }
/**
* @return Higher byte.
*/
unsigned char high() const { return static_cast<unsigned char>(ref().uc >> 8); }
private:
// not implemented, can only be constructed from UString
UCharReference();
UChar& ref() const;
UString *str;
int offset;
};
inline UChar::UChar(const UCharReference &c) : uc(c.unicode()) { }
/**
* @short 8 bit char based string class
*/
class CString {
public:
CString() : data(0), length(0) { }
CString(const char *c);
CString(const char *c, size_t len);
CString(const CString &);
~CString();
CString &append(const CString &);
CString &operator=(const char *c);
CString &operator=(const CString &);
CString &operator+=(const CString &c) { return append(c); }
size_t size() const { return length; }
const char *c_str() const { return data; }
private:
char *data;
size_t length;
};
/**
* @short Unicode string class
*/
class UString {
friend bool operator==(const UString&, const UString&);
public:
/**
* @internal
*/
struct Rep {
static PassRefPtr<Rep> create(UChar *d, int l);
static PassRefPtr<Rep> createCopying(const UChar *d, int l);
static PassRefPtr<Rep> create(PassRefPtr<Rep> base, int offset, int length);
void destroy();
UChar *data() const { return baseString ? (baseString->buf + baseString->preCapacity + offset) : (buf + preCapacity + offset); }
int size() const { return len; }
unsigned hash() const { if (_hash == 0) _hash = computeHash(data(), len); return _hash; }
static unsigned computeHash(const UChar *, int length);
static unsigned computeHash(const char *);
Rep* ref() { ASSERT(JSLock::lockCount() > 0); ++rc; return this; }
void deref() { ASSERT(JSLock::lockCount() > 0); if (--rc == 0) destroy(); }
// unshared data
int offset;
int len;
int rc;
mutable unsigned _hash;
bool isIdentifier;
UString::Rep *baseString;
// potentially shared data
UChar *buf;
int usedCapacity;
int capacity;
int usedPreCapacity;
int preCapacity;
static Rep null;
static Rep empty;
};
public:
/**
* Constructs a null string.
*/
UString();
/**
* Constructs a string from a classical zero-terminated char string.
*/
UString(const char *c);
/**
* Constructs a string from an array of Unicode characters of the specified
* length.
*/
UString(const UChar *c, int length);
/**
* If copy is false the string data will be adopted.
* That means that the data will NOT be copied and the pointer will
* be deleted when the UString object is modified or destroyed.
* Behaviour defaults to a deep copy if copy is true.
*/
UString(UChar *c, int length, bool copy);
/**
* Copy constructor. Makes a shallow copy only.
*/
UString(const UString &s) : m_rep(s.m_rep) {}
/**
* Convenience declaration only ! You'll be on your own to write the
* implementation for a construction from DOM::DOMString.
*
* Note: feel free to contact me if you want to see a dummy header for
* your favorite FooString class here !
*/
UString(const DOM::DOMString&);
/**
* Convenience declaration only ! See UString(const DOM::DOMString&).
*/
UString(const DOM::AtomicString&);
/**
* Concatenation constructor. Makes operator+ more efficient.
*/
UString(const UString &, const UString &);
/**
* Destructor.
*/
~UString() {}
/**
* Constructs a string from an int.
*/
static UString from(int i);
/**
* Constructs a string from an unsigned int.
*/
static UString from(unsigned int u);
/**
* Constructs a string from a long int.
*/
static UString from(long u);
/**
* Constructs a string from a double.
*/
static UString from(double d);
struct Range {
public:
Range(int pos, int len) : position(pos), length(len) {}
Range() {}
int position;
int length;
};
UString spliceSubstringsWithSeparators(const Range *substringRanges, int rangeCount, const UString *separators, int separatorCount) const;
/**
* Append another string.
*/
UString &append(const UString &);
UString &append(const char *);
UString &append(unsigned short);
UString &append(char c) { return append(static_cast<unsigned short>(static_cast<unsigned char>(c))); }
UString &append(UChar c) { return append(c.uc); }
/**
* @return The string converted to the 8-bit string type CString().
*/
CString cstring() const;
/**
* Convert the Unicode string to plain ASCII chars chopping of any higher
* bytes. This method should only be used for *debugging* purposes as it
* is neither Unicode safe nor free from side effects. In order not to
* waste any memory the char buffer is static and *shared* by all UString
* instances.
*/
char *ascii() const;
/**
* Convert the string to UTF-8, assuming it is UTF-16 encoded.
* Since this function is tolerant of badly formed UTF-16, it can create UTF-8
* strings that are invalid because they have characters in the range
* U+D800-U+DDFF, U+FFFE, or U+FFFF, but the UTF-8 string is guaranteed to
* be otherwise valid.
*/
CString UTF8String() const;
/**
* @see UString(const DOM::DOMString&).
*/
DOM::DOMString domString() const;
/**
* Assignment operator.
*/
UString &operator=(const char *c);
/**
* Appends the specified string.
*/
UString &operator+=(const UString &s) { return append(s); }
UString &operator+=(const char *s) { return append(s); }
/**
* @return A pointer to the internal Unicode data.
*/
const UChar* data() const { return m_rep->data(); }
/**
* @return True if null.
*/
bool isNull() const { return (m_rep == &Rep::null); }
/**
* @return True if null or zero length.
*/
bool isEmpty() const { return (!m_rep->len); }
/**
* Use this if you want to make sure that this string is a plain ASCII
* string. For example, if you don't want to lose any information when
* using cstring() or ascii().
*
* @return True if the string doesn't contain any non-ASCII characters.
*/
bool is8Bit() const;
/**
* @return The length of the string.
*/
int size() const { return m_rep->size(); }
/**
* Const character at specified position.
*/
UChar operator[](int pos) const;
/**
* Writable reference to character at specified position.
*/
UCharReference operator[](int pos);
/**
* Attempts an conversion to a number. Apart from floating point numbers,
* the algorithm will recognize hexadecimal representations (as
* indicated by a 0x or 0X prefix) and +/- Infinity.
* Returns NaN if the conversion failed.
* @param tolerateTrailingJunk if true, toDouble can tolerate garbage after the number.
* @param tolerateEmptyString if false, toDouble will turn an empty string into NaN rather than 0.
*/
double toDouble(bool tolerateTrailingJunk, bool tolerateEmptyString) const;
double toDouble(bool tolerateTrailingJunk) const;
double toDouble() const;
/**
* Attempts an conversion to a 32-bit integer. ok will be set
* according to the success.
* @param tolerateEmptyString if false, toUInt32 will return false for *ok for an empty string.
*/
uint32_t toUInt32(bool *ok = 0) const;
uint32_t toUInt32(bool *ok, bool tolerateEmptyString) const;
uint32_t toStrictUInt32(bool *ok = 0) const;
/**
* Attempts an conversion to an array index. The "ok" boolean will be set
* to true if it is a valid array index according to the rule from
* ECMA 15.2 about what an array index is. It must exactly match the string
* form of an unsigned integer, and be less than 2^32 - 1.
*/
unsigned toArrayIndex(bool *ok = 0) const;
/**
* @return Position of first occurrence of f starting at position pos.
* -1 if the search was not successful.
*/
int find(const UString &f, int pos = 0) const;
int find(UChar, int pos = 0) const;
/**
* @return Position of first occurrence of f searching backwards from
* position pos.
* -1 if the search was not successful.
*/
int rfind(const UString &f, int pos) const;
int rfind(UChar, int pos) const;
/**
* @return The sub string starting at position pos and length len.
*/
UString substr(int pos = 0, int len = -1) const;
/**
* Static instance of a null string.
*/
static const UString &null();
#ifdef KJS_DEBUG_MEM
/**
* Clear statically allocated resources.
*/
static void globalClear();
#endif
Rep *rep() const { return m_rep.get(); }
UString(PassRefPtr<Rep> r) : m_rep(r) { }
void copyForWriting();
private:
int expandedSize(int size, int otherSize) const;
int usedCapacity() const;
int usedPreCapacity() const;
void expandCapacity(int requiredLength);
void expandPreCapacity(int requiredPreCap);
RefPtr<Rep> m_rep;
};
inline bool operator==(const UChar &c1, const UChar &c2) {
return (c1.uc == c2.uc);
}
bool operator==(const UString& s1, const UString& s2);
inline bool operator!=(const UString& s1, const UString& s2) {
return !KJS::operator==(s1, s2);
}
bool operator<(const UString& s1, const UString& s2);
bool operator==(const UString& s1, const char *s2);
inline bool operator!=(const UString& s1, const char *s2) {
return !KJS::operator==(s1, s2);
}
inline bool operator==(const char *s1, const UString& s2) {
return operator==(s2, s1);
}
inline bool operator!=(const char *s1, const UString& s2) {
return !KJS::operator==(s1, s2);
}
bool operator==(const CString& s1, const CString& s2);
inline UString operator+(const UString& s1, const UString& s2) {
return UString(s1, s2);
}
int compare(const UString &, const UString &);
// Given a first byte, gives the length of the UTF-8 sequence it begins.
// Returns 0 for bytes that are not legal starts of UTF-8 sequences.
// Only allows sequences of up to 4 bytes, since that works for all Unicode characters (U-00000000 to U-0010FFFF).
int UTF8SequenceLength(char);
// Takes a null-terminated C-style string with a UTF-8 sequence in it and converts it to a character.
// Only allows Unicode characters (U-00000000 to U-0010FFFF).
// Returns -1 if the sequence is not valid (including presence of extra bytes).
int decodeUTF8Sequence(const char *);
inline UString::UString()
: m_rep(&Rep::null)
{
}
// Rule from ECMA 15.2 about what an array index is.
// Must exactly match string form of an unsigned integer, and be less than 2^32 - 1.
inline unsigned UString::toArrayIndex(bool *ok) const
{
unsigned i = toStrictUInt32(ok);
if (ok && i >= 0xFFFFFFFFU)
*ok = false;
return i;
}
} // namespace
#endif