blob: 5672fa0504eb340292bac6e5bcc35cea94705279 [file] [log] [blame]
/*
* Copyright (C) 2009, 2012-2016 Apple Inc. All rights reserved.
* Copyright (C) 2010 Patrick Gansterer <paroga@paroga.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if ENABLE(JIT)
#include "JIT.h"
#include "BasicBlockLocation.h"
#include "Exception.h"
#include "Heap.h"
#include "Interpreter.h"
#include "JITInlines.h"
#include "JSArray.h"
#include "JSCell.h"
#include "JSFunction.h"
#include "JSPropertyNameEnumerator.h"
#include "LinkBuffer.h"
#include "MaxFrameExtentForSlowPathCall.h"
#include "SlowPathCall.h"
#include "TypeLocation.h"
#include "TypeProfilerLog.h"
#include "VirtualRegister.h"
#include "Watchdog.h"
namespace JSC {
#if USE(JSVALUE64)
JIT::CodeRef JIT::privateCompileCTINativeCall(VM* vm, NativeFunction)
{
return vm->getCTIStub(nativeCallGenerator);
}
void JIT::emit_op_mov(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int src = currentInstruction[2].u.operand;
emitGetVirtualRegister(src, regT0);
emitPutVirtualRegister(dst);
}
void JIT::emit_op_end(Instruction* currentInstruction)
{
RELEASE_ASSERT(returnValueGPR != callFrameRegister);
emitGetVirtualRegister(currentInstruction[1].u.operand, returnValueGPR);
emitRestoreCalleeSaves();
emitFunctionEpilogue();
ret();
}
void JIT::emit_op_jmp(Instruction* currentInstruction)
{
unsigned target = currentInstruction[1].u.operand;
addJump(jump(), target);
}
void JIT::emit_op_new_object(Instruction* currentInstruction)
{
Structure* structure = currentInstruction[3].u.objectAllocationProfile->structure();
size_t allocationSize = JSFinalObject::allocationSize(structure->inlineCapacity());
MarkedAllocator* allocator = m_vm->heap.allocatorForObjectWithoutDestructor(allocationSize);
RegisterID resultReg = regT0;
RegisterID allocatorReg = regT1;
RegisterID scratchReg = regT2;
move(TrustedImmPtr(allocator), allocatorReg);
if (allocator)
addSlowCase(Jump());
JumpList slowCases;
emitAllocateJSObject(resultReg, allocator, allocatorReg, TrustedImmPtr(structure), TrustedImmPtr(0), scratchReg, slowCases);
emitInitializeInlineStorage(resultReg, structure->inlineCapacity());
addSlowCase(slowCases);
emitPutVirtualRegister(currentInstruction[1].u.operand);
}
void JIT::emitSlow_op_new_object(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
linkSlowCase(iter);
int dst = currentInstruction[1].u.operand;
Structure* structure = currentInstruction[3].u.objectAllocationProfile->structure();
callOperation(operationNewObject, structure);
emitStoreCell(dst, returnValueGPR);
}
void JIT::emit_op_overrides_has_instance(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int constructor = currentInstruction[2].u.operand;
int hasInstanceValue = currentInstruction[3].u.operand;
emitGetVirtualRegister(hasInstanceValue, regT0);
// We don't jump if we know what Symbol.hasInstance would do.
Jump customhasInstanceValue = branchPtr(NotEqual, regT0, TrustedImmPtr(m_codeBlock->globalObject()->functionProtoHasInstanceSymbolFunction()));
emitGetVirtualRegister(constructor, regT0);
// Check that constructor 'ImplementsDefaultHasInstance' i.e. the object is not a C-API user nor a bound function.
test8(Zero, Address(regT0, JSCell::typeInfoFlagsOffset()), TrustedImm32(ImplementsDefaultHasInstance), regT0);
emitTagBool(regT0);
Jump done = jump();
customhasInstanceValue.link(this);
move(TrustedImm32(ValueTrue), regT0);
done.link(this);
emitPutVirtualRegister(dst);
}
void JIT::emit_op_instanceof(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int value = currentInstruction[2].u.operand;
int proto = currentInstruction[3].u.operand;
// Load the operands (baseVal, proto, and value respectively) into registers.
// We use regT0 for baseVal since we will be done with this first, and we can then use it for the result.
emitGetVirtualRegister(value, regT2);
emitGetVirtualRegister(proto, regT1);
// Check that proto are cells. baseVal must be a cell - this is checked by the get_by_id for Symbol.hasInstance.
emitJumpSlowCaseIfNotJSCell(regT2, value);
emitJumpSlowCaseIfNotJSCell(regT1, proto);
// Check that prototype is an object
addSlowCase(emitJumpIfCellNotObject(regT1));
// Optimistically load the result true, and start looping.
// Initially, regT1 still contains proto and regT2 still contains value.
// As we loop regT2 will be updated with its prototype, recursively walking the prototype chain.
move(TrustedImm64(JSValue::encode(jsBoolean(true))), regT0);
Label loop(this);
addSlowCase(branch8(Equal, Address(regT2, JSCell::typeInfoTypeOffset()), TrustedImm32(ProxyObjectType)));
// Load the prototype of the object in regT2. If this is equal to regT1 - WIN!
// Otherwise, check if we've hit null - if we have then drop out of the loop, if not go again.
emitLoadStructure(regT2, regT2, regT3);
load64(Address(regT2, Structure::prototypeOffset()), regT2);
Jump isInstance = branchPtr(Equal, regT2, regT1);
emitJumpIfJSCell(regT2).linkTo(loop, this);
// We get here either by dropping out of the loop, or if value was not an Object. Result is false.
move(TrustedImm64(JSValue::encode(jsBoolean(false))), regT0);
// isInstance jumps right down to here, to skip setting the result to false (it has already set true).
isInstance.link(this);
emitPutVirtualRegister(dst);
}
void JIT::emit_op_instanceof_custom(Instruction*)
{
// This always goes to slow path since we expect it to be rare.
addSlowCase(jump());
}
void JIT::emit_op_is_empty(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int value = currentInstruction[2].u.operand;
emitGetVirtualRegister(value, regT0);
compare64(Equal, regT0, TrustedImm32(JSValue::encode(JSValue())), regT0);
emitTagBool(regT0);
emitPutVirtualRegister(dst);
}
void JIT::emit_op_is_undefined(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int value = currentInstruction[2].u.operand;
emitGetVirtualRegister(value, regT0);
Jump isCell = emitJumpIfJSCell(regT0);
compare64(Equal, regT0, TrustedImm32(ValueUndefined), regT0);
Jump done = jump();
isCell.link(this);
Jump isMasqueradesAsUndefined = branchTest8(NonZero, Address(regT0, JSCell::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined));
move(TrustedImm32(0), regT0);
Jump notMasqueradesAsUndefined = jump();
isMasqueradesAsUndefined.link(this);
emitLoadStructure(regT0, regT1, regT2);
move(TrustedImmPtr(m_codeBlock->globalObject()), regT0);
loadPtr(Address(regT1, Structure::globalObjectOffset()), regT1);
comparePtr(Equal, regT0, regT1, regT0);
notMasqueradesAsUndefined.link(this);
done.link(this);
emitTagBool(regT0);
emitPutVirtualRegister(dst);
}
void JIT::emit_op_is_boolean(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int value = currentInstruction[2].u.operand;
emitGetVirtualRegister(value, regT0);
xor64(TrustedImm32(static_cast<int32_t>(ValueFalse)), regT0);
test64(Zero, regT0, TrustedImm32(static_cast<int32_t>(~1)), regT0);
emitTagBool(regT0);
emitPutVirtualRegister(dst);
}
void JIT::emit_op_is_number(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int value = currentInstruction[2].u.operand;
emitGetVirtualRegister(value, regT0);
test64(NonZero, regT0, tagTypeNumberRegister, regT0);
emitTagBool(regT0);
emitPutVirtualRegister(dst);
}
void JIT::emit_op_is_cell_with_type(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int value = currentInstruction[2].u.operand;
int type = currentInstruction[3].u.operand;
emitGetVirtualRegister(value, regT0);
Jump isNotCell = emitJumpIfNotJSCell(regT0);
compare8(Equal, Address(regT0, JSCell::typeInfoTypeOffset()), TrustedImm32(type), regT0);
emitTagBool(regT0);
Jump done = jump();
isNotCell.link(this);
move(TrustedImm32(ValueFalse), regT0);
done.link(this);
emitPutVirtualRegister(dst);
}
void JIT::emit_op_is_object(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int value = currentInstruction[2].u.operand;
emitGetVirtualRegister(value, regT0);
Jump isNotCell = emitJumpIfNotJSCell(regT0);
compare8(AboveOrEqual, Address(regT0, JSCell::typeInfoTypeOffset()), TrustedImm32(ObjectType), regT0);
emitTagBool(regT0);
Jump done = jump();
isNotCell.link(this);
move(TrustedImm32(ValueFalse), regT0);
done.link(this);
emitPutVirtualRegister(dst);
}
void JIT::emit_op_ret(Instruction* currentInstruction)
{
ASSERT(callFrameRegister != regT1);
ASSERT(regT1 != returnValueGPR);
ASSERT(returnValueGPR != callFrameRegister);
// Return the result in %eax.
emitGetVirtualRegister(currentInstruction[1].u.operand, returnValueGPR);
checkStackPointerAlignment();
emitRestoreCalleeSaves();
emitFunctionEpilogue();
ret();
}
void JIT::emit_op_to_primitive(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int src = currentInstruction[2].u.operand;
emitGetVirtualRegister(src, regT0);
Jump isImm = emitJumpIfNotJSCell(regT0);
addSlowCase(emitJumpIfCellObject(regT0));
isImm.link(this);
if (dst != src)
emitPutVirtualRegister(dst);
}
void JIT::emit_op_set_function_name(Instruction* currentInstruction)
{
emitGetVirtualRegister(currentInstruction[1].u.operand, regT0);
emitGetVirtualRegister(currentInstruction[2].u.operand, regT1);
callOperation(operationSetFunctionName, regT0, regT1);
}
void JIT::emit_op_strcat(Instruction* currentInstruction)
{
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_strcat);
slowPathCall.call();
}
void JIT::emit_op_not(Instruction* currentInstruction)
{
emitGetVirtualRegister(currentInstruction[2].u.operand, regT0);
// Invert against JSValue(false); if the value was tagged as a boolean, then all bits will be
// clear other than the low bit (which will be 0 or 1 for false or true inputs respectively).
// Then invert against JSValue(true), which will add the tag back in, and flip the low bit.
xor64(TrustedImm32(static_cast<int32_t>(ValueFalse)), regT0);
addSlowCase(branchTestPtr(NonZero, regT0, TrustedImm32(static_cast<int32_t>(~1))));
xor64(TrustedImm32(static_cast<int32_t>(ValueTrue)), regT0);
emitPutVirtualRegister(currentInstruction[1].u.operand);
}
void JIT::emit_op_jfalse(Instruction* currentInstruction)
{
unsigned target = currentInstruction[2].u.operand;
GPRReg value = regT0;
GPRReg result = regT1;
GPRReg scratch = regT2;
bool shouldCheckMasqueradesAsUndefined = true;
emitGetVirtualRegister(currentInstruction[1].u.operand, value);
emitConvertValueToBoolean(JSValueRegs(value), result, scratch, fpRegT0, fpRegT1, shouldCheckMasqueradesAsUndefined, m_codeBlock->globalObject());
addJump(branchTest32(Zero, result), target);
}
void JIT::emit_op_jeq_null(Instruction* currentInstruction)
{
int src = currentInstruction[1].u.operand;
unsigned target = currentInstruction[2].u.operand;
emitGetVirtualRegister(src, regT0);
Jump isImmediate = emitJumpIfNotJSCell(regT0);
// First, handle JSCell cases - check MasqueradesAsUndefined bit on the structure.
Jump isNotMasqueradesAsUndefined = branchTest8(Zero, Address(regT0, JSCell::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined));
emitLoadStructure(regT0, regT2, regT1);
move(TrustedImmPtr(m_codeBlock->globalObject()), regT0);
addJump(branchPtr(Equal, Address(regT2, Structure::globalObjectOffset()), regT0), target);
Jump masqueradesGlobalObjectIsForeign = jump();
// Now handle the immediate cases - undefined & null
isImmediate.link(this);
and64(TrustedImm32(~TagBitUndefined), regT0);
addJump(branch64(Equal, regT0, TrustedImm64(JSValue::encode(jsNull()))), target);
isNotMasqueradesAsUndefined.link(this);
masqueradesGlobalObjectIsForeign.link(this);
};
void JIT::emit_op_jneq_null(Instruction* currentInstruction)
{
int src = currentInstruction[1].u.operand;
unsigned target = currentInstruction[2].u.operand;
emitGetVirtualRegister(src, regT0);
Jump isImmediate = emitJumpIfNotJSCell(regT0);
// First, handle JSCell cases - check MasqueradesAsUndefined bit on the structure.
addJump(branchTest8(Zero, Address(regT0, JSCell::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined)), target);
emitLoadStructure(regT0, regT2, regT1);
move(TrustedImmPtr(m_codeBlock->globalObject()), regT0);
addJump(branchPtr(NotEqual, Address(regT2, Structure::globalObjectOffset()), regT0), target);
Jump wasNotImmediate = jump();
// Now handle the immediate cases - undefined & null
isImmediate.link(this);
and64(TrustedImm32(~TagBitUndefined), regT0);
addJump(branch64(NotEqual, regT0, TrustedImm64(JSValue::encode(jsNull()))), target);
wasNotImmediate.link(this);
}
void JIT::emit_op_jneq_ptr(Instruction* currentInstruction)
{
int src = currentInstruction[1].u.operand;
Special::Pointer ptr = currentInstruction[2].u.specialPointer;
unsigned target = currentInstruction[3].u.operand;
emitGetVirtualRegister(src, regT0);
CCallHelpers::Jump equal = branchPtr(Equal, regT0, TrustedImmPtr(actualPointerFor(m_codeBlock, ptr)));
store32(TrustedImm32(1), &currentInstruction[4].u.operand);
addJump(jump(), target);
equal.link(this);
}
void JIT::emit_op_eq(Instruction* currentInstruction)
{
emitGetVirtualRegisters(currentInstruction[2].u.operand, regT0, currentInstruction[3].u.operand, regT1);
emitJumpSlowCaseIfNotInt(regT0, regT1, regT2);
compare32(Equal, regT1, regT0, regT0);
emitTagBool(regT0);
emitPutVirtualRegister(currentInstruction[1].u.operand);
}
void JIT::emit_op_jtrue(Instruction* currentInstruction)
{
unsigned target = currentInstruction[2].u.operand;
GPRReg value = regT0;
GPRReg result = regT1;
GPRReg scratch = regT2;
bool shouldCheckMasqueradesAsUndefined = true;
emitGetVirtualRegister(currentInstruction[1].u.operand, value);
emitConvertValueToBoolean(JSValueRegs(value), result, scratch, fpRegT0, fpRegT1, shouldCheckMasqueradesAsUndefined, m_codeBlock->globalObject());
addJump(branchTest32(NonZero, result), target);
}
void JIT::emit_op_neq(Instruction* currentInstruction)
{
emitGetVirtualRegisters(currentInstruction[2].u.operand, regT0, currentInstruction[3].u.operand, regT1);
emitJumpSlowCaseIfNotInt(regT0, regT1, regT2);
compare32(NotEqual, regT1, regT0, regT0);
emitTagBool(regT0);
emitPutVirtualRegister(currentInstruction[1].u.operand);
}
void JIT::emit_op_throw(Instruction* currentInstruction)
{
ASSERT(regT0 == returnValueGPR);
copyCalleeSavesToVMEntryFrameCalleeSavesBuffer();
emitGetVirtualRegister(currentInstruction[1].u.operand, regT0);
callOperationNoExceptionCheck(operationThrow, regT0);
jumpToExceptionHandler();
}
void JIT::emit_op_push_with_scope(Instruction* currentInstruction)
{
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_push_with_scope);
slowPathCall.call();
}
void JIT::compileOpStrictEq(Instruction* currentInstruction, CompileOpStrictEqType type)
{
int dst = currentInstruction[1].u.operand;
int src1 = currentInstruction[2].u.operand;
int src2 = currentInstruction[3].u.operand;
emitGetVirtualRegisters(src1, regT0, src2, regT1);
// Jump slow if both are cells (to cover strings).
move(regT0, regT2);
or64(regT1, regT2);
addSlowCase(emitJumpIfJSCell(regT2));
// Jump slow if either is a double. First test if it's an integer, which is fine, and then test
// if it's a double.
Jump leftOK = emitJumpIfInt(regT0);
addSlowCase(emitJumpIfNumber(regT0));
leftOK.link(this);
Jump rightOK = emitJumpIfInt(regT1);
addSlowCase(emitJumpIfNumber(regT1));
rightOK.link(this);
if (type == OpStrictEq)
compare64(Equal, regT1, regT0, regT0);
else
compare64(NotEqual, regT1, regT0, regT0);
emitTagBool(regT0);
emitPutVirtualRegister(dst);
}
void JIT::emit_op_stricteq(Instruction* currentInstruction)
{
compileOpStrictEq(currentInstruction, OpStrictEq);
}
void JIT::emit_op_nstricteq(Instruction* currentInstruction)
{
compileOpStrictEq(currentInstruction, OpNStrictEq);
}
void JIT::emit_op_to_number(Instruction* currentInstruction)
{
int dstVReg = currentInstruction[1].u.operand;
int srcVReg = currentInstruction[2].u.operand;
emitGetVirtualRegister(srcVReg, regT0);
addSlowCase(emitJumpIfNotNumber(regT0));
emitValueProfilingSite();
if (srcVReg != dstVReg)
emitPutVirtualRegister(dstVReg);
}
void JIT::emit_op_to_string(Instruction* currentInstruction)
{
int srcVReg = currentInstruction[2].u.operand;
emitGetVirtualRegister(srcVReg, regT0);
addSlowCase(emitJumpIfNotJSCell(regT0));
addSlowCase(branch8(NotEqual, Address(regT0, JSCell::typeInfoTypeOffset()), TrustedImm32(StringType)));
emitPutVirtualRegister(currentInstruction[1].u.operand);
}
void JIT::emit_op_catch(Instruction* currentInstruction)
{
restoreCalleeSavesFromVMEntryFrameCalleeSavesBuffer();
move(TrustedImmPtr(m_vm), regT3);
load64(Address(regT3, VM::callFrameForCatchOffset()), callFrameRegister);
storePtr(TrustedImmPtr(nullptr), Address(regT3, VM::callFrameForCatchOffset()));
addPtr(TrustedImm32(stackPointerOffsetFor(codeBlock()) * sizeof(Register)), callFrameRegister, stackPointerRegister);
callOperationNoExceptionCheck(operationCheckIfExceptionIsUncatchableAndNotifyProfiler);
Jump isCatchableException = branchTest32(Zero, returnValueGPR);
jumpToExceptionHandler();
isCatchableException.link(this);
move(TrustedImmPtr(m_vm), regT3);
load64(Address(regT3, VM::exceptionOffset()), regT0);
store64(TrustedImm64(JSValue::encode(JSValue())), Address(regT3, VM::exceptionOffset()));
emitPutVirtualRegister(currentInstruction[1].u.operand);
load64(Address(regT0, Exception::valueOffset()), regT0);
emitPutVirtualRegister(currentInstruction[2].u.operand);
}
void JIT::emit_op_assert(Instruction* currentInstruction)
{
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_assert);
slowPathCall.call();
}
void JIT::emit_op_create_lexical_environment(Instruction* currentInstruction)
{
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_create_lexical_environment);
slowPathCall.call();
}
void JIT::emit_op_get_parent_scope(Instruction* currentInstruction)
{
int currentScope = currentInstruction[2].u.operand;
emitGetVirtualRegister(currentScope, regT0);
loadPtr(Address(regT0, JSScope::offsetOfNext()), regT0);
emitStoreCell(currentInstruction[1].u.operand, regT0);
}
void JIT::emit_op_switch_imm(Instruction* currentInstruction)
{
size_t tableIndex = currentInstruction[1].u.operand;
unsigned defaultOffset = currentInstruction[2].u.operand;
unsigned scrutinee = currentInstruction[3].u.operand;
// create jump table for switch destinations, track this switch statement.
SimpleJumpTable* jumpTable = &m_codeBlock->switchJumpTable(tableIndex);
m_switches.append(SwitchRecord(jumpTable, m_bytecodeOffset, defaultOffset, SwitchRecord::Immediate));
jumpTable->ensureCTITable();
emitGetVirtualRegister(scrutinee, regT0);
callOperation(operationSwitchImmWithUnknownKeyType, regT0, tableIndex);
jump(returnValueGPR);
}
void JIT::emit_op_switch_char(Instruction* currentInstruction)
{
size_t tableIndex = currentInstruction[1].u.operand;
unsigned defaultOffset = currentInstruction[2].u.operand;
unsigned scrutinee = currentInstruction[3].u.operand;
// create jump table for switch destinations, track this switch statement.
SimpleJumpTable* jumpTable = &m_codeBlock->switchJumpTable(tableIndex);
m_switches.append(SwitchRecord(jumpTable, m_bytecodeOffset, defaultOffset, SwitchRecord::Character));
jumpTable->ensureCTITable();
emitGetVirtualRegister(scrutinee, regT0);
callOperation(operationSwitchCharWithUnknownKeyType, regT0, tableIndex);
jump(returnValueGPR);
}
void JIT::emit_op_switch_string(Instruction* currentInstruction)
{
size_t tableIndex = currentInstruction[1].u.operand;
unsigned defaultOffset = currentInstruction[2].u.operand;
unsigned scrutinee = currentInstruction[3].u.operand;
// create jump table for switch destinations, track this switch statement.
StringJumpTable* jumpTable = &m_codeBlock->stringSwitchJumpTable(tableIndex);
m_switches.append(SwitchRecord(jumpTable, m_bytecodeOffset, defaultOffset));
emitGetVirtualRegister(scrutinee, regT0);
callOperation(operationSwitchStringWithUnknownKeyType, regT0, tableIndex);
jump(returnValueGPR);
}
void JIT::emit_op_debug(Instruction* currentInstruction)
{
load32(codeBlock()->debuggerRequestsAddress(), regT0);
Jump noDebuggerRequests = branchTest32(Zero, regT0);
callOperation(operationDebug, currentInstruction[1].u.operand);
noDebuggerRequests.link(this);
}
void JIT::emit_op_eq_null(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int src1 = currentInstruction[2].u.operand;
emitGetVirtualRegister(src1, regT0);
Jump isImmediate = emitJumpIfNotJSCell(regT0);
Jump isMasqueradesAsUndefined = branchTest8(NonZero, Address(regT0, JSCell::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined));
move(TrustedImm32(0), regT0);
Jump wasNotMasqueradesAsUndefined = jump();
isMasqueradesAsUndefined.link(this);
emitLoadStructure(regT0, regT2, regT1);
move(TrustedImmPtr(m_codeBlock->globalObject()), regT0);
loadPtr(Address(regT2, Structure::globalObjectOffset()), regT2);
comparePtr(Equal, regT0, regT2, regT0);
Jump wasNotImmediate = jump();
isImmediate.link(this);
and64(TrustedImm32(~TagBitUndefined), regT0);
compare64(Equal, regT0, TrustedImm32(ValueNull), regT0);
wasNotImmediate.link(this);
wasNotMasqueradesAsUndefined.link(this);
emitTagBool(regT0);
emitPutVirtualRegister(dst);
}
void JIT::emit_op_neq_null(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int src1 = currentInstruction[2].u.operand;
emitGetVirtualRegister(src1, regT0);
Jump isImmediate = emitJumpIfNotJSCell(regT0);
Jump isMasqueradesAsUndefined = branchTest8(NonZero, Address(regT0, JSCell::typeInfoFlagsOffset()), TrustedImm32(MasqueradesAsUndefined));
move(TrustedImm32(1), regT0);
Jump wasNotMasqueradesAsUndefined = jump();
isMasqueradesAsUndefined.link(this);
emitLoadStructure(regT0, regT2, regT1);
move(TrustedImmPtr(m_codeBlock->globalObject()), regT0);
loadPtr(Address(regT2, Structure::globalObjectOffset()), regT2);
comparePtr(NotEqual, regT0, regT2, regT0);
Jump wasNotImmediate = jump();
isImmediate.link(this);
and64(TrustedImm32(~TagBitUndefined), regT0);
compare64(NotEqual, regT0, TrustedImm32(ValueNull), regT0);
wasNotImmediate.link(this);
wasNotMasqueradesAsUndefined.link(this);
emitTagBool(regT0);
emitPutVirtualRegister(dst);
}
void JIT::emit_op_enter(Instruction*)
{
// Even though CTI doesn't use them, we initialize our constant
// registers to zap stale pointers, to avoid unnecessarily prolonging
// object lifetime and increasing GC pressure.
size_t count = m_codeBlock->m_numVars;
for (size_t j = CodeBlock::llintBaselineCalleeSaveSpaceAsVirtualRegisters(); j < count; ++j)
emitInitRegister(virtualRegisterForLocal(j).offset());
emitWriteBarrier(m_codeBlock);
emitEnterOptimizationCheck();
}
void JIT::emit_op_get_scope(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
emitGetFromCallFrameHeaderPtr(CallFrameSlot::callee, regT0);
loadPtr(Address(regT0, JSFunction::offsetOfScopeChain()), regT0);
emitStoreCell(dst, regT0);
}
void JIT::emit_op_to_this(Instruction* currentInstruction)
{
WriteBarrierBase<Structure>* cachedStructure = &currentInstruction[2].u.structure;
emitGetVirtualRegister(currentInstruction[1].u.operand, regT1);
emitJumpSlowCaseIfNotJSCell(regT1);
addSlowCase(branch8(NotEqual, Address(regT1, JSCell::typeInfoTypeOffset()), TrustedImm32(FinalObjectType)));
loadPtr(cachedStructure, regT2);
addSlowCase(branchTestPtr(Zero, regT2));
load32(Address(regT2, Structure::structureIDOffset()), regT2);
addSlowCase(branch32(NotEqual, Address(regT1, JSCell::structureIDOffset()), regT2));
}
void JIT::emit_op_create_this(Instruction* currentInstruction)
{
int callee = currentInstruction[2].u.operand;
WriteBarrierBase<JSCell>* cachedFunction = &currentInstruction[4].u.jsCell;
RegisterID calleeReg = regT0;
RegisterID rareDataReg = regT4;
RegisterID resultReg = regT0;
RegisterID allocatorReg = regT1;
RegisterID structureReg = regT2;
RegisterID cachedFunctionReg = regT4;
RegisterID scratchReg = regT3;
emitGetVirtualRegister(callee, calleeReg);
addSlowCase(branch8(NotEqual, Address(calleeReg, JSCell::typeInfoTypeOffset()), TrustedImm32(JSFunctionType)));
loadPtr(Address(calleeReg, JSFunction::offsetOfRareData()), rareDataReg);
addSlowCase(branchTestPtr(Zero, rareDataReg));
loadPtr(Address(rareDataReg, FunctionRareData::offsetOfObjectAllocationProfile() + ObjectAllocationProfile::offsetOfAllocator()), allocatorReg);
loadPtr(Address(rareDataReg, FunctionRareData::offsetOfObjectAllocationProfile() + ObjectAllocationProfile::offsetOfStructure()), structureReg);
addSlowCase(branchTestPtr(Zero, allocatorReg));
loadPtr(cachedFunction, cachedFunctionReg);
Jump hasSeenMultipleCallees = branchPtr(Equal, cachedFunctionReg, TrustedImmPtr(JSCell::seenMultipleCalleeObjects()));
addSlowCase(branchPtr(NotEqual, calleeReg, cachedFunctionReg));
hasSeenMultipleCallees.link(this);
JumpList slowCases;
emitAllocateJSObject(resultReg, nullptr, allocatorReg, structureReg, TrustedImmPtr(0), scratchReg, slowCases);
emitGetVirtualRegister(callee, scratchReg);
loadPtr(Address(scratchReg, JSFunction::offsetOfRareData()), scratchReg);
load32(Address(scratchReg, FunctionRareData::offsetOfObjectAllocationProfile() + ObjectAllocationProfile::offsetOfInlineCapacity()), scratchReg);
emitInitializeInlineStorage(resultReg, scratchReg);
addSlowCase(slowCases);
emitPutVirtualRegister(currentInstruction[1].u.operand);
}
void JIT::emitSlow_op_create_this(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter); // Callee::m_type != JSFunctionType.
linkSlowCase(iter); // doesn't have rare data
linkSlowCase(iter); // doesn't have an allocation profile
linkSlowCase(iter); // allocation failed (no allocator)
linkSlowCase(iter); // allocation failed (allocator empty)
linkSlowCase(iter); // cached function didn't match
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_create_this);
slowPathCall.call();
}
void JIT::emit_op_check_tdz(Instruction* currentInstruction)
{
emitGetVirtualRegister(currentInstruction[1].u.operand, regT0);
addSlowCase(branchTest64(Zero, regT0));
}
void JIT::emitSlow_op_check_tdz(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_throw_tdz_error);
slowPathCall.call();
}
// Slow cases
void JIT::emitSlow_op_to_this(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_to_this);
slowPathCall.call();
}
void JIT::emitSlow_op_to_primitive(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_to_primitive);
slowPathCall.call();
}
void JIT::emitSlow_op_not(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_not);
slowPathCall.call();
}
void JIT::emitSlow_op_eq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
callOperation(operationCompareEq, regT0, regT1);
emitTagBool(returnValueGPR);
emitPutVirtualRegister(currentInstruction[1].u.operand, returnValueGPR);
}
void JIT::emitSlow_op_neq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
callOperation(operationCompareEq, regT0, regT1);
xor32(TrustedImm32(0x1), regT0);
emitTagBool(returnValueGPR);
emitPutVirtualRegister(currentInstruction[1].u.operand, returnValueGPR);
}
void JIT::emitSlow_op_stricteq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_stricteq);
slowPathCall.call();
}
void JIT::emitSlow_op_nstricteq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_nstricteq);
slowPathCall.call();
}
void JIT::emitSlow_op_instanceof(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
int dst = currentInstruction[1].u.operand;
int value = currentInstruction[2].u.operand;
int proto = currentInstruction[3].u.operand;
linkSlowCaseIfNotJSCell(iter, value);
linkSlowCaseIfNotJSCell(iter, proto);
linkSlowCase(iter);
linkSlowCase(iter);
emitGetVirtualRegister(value, regT0);
emitGetVirtualRegister(proto, regT1);
callOperation(operationInstanceOf, dst, regT0, regT1);
}
void JIT::emitSlow_op_instanceof_custom(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
int dst = currentInstruction[1].u.operand;
int value = currentInstruction[2].u.operand;
int constructor = currentInstruction[3].u.operand;
int hasInstanceValue = currentInstruction[4].u.operand;
linkSlowCase(iter);
emitGetVirtualRegister(value, regT0);
emitGetVirtualRegister(constructor, regT1);
emitGetVirtualRegister(hasInstanceValue, regT2);
callOperation(operationInstanceOfCustom, regT0, regT1, regT2);
emitTagBool(returnValueGPR);
emitPutVirtualRegister(dst, returnValueGPR);
}
void JIT::emitSlow_op_to_number(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_to_number);
slowPathCall.call();
}
void JIT::emitSlow_op_to_string(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter); // Not JSCell.
linkSlowCase(iter); // Not JSString.
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_to_string);
slowPathCall.call();
}
#endif // USE(JSVALUE64)
void JIT::emit_op_loop_hint(Instruction*)
{
// Emit the JIT optimization check:
if (canBeOptimized()) {
addSlowCase(branchAdd32(PositiveOrZero, TrustedImm32(Options::executionCounterIncrementForLoop()),
AbsoluteAddress(m_codeBlock->addressOfJITExecuteCounter())));
}
}
void JIT::emitSlow_op_loop_hint(Instruction*, Vector<SlowCaseEntry>::iterator& iter)
{
#if ENABLE(DFG_JIT)
// Emit the slow path for the JIT optimization check:
if (canBeOptimized()) {
linkSlowCase(iter);
copyCalleeSavesFromFrameOrRegisterToVMEntryFrameCalleeSavesBuffer();
callOperation(operationOptimize, m_bytecodeOffset);
Jump noOptimizedEntry = branchTestPtr(Zero, returnValueGPR);
if (!ASSERT_DISABLED) {
Jump ok = branchPtr(MacroAssembler::Above, returnValueGPR, TrustedImmPtr(bitwise_cast<void*>(static_cast<intptr_t>(1000))));
abortWithReason(JITUnreasonableLoopHintJumpTarget);
ok.link(this);
}
jump(returnValueGPR);
noOptimizedEntry.link(this);
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_loop_hint));
}
#else
UNUSED_PARAM(iter);
#endif
}
void JIT::emit_op_throw_static_error(Instruction* currentInstruction)
{
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_throw_static_error);
slowPathCall.call();
}
void JIT::emit_op_watchdog(Instruction*)
{
ASSERT(m_vm->watchdog());
addSlowCase(branchTest8(NonZero, AbsoluteAddress(m_vm->watchdog()->timerDidFireAddress())));
}
void JIT::emitSlow_op_watchdog(Instruction*, Vector<SlowCaseEntry>::iterator& iter)
{
ASSERT(m_vm->watchdog());
linkSlowCase(iter);
callOperation(operationHandleWatchdogTimer);
}
void JIT::emit_op_new_regexp(Instruction* currentInstruction)
{
callOperation(operationNewRegexp, currentInstruction[1].u.operand, m_codeBlock->regexp(currentInstruction[2].u.operand));
}
void JIT::emitNewFuncCommon(Instruction* currentInstruction)
{
Jump lazyJump;
int dst = currentInstruction[1].u.operand;
#if USE(JSVALUE64)
emitGetVirtualRegister(currentInstruction[2].u.operand, regT0);
#else
emitLoadPayload(currentInstruction[2].u.operand, regT0);
#endif
FunctionExecutable* funcExec = m_codeBlock->functionDecl(currentInstruction[3].u.operand);
OpcodeID opcodeID = m_vm->interpreter->getOpcodeID(currentInstruction->u.opcode);
if (opcodeID == op_new_func)
callOperation(operationNewFunction, dst, regT0, funcExec);
else if (opcodeID == op_new_generator_func)
callOperation(operationNewGeneratorFunction, dst, regT0, funcExec);
else {
ASSERT(opcodeID == op_new_async_func);
callOperation(operationNewAsyncFunction, dst, regT0, funcExec);
}
}
void JIT::emit_op_new_func(Instruction* currentInstruction)
{
emitNewFuncCommon(currentInstruction);
}
void JIT::emit_op_new_generator_func(Instruction* currentInstruction)
{
emitNewFuncCommon(currentInstruction);
}
void JIT::emit_op_new_async_func(Instruction* currentInstruction)
{
emitNewFuncCommon(currentInstruction);
}
void JIT::emitNewFuncExprCommon(Instruction* currentInstruction)
{
Jump notUndefinedScope;
int dst = currentInstruction[1].u.operand;
#if USE(JSVALUE64)
emitGetVirtualRegister(currentInstruction[2].u.operand, regT0);
notUndefinedScope = branch64(NotEqual, regT0, TrustedImm64(JSValue::encode(jsUndefined())));
store64(TrustedImm64(JSValue::encode(jsUndefined())), Address(callFrameRegister, sizeof(Register) * dst));
#else
emitLoadPayload(currentInstruction[2].u.operand, regT0);
notUndefinedScope = branch32(NotEqual, tagFor(currentInstruction[2].u.operand), TrustedImm32(JSValue::UndefinedTag));
emitStore(dst, jsUndefined());
#endif
Jump done = jump();
notUndefinedScope.link(this);
FunctionExecutable* function = m_codeBlock->functionExpr(currentInstruction[3].u.operand);
OpcodeID opcodeID = m_vm->interpreter->getOpcodeID(currentInstruction->u.opcode);
if (opcodeID == op_new_func_exp)
callOperation(operationNewFunction, dst, regT0, function);
else if (opcodeID == op_new_generator_func_exp)
callOperation(operationNewGeneratorFunction, dst, regT0, function);
else {
ASSERT(opcodeID == op_new_async_func_exp);
callOperation(operationNewAsyncFunction, dst, regT0, function);
}
done.link(this);
}
void JIT::emit_op_new_func_exp(Instruction* currentInstruction)
{
emitNewFuncExprCommon(currentInstruction);
}
void JIT::emit_op_new_generator_func_exp(Instruction* currentInstruction)
{
emitNewFuncExprCommon(currentInstruction);
}
void JIT::emit_op_new_async_func_exp(Instruction* currentInstruction)
{
emitNewFuncExprCommon(currentInstruction);
}
void JIT::emit_op_new_array(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int valuesIndex = currentInstruction[2].u.operand;
int size = currentInstruction[3].u.operand;
addPtr(TrustedImm32(valuesIndex * sizeof(Register)), callFrameRegister, regT0);
callOperation(operationNewArrayWithProfile, dst,
currentInstruction[4].u.arrayAllocationProfile, regT0, size);
}
void JIT::emit_op_new_array_with_size(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int sizeIndex = currentInstruction[2].u.operand;
#if USE(JSVALUE64)
emitGetVirtualRegister(sizeIndex, regT0);
callOperation(operationNewArrayWithSizeAndProfile, dst,
currentInstruction[3].u.arrayAllocationProfile, regT0);
#else
emitLoad(sizeIndex, regT1, regT0);
callOperation(operationNewArrayWithSizeAndProfile, dst,
currentInstruction[3].u.arrayAllocationProfile, regT1, regT0);
#endif
}
void JIT::emit_op_new_array_buffer(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int valuesIndex = currentInstruction[2].u.operand;
int size = currentInstruction[3].u.operand;
const JSValue* values = codeBlock()->constantBuffer(valuesIndex);
callOperation(operationNewArrayBufferWithProfile, dst, currentInstruction[4].u.arrayAllocationProfile, values, size);
}
void JIT::emit_op_new_array_with_spread(Instruction* currentInstruction)
{
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_new_array_with_spread);
slowPathCall.call();
}
void JIT::emit_op_spread(Instruction* currentInstruction)
{
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_spread);
slowPathCall.call();
}
#if USE(JSVALUE64)
void JIT::emit_op_has_structure_property(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int base = currentInstruction[2].u.operand;
int enumerator = currentInstruction[4].u.operand;
emitGetVirtualRegister(base, regT0);
emitGetVirtualRegister(enumerator, regT1);
emitJumpSlowCaseIfNotJSCell(regT0, base);
load32(Address(regT0, JSCell::structureIDOffset()), regT0);
addSlowCase(branch32(NotEqual, regT0, Address(regT1, JSPropertyNameEnumerator::cachedStructureIDOffset())));
move(TrustedImm64(JSValue::encode(jsBoolean(true))), regT0);
emitPutVirtualRegister(dst);
}
void JIT::privateCompileHasIndexedProperty(ByValInfo* byValInfo, ReturnAddressPtr returnAddress, JITArrayMode arrayMode)
{
Instruction* currentInstruction = m_codeBlock->instructions().begin() + byValInfo->bytecodeIndex;
PatchableJump badType;
// FIXME: Add support for other types like TypedArrays and Arguments.
// See https://bugs.webkit.org/show_bug.cgi?id=135033 and https://bugs.webkit.org/show_bug.cgi?id=135034.
JumpList slowCases = emitLoadForArrayMode(currentInstruction, arrayMode, badType);
move(TrustedImm64(JSValue::encode(jsBoolean(true))), regT0);
Jump done = jump();
LinkBuffer patchBuffer(*m_vm, *this, m_codeBlock);
patchBuffer.link(badType, CodeLocationLabel(MacroAssemblerCodePtr::createFromExecutableAddress(returnAddress.value())).labelAtOffset(byValInfo->returnAddressToSlowPath));
patchBuffer.link(slowCases, CodeLocationLabel(MacroAssemblerCodePtr::createFromExecutableAddress(returnAddress.value())).labelAtOffset(byValInfo->returnAddressToSlowPath));
patchBuffer.link(done, byValInfo->badTypeJump.labelAtOffset(byValInfo->badTypeJumpToDone));
byValInfo->stubRoutine = FINALIZE_CODE_FOR_STUB(
m_codeBlock, patchBuffer,
("Baseline has_indexed_property stub for %s, return point %p", toCString(*m_codeBlock).data(), returnAddress.value()));
MacroAssembler::repatchJump(byValInfo->badTypeJump, CodeLocationLabel(byValInfo->stubRoutine->code().code()));
MacroAssembler::repatchCall(CodeLocationCall(MacroAssemblerCodePtr(returnAddress)), FunctionPtr(operationHasIndexedPropertyGeneric));
}
void JIT::emit_op_has_indexed_property(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int base = currentInstruction[2].u.operand;
int property = currentInstruction[3].u.operand;
ArrayProfile* profile = currentInstruction[4].u.arrayProfile;
ByValInfo* byValInfo = m_codeBlock->addByValInfo();
emitGetVirtualRegisters(base, regT0, property, regT1);
// This is technically incorrect - we're zero-extending an int32. On the hot path this doesn't matter.
// We check the value as if it was a uint32 against the m_vectorLength - which will always fail if
// number was signed since m_vectorLength is always less than intmax (since the total allocation
// size is always less than 4Gb). As such zero extending will have been correct (and extending the value
// to 64-bits is necessary since it's used in the address calculation. We zero extend rather than sign
// extending since it makes it easier to re-tag the value in the slow case.
zeroExtend32ToPtr(regT1, regT1);
emitJumpSlowCaseIfNotJSCell(regT0, base);
emitArrayProfilingSiteWithCell(regT0, regT2, profile);
and32(TrustedImm32(IndexingShapeMask), regT2);
JITArrayMode mode = chooseArrayMode(profile);
PatchableJump badType;
// FIXME: Add support for other types like TypedArrays and Arguments.
// See https://bugs.webkit.org/show_bug.cgi?id=135033 and https://bugs.webkit.org/show_bug.cgi?id=135034.
JumpList slowCases = emitLoadForArrayMode(currentInstruction, mode, badType);
move(TrustedImm64(JSValue::encode(jsBoolean(true))), regT0);
addSlowCase(badType);
addSlowCase(slowCases);
Label done = label();
emitPutVirtualRegister(dst);
Label nextHotPath = label();
m_byValCompilationInfo.append(ByValCompilationInfo(byValInfo, m_bytecodeOffset, PatchableJump(), badType, mode, profile, done, nextHotPath));
}
void JIT::emitSlow_op_has_indexed_property(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
int dst = currentInstruction[1].u.operand;
int base = currentInstruction[2].u.operand;
int property = currentInstruction[3].u.operand;
ByValInfo* byValInfo = m_byValCompilationInfo[m_byValInstructionIndex].byValInfo;
linkSlowCaseIfNotJSCell(iter, base); // base cell check
linkSlowCase(iter); // base array check
linkSlowCase(iter); // vector length check
linkSlowCase(iter); // empty value
Label slowPath = label();
emitGetVirtualRegister(base, regT0);
emitGetVirtualRegister(property, regT1);
Call call = callOperation(operationHasIndexedPropertyDefault, dst, regT0, regT1, byValInfo);
m_byValCompilationInfo[m_byValInstructionIndex].slowPathTarget = slowPath;
m_byValCompilationInfo[m_byValInstructionIndex].returnAddress = call;
m_byValInstructionIndex++;
}
void JIT::emit_op_get_direct_pname(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int base = currentInstruction[2].u.operand;
int index = currentInstruction[4].u.operand;
int enumerator = currentInstruction[5].u.operand;
// Check that base is a cell
emitGetVirtualRegister(base, regT0);
emitJumpSlowCaseIfNotJSCell(regT0, base);
// Check the structure
emitGetVirtualRegister(enumerator, regT2);
load32(Address(regT0, JSCell::structureIDOffset()), regT1);
addSlowCase(branch32(NotEqual, regT1, Address(regT2, JSPropertyNameEnumerator::cachedStructureIDOffset())));
// Compute the offset
emitGetVirtualRegister(index, regT1);
// If index is less than the enumerator's cached inline storage, then it's an inline access
Jump outOfLineAccess = branch32(AboveOrEqual, regT1, Address(regT2, JSPropertyNameEnumerator::cachedInlineCapacityOffset()));
addPtr(TrustedImm32(JSObject::offsetOfInlineStorage()), regT0);
signExtend32ToPtr(regT1, regT1);
load64(BaseIndex(regT0, regT1, TimesEight), regT0);
Jump done = jump();
// Otherwise it's out of line
outOfLineAccess.link(this);
loadPtr(Address(regT0, JSObject::butterflyOffset()), regT0);
sub32(Address(regT2, JSPropertyNameEnumerator::cachedInlineCapacityOffset()), regT1);
neg32(regT1);
signExtend32ToPtr(regT1, regT1);
int32_t offsetOfFirstProperty = static_cast<int32_t>(offsetInButterfly(firstOutOfLineOffset)) * sizeof(EncodedJSValue);
load64(BaseIndex(regT0, regT1, TimesEight, offsetOfFirstProperty), regT0);
done.link(this);
emitValueProfilingSite();
emitPutVirtualRegister(dst, regT0);
}
void JIT::emitSlow_op_get_direct_pname(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
int base = currentInstruction[2].u.operand;
linkSlowCaseIfNotJSCell(iter, base);
linkSlowCase(iter);
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_get_direct_pname);
slowPathCall.call();
}
void JIT::emit_op_enumerator_structure_pname(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int enumerator = currentInstruction[2].u.operand;
int index = currentInstruction[3].u.operand;
emitGetVirtualRegister(index, regT0);
emitGetVirtualRegister(enumerator, regT1);
Jump inBounds = branch32(Below, regT0, Address(regT1, JSPropertyNameEnumerator::endStructurePropertyIndexOffset()));
move(TrustedImm64(JSValue::encode(jsNull())), regT0);
Jump done = jump();
inBounds.link(this);
loadPtr(Address(regT1, JSPropertyNameEnumerator::cachedPropertyNamesVectorOffset()), regT1);
signExtend32ToPtr(regT0, regT0);
load64(BaseIndex(regT1, regT0, TimesEight), regT0);
done.link(this);
emitPutVirtualRegister(dst);
}
void JIT::emit_op_enumerator_generic_pname(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int enumerator = currentInstruction[2].u.operand;
int index = currentInstruction[3].u.operand;
emitGetVirtualRegister(index, regT0);
emitGetVirtualRegister(enumerator, regT1);
Jump inBounds = branch32(Below, regT0, Address(regT1, JSPropertyNameEnumerator::endGenericPropertyIndexOffset()));
move(TrustedImm64(JSValue::encode(jsNull())), regT0);
Jump done = jump();
inBounds.link(this);
loadPtr(Address(regT1, JSPropertyNameEnumerator::cachedPropertyNamesVectorOffset()), regT1);
signExtend32ToPtr(regT0, regT0);
load64(BaseIndex(regT1, regT0, TimesEight), regT0);
done.link(this);
emitPutVirtualRegister(dst);
}
void JIT::emit_op_profile_type(Instruction* currentInstruction)
{
TypeLocation* cachedTypeLocation = currentInstruction[2].u.location;
int valueToProfile = currentInstruction[1].u.operand;
emitGetVirtualRegister(valueToProfile, regT0);
JumpList jumpToEnd;
jumpToEnd.append(branchTest64(Zero, regT0));
// Compile in a predictive type check, if possible, to see if we can skip writing to the log.
// These typechecks are inlined to match those of the 64-bit JSValue type checks.
if (cachedTypeLocation->m_lastSeenType == TypeUndefined)
jumpToEnd.append(branch64(Equal, regT0, TrustedImm64(JSValue::encode(jsUndefined()))));
else if (cachedTypeLocation->m_lastSeenType == TypeNull)
jumpToEnd.append(branch64(Equal, regT0, TrustedImm64(JSValue::encode(jsNull()))));
else if (cachedTypeLocation->m_lastSeenType == TypeBoolean) {
move(regT0, regT1);
and64(TrustedImm32(~1), regT1);
jumpToEnd.append(branch64(Equal, regT1, TrustedImm64(ValueFalse)));
} else if (cachedTypeLocation->m_lastSeenType == TypeAnyInt)
jumpToEnd.append(emitJumpIfInt(regT0));
else if (cachedTypeLocation->m_lastSeenType == TypeNumber)
jumpToEnd.append(emitJumpIfNumber(regT0));
else if (cachedTypeLocation->m_lastSeenType == TypeString) {
Jump isNotCell = emitJumpIfNotJSCell(regT0);
jumpToEnd.append(branch8(Equal, Address(regT0, JSCell::typeInfoTypeOffset()), TrustedImm32(StringType)));
isNotCell.link(this);
}
// Load the type profiling log into T2.
TypeProfilerLog* cachedTypeProfilerLog = m_vm->typeProfilerLog();
move(TrustedImmPtr(cachedTypeProfilerLog), regT2);
// Load the next log entry into T1.
loadPtr(Address(regT2, TypeProfilerLog::currentLogEntryOffset()), regT1);
// Store the JSValue onto the log entry.
store64(regT0, Address(regT1, TypeProfilerLog::LogEntry::valueOffset()));
// Store the structureID of the cell if T0 is a cell, otherwise, store 0 on the log entry.
Jump notCell = emitJumpIfNotJSCell(regT0);
load32(Address(regT0, JSCell::structureIDOffset()), regT0);
store32(regT0, Address(regT1, TypeProfilerLog::LogEntry::structureIDOffset()));
Jump skipIsCell = jump();
notCell.link(this);
store32(TrustedImm32(0), Address(regT1, TypeProfilerLog::LogEntry::structureIDOffset()));
skipIsCell.link(this);
// Store the typeLocation on the log entry.
move(TrustedImmPtr(cachedTypeLocation), regT0);
store64(regT0, Address(regT1, TypeProfilerLog::LogEntry::locationOffset()));
// Increment the current log entry.
addPtr(TrustedImm32(sizeof(TypeProfilerLog::LogEntry)), regT1);
store64(regT1, Address(regT2, TypeProfilerLog::currentLogEntryOffset()));
Jump skipClearLog = branchPtr(NotEqual, regT1, TrustedImmPtr(cachedTypeProfilerLog->logEndPtr()));
// Clear the log if we're at the end of the log.
callOperation(operationProcessTypeProfilerLog);
skipClearLog.link(this);
jumpToEnd.link(this);
}
void JIT::emit_op_log_shadow_chicken_prologue(Instruction* currentInstruction)
{
updateTopCallFrame();
static_assert(nonArgGPR0 != regT0 && nonArgGPR0 != regT2, "we will have problems if this is true.");
GPRReg shadowPacketReg = regT0;
GPRReg scratch1Reg = nonArgGPR0; // This must be a non-argument register.
GPRReg scratch2Reg = regT2;
ensureShadowChickenPacket(shadowPacketReg, scratch1Reg, scratch2Reg);
emitGetVirtualRegister(currentInstruction[1].u.operand, regT3);
logShadowChickenProloguePacket(shadowPacketReg, scratch1Reg, regT3);
}
void JIT::emit_op_log_shadow_chicken_tail(Instruction* currentInstruction)
{
updateTopCallFrame();
static_assert(nonArgGPR0 != regT0 && nonArgGPR0 != regT2, "we will have problems if this is true.");
GPRReg shadowPacketReg = regT0;
GPRReg scratch1Reg = nonArgGPR0; // This must be a non-argument register.
GPRReg scratch2Reg = regT2;
ensureShadowChickenPacket(shadowPacketReg, scratch1Reg, scratch2Reg);
emitGetVirtualRegister(currentInstruction[1].u.operand, regT2);
emitGetVirtualRegister(currentInstruction[2].u.operand, regT3);
logShadowChickenTailPacket(shadowPacketReg, JSValueRegs(regT2), regT3, m_codeBlock, CallSiteIndex(m_bytecodeOffset));
}
#endif // USE(JSVALUE64)
void JIT::emit_op_get_enumerable_length(Instruction* currentInstruction)
{
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_get_enumerable_length);
slowPathCall.call();
}
void JIT::emitSlow_op_has_structure_property(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
linkSlowCase(iter);
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_has_structure_property);
slowPathCall.call();
}
void JIT::emit_op_has_generic_property(Instruction* currentInstruction)
{
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_has_generic_property);
slowPathCall.call();
}
void JIT::emit_op_get_property_enumerator(Instruction* currentInstruction)
{
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_get_property_enumerator);
slowPathCall.call();
}
void JIT::emit_op_to_index_string(Instruction* currentInstruction)
{
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_to_index_string);
slowPathCall.call();
}
void JIT::emit_op_profile_control_flow(Instruction* currentInstruction)
{
BasicBlockLocation* basicBlockLocation = currentInstruction[1].u.basicBlockLocation;
#if USE(JSVALUE64)
basicBlockLocation->emitExecuteCode(*this);
#else
basicBlockLocation->emitExecuteCode(*this, regT0);
#endif
}
void JIT::emit_op_create_direct_arguments(Instruction* currentInstruction)
{
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_create_direct_arguments);
slowPathCall.call();
}
void JIT::emit_op_create_scoped_arguments(Instruction* currentInstruction)
{
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_create_scoped_arguments);
slowPathCall.call();
}
void JIT::emit_op_create_cloned_arguments(Instruction* currentInstruction)
{
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_create_cloned_arguments);
slowPathCall.call();
}
void JIT::emit_op_argument_count(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
load32(payloadFor(CallFrameSlot::argumentCount), regT0);
sub32(TrustedImm32(1), regT0);
JSValueRegs result = JSValueRegs::withTwoAvailableRegs(regT0, regT1);
boxInt32(regT0, result);
emitPutVirtualRegister(dst, result);
}
void JIT::emit_op_create_rest(Instruction* currentInstruction)
{
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_create_rest);
slowPathCall.call();
}
void JIT::emit_op_get_rest_length(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
unsigned numParamsToSkip = currentInstruction[2].u.unsignedValue;
load32(payloadFor(CallFrameSlot::argumentCount), regT0);
sub32(TrustedImm32(1), regT0);
Jump zeroLength = branch32(LessThanOrEqual, regT0, Imm32(numParamsToSkip));
sub32(Imm32(numParamsToSkip), regT0);
#if USE(JSVALUE64)
boxInt32(regT0, JSValueRegs(regT0));
#endif
Jump done = jump();
zeroLength.link(this);
#if USE(JSVALUE64)
move(TrustedImm64(JSValue::encode(jsNumber(0))), regT0);
#else
move(TrustedImm32(0), regT0);
#endif
done.link(this);
#if USE(JSVALUE64)
emitPutVirtualRegister(dst, regT0);
#else
move(TrustedImm32(JSValue::Int32Tag), regT1);
emitPutVirtualRegister(dst, JSValueRegs(regT1, regT0));
#endif
}
void JIT::emit_op_get_argument(Instruction* currentInstruction)
{
int dst = currentInstruction[1].u.operand;
int index = currentInstruction[2].u.operand;
#if USE(JSVALUE64)
JSValueRegs resultRegs(regT0);
#else
JSValueRegs resultRegs(regT1, regT0);
#endif
load32(payloadFor(CallFrameSlot::argumentCount), regT2);
Jump argumentOutOfBounds = branch32(LessThanOrEqual, regT2, TrustedImm32(index));
loadValue(addressFor(CallFrameSlot::thisArgument + index), resultRegs);
Jump done = jump();
argumentOutOfBounds.link(this);
moveValue(jsUndefined(), resultRegs);
done.link(this);
emitValueProfilingSite();
emitPutVirtualRegister(dst, resultRegs);
}
} // namespace JSC
#endif // ENABLE(JIT)