blob: d271d48a033ded240e2b66148608ba9ada88a836 [file] [log] [blame]
/*
* Copyright (C) 2008, 2015 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if ENABLE(JIT)
#if USE(JSVALUE32_64)
#include "JIT.h"
#include "CodeBlock.h"
#include "JITInlines.h"
#include "JSArray.h"
#include "JSFunction.h"
#include "Interpreter.h"
#include "JSCInlines.h"
#include "ResultType.h"
#include "SlowPathCall.h"
namespace JSC {
void JIT::emit_compareAndJump(OpcodeID opcode, int op1, int op2, unsigned target, RelationalCondition condition)
{
JumpList notInt32Op1;
JumpList notInt32Op2;
// Character less.
if (isOperandConstantChar(op1)) {
emitLoad(op2, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag)));
JumpList failures;
emitLoadCharacterString(regT0, regT0, failures);
addSlowCase(failures);
addJump(branch32(commute(condition), regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target);
return;
}
if (isOperandConstantChar(op2)) {
emitLoad(op1, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag)));
JumpList failures;
emitLoadCharacterString(regT0, regT0, failures);
addSlowCase(failures);
addJump(branch32(condition, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target);
return;
}
if (isOperandConstantInt(op1)) {
emitLoad(op2, regT3, regT2);
notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
addJump(branch32(commute(condition), regT2, Imm32(getConstantOperand(op1).asInt32())), target);
} else if (isOperandConstantInt(op2)) {
emitLoad(op1, regT1, regT0);
notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
addJump(branch32(condition, regT0, Imm32(getConstantOperand(op2).asInt32())), target);
} else {
emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
addJump(branch32(condition, regT0, regT2), target);
}
if (!supportsFloatingPoint()) {
addSlowCase(notInt32Op1);
addSlowCase(notInt32Op2);
return;
}
Jump end = jump();
// Double less.
emitBinaryDoubleOp(opcode, target, op1, op2, OperandTypes(), notInt32Op1, notInt32Op2, !isOperandConstantInt(op1), isOperandConstantInt(op1) || !isOperandConstantInt(op2));
end.link(this);
}
void JIT::emit_compareAndJumpSlow(int op1, int op2, unsigned target, DoubleCondition, size_t (JIT_OPERATION *operation)(ExecState*, EncodedJSValue, EncodedJSValue), bool invert, Vector<SlowCaseEntry>::iterator& iter)
{
if (isOperandConstantChar(op1) || isOperandConstantChar(op2)) {
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
} else {
if (!supportsFloatingPoint()) {
if (!isOperandConstantInt(op1) && !isOperandConstantInt(op2))
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // int32 check
} else {
if (!isOperandConstantInt(op1)) {
linkSlowCase(iter); // double check
linkSlowCase(iter); // int32 check
}
if (isOperandConstantInt(op1) || !isOperandConstantInt(op2))
linkSlowCase(iter); // double check
}
}
emitLoad(op1, regT1, regT0);
emitLoad(op2, regT3, regT2);
callOperation(operation, regT1, regT0, regT3, regT2);
emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, returnValueGPR), target);
}
void JIT::emit_op_unsigned(Instruction* currentInstruction)
{
int result = currentInstruction[1].u.operand;
int op1 = currentInstruction[2].u.operand;
emitLoad(op1, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
addSlowCase(branch32(LessThan, regT0, TrustedImm32(0)));
emitStoreInt32(result, regT0, result == op1);
}
void JIT::emitSlow_op_unsigned(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter);
linkSlowCase(iter);
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_unsigned);
slowPathCall.call();
}
void JIT::emit_op_inc(Instruction* currentInstruction)
{
int srcDst = currentInstruction[1].u.operand;
emitLoad(srcDst, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
addSlowCase(branchAdd32(Overflow, TrustedImm32(1), regT0));
emitStoreInt32(srcDst, regT0, true);
}
void JIT::emitSlow_op_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // overflow check
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_inc);
slowPathCall.call();
}
void JIT::emit_op_dec(Instruction* currentInstruction)
{
int srcDst = currentInstruction[1].u.operand;
emitLoad(srcDst, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
addSlowCase(branchSub32(Overflow, TrustedImm32(1), regT0));
emitStoreInt32(srcDst, regT0, true);
}
void JIT::emitSlow_op_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // overflow check
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_dec);
slowPathCall.call();
}
void JIT::emitBinaryDoubleOp(OpcodeID opcodeID, int dst, int op1, int op2, OperandTypes types, JumpList& notInt32Op1, JumpList& notInt32Op2, bool op1IsInRegisters, bool op2IsInRegisters)
{
JumpList end;
if (!notInt32Op1.empty()) {
// Double case 1: Op1 is not int32; Op2 is unknown.
notInt32Op1.link(this);
ASSERT(op1IsInRegisters);
// Verify Op1 is double.
if (!types.first().definitelyIsNumber())
addSlowCase(branch32(Above, regT1, TrustedImm32(JSValue::LowestTag)));
if (!op2IsInRegisters)
emitLoad(op2, regT3, regT2);
Jump doubleOp2 = branch32(Below, regT3, TrustedImm32(JSValue::LowestTag));
if (!types.second().definitelyIsNumber())
addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
convertInt32ToDouble(regT2, fpRegT0);
Jump doTheMath = jump();
// Load Op2 as double into double register.
doubleOp2.link(this);
emitLoadDouble(op2, fpRegT0);
// Do the math.
doTheMath.link(this);
switch (opcodeID) {
case op_jless:
emitLoadDouble(op1, fpRegT2);
addJump(branchDouble(DoubleLessThan, fpRegT2, fpRegT0), dst);
break;
case op_jlesseq:
emitLoadDouble(op1, fpRegT2);
addJump(branchDouble(DoubleLessThanOrEqual, fpRegT2, fpRegT0), dst);
break;
case op_jgreater:
emitLoadDouble(op1, fpRegT2);
addJump(branchDouble(DoubleGreaterThan, fpRegT2, fpRegT0), dst);
break;
case op_jgreatereq:
emitLoadDouble(op1, fpRegT2);
addJump(branchDouble(DoubleGreaterThanOrEqual, fpRegT2, fpRegT0), dst);
break;
case op_jnless:
emitLoadDouble(op1, fpRegT2);
addJump(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT0, fpRegT2), dst);
break;
case op_jnlesseq:
emitLoadDouble(op1, fpRegT2);
addJump(branchDouble(DoubleLessThanOrUnordered, fpRegT0, fpRegT2), dst);
break;
case op_jngreater:
emitLoadDouble(op1, fpRegT2);
addJump(branchDouble(DoubleGreaterThanOrEqualOrUnordered, fpRegT0, fpRegT2), dst);
break;
case op_jngreatereq:
emitLoadDouble(op1, fpRegT2);
addJump(branchDouble(DoubleGreaterThanOrUnordered, fpRegT0, fpRegT2), dst);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
if (!notInt32Op2.empty())
end.append(jump());
}
if (!notInt32Op2.empty()) {
// Double case 2: Op1 is int32; Op2 is not int32.
notInt32Op2.link(this);
ASSERT(op2IsInRegisters);
if (!op1IsInRegisters)
emitLoadPayload(op1, regT0);
convertInt32ToDouble(regT0, fpRegT0);
// Verify op2 is double.
if (!types.second().definitelyIsNumber())
addSlowCase(branch32(Above, regT3, TrustedImm32(JSValue::LowestTag)));
// Do the math.
switch (opcodeID) {
case op_jless:
emitLoadDouble(op2, fpRegT1);
addJump(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), dst);
break;
case op_jlesseq:
emitLoadDouble(op2, fpRegT1);
addJump(branchDouble(DoubleLessThanOrEqual, fpRegT0, fpRegT1), dst);
break;
case op_jgreater:
emitLoadDouble(op2, fpRegT1);
addJump(branchDouble(DoubleGreaterThan, fpRegT0, fpRegT1), dst);
break;
case op_jgreatereq:
emitLoadDouble(op2, fpRegT1);
addJump(branchDouble(DoubleGreaterThanOrEqual, fpRegT0, fpRegT1), dst);
break;
case op_jnless:
emitLoadDouble(op2, fpRegT1);
addJump(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), dst);
break;
case op_jnlesseq:
emitLoadDouble(op2, fpRegT1);
addJump(branchDouble(DoubleLessThanOrUnordered, fpRegT1, fpRegT0), dst);
break;
case op_jngreater:
emitLoadDouble(op2, fpRegT1);
addJump(branchDouble(DoubleGreaterThanOrEqualOrUnordered, fpRegT1, fpRegT0), dst);
break;
case op_jngreatereq:
emitLoadDouble(op2, fpRegT1);
addJump(branchDouble(DoubleGreaterThanOrUnordered, fpRegT1, fpRegT0), dst);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
end.link(this);
}
// Mod (%)
/* ------------------------------ BEGIN: OP_MOD ------------------------------ */
void JIT::emit_op_mod(Instruction* currentInstruction)
{
#if CPU(X86)
int dst = currentInstruction[1].u.operand;
int op1 = currentInstruction[2].u.operand;
int op2 = currentInstruction[3].u.operand;
// Make sure registers are correct for x86 IDIV instructions.
ASSERT(regT0 == X86Registers::eax);
ASSERT(regT1 == X86Registers::edx);
ASSERT(regT2 == X86Registers::ecx);
ASSERT(regT3 == X86Registers::ebx);
emitLoad2(op1, regT0, regT3, op2, regT1, regT2);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
addSlowCase(branch32(NotEqual, regT0, TrustedImm32(JSValue::Int32Tag)));
move(regT3, regT0);
addSlowCase(branchTest32(Zero, regT2));
Jump denominatorNotNeg1 = branch32(NotEqual, regT2, TrustedImm32(-1));
addSlowCase(branch32(Equal, regT0, TrustedImm32(-2147483647-1)));
denominatorNotNeg1.link(this);
x86ConvertToDoubleWord32();
x86Div32(regT2);
Jump numeratorPositive = branch32(GreaterThanOrEqual, regT3, TrustedImm32(0));
addSlowCase(branchTest32(Zero, regT1));
numeratorPositive.link(this);
emitStoreInt32(dst, regT1, (op1 == dst || op2 == dst));
#else
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_mod);
slowPathCall.call();
#endif
}
void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
#if CPU(X86) || CPU(X86_64)
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
JITSlowPathCall slowPathCall(this, currentInstruction, slow_path_mod);
slowPathCall.call();
#else
UNUSED_PARAM(currentInstruction);
UNUSED_PARAM(iter);
// We would have really useful assertions here if it wasn't for the compiler's
// insistence on attribute noreturn.
// RELEASE_ASSERT_NOT_REACHED();
#endif
}
/* ------------------------------ END: OP_MOD ------------------------------ */
} // namespace JSC
#endif // USE(JSVALUE32_64)
#endif // ENABLE(JIT)