| /* |
| * Copyright (C) 2011-2020 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "DFGOSRExit.h" |
| |
| #if ENABLE(DFG_JIT) |
| |
| #include "AssemblyHelpers.h" |
| #include "BytecodeStructs.h" |
| #include "CheckpointOSRExitSideState.h" |
| #include "DFGGraph.h" |
| #include "DFGMayExit.h" |
| #include "DFGOSRExitCompilerCommon.h" |
| #include "DFGOperations.h" |
| #include "DFGSpeculativeJIT.h" |
| #include "FrameTracers.h" |
| #include "InlineCallFrame.h" |
| #include "JSCJSValueInlines.h" |
| #include "OperandsInlines.h" |
| #include "ProbeContext.h" |
| |
| #include <wtf/Scope.h> |
| |
| namespace JSC { namespace DFG { |
| |
| OSRExit::OSRExit(ExitKind kind, JSValueSource jsValueSource, MethodOfGettingAValueProfile valueProfile, SpeculativeJIT* jit, unsigned streamIndex, unsigned recoveryIndex) |
| : OSRExitBase(kind, jit->m_origin.forExit, jit->m_origin.semantic, jit->m_origin.wasHoisted, jit->m_currentNode ? jit->m_currentNode->index() : 0) |
| , m_jsValueSource(jsValueSource) |
| , m_valueProfile(valueProfile) |
| , m_recoveryIndex(recoveryIndex) |
| , m_streamIndex(streamIndex) |
| { |
| bool canExit = jit->m_origin.exitOK; |
| if (!canExit && jit->m_currentNode) { |
| ExitMode exitMode = mayExit(jit->m_jit.graph(), jit->m_currentNode); |
| canExit = exitMode == ExitMode::Exits || exitMode == ExitMode::ExitsForExceptions; |
| } |
| DFG_ASSERT(jit->m_jit.graph(), jit->m_currentNode, canExit); |
| } |
| |
| CodeLocationJump<JSInternalPtrTag> OSRExit::codeLocationForRepatch() const |
| { |
| return CodeLocationJump<JSInternalPtrTag>(m_patchableJumpLocation); |
| } |
| |
| void OSRExit::emitRestoreArguments(CCallHelpers& jit, VM& vm, const Operands<ValueRecovery>& operands) |
| { |
| HashMap<MinifiedID, VirtualRegister> alreadyAllocatedArguments; // Maps phantom arguments node ID to operand. |
| for (size_t index = 0; index < operands.size(); ++index) { |
| const ValueRecovery& recovery = operands[index]; |
| |
| if (recovery.technique() != DirectArgumentsThatWereNotCreated |
| && recovery.technique() != ClonedArgumentsThatWereNotCreated) |
| continue; |
| |
| Operand operand = operands.operandForIndex(index); |
| if (operand.isTmp()) |
| continue; |
| |
| MinifiedID id = recovery.nodeID(); |
| auto iter = alreadyAllocatedArguments.find(id); |
| if (iter != alreadyAllocatedArguments.end()) { |
| JSValueRegs regs = JSValueRegs::withTwoAvailableRegs(GPRInfo::regT0, GPRInfo::regT1); |
| jit.loadValue(CCallHelpers::addressFor(iter->value), regs); |
| jit.storeValue(regs, CCallHelpers::addressFor(operand)); |
| continue; |
| } |
| |
| InlineCallFrame* inlineCallFrame = |
| jit.codeBlock()->jitCode()->dfg()->minifiedDFG.at(id)->inlineCallFrame(); |
| |
| int stackOffset; |
| if (inlineCallFrame) |
| stackOffset = inlineCallFrame->stackOffset; |
| else |
| stackOffset = 0; |
| |
| if (!inlineCallFrame || inlineCallFrame->isClosureCall) { |
| jit.loadPtr( |
| AssemblyHelpers::addressFor(VirtualRegister(stackOffset + CallFrameSlot::callee)), |
| GPRInfo::regT0); |
| } else { |
| jit.move( |
| AssemblyHelpers::TrustedImmPtr(inlineCallFrame->calleeRecovery.constant().asCell()), |
| GPRInfo::regT0); |
| } |
| |
| if (!inlineCallFrame || inlineCallFrame->isVarargs()) { |
| jit.load32( |
| AssemblyHelpers::payloadFor(VirtualRegister(stackOffset + CallFrameSlot::argumentCountIncludingThis)), |
| GPRInfo::regT1); |
| } else { |
| jit.move( |
| AssemblyHelpers::TrustedImm32(inlineCallFrame->argumentCountIncludingThis), |
| GPRInfo::regT1); |
| } |
| |
| static_assert(std::is_same<decltype(operationCreateDirectArgumentsDuringExit), decltype(operationCreateClonedArgumentsDuringExit)>::value, "We assume these functions have the same signature below."); |
| jit.setupArguments<decltype(operationCreateDirectArgumentsDuringExit)>( |
| AssemblyHelpers::TrustedImmPtr(&vm), AssemblyHelpers::TrustedImmPtr(inlineCallFrame), GPRInfo::regT0, GPRInfo::regT1); |
| jit.prepareCallOperation(vm); |
| switch (recovery.technique()) { |
| case DirectArgumentsThatWereNotCreated: |
| jit.move(AssemblyHelpers::TrustedImmPtr(tagCFunction<OperationPtrTag>(operationCreateDirectArgumentsDuringExit)), GPRInfo::nonArgGPR0); |
| break; |
| case ClonedArgumentsThatWereNotCreated: |
| jit.move(AssemblyHelpers::TrustedImmPtr(tagCFunction<OperationPtrTag>(operationCreateClonedArgumentsDuringExit)), GPRInfo::nonArgGPR0); |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| jit.call(GPRInfo::nonArgGPR0, OperationPtrTag); |
| jit.storeCell(GPRInfo::returnValueGPR, AssemblyHelpers::addressFor(operand)); |
| |
| alreadyAllocatedArguments.add(id, operand.virtualRegister()); |
| } |
| } |
| |
| JSC_DEFINE_JIT_OPERATION(operationCompileOSRExit, void, (CallFrame* callFrame)) |
| { |
| VM& vm = callFrame->deprecatedVM(); |
| auto scope = DECLARE_THROW_SCOPE(vm); |
| |
| if constexpr (validateDFGDoesGC) { |
| // We're about to exit optimized code. So, there's no longer any optimized |
| // code running that expects no GC. |
| vm.heap.setDoesGCExpectation(true, DoesGCCheck::Special::DFGOSRExit); |
| } |
| |
| if (vm.callFrameForCatch) |
| RELEASE_ASSERT(vm.callFrameForCatch == callFrame); |
| |
| CodeBlock* codeBlock = callFrame->codeBlock(); |
| ASSERT(codeBlock); |
| ASSERT(codeBlock->jitType() == JITType::DFGJIT); |
| |
| // It's sort of preferable that we don't GC while in here. Anyways, doing so wouldn't |
| // really be profitable. |
| DeferGCForAWhile deferGC(vm.heap); |
| |
| uint32_t exitIndex = vm.osrExitIndex; |
| OSRExit& exit = codeBlock->jitCode()->dfg()->osrExit[exitIndex]; |
| |
| ASSERT(!vm.callFrameForCatch || exit.m_kind == GenericUnwind); |
| EXCEPTION_ASSERT_UNUSED(scope, !!scope.exception() || !exit.isExceptionHandler()); |
| |
| // Compute the value recoveries. |
| Operands<ValueRecovery> operands; |
| codeBlock->jitCode()->dfg()->variableEventStream.reconstruct(codeBlock, exit.m_codeOrigin, codeBlock->jitCode()->dfg()->minifiedDFG, exit.m_streamIndex, operands); |
| |
| SpeculationRecovery* recovery = nullptr; |
| if (exit.m_recoveryIndex != UINT_MAX) |
| recovery = &codeBlock->jitCode()->dfg()->speculationRecovery[exit.m_recoveryIndex]; |
| |
| { |
| CCallHelpers jit(codeBlock); |
| |
| if (exit.m_kind == GenericUnwind) { |
| // We are acting as a defacto op_catch because we arrive here from genericUnwind(). |
| // So, we must restore our call frame and stack pointer. |
| jit.restoreCalleeSavesFromEntryFrameCalleeSavesBuffer(vm.topEntryFrame); |
| jit.loadPtr(vm.addressOfCallFrameForCatch(), GPRInfo::callFrameRegister); |
| } |
| jit.addPtr( |
| CCallHelpers::TrustedImm32(codeBlock->stackPointerOffset() * sizeof(Register)), |
| GPRInfo::callFrameRegister, CCallHelpers::stackPointerRegister); |
| |
| jit.jitAssertHasValidCallFrame(); |
| |
| if (UNLIKELY(vm.m_perBytecodeProfiler && codeBlock->jitCode()->dfgCommon()->compilation)) { |
| Profiler::Database& database = *vm.m_perBytecodeProfiler; |
| Profiler::Compilation* compilation = codeBlock->jitCode()->dfgCommon()->compilation.get(); |
| |
| Profiler::OSRExit* profilerExit = compilation->addOSRExit( |
| exitIndex, Profiler::OriginStack(database, codeBlock, exit.m_codeOrigin), |
| exit.m_kind, exit.m_kind == UncountableInvalidation); |
| jit.add64(CCallHelpers::TrustedImm32(1), CCallHelpers::AbsoluteAddress(profilerExit->counterAddress())); |
| } |
| |
| OSRExit::compileExit(jit, vm, exit, operands, recovery); |
| |
| LinkBuffer patchBuffer(jit, codeBlock); |
| exit.m_code = FINALIZE_CODE_IF( |
| shouldDumpDisassembly() || Options::verboseOSR() || Options::verboseDFGOSRExit(), |
| patchBuffer, OSRExitPtrTag, |
| "DFG OSR exit #%u (D@%u, %s, %s) from %s, with operands = %s", |
| exitIndex, exit.m_dfgNodeIndex, toCString(exit.m_codeOrigin).data(), |
| exitKindToString(exit.m_kind), toCString(*codeBlock).data(), |
| toCString(ignoringContext<DumpContext>(operands)).data()); |
| } |
| |
| MacroAssembler::repatchJump(exit.codeLocationForRepatch(), CodeLocationLabel<OSRExitPtrTag>(exit.m_code.code())); |
| |
| vm.osrExitJumpDestination = exit.m_code.code().executableAddress(); |
| } |
| |
| void OSRExit::compileExit(CCallHelpers& jit, VM& vm, const OSRExit& exit, const Operands<ValueRecovery>& operands, SpeculationRecovery* recovery) |
| { |
| jit.jitAssertTagsInPlace(); |
| |
| // Pro-forma stuff. |
| if (UNLIKELY(Options::printEachOSRExit())) { |
| SpeculationFailureDebugInfo* debugInfo = new SpeculationFailureDebugInfo; |
| debugInfo->codeBlock = jit.codeBlock(); |
| debugInfo->kind = exit.m_kind; |
| debugInfo->bytecodeIndex = exit.m_codeOrigin.bytecodeIndex(); |
| |
| jit.debugCall(vm, operationDebugPrintSpeculationFailure, debugInfo); |
| } |
| |
| // Perform speculation recovery. This only comes into play when an operation |
| // starts mutating state before verifying the speculation it has already made. |
| |
| if (recovery) { |
| switch (recovery->type()) { |
| case SpeculativeAdd: |
| jit.sub32(recovery->src(), recovery->dest()); |
| #if USE(JSVALUE64) |
| jit.or64(GPRInfo::numberTagRegister, recovery->dest()); |
| #endif |
| break; |
| |
| case SpeculativeAddSelf: |
| // If A + A = A (int32_t) overflows, A can be recovered by ((static_cast<int32_t>(A) >> 1) ^ 0x8000000). |
| jit.rshift32(AssemblyHelpers::TrustedImm32(1), recovery->dest()); |
| jit.xor32(AssemblyHelpers::TrustedImm32(0x80000000), recovery->dest()); |
| #if USE(JSVALUE64) |
| jit.or64(GPRInfo::numberTagRegister, recovery->dest()); |
| #endif |
| break; |
| |
| case SpeculativeAddImmediate: |
| jit.sub32(AssemblyHelpers::Imm32(recovery->immediate()), recovery->dest()); |
| #if USE(JSVALUE64) |
| jit.or64(GPRInfo::numberTagRegister, recovery->dest()); |
| #endif |
| break; |
| |
| case BooleanSpeculationCheck: |
| #if USE(JSVALUE64) |
| jit.xor64(AssemblyHelpers::TrustedImm32(JSValue::ValueFalse), recovery->dest()); |
| #endif |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| // Refine some array and/or value profile, if appropriate. |
| |
| if (!!exit.m_jsValueSource) { |
| if (exit.m_kind == BadCache || exit.m_kind == BadIndexingType) { |
| // If the instruction that this originated from has an array profile, then |
| // refine it. If it doesn't, then do nothing. The latter could happen for |
| // hoisted checks, or checks emitted for operations that didn't have array |
| // profiling - either ops that aren't array accesses at all, or weren't |
| // known to be array acceses in the bytecode. The latter case is a FIXME |
| // while the former case is an outcome of a CheckStructure not knowing why |
| // it was emitted (could be either due to an inline cache of a property |
| // property access, or due to an array profile). |
| |
| CodeOrigin codeOrigin = exit.m_codeOriginForExitProfile; |
| CodeBlock* codeBlock = jit.baselineCodeBlockFor(codeOrigin); |
| if (ArrayProfile* arrayProfile = codeBlock->getArrayProfile(codeOrigin.bytecodeIndex())) { |
| const Instruction* instruction = codeBlock->instructions().at(codeOrigin.bytecodeIndex()).ptr(); |
| CCallHelpers::Jump skipProfile; |
| if (instruction->is<OpGetById>()) { |
| auto& metadata = instruction->as<OpGetById>().metadata(codeBlock); |
| skipProfile = jit.branch8(CCallHelpers::NotEqual, CCallHelpers::AbsoluteAddress(&metadata.m_modeMetadata.mode), CCallHelpers::TrustedImm32(static_cast<uint8_t>(GetByIdMode::ArrayLength))); |
| } |
| |
| #if USE(JSVALUE64) |
| GPRReg usedRegister; |
| if (exit.m_jsValueSource.isAddress()) |
| usedRegister = exit.m_jsValueSource.base(); |
| else |
| usedRegister = exit.m_jsValueSource.gpr(); |
| #else |
| GPRReg usedRegister1; |
| GPRReg usedRegister2; |
| if (exit.m_jsValueSource.isAddress()) { |
| usedRegister1 = exit.m_jsValueSource.base(); |
| usedRegister2 = InvalidGPRReg; |
| } else { |
| usedRegister1 = exit.m_jsValueSource.payloadGPR(); |
| if (exit.m_jsValueSource.hasKnownTag()) |
| usedRegister2 = InvalidGPRReg; |
| else |
| usedRegister2 = exit.m_jsValueSource.tagGPR(); |
| } |
| #endif |
| |
| GPRReg scratch1; |
| GPRReg scratch2; |
| #if USE(JSVALUE64) |
| scratch1 = AssemblyHelpers::selectScratchGPR(usedRegister); |
| scratch2 = AssemblyHelpers::selectScratchGPR(usedRegister, scratch1); |
| #else |
| scratch1 = AssemblyHelpers::selectScratchGPR(usedRegister1, usedRegister2); |
| scratch2 = AssemblyHelpers::selectScratchGPR(usedRegister1, usedRegister2, scratch1); |
| #endif |
| |
| if (isARM64()) { |
| jit.pushToSave(scratch1); |
| jit.pushToSave(scratch2); |
| } else { |
| jit.push(scratch1); |
| jit.push(scratch2); |
| } |
| |
| GPRReg value; |
| if (exit.m_jsValueSource.isAddress()) { |
| value = scratch1; |
| jit.loadPtr(AssemblyHelpers::Address(exit.m_jsValueSource.asAddress()), value); |
| } else |
| value = exit.m_jsValueSource.payloadGPR(); |
| |
| jit.load32(AssemblyHelpers::Address(value, JSCell::structureIDOffset()), scratch1); |
| jit.store32(scratch1, arrayProfile->addressOfLastSeenStructureID()); |
| |
| jit.load8(AssemblyHelpers::Address(value, JSCell::typeInfoTypeOffset()), scratch2); |
| jit.sub32(AssemblyHelpers::TrustedImm32(FirstTypedArrayType), scratch2); |
| auto notTypedArray = jit.branch32(MacroAssembler::AboveOrEqual, scratch2, AssemblyHelpers::TrustedImm32(NumberOfTypedArrayTypesExcludingDataView)); |
| jit.move(AssemblyHelpers::TrustedImmPtr(typedArrayModes), scratch1); |
| jit.load32(AssemblyHelpers::BaseIndex(scratch1, scratch2, AssemblyHelpers::TimesFour), scratch2); |
| auto storeArrayModes = jit.jump(); |
| |
| notTypedArray.link(&jit); |
| #if USE(JSVALUE64) |
| jit.load8(AssemblyHelpers::Address(value, JSCell::indexingTypeAndMiscOffset()), scratch1); |
| #else |
| jit.load8(AssemblyHelpers::Address(scratch1, Structure::indexingModeIncludingHistoryOffset()), scratch1); |
| #endif |
| jit.and32(AssemblyHelpers::TrustedImm32(IndexingModeMask), scratch1); |
| jit.move(AssemblyHelpers::TrustedImm32(1), scratch2); |
| jit.lshift32(scratch1, scratch2); |
| storeArrayModes.link(&jit); |
| jit.or32(scratch2, AssemblyHelpers::AbsoluteAddress(arrayProfile->addressOfArrayModes())); |
| |
| if (isARM64()) { |
| jit.popToRestore(scratch2); |
| jit.popToRestore(scratch1); |
| } else { |
| jit.pop(scratch2); |
| jit.pop(scratch1); |
| } |
| |
| if (skipProfile.isSet()) |
| skipProfile.link(&jit); |
| } |
| } |
| |
| if (MethodOfGettingAValueProfile profile = exit.m_valueProfile) { |
| #if USE(JSVALUE64) |
| if (exit.m_jsValueSource.isAddress()) { |
| // We can't be sure that we have a spare register. So use the numberTagRegister, |
| // since we know how to restore it. |
| jit.load64(AssemblyHelpers::Address(exit.m_jsValueSource.asAddress()), GPRInfo::numberTagRegister); |
| // We also use the notCellMaskRegister as the scratch register, for the same reason. |
| // FIXME: find a less gross way of doing this, maybe through delaying these operations until we actually have some spare registers around? |
| profile.emitReportValue(jit, JSValueRegs(GPRInfo::numberTagRegister), GPRInfo::notCellMaskRegister, DoNotHaveTagRegisters); |
| jit.move(AssemblyHelpers::TrustedImm64(JSValue::NumberTag), GPRInfo::numberTagRegister); |
| } else |
| profile.emitReportValue(jit, JSValueRegs(exit.m_jsValueSource.gpr()), GPRInfo::notCellMaskRegister, DoNotHaveTagRegisters); |
| jit.move(AssemblyHelpers::TrustedImm64(JSValue::NotCellMask), GPRInfo::notCellMaskRegister); |
| #else // not USE(JSVALUE64) |
| if (exit.m_jsValueSource.isAddress()) { |
| // Save a register so we can use it. |
| GPRReg scratchPayload = AssemblyHelpers::selectScratchGPR(exit.m_jsValueSource.base()); |
| GPRReg scratchTag = AssemblyHelpers::selectScratchGPR(exit.m_jsValueSource.base(), scratchPayload); |
| jit.pushToSave(scratchPayload); |
| jit.pushToSave(scratchTag); |
| |
| JSValueRegs scratch(scratchTag, scratchPayload); |
| |
| jit.loadValue(exit.m_jsValueSource.asAddress(), scratch); |
| profile.emitReportValue(jit, scratch, InvalidGPRReg); |
| |
| jit.popToRestore(scratchTag); |
| jit.popToRestore(scratchPayload); |
| } else if (exit.m_jsValueSource.hasKnownTag()) { |
| GPRReg scratchTag = AssemblyHelpers::selectScratchGPR(exit.m_jsValueSource.payloadGPR()); |
| jit.pushToSave(scratchTag); |
| jit.move(AssemblyHelpers::TrustedImm32(exit.m_jsValueSource.tag()), scratchTag); |
| JSValueRegs value(scratchTag, exit.m_jsValueSource.payloadGPR()); |
| profile.emitReportValue(jit, value, InvalidGPRReg); |
| jit.popToRestore(scratchTag); |
| } else |
| profile.emitReportValue(jit, exit.m_jsValueSource.regs(), InvalidGPRReg); |
| #endif // USE(JSVALUE64) |
| } |
| } |
| |
| // What follows is an intentionally simple OSR exit implementation that generates |
| // fairly poor code but is very easy to hack. In particular, it dumps all state that |
| // needs conversion into a scratch buffer so that in step 6, where we actually do the |
| // conversions, we know that all temp registers are free to use and the variable is |
| // definitely in a well-known spot in the scratch buffer regardless of whether it had |
| // originally been in a register or spilled. This allows us to decouple "where was |
| // the variable" from "how was it represented". Consider that the |
| // Int32DisplacedInJSStack recovery: it tells us that the value is in a |
| // particular place and that that place holds an unboxed int32. We have two different |
| // places that a value could be (displaced, register) and a bunch of different |
| // ways of representing a value. The number of recoveries is two * a bunch. The code |
| // below means that we have to have two + a bunch cases rather than two * a bunch. |
| // Once we have loaded the value from wherever it was, the reboxing is the same |
| // regardless of its location. Likewise, before we do the reboxing, the way we get to |
| // the value (i.e. where we load it from) is the same regardless of its type. Because |
| // the code below always dumps everything into a scratch buffer first, the two |
| // questions become orthogonal, which simplifies adding new types and adding new |
| // locations. |
| // |
| // This raises the question: does using such a suboptimal implementation of OSR exit, |
| // where we always emit code to dump all state into a scratch buffer only to then |
| // dump it right back into the stack, hurt us in any way? The asnwer is that OSR exits |
| // are rare. Our tiering strategy ensures this. This is because if an OSR exit is |
| // taken more than ~100 times, we jettison the DFG code block along with all of its |
| // exits. It is impossible for an OSR exit - i.e. the code we compile below - to |
| // execute frequently enough for the codegen to matter that much. It probably matters |
| // enough that we don't want to turn this into some super-slow function call, but so |
| // long as we're generating straight-line code, that code can be pretty bad. Also |
| // because we tend to exit only along one OSR exit from any DFG code block - that's an |
| // empirical result that we're extremely confident about - the code size of this |
| // doesn't matter much. Hence any attempt to optimize the codegen here is just purely |
| // harmful to the system: it probably won't reduce either net memory usage or net |
| // execution time. It will only prevent us from cleanly decoupling "where was the |
| // variable" from "how was it represented", which will make it more difficult to add |
| // features in the future and it will make it harder to reason about bugs. |
| |
| // Save all state from GPRs into the scratch buffer. |
| |
| ScratchBuffer* scratchBuffer = vm.scratchBufferForSize(sizeof(EncodedJSValue) * operands.size()); |
| EncodedJSValue* scratch = scratchBuffer ? static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()) : nullptr; |
| |
| for (size_t index = 0; index < operands.size(); ++index) { |
| const ValueRecovery& recovery = operands[index]; |
| |
| switch (recovery.technique()) { |
| case UnboxedInt32InGPR: |
| case UnboxedCellInGPR: |
| #if USE(JSVALUE64) |
| case InGPR: |
| case UnboxedInt52InGPR: |
| case UnboxedStrictInt52InGPR: |
| jit.store64(recovery.gpr(), scratch + index); |
| break; |
| #else |
| case UnboxedBooleanInGPR: |
| jit.store32( |
| recovery.gpr(), |
| &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload); |
| break; |
| |
| case InPair: |
| jit.store32( |
| recovery.tagGPR(), |
| &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.tag); |
| jit.store32( |
| recovery.payloadGPR(), |
| &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload); |
| break; |
| #endif |
| |
| default: |
| break; |
| } |
| } |
| |
| // And voila, all GPRs are free to reuse. |
| |
| // Save all state from FPRs into the scratch buffer. |
| |
| for (size_t index = 0; index < operands.size(); ++index) { |
| const ValueRecovery& recovery = operands[index]; |
| |
| switch (recovery.technique()) { |
| case UnboxedDoubleInFPR: |
| case InFPR: |
| jit.move(AssemblyHelpers::TrustedImmPtr(scratch + index), GPRInfo::regT0); |
| jit.storeDouble(recovery.fpr(), MacroAssembler::Address(GPRInfo::regT0)); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| // Now, all FPRs are also free. |
| |
| // Save all state from the stack into the scratch buffer. For simplicity we |
| // do this even for state that's already in the right place on the stack. |
| // It makes things simpler later. |
| |
| for (size_t index = 0; index < operands.size(); ++index) { |
| const ValueRecovery& recovery = operands[index]; |
| |
| switch (recovery.technique()) { |
| case DisplacedInJSStack: |
| case CellDisplacedInJSStack: |
| case BooleanDisplacedInJSStack: |
| case Int32DisplacedInJSStack: |
| case DoubleDisplacedInJSStack: |
| #if USE(JSVALUE64) |
| case Int52DisplacedInJSStack: |
| case StrictInt52DisplacedInJSStack: |
| jit.load64(AssemblyHelpers::addressFor(recovery.virtualRegister()), GPRInfo::regT0); |
| jit.store64(GPRInfo::regT0, scratch + index); |
| break; |
| #else |
| jit.load32( |
| AssemblyHelpers::tagFor(recovery.virtualRegister()), |
| GPRInfo::regT0); |
| jit.load32( |
| AssemblyHelpers::payloadFor(recovery.virtualRegister()), |
| GPRInfo::regT1); |
| jit.store32( |
| GPRInfo::regT0, |
| &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.tag); |
| jit.store32( |
| GPRInfo::regT1, |
| &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload); |
| break; |
| #endif |
| |
| default: |
| break; |
| } |
| } |
| |
| if constexpr (validateDFGDoesGC) { |
| if (Options::validateDoesGC()) { |
| // We're about to exit optimized code. So, there's no longer any optimized |
| // code running that expects no GC. We need to set this before arguments |
| // materialization below (see emitRestoreArguments()). |
| |
| // Even though we set Heap::m_doesGC in compileOSRExit(), we also need |
| // to set it here because compileOSRExit() is only called on the first time |
| // we exit from this site, but all subsequent exits will take this compiled |
| // ramp without calling compileOSRExit() first. |
| jit.store32(CCallHelpers::TrustedImm32(DoesGCCheck::encode(true, DoesGCCheck::Special::DFGOSRExit)), vm.heap.addressOfDoesGC()); |
| } |
| } |
| |
| // Need to ensure that the stack pointer accounts for the worst-case stack usage at exit. This |
| // could toast some stack that the DFG used. We need to do it before storing to stack offsets |
| // used by baseline. |
| jit.addPtr( |
| CCallHelpers::TrustedImm32( |
| -jit.codeBlock()->jitCode()->dfgCommon()->requiredRegisterCountForExit * sizeof(Register)), |
| CCallHelpers::framePointerRegister, CCallHelpers::stackPointerRegister); |
| |
| // Restore the DFG callee saves and then save the ones the baseline JIT uses. |
| jit.emitRestoreCalleeSaves(); |
| jit.emitSaveCalleeSavesFor(jit.baselineCodeBlock()); |
| |
| // The tag registers are needed to materialize recoveries below. |
| jit.emitMaterializeTagCheckRegisters(); |
| |
| if (exit.isExceptionHandler()) |
| jit.copyCalleeSavesToEntryFrameCalleeSavesBuffer(vm.topEntryFrame); |
| |
| if (exit.m_codeOrigin.inlineStackContainsActiveCheckpoint()) { |
| // FIXME: Maybe we shouldn't use a probe but filling all the side state objects is tricky otherwise... |
| Vector<ValueRecovery> values(operands.numberOfTmps()); |
| for (size_t i = 0; i < operands.numberOfTmps(); ++i) |
| values[i] = operands.tmp(i); |
| |
| VM* vmPtr = &vm; |
| auto* tmpScratch = scratch + operands.tmpIndex(0); |
| jit.probe([=, values = WTFMove(values)] (Probe::Context& context) { |
| Vector<std::unique_ptr<CheckpointOSRExitSideState>, VM::expectedMaxActiveSideStateCount> sideStates; |
| sideStates.reserveInitialCapacity(exit.m_codeOrigin.inlineDepth()); |
| auto sideStateCommitter = makeScopeExit([&] { |
| for (size_t i = sideStates.size(); i--;) |
| vmPtr->pushCheckpointOSRSideState(WTFMove(sideStates[i])); |
| }); |
| |
| |
| auto addSideState = [&] (CallFrame* frame, BytecodeIndex index, size_t tmpOffset) { |
| std::unique_ptr<CheckpointOSRExitSideState> sideState = WTF::makeUnique<CheckpointOSRExitSideState>(frame); |
| |
| sideState->bytecodeIndex = index; |
| for (size_t i = 0; i < maxNumCheckpointTmps; ++i) { |
| auto& recovery = values[i + tmpOffset]; |
| // FIXME: We should do what the FTL does and materialize all the JSValues into the scratch buffer. |
| switch (recovery.technique()) { |
| |
| case Constant: |
| sideState->tmps[i] = recovery.constant(); |
| break; |
| |
| case UnboxedInt32InGPR: |
| case Int32DisplacedInJSStack: { |
| sideState->tmps[i] = jsNumber(static_cast<int32_t>(tmpScratch[i + tmpOffset])); |
| break; |
| } |
| |
| case UnboxedBooleanInGPR: { |
| sideState->tmps[i] = jsBoolean(static_cast<bool>(tmpScratch[i + tmpOffset])); |
| break; |
| } |
| |
| #if USE(JSVALUE64) |
| case BooleanDisplacedInJSStack: |
| case CellDisplacedInJSStack: |
| case UnboxedCellInGPR: |
| case InGPR: |
| case DisplacedInJSStack: { |
| sideState->tmps[i] = reinterpret_cast<JSValue*>(tmpScratch)[i + tmpOffset]; |
| break; |
| } |
| #else // USE(JSVALUE32_64) |
| case InPair: |
| case DisplacedInJSStack: { |
| sideState->tmps[i] = reinterpret_cast<JSValue*>(tmpScratch)[i + tmpOffset]; |
| break; |
| } |
| |
| case CellDisplacedInJSStack: |
| case UnboxedCellInGPR: { |
| EncodedValueDescriptor* valueDescriptor = bitwise_cast<EncodedValueDescriptor*>(tmpScratch + i + tmpOffset); |
| sideState->tmps[i] = JSValue(JSValue::CellTag, valueDescriptor->asBits.payload); |
| break; |
| } |
| |
| case BooleanDisplacedInJSStack: { |
| sideState->tmps[i] = jsBoolean(static_cast<bool>(tmpScratch[i + tmpOffset])); |
| break; |
| } |
| #endif // USE(JSVALUE64) |
| |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| } |
| |
| sideStates.append(WTFMove(sideState)); |
| }; |
| |
| const CodeOrigin* codeOrigin; |
| CallFrame* callFrame = context.gpr<CallFrame*>(GPRInfo::callFrameRegister); |
| for (codeOrigin = &exit.m_codeOrigin; codeOrigin && codeOrigin->inlineCallFrame(); codeOrigin = codeOrigin->inlineCallFrame()->getCallerSkippingTailCalls()) { |
| BytecodeIndex callBytecodeIndex = codeOrigin->bytecodeIndex(); |
| if (!callBytecodeIndex.checkpoint()) |
| continue; |
| |
| auto* inlineCallFrame = codeOrigin->inlineCallFrame(); |
| addSideState(reinterpret_cast_ptr<CallFrame*>(reinterpret_cast<char*>(callFrame) + inlineCallFrame->returnPCOffset() - sizeof(CPURegister)), callBytecodeIndex, inlineCallFrame->tmpOffset); |
| } |
| |
| if (!codeOrigin) |
| return; |
| |
| if (BytecodeIndex bytecodeIndex = codeOrigin->bytecodeIndex(); bytecodeIndex.checkpoint()) |
| addSideState(callFrame, bytecodeIndex, 0); |
| }); |
| } |
| |
| // Do all data format conversions and store the results into the stack. |
| |
| for (size_t index = 0; index < operands.size(); ++index) { |
| const ValueRecovery& recovery = operands[index]; |
| Operand operand = operands.operandForIndex(index); |
| if (operand.isTmp()) |
| continue; |
| |
| if (operand.isLocal() && operand.toLocal() < static_cast<int>(jit.baselineCodeBlock()->calleeSaveSpaceAsVirtualRegisters())) |
| continue; |
| |
| switch (recovery.technique()) { |
| case DisplacedInJSStack: |
| case InFPR: |
| #if USE(JSVALUE64) |
| case InGPR: |
| case UnboxedCellInGPR: |
| case CellDisplacedInJSStack: |
| case BooleanDisplacedInJSStack: |
| jit.load64(scratch + index, GPRInfo::regT0); |
| jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand)); |
| break; |
| #else // not USE(JSVALUE64) |
| case InPair: |
| jit.load32( |
| &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.tag, |
| GPRInfo::regT0); |
| jit.load32( |
| &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload, |
| GPRInfo::regT1); |
| jit.store32( |
| GPRInfo::regT0, |
| AssemblyHelpers::tagFor(operand)); |
| jit.store32( |
| GPRInfo::regT1, |
| AssemblyHelpers::payloadFor(operand)); |
| break; |
| |
| case UnboxedCellInGPR: |
| case CellDisplacedInJSStack: |
| jit.load32( |
| &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload, |
| GPRInfo::regT0); |
| jit.store32( |
| AssemblyHelpers::TrustedImm32(JSValue::CellTag), |
| AssemblyHelpers::tagFor(operand)); |
| jit.store32( |
| GPRInfo::regT0, |
| AssemblyHelpers::payloadFor(operand)); |
| break; |
| |
| case UnboxedBooleanInGPR: |
| case BooleanDisplacedInJSStack: |
| jit.load32( |
| &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload, |
| GPRInfo::regT0); |
| jit.store32( |
| AssemblyHelpers::TrustedImm32(JSValue::BooleanTag), |
| AssemblyHelpers::tagFor(operand)); |
| jit.store32( |
| GPRInfo::regT0, |
| AssemblyHelpers::payloadFor(operand)); |
| break; |
| #endif // USE(JSVALUE64) |
| |
| case UnboxedInt32InGPR: |
| case Int32DisplacedInJSStack: |
| #if USE(JSVALUE64) |
| jit.load64(scratch + index, GPRInfo::regT0); |
| jit.zeroExtend32ToWord(GPRInfo::regT0, GPRInfo::regT0); |
| jit.or64(GPRInfo::numberTagRegister, GPRInfo::regT0); |
| jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand)); |
| #else |
| jit.load32( |
| &bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload, |
| GPRInfo::regT0); |
| jit.store32( |
| AssemblyHelpers::TrustedImm32(JSValue::Int32Tag), |
| AssemblyHelpers::tagFor(operand)); |
| jit.store32( |
| GPRInfo::regT0, |
| AssemblyHelpers::payloadFor(operand)); |
| #endif |
| break; |
| |
| #if USE(JSVALUE64) |
| case UnboxedInt52InGPR: |
| case Int52DisplacedInJSStack: |
| jit.load64(scratch + index, GPRInfo::regT0); |
| jit.rshift64( |
| AssemblyHelpers::TrustedImm32(JSValue::int52ShiftAmount), GPRInfo::regT0); |
| jit.boxInt52(GPRInfo::regT0, GPRInfo::regT0, GPRInfo::regT1, FPRInfo::fpRegT0); |
| jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand)); |
| break; |
| |
| case UnboxedStrictInt52InGPR: |
| case StrictInt52DisplacedInJSStack: |
| jit.load64(scratch + index, GPRInfo::regT0); |
| jit.boxInt52(GPRInfo::regT0, GPRInfo::regT0, GPRInfo::regT1, FPRInfo::fpRegT0); |
| jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand)); |
| break; |
| #endif |
| |
| case UnboxedDoubleInFPR: |
| case DoubleDisplacedInJSStack: |
| jit.move(AssemblyHelpers::TrustedImmPtr(scratch + index), GPRInfo::regT0); |
| jit.loadDouble(MacroAssembler::Address(GPRInfo::regT0), FPRInfo::fpRegT0); |
| jit.purifyNaN(FPRInfo::fpRegT0); |
| #if USE(JSVALUE64) |
| jit.boxDouble(FPRInfo::fpRegT0, GPRInfo::regT0); |
| jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand)); |
| #else |
| jit.storeDouble(FPRInfo::fpRegT0, AssemblyHelpers::addressFor(operand)); |
| #endif |
| break; |
| |
| case Constant: |
| #if USE(JSVALUE64) |
| jit.store64( |
| AssemblyHelpers::TrustedImm64(JSValue::encode(recovery.constant())), |
| AssemblyHelpers::addressFor(operand)); |
| #else |
| jit.store32( |
| AssemblyHelpers::TrustedImm32(recovery.constant().tag()), |
| AssemblyHelpers::tagFor(operand)); |
| jit.store32( |
| AssemblyHelpers::TrustedImm32(recovery.constant().payload()), |
| AssemblyHelpers::payloadFor(operand)); |
| #endif |
| break; |
| |
| case DirectArgumentsThatWereNotCreated: |
| case ClonedArgumentsThatWereNotCreated: |
| // Don't do this, yet. |
| break; |
| |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| break; |
| } |
| } |
| |
| // Now that things on the stack are recovered, do the arguments recovery. We assume that arguments |
| // recoveries don't recursively refer to each other. But, we don't try to assume that they only |
| // refer to certain ranges of locals. Hence why we need to do this here, once the stack is sensible. |
| // Note that we also roughly assume that the arguments might still be materialized outside of its |
| // inline call frame scope - but for now the DFG wouldn't do that. |
| |
| emitRestoreArguments(jit, vm, operands); |
| |
| // Adjust the old JIT's execute counter. Since we are exiting OSR, we know |
| // that all new calls into this code will go to the new JIT, so the execute |
| // counter only affects call frames that performed OSR exit and call frames |
| // that were still executing the old JIT at the time of another call frame's |
| // OSR exit. We want to ensure that the following is true: |
| // |
| // (a) Code the performs an OSR exit gets a chance to reenter optimized |
| // code eventually, since optimized code is faster. But we don't |
| // want to do such reentery too aggressively (see (c) below). |
| // |
| // (b) If there is code on the call stack that is still running the old |
| // JIT's code and has never OSR'd, then it should get a chance to |
| // perform OSR entry despite the fact that we've exited. |
| // |
| // (c) Code the performs an OSR exit should not immediately retry OSR |
| // entry, since both forms of OSR are expensive. OSR entry is |
| // particularly expensive. |
| // |
| // (d) Frequent OSR failures, even those that do not result in the code |
| // running in a hot loop, result in recompilation getting triggered. |
| // |
| // To ensure (c), we'd like to set the execute counter to |
| // counterValueForOptimizeAfterWarmUp(). This seems like it would endanger |
| // (a) and (b), since then every OSR exit would delay the opportunity for |
| // every call frame to perform OSR entry. Essentially, if OSR exit happens |
| // frequently and the function has few loops, then the counter will never |
| // become non-negative and OSR entry will never be triggered. OSR entry |
| // will only happen if a loop gets hot in the old JIT, which does a pretty |
| // good job of ensuring (a) and (b). But that doesn't take care of (d), |
| // since each speculation failure would reset the execute counter. |
| // So we check here if the number of speculation failures is significantly |
| // larger than the number of successes (we want 90% success rate), and if |
| // there have been a large enough number of failures. If so, we set the |
| // counter to 0; otherwise we set the counter to |
| // counterValueForOptimizeAfterWarmUp(). |
| |
| handleExitCounts(vm, jit, exit); |
| |
| // Reify inlined call frames. |
| |
| reifyInlinedCallFrames(jit, exit); |
| |
| // And finish. |
| adjustAndJumpToTarget(vm, jit, exit); |
| } |
| |
| JSC_DEFINE_JIT_OPERATION(operationDebugPrintSpeculationFailure, void, (CallFrame* callFrame, void* debugInfoRaw, void* scratch)) |
| { |
| VM& vm = callFrame->deprecatedVM(); |
| NativeCallFrameTracer tracer(vm, callFrame); |
| |
| SpeculationFailureDebugInfo* debugInfo = static_cast<SpeculationFailureDebugInfo*>(debugInfoRaw); |
| CodeBlock* codeBlock = debugInfo->codeBlock; |
| CodeBlock* alternative = codeBlock->alternative(); |
| dataLog("Speculation failure in ", *codeBlock); |
| dataLog(" @ exit #", vm.osrExitIndex, " (", debugInfo->bytecodeIndex, ", ", exitKindToString(debugInfo->kind), ") with "); |
| if (alternative) { |
| dataLog( |
| "executeCounter = ", alternative->jitExecuteCounter(), |
| ", reoptimizationRetryCounter = ", alternative->reoptimizationRetryCounter(), |
| ", optimizationDelayCounter = ", alternative->optimizationDelayCounter()); |
| } else |
| dataLog("no alternative code block (i.e. we've been jettisoned)"); |
| dataLog(", osrExitCounter = ", codeBlock->osrExitCounter(), "\n"); |
| dataLog(" GPRs at time of exit:"); |
| char* scratchPointer = static_cast<char*>(scratch); |
| for (unsigned i = 0; i < GPRInfo::numberOfRegisters; ++i) { |
| GPRReg gpr = GPRInfo::toRegister(i); |
| dataLog(" ", GPRInfo::debugName(gpr), ":", RawPointer(*reinterpret_cast_ptr<void**>(scratchPointer))); |
| scratchPointer += sizeof(EncodedJSValue); |
| } |
| dataLog("\n"); |
| dataLog(" FPRs at time of exit:"); |
| for (unsigned i = 0; i < FPRInfo::numberOfRegisters; ++i) { |
| FPRReg fpr = FPRInfo::toRegister(i); |
| dataLog(" ", FPRInfo::debugName(fpr), ":"); |
| uint64_t bits = *reinterpret_cast_ptr<uint64_t*>(scratchPointer); |
| double value = *reinterpret_cast_ptr<double*>(scratchPointer); |
| dataLogF("%llx:%lf", static_cast<long long>(bits), value); |
| scratchPointer += sizeof(EncodedJSValue); |
| } |
| dataLog("\n"); |
| } |
| |
| } } // namespace JSC::DFG |
| |
| #endif // ENABLE(DFG_JIT) |