blob: 9b3bd970d765f8f365d81b18a6c5e500b86ac1bc [file] [log] [blame]
// -*- c-basic-offset: 2 -*-
/*
* This file is part of the KDE libraries
* Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
* Copyright (C) 2004 Apple Computer, Inc.
* Copyright (C) 2007 Cameron Zwarich (cwzwarich@uwaterloo.ca)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include "config.h"
#include "ustring.h"
#include "JSLock.h"
#include "dtoa.h"
#include "function.h"
#include "identifier.h"
#include "operations.h"
#include <assert.h>
#include <ctype.h>
#include <float.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <wtf/Vector.h>
#if HAVE(STRING_H)
#include <string.h>
#endif
#if HAVE(STRINGS_H)
#include <strings.h>
#endif
using std::max;
using std::min;
namespace KJS {
extern const double NaN;
extern const double Inf;
COMPILE_ASSERT(sizeof(UChar) == 2, uchar_is_2_bytes)
CString::CString(const char *c)
{
length = strlen(c);
data = new char[length+1];
memcpy(data, c, length + 1);
}
CString::CString(const char *c, size_t len)
{
length = len;
data = new char[len+1];
memcpy(data, c, len);
data[len] = 0;
}
CString::CString(const CString &b)
{
length = b.length;
if (b.data) {
data = new char[length+1];
memcpy(data, b.data, length + 1);
}
else
data = 0;
}
CString::~CString()
{
delete [] data;
}
CString &CString::append(const CString &t)
{
char *n;
n = new char[length+t.length+1];
if (length)
memcpy(n, data, length);
if (t.length)
memcpy(n+length, t.data, t.length);
length += t.length;
n[length] = 0;
delete [] data;
data = n;
return *this;
}
CString &CString::operator=(const char *c)
{
if (data)
delete [] data;
length = strlen(c);
data = new char[length+1];
memcpy(data, c, length + 1);
return *this;
}
CString &CString::operator=(const CString &str)
{
if (this == &str)
return *this;
if (data)
delete [] data;
length = str.length;
if (str.data) {
data = new char[length + 1];
memcpy(data, str.data, length + 1);
}
else
data = 0;
return *this;
}
bool operator==(const CString& c1, const CString& c2)
{
size_t len = c1.size();
return len == c2.size() && (len == 0 || memcmp(c1.c_str(), c2.c_str(), len) == 0);
}
// Hack here to avoid a global with a constructor; point to an unsigned short instead of a UChar.
static unsigned short almostUChar;
UString::Rep UString::Rep::null = { 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 };
UString::Rep UString::Rep::empty = { 0, 0, 1, 0, 0, 0, reinterpret_cast<UChar*>(&almostUChar), 0, 0, 0, 0 };
const int normalStatBufferSize = 4096;
static char *statBuffer = 0;
static int statBufferSize = 0;
UCharReference& UCharReference::operator=(UChar c)
{
str->copyForWriting();
if (offset < str->rep()->len)
*(str->rep()->data() + offset) = c;
/* TODO: lengthen string ? */
return *this;
}
UChar& UCharReference::ref() const
{
ASSERT(JSLock::lockCount() > 0);
if (offset < str->rep()->len)
return *(str->rep()->data() + offset);
else {
static UChar callerBetterNotModifyThis('\0');
return callerBetterNotModifyThis;
}
}
PassRefPtr<UString::Rep> UString::Rep::createCopying(const UChar *d, int l)
{
ASSERT(JSLock::lockCount() > 0);
int sizeInBytes = l * sizeof(UChar);
UChar *copyD = static_cast<UChar *>(fastMalloc(sizeInBytes));
memcpy(copyD, d, sizeInBytes);
return create(copyD, l);
}
PassRefPtr<UString::Rep> UString::Rep::create(UChar *d, int l)
{
ASSERT(JSLock::lockCount() > 0);
Rep *r = new Rep;
r->offset = 0;
r->len = l;
r->rc = 1;
r->_hash = 0;
r->isIdentifier = 0;
r->baseString = 0;
r->buf = d;
r->usedCapacity = l;
r->capacity = l;
r->usedPreCapacity = 0;
r->preCapacity = 0;
// steal the single reference this Rep was created with
return adoptRef(r);
}
PassRefPtr<UString::Rep> UString::Rep::create(PassRefPtr<Rep> base, int offset, int length)
{
ASSERT(JSLock::lockCount() > 0);
ASSERT(base);
int baseOffset = base->offset;
if (base->baseString) {
base = base->baseString;
}
assert(-(offset + baseOffset) <= base->usedPreCapacity);
assert(offset + baseOffset + length <= base->usedCapacity);
Rep *r = new Rep;
r->offset = baseOffset + offset;
r->len = length;
r->rc = 1;
r->_hash = 0;
r->isIdentifier = 0;
r->baseString = base.releaseRef();
r->buf = 0;
r->usedCapacity = 0;
r->capacity = 0;
r->usedPreCapacity = 0;
r->preCapacity = 0;
// steal the single reference this Rep was created with
return adoptRef(r);
}
void UString::Rep::destroy()
{
ASSERT(JSLock::lockCount() > 0);
if (isIdentifier)
Identifier::remove(this);
if (baseString) {
baseString->deref();
} else {
fastFree(buf);
}
delete this;
}
// Golden ratio - arbitrary start value to avoid mapping all 0's to all 0's
// or anything like that.
const unsigned PHI = 0x9e3779b9U;
// Paul Hsieh's SuperFastHash
// http://www.azillionmonkeys.com/qed/hash.html
unsigned UString::Rep::computeHash(const UChar *s, int len)
{
unsigned l = len;
uint32_t hash = PHI;
uint32_t tmp;
int rem = l & 1;
l >>= 1;
// Main loop
for (; l > 0; l--) {
hash += s[0].uc;
tmp = (s[1].uc << 11) ^ hash;
hash = (hash << 16) ^ tmp;
s += 2;
hash += hash >> 11;
}
// Handle end case
if (rem) {
hash += s[0].uc;
hash ^= hash << 11;
hash += hash >> 17;
}
// Force "avalanching" of final 127 bits
hash ^= hash << 3;
hash += hash >> 5;
hash ^= hash << 2;
hash += hash >> 15;
hash ^= hash << 10;
// this avoids ever returning a hash code of 0, since that is used to
// signal "hash not computed yet", using a value that is likely to be
// effectively the same as 0 when the low bits are masked
if (hash == 0)
hash = 0x80000000;
return hash;
}
// Paul Hsieh's SuperFastHash
// http://www.azillionmonkeys.com/qed/hash.html
unsigned UString::Rep::computeHash(const char *s)
{
// This hash is designed to work on 16-bit chunks at a time. But since the normal case
// (above) is to hash UTF-16 characters, we just treat the 8-bit chars as if they
// were 16-bit chunks, which should give matching results
uint32_t hash = PHI;
uint32_t tmp;
size_t l = strlen(s);
size_t rem = l & 1;
l >>= 1;
// Main loop
for (; l > 0; l--) {
hash += (unsigned char)s[0];
tmp = ((unsigned char)s[1] << 11) ^ hash;
hash = (hash << 16) ^ tmp;
s += 2;
hash += hash >> 11;
}
// Handle end case
if (rem) {
hash += (unsigned char)s[0];
hash ^= hash << 11;
hash += hash >> 17;
}
// Force "avalanching" of final 127 bits
hash ^= hash << 3;
hash += hash >> 5;
hash ^= hash << 2;
hash += hash >> 15;
hash ^= hash << 10;
// this avoids ever returning a hash code of 0, since that is used to
// signal "hash not computed yet", using a value that is likely to be
// effectively the same as 0 when the low bits are masked
if (hash == 0)
hash = 0x80000000;
return hash;
}
// put these early so they can be inlined
inline int UString::expandedSize(int size, int otherSize) const
{
int s = (size * 11 / 10) + 1 + otherSize;
return s;
}
inline int UString::usedCapacity() const
{
return m_rep->baseString ? m_rep->baseString->usedCapacity : m_rep->usedCapacity;
}
inline int UString::usedPreCapacity() const
{
return m_rep->baseString ? m_rep->baseString->usedPreCapacity : m_rep->usedPreCapacity;
}
void UString::expandCapacity(int requiredLength)
{
Rep *r = m_rep->baseString ? m_rep->baseString : rep();
if (requiredLength > r->capacity) {
int newCapacity = expandedSize(requiredLength, r->preCapacity);
r->buf = static_cast<UChar *>(fastRealloc(r->buf, newCapacity * sizeof(UChar)));
r->capacity = newCapacity - r->preCapacity;
}
if (requiredLength > r->usedCapacity) {
r->usedCapacity = requiredLength;
}
}
void UString::expandPreCapacity(int requiredPreCap)
{
Rep *r = m_rep->baseString ? m_rep->baseString : rep();
if (requiredPreCap > r->preCapacity) {
int newCapacity = expandedSize(requiredPreCap, r->capacity);
int delta = newCapacity - r->capacity - r->preCapacity;
UChar *newBuf = static_cast<UChar *>(fastMalloc(newCapacity * sizeof(UChar)));
memcpy(newBuf + delta, r->buf, (r->capacity + r->preCapacity) * sizeof(UChar));
fastFree(r->buf);
r->buf = newBuf;
r->preCapacity = newCapacity - r->capacity;
}
if (requiredPreCap > r->usedPreCapacity) {
r->usedPreCapacity = requiredPreCap;
}
}
UString::UString(const char *c)
{
if (!c) {
m_rep = &Rep::null;
return;
}
size_t length = strlen(c);
if (length == 0) {
m_rep = &Rep::empty;
return;
}
UChar *d = static_cast<UChar *>(fastMalloc(sizeof(UChar) * length));
for (size_t i = 0; i < length; i++)
d[i].uc = c[i];
m_rep = Rep::create(d, static_cast<int>(length));
}
UString::UString(const UChar *c, int length)
{
if (length == 0)
m_rep = &Rep::empty;
else
m_rep = Rep::createCopying(c, length);
}
UString::UString(UChar *c, int length, bool copy)
{
if (length == 0)
m_rep = &Rep::empty;
else if (copy)
m_rep = Rep::createCopying(c, length);
else
m_rep = Rep::create(c, length);
}
UString::UString(const UString &a, const UString &b)
{
int aSize = a.size();
int aOffset = a.m_rep->offset;
int bSize = b.size();
int bOffset = b.m_rep->offset;
int length = aSize + bSize;
// possible cases:
if (aSize == 0) {
// a is empty
m_rep = b.m_rep;
} else if (bSize == 0) {
// b is empty
m_rep = a.m_rep;
} else if (aOffset + aSize == a.usedCapacity() && 4 * aSize >= bSize &&
(-bOffset != b.usedPreCapacity() || aSize >= bSize)) {
// - a reaches the end of its buffer so it qualifies for shared append
// - also, it's at least a quarter the length of b - appending to a much shorter
// string does more harm than good
// - however, if b qualifies for prepend and is longer than a, we'd rather prepend
UString x(a);
x.expandCapacity(aOffset + length);
if (a.data()) {
memcpy(const_cast<UChar *>(a.data() + aSize), b.data(), bSize * sizeof(UChar));
m_rep = Rep::create(a.m_rep, 0, length);
} else
m_rep = &Rep::null;
} else if (-bOffset == b.usedPreCapacity() && 4 * bSize >= aSize) {
// - b reaches the beginning of its buffer so it qualifies for shared prepend
// - also, it's at least a quarter the length of a - prepending to a much shorter
// string does more harm than good
UString y(b);
y.expandPreCapacity(-bOffset + aSize);
if (b.data()) {
memcpy(const_cast<UChar *>(b.data() - aSize), a.data(), aSize * sizeof(UChar));
m_rep = Rep::create(b.m_rep, -aSize, length);
} else
m_rep = &Rep::null;
} else {
// a does not qualify for append, and b does not qualify for prepend, gotta make a whole new string
int newCapacity = expandedSize(length, 0);
UChar *d = static_cast<UChar *>(fastMalloc(sizeof(UChar) * newCapacity));
if (d) {
memcpy(d, a.data(), aSize * sizeof(UChar));
memcpy(d + aSize, b.data(), bSize * sizeof(UChar));
m_rep = Rep::create(d, length);
m_rep->capacity = newCapacity;
} else
m_rep = &Rep::null;
}
}
const UString& UString::null()
{
static UString* n = new UString;
return *n;
}
UString UString::from(int i)
{
UChar buf[1 + sizeof(i) * 3];
UChar *end = buf + sizeof(buf) / sizeof(UChar);
UChar *p = end;
if (i == 0) {
*--p = '0';
} else if (i == INT_MIN) {
char minBuf[1 + sizeof(i) * 3];
sprintf(minBuf, "%d", INT_MIN);
return UString(minBuf);
} else {
bool negative = false;
if (i < 0) {
negative = true;
i = -i;
}
while (i) {
*--p = (unsigned short)((i % 10) + '0');
i /= 10;
}
if (negative) {
*--p = '-';
}
}
return UString(p, static_cast<int>(end - p));
}
UString UString::from(unsigned int u)
{
UChar buf[sizeof(u) * 3];
UChar *end = buf + sizeof(buf) / sizeof(UChar);
UChar *p = end;
if (u == 0) {
*--p = '0';
} else {
while (u) {
*--p = (unsigned short)((u % 10) + '0');
u /= 10;
}
}
return UString(p, static_cast<int>(end - p));
}
UString UString::from(long l)
{
UChar buf[1 + sizeof(l) * 3];
UChar *end = buf + sizeof(buf) / sizeof(UChar);
UChar *p = end;
if (l == 0) {
*--p = '0';
} else if (l == LONG_MIN) {
char minBuf[1 + sizeof(l) * 3];
sprintf(minBuf, "%ld", LONG_MIN);
return UString(minBuf);
} else {
bool negative = false;
if (l < 0) {
negative = true;
l = -l;
}
while (l) {
*--p = (unsigned short)((l % 10) + '0');
l /= 10;
}
if (negative) {
*--p = '-';
}
}
return UString(p, static_cast<int>(end - p));
}
UString UString::from(double d)
{
// avoid ever printing -NaN, in JS conceptually there is only one NaN value
if (isNaN(d))
return "NaN";
char buf[80];
int decimalPoint;
int sign;
char *result = kjs_dtoa(d, 0, 0, &decimalPoint, &sign, NULL);
int length = static_cast<int>(strlen(result));
int i = 0;
if (sign) {
buf[i++] = '-';
}
if (decimalPoint <= 0 && decimalPoint > -6) {
buf[i++] = '0';
buf[i++] = '.';
for (int j = decimalPoint; j < 0; j++) {
buf[i++] = '0';
}
strcpy(buf + i, result);
} else if (decimalPoint <= 21 && decimalPoint > 0) {
if (length <= decimalPoint) {
strcpy(buf + i, result);
i += length;
for (int j = 0; j < decimalPoint - length; j++) {
buf[i++] = '0';
}
buf[i] = '\0';
} else {
strncpy(buf + i, result, decimalPoint);
i += decimalPoint;
buf[i++] = '.';
strcpy(buf + i, result + decimalPoint);
}
} else if (result[0] < '0' || result[0] > '9') {
strcpy(buf + i, result);
} else {
buf[i++] = result[0];
if (length > 1) {
buf[i++] = '.';
strcpy(buf + i, result + 1);
i += length - 1;
}
buf[i++] = 'e';
buf[i++] = (decimalPoint >= 0) ? '+' : '-';
// decimalPoint can't be more than 3 digits decimal given the
// nature of float representation
int exponential = decimalPoint - 1;
if (exponential < 0)
exponential = -exponential;
if (exponential >= 100)
buf[i++] = static_cast<char>('0' + exponential / 100);
if (exponential >= 10)
buf[i++] = static_cast<char>('0' + (exponential % 100) / 10);
buf[i++] = static_cast<char>('0' + exponential % 10);
buf[i++] = '\0';
}
kjs_freedtoa(result);
return UString(buf);
}
UString UString::spliceSubstringsWithSeparators(const Range* substringRanges, int rangeCount, const UString* separators, int separatorCount) const
{
if (rangeCount == 1 && separatorCount == 0) {
int thisSize = size();
int position = substringRanges[0].position;
int length = substringRanges[0].length;
if (position <= 0 && length >= thisSize)
return *this;
return UString::Rep::create(m_rep, max(0, position), min(thisSize, length));
}
int totalLength = 0;
for (int i = 0; i < rangeCount; i++)
totalLength += substringRanges[i].length;
for (int i = 0; i < separatorCount; i++)
totalLength += separators[i].size();
UChar* buffer = static_cast<UChar*>(fastMalloc(totalLength * sizeof(UChar)));
int maxCount = max(rangeCount, separatorCount);
int bufferPos = 0;
for (int i = 0; i < maxCount; i++) {
if (i < rangeCount) {
memcpy(buffer + bufferPos, data() + substringRanges[i].position, substringRanges[i].length * sizeof(UChar));
bufferPos += substringRanges[i].length;
}
if (i < separatorCount) {
memcpy(buffer + bufferPos, separators[i].data(), separators[i].size() * sizeof(UChar));
bufferPos += separators[i].size();
}
}
return UString::Rep::create(buffer, totalLength);
}
UString &UString::append(const UString &t)
{
int thisSize = size();
int thisOffset = m_rep->offset;
int tSize = t.size();
int length = thisSize + tSize;
// possible cases:
if (thisSize == 0) {
// this is empty
*this = t;
} else if (tSize == 0) {
// t is empty
} else if (!m_rep->baseString && m_rep->rc == 1) {
// this is direct and has refcount of 1 (so we can just alter it directly)
expandCapacity(thisOffset + length);
memcpy(const_cast<UChar *>(data() + thisSize), t.data(), tSize * sizeof(UChar));
m_rep->len = length;
m_rep->_hash = 0;
} else if (thisOffset + thisSize == usedCapacity()) {
// this reaches the end of the buffer - extend it
expandCapacity(thisOffset + length);
memcpy(const_cast<UChar *>(data() + thisSize), t.data(), tSize * sizeof(UChar));
m_rep = Rep::create(m_rep, 0, length);
} else {
// this is shared with someone using more capacity, gotta make a whole new string
int newCapacity = expandedSize(length, 0);
UChar *d = static_cast<UChar *>(fastMalloc(sizeof(UChar) * newCapacity));
memcpy(d, data(), thisSize * sizeof(UChar));
memcpy(const_cast<UChar *>(d + thisSize), t.data(), tSize * sizeof(UChar));
m_rep = Rep::create(d, length);
m_rep->capacity = newCapacity;
}
return *this;
}
UString &UString::append(const char *t)
{
int thisSize = size();
int thisOffset = m_rep->offset;
int tSize = static_cast<int>(strlen(t));
int length = thisSize + tSize;
// possible cases:
if (thisSize == 0) {
// this is empty
*this = t;
} else if (tSize == 0) {
// t is empty, we'll just return *this below.
} else if (!m_rep->baseString && m_rep->rc == 1) {
// this is direct and has refcount of 1 (so we can just alter it directly)
expandCapacity(thisOffset + length);
UChar *d = const_cast<UChar *>(data());
for (int i = 0; i < tSize; ++i)
d[thisSize+i] = t[i];
m_rep->len = length;
m_rep->_hash = 0;
} else if (thisOffset + thisSize == usedCapacity()) {
// this string reaches the end of the buffer - extend it
expandCapacity(thisOffset + length);
UChar *d = const_cast<UChar *>(data());
for (int i = 0; i < tSize; ++i)
d[thisSize+i] = t[i];
m_rep = Rep::create(m_rep, 0, length);
} else {
// this is shared with someone using more capacity, gotta make a whole new string
int newCapacity = expandedSize(length, 0);
UChar *d = static_cast<UChar *>(fastMalloc(sizeof(UChar) * newCapacity));
memcpy(d, data(), thisSize * sizeof(UChar));
for (int i = 0; i < tSize; ++i)
d[thisSize+i] = t[i];
m_rep = Rep::create(d, length);
m_rep->capacity = newCapacity;
}
return *this;
}
UString &UString::append(unsigned short c)
{
int thisOffset = m_rep->offset;
int length = size();
// possible cases:
if (length == 0) {
// this is empty - must make a new m_rep because we don't want to pollute the shared empty one
int newCapacity = expandedSize(1, 0);
UChar *d = static_cast<UChar *>(fastMalloc(sizeof(UChar) * newCapacity));
d[0] = c;
m_rep = Rep::create(d, 1);
m_rep->capacity = newCapacity;
} else if (!m_rep->baseString && m_rep->rc == 1) {
// this is direct and has refcount of 1 (so we can just alter it directly)
expandCapacity(thisOffset + length + 1);
UChar *d = const_cast<UChar *>(data());
d[length] = c;
m_rep->len = length + 1;
m_rep->_hash = 0;
} else if (thisOffset + length == usedCapacity()) {
// this reaches the end of the string - extend it and share
expandCapacity(thisOffset + length + 1);
UChar *d = const_cast<UChar *>(data());
d[length] = c;
m_rep = Rep::create(m_rep, 0, length + 1);
} else {
// this is shared with someone using more capacity, gotta make a whole new string
int newCapacity = expandedSize((length + 1), 0);
UChar *d = static_cast<UChar *>(fastMalloc(sizeof(UChar) * newCapacity));
memcpy(d, data(), length * sizeof(UChar));
d[length] = c;
m_rep = Rep::create(d, length + 1);
m_rep->capacity = newCapacity;
}
return *this;
}
CString UString::cstring() const
{
return ascii();
}
char *UString::ascii() const
{
// Never make the buffer smaller than normalStatBufferSize.
// Thus we almost never need to reallocate.
int length = size();
int neededSize = length + 1;
if (neededSize < normalStatBufferSize) {
neededSize = normalStatBufferSize;
}
if (neededSize != statBufferSize) {
delete [] statBuffer;
statBuffer = new char [neededSize];
statBufferSize = neededSize;
}
const UChar *p = data();
char *q = statBuffer;
const UChar *limit = p + length;
while (p != limit) {
*q = static_cast<char>(p->uc);
++p;
++q;
}
*q = '\0';
return statBuffer;
}
#ifdef KJS_DEBUG_MEM
void UString::globalClear()
{
delete [] statBuffer;
statBuffer = 0;
statBufferSize = 0;
}
#endif
UString &UString::operator=(const char *c)
{
int l = c ? static_cast<int>(strlen(c)) : 0;
UChar *d;
if (m_rep->rc == 1 && l <= m_rep->capacity && !m_rep->baseString && m_rep->offset == 0 && m_rep->preCapacity == 0) {
d = m_rep->buf;
m_rep->_hash = 0;
} else {
d = static_cast<UChar *>(fastMalloc(sizeof(UChar) * l));
m_rep = Rep::create(d, l);
}
for (int i = 0; i < l; i++)
d[i].uc = c[i];
return *this;
}
bool UString::is8Bit() const
{
const UChar *u = data();
const UChar *limit = u + size();
while (u < limit) {
if (u->uc > 0xFF)
return false;
++u;
}
return true;
}
UChar UString::operator[](int pos) const
{
if (pos >= size())
return '\0';
return data()[pos];
}
UCharReference UString::operator[](int pos)
{
/* TODO: boundary check */
return UCharReference(this, pos);
}
double UString::toDouble(bool tolerateTrailingJunk, bool tolerateEmptyString) const
{
double d;
// FIXME: If tolerateTrailingJunk is true, then we want to tolerate non-8-bit junk
// after the number, so is8Bit is too strict a check.
if (!is8Bit())
return NaN;
const char *c = ascii();
// skip leading white space
while (isspace(*c))
c++;
// empty string ?
if (*c == '\0')
return tolerateEmptyString ? 0.0 : NaN;
// hex number ?
if (*c == '0' && (*(c+1) == 'x' || *(c+1) == 'X')) {
const char* firstDigitPosition = c + 2;
c++;
d = 0.0;
while (*(++c)) {
if (*c >= '0' && *c <= '9')
d = d * 16.0 + *c - '0';
else if ((*c >= 'A' && *c <= 'F') || (*c >= 'a' && *c <= 'f'))
d = d * 16.0 + (*c & 0xdf) - 'A' + 10.0;
else
break;
}
if (d >= mantissaOverflowLowerBound)
d = parseIntOverflow(firstDigitPosition, c - firstDigitPosition, 16);
} else {
// regular number ?
char *end;
d = kjs_strtod(c, &end);
if ((d != 0.0 || end != c) && d != Inf && d != -Inf) {
c = end;
} else {
double sign = 1.0;
if (*c == '+')
c++;
else if (*c == '-') {
sign = -1.0;
c++;
}
// We used strtod() to do the conversion. However, strtod() handles
// infinite values slightly differently than JavaScript in that it
// converts the string "inf" with any capitalization to infinity,
// whereas the ECMA spec requires that it be converted to NaN.
if (strncmp(c, "Infinity", 8) == 0) {
d = sign * Inf;
c += 8;
} else if ((d == Inf || d == -Inf) && *c != 'I' && *c != 'i')
c = end;
else
return NaN;
}
}
// allow trailing white space
while (isspace(*c))
c++;
// don't allow anything after - unless tolerant=true
if (!tolerateTrailingJunk && *c != '\0')
d = NaN;
return d;
}
double UString::toDouble(bool tolerateTrailingJunk) const
{
return toDouble(tolerateTrailingJunk, true);
}
double UString::toDouble() const
{
return toDouble(false, true);
}
uint32_t UString::toUInt32(bool *ok) const
{
double d = toDouble();
bool b = true;
if (d != static_cast<uint32_t>(d)) {
b = false;
d = 0;
}
if (ok)
*ok = b;
return static_cast<uint32_t>(d);
}
uint32_t UString::toUInt32(bool *ok, bool tolerateEmptyString) const
{
double d = toDouble(false, tolerateEmptyString);
bool b = true;
if (d != static_cast<uint32_t>(d)) {
b = false;
d = 0;
}
if (ok)
*ok = b;
return static_cast<uint32_t>(d);
}
uint32_t UString::toStrictUInt32(bool *ok) const
{
if (ok)
*ok = false;
// Empty string is not OK.
int len = m_rep->len;
if (len == 0)
return 0;
const UChar *p = m_rep->data();
unsigned short c = p->unicode();
// If the first digit is 0, only 0 itself is OK.
if (c == '0') {
if (len == 1 && ok)
*ok = true;
return 0;
}
// Convert to UInt32, checking for overflow.
uint32_t i = 0;
while (1) {
// Process character, turning it into a digit.
if (c < '0' || c > '9')
return 0;
const unsigned d = c - '0';
// Multiply by 10, checking for overflow out of 32 bits.
if (i > 0xFFFFFFFFU / 10)
return 0;
i *= 10;
// Add in the digit, checking for overflow out of 32 bits.
const unsigned max = 0xFFFFFFFFU - d;
if (i > max)
return 0;
i += d;
// Handle end of string.
if (--len == 0) {
if (ok)
*ok = true;
return i;
}
// Get next character.
c = (++p)->unicode();
}
}
int UString::find(const UString &f, int pos) const
{
int sz = size();
int fsz = f.size();
if (sz < fsz)
return -1;
if (pos < 0)
pos = 0;
if (fsz == 0)
return pos;
const UChar *end = data() + sz - fsz;
int fsizeminusone = (fsz - 1) * sizeof(UChar);
const UChar *fdata = f.data();
unsigned short fchar = fdata->uc;
++fdata;
for (const UChar *c = data() + pos; c <= end; c++)
if (c->uc == fchar && !memcmp(c + 1, fdata, fsizeminusone))
return static_cast<int>(c - data());
return -1;
}
int UString::find(UChar ch, int pos) const
{
if (pos < 0)
pos = 0;
const UChar *end = data() + size();
for (const UChar *c = data() + pos; c < end; c++)
if (*c == ch)
return static_cast<int>(c - data());
return -1;
}
int UString::rfind(const UString &f, int pos) const
{
int sz = size();
int fsz = f.size();
if (sz < fsz)
return -1;
if (pos < 0)
pos = 0;
if (pos > sz - fsz)
pos = sz - fsz;
if (fsz == 0)
return pos;
int fsizeminusone = (fsz - 1) * sizeof(UChar);
const UChar *fdata = f.data();
for (const UChar *c = data() + pos; c >= data(); c--) {
if (*c == *fdata && !memcmp(c + 1, fdata + 1, fsizeminusone))
return static_cast<int>(c - data());
}
return -1;
}
int UString::rfind(UChar ch, int pos) const
{
if (isEmpty())
return -1;
if (pos + 1 >= size())
pos = size() - 1;
for (const UChar *c = data() + pos; c >= data(); c--) {
if (*c == ch)
return static_cast<int>(c-data());
}
return -1;
}
UString UString::substr(int pos, int len) const
{
int s = size();
if (pos < 0)
pos = 0;
else if (pos >= s)
pos = s;
if (len < 0)
len = s;
if (pos + len >= s)
len = s - pos;
if (pos == 0 && len == s)
return *this;
return UString(Rep::create(m_rep, pos, len));
}
void UString::copyForWriting()
{
if (m_rep->rc > 1 || m_rep->baseString) {
int l = size();
UChar *n = static_cast<UChar *>(fastMalloc(sizeof(UChar) * l));
memcpy(n, data(), l * sizeof(UChar));
m_rep = Rep::create(n, l);
}
}
bool operator==(const UString& s1, const UString& s2)
{
if (s1.m_rep->len != s2.m_rep->len)
return false;
return (memcmp(s1.m_rep->data(), s2.m_rep->data(),
s1.m_rep->len * sizeof(UChar)) == 0);
}
bool operator==(const UString& s1, const char *s2)
{
if (s2 == 0) {
return s1.isEmpty();
}
const UChar *u = s1.data();
const UChar *uend = u + s1.size();
while (u != uend && *s2) {
if (u->uc != (unsigned char)*s2)
return false;
s2++;
u++;
}
return u == uend && *s2 == 0;
}
bool operator<(const UString& s1, const UString& s2)
{
const int l1 = s1.size();
const int l2 = s2.size();
const int lmin = l1 < l2 ? l1 : l2;
const UChar *c1 = s1.data();
const UChar *c2 = s2.data();
int l = 0;
while (l < lmin && *c1 == *c2) {
c1++;
c2++;
l++;
}
if (l < lmin)
return (c1->uc < c2->uc);
return (l1 < l2);
}
int compare(const UString& s1, const UString& s2)
{
const int l1 = s1.size();
const int l2 = s2.size();
const int lmin = l1 < l2 ? l1 : l2;
const UChar *c1 = s1.data();
const UChar *c2 = s2.data();
int l = 0;
while (l < lmin && *c1 == *c2) {
c1++;
c2++;
l++;
}
if (l < lmin)
return (c1->uc > c2->uc) ? 1 : -1;
if (l1 == l2)
return 0;
return (l1 > l2) ? 1 : -1;
}
inline int inlineUTF8SequenceLengthNonASCII(char b0)
{
if ((b0 & 0xC0) != 0xC0)
return 0;
if ((b0 & 0xE0) == 0xC0)
return 2;
if ((b0 & 0xF0) == 0xE0)
return 3;
if ((b0 & 0xF8) == 0xF0)
return 4;
return 0;
}
int UTF8SequenceLengthNonASCII(char b0)
{
return inlineUTF8SequenceLengthNonASCII(b0);
}
inline int inlineUTF8SequenceLength(char b0)
{
return (b0 & 0x80) == 0 ? 1 : UTF8SequenceLengthNonASCII(b0);
}
// Given a first byte, gives the length of the UTF-8 sequence it begins.
// Returns 0 for bytes that are not legal starts of UTF-8 sequences.
// Only allows sequences of up to 4 bytes, since that works for all Unicode characters (U-00000000 to U-0010FFFF).
int UTF8SequenceLength(char b0)
{
return (b0 & 0x80) == 0 ? 1 : inlineUTF8SequenceLengthNonASCII(b0);
}
// Takes a null-terminated C-style string with a UTF-8 sequence in it and converts it to a character.
// Only allows Unicode characters (U-00000000 to U-0010FFFF).
// Returns -1 if the sequence is not valid (including presence of extra bytes).
int decodeUTF8Sequence(const char *sequence)
{
// Handle 0-byte sequences (never valid).
const unsigned char b0 = sequence[0];
const int length = inlineUTF8SequenceLength(b0);
if (length == 0)
return -1;
// Handle 1-byte sequences (plain ASCII).
const unsigned char b1 = sequence[1];
if (length == 1) {
if (b1)
return -1;
return b0;
}
// Handle 2-byte sequences.
if ((b1 & 0xC0) != 0x80)
return -1;
const unsigned char b2 = sequence[2];
if (length == 2) {
if (b2)
return -1;
const int c = ((b0 & 0x1F) << 6) | (b1 & 0x3F);
if (c < 0x80)
return -1;
return c;
}
// Handle 3-byte sequences.
if ((b2 & 0xC0) != 0x80)
return -1;
const unsigned char b3 = sequence[3];
if (length == 3) {
if (b3)
return -1;
const int c = ((b0 & 0xF) << 12) | ((b1 & 0x3F) << 6) | (b2 & 0x3F);
if (c < 0x800)
return -1;
// UTF-16 surrogates should never appear in UTF-8 data.
if (c >= 0xD800 && c <= 0xDFFF)
return -1;
// Backwards BOM and U+FFFF should never appear in UTF-8 data.
if (c == 0xFFFE || c == 0xFFFF)
return -1;
return c;
}
// Handle 4-byte sequences.
if ((b3 & 0xC0) != 0x80)
return -1;
const unsigned char b4 = sequence[4];
if (length == 4) {
if (b4)
return -1;
const int c = ((b0 & 0x7) << 18) | ((b1 & 0x3F) << 12) | ((b2 & 0x3F) << 6) | (b3 & 0x3F);
if (c < 0x10000 || c > 0x10FFFF)
return -1;
return c;
}
return -1;
}
CString UString::UTF8String() const
{
// Allocate a buffer big enough to hold all the characters.
const int length = size();
Vector<char, 1024> buffer(length * 3);
// Convert to runs of 8-bit characters.
char *p = buffer.begin();
const UChar *d = data();
for (int i = 0; i != length; ++i) {
unsigned short c = d[i].unicode();
if (c < 0x80) {
*p++ = (char)c;
} else if (c < 0x800) {
*p++ = (char)((c >> 6) | 0xC0); // C0 is the 2-byte flag for UTF-8
*p++ = (char)((c | 0x80) & 0xBF); // next 6 bits, with high bit set
} else if (c >= 0xD800 && c <= 0xDBFF && i < length && d[i+1].uc >= 0xDC00 && d[i+1].uc <= 0xDFFF) {
unsigned sc = 0x10000 + (((c & 0x3FF) << 10) | (d[i+1].uc & 0x3FF));
*p++ = (char)((sc >> 18) | 0xF0); // F0 is the 4-byte flag for UTF-8
*p++ = (char)(((sc >> 12) | 0x80) & 0xBF); // next 6 bits, with high bit set
*p++ = (char)(((sc >> 6) | 0x80) & 0xBF); // next 6 bits, with high bit set
*p++ = (char)((sc | 0x80) & 0xBF); // next 6 bits, with high bit set
++i;
} else {
*p++ = (char)((c >> 12) | 0xE0); // E0 is the 3-byte flag for UTF-8
*p++ = (char)(((c >> 6) | 0x80) & 0xBF); // next 6 bits, with high bit set
*p++ = (char)((c | 0x80) & 0xBF); // next 6 bits, with high bit set
}
}
// Return the result as a C string.
CString result(buffer, p - buffer);
return result;
}
} // namespace KJS