| /* |
| * Copyright (C) 2015-2019 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #pragma once |
| |
| #if ENABLE(B3_JIT) |
| |
| #include "AirTmp.h" |
| #include "B3Bank.h" |
| #include "B3Common.h" |
| #include "B3Type.h" |
| #include "B3Value.h" |
| #include "B3Width.h" |
| #include <wtf/Optional.h> |
| |
| #if !ASSERT_ENABLED |
| IGNORE_RETURN_TYPE_WARNINGS_BEGIN |
| #endif |
| |
| namespace JSC { namespace B3 { |
| |
| class Value; |
| |
| namespace Air { |
| |
| class Special; |
| class StackSlot; |
| |
| // This class name is also intentionally terse because we will say it a lot. You'll see code like |
| // Inst(..., Arg::imm(5), Arg::addr(thing, blah), ...) |
| class Arg { |
| public: |
| // These enum members are intentionally terse because we have to mention them a lot. |
| enum Kind : int8_t { |
| Invalid, |
| |
| // This is either an unassigned temporary or a register. All unassigned temporaries |
| // eventually become registers. |
| Tmp, |
| |
| // This is an immediate that the instruction will materialize. Imm is the immediate that can be |
| // inlined into most instructions, while BigImm indicates a constant materialization and is |
| // usually only usable with Move. Specials may also admit it, for example for stackmaps used for |
| // OSR exit and tail calls. |
| // BitImm is an immediate for Bitwise operation (And, Xor, etc). |
| Imm, |
| BigImm, |
| BitImm, |
| BitImm64, |
| |
| // These are the addresses. Instructions may load from (Use), store to (Def), or evaluate |
| // (UseAddr) addresses. |
| SimpleAddr, |
| Addr, |
| ExtendedOffsetAddr, |
| Stack, |
| CallArg, |
| Index, |
| |
| // Immediate operands that customize the behavior of an operation. You can think of them as |
| // secondary opcodes. They are always "Use"'d. |
| RelCond, |
| ResCond, |
| DoubleCond, |
| StatusCond, |
| Special, |
| WidthArg |
| }; |
| |
| enum Temperature : int8_t { |
| Cold, |
| Warm |
| }; |
| |
| enum Phase : int8_t { |
| Early, |
| Late |
| }; |
| |
| enum Timing : int8_t { |
| OnlyEarly, |
| OnlyLate, |
| EarlyAndLate |
| }; |
| |
| enum Role : int8_t { |
| // Use means that the Inst will read from this value before doing anything else. |
| // |
| // For Tmp: The Inst will read this Tmp. |
| // For Arg::addr and friends: The Inst will load from this address. |
| // For Arg::imm and friends: The Inst will materialize and use this immediate. |
| // For RelCond/ResCond/Special: This is the only valid role for these kinds. |
| // |
| // Note that Use of an address does not mean escape. It only means that the instruction will |
| // load from the address before doing anything else. This is a bit tricky; for example |
| // Specials could theoretically squirrel away the address and effectively escape it. However, |
| // this is not legal. On the other hand, any address other than Stack is presumed to be |
| // always escaping, and Stack is presumed to be always escaping if it's Locked. |
| Use, |
| |
| // Exactly like Use, except that it also implies that the use is cold: that is, replacing the |
| // use with something on the stack is free. |
| ColdUse, |
| |
| // LateUse means that the Inst will read from this value after doing its Def's. Note that LateUse |
| // on an Addr or Index still means Use on the internal temporaries. Note that specifying the |
| // same Tmp once as Def and once as LateUse has undefined behavior: the use may happen before |
| // the def, or it may happen after it. |
| LateUse, |
| |
| // Combination of LateUse and ColdUse. |
| LateColdUse, |
| |
| // Def means that the Inst will write to this value after doing everything else. |
| // |
| // For Tmp: The Inst will write to this Tmp. |
| // For Arg::addr and friends: The Inst will store to this address. |
| // This isn't valid for any other kinds. |
| // |
| // Like Use of address, Def of address does not mean escape. |
| Def, |
| |
| // This is a special variant of Def that implies that the upper bits of the target register are |
| // zero-filled. Specifically, if the Width of a ZDef is less than the largest possible width of |
| // the argument (for example, we're on a 64-bit machine and we have a Width32 ZDef of a GPR) then |
| // this has different implications for the upper bits (i.e. the top 32 bits in our example) |
| // depending on the kind of the argument: |
| // |
| // For register: the upper bits are zero-filled. |
| // For anonymous stack slot: the upper bits are zero-filled. |
| // For address: the upper bits are not touched (i.e. we do a 32-bit store in our example). |
| // For tmp: either the upper bits are not touched or they are zero-filled, and we won't know |
| // which until we lower the tmp to either a StackSlot or a Reg. |
| // |
| // The behavior of ZDef is consistent with what happens when you perform 32-bit operations on a |
| // 64-bit GPR. It's not consistent with what happens with 8-bit or 16-bit Defs on x86 GPRs, or |
| // what happens with float Defs in ARM NEON or X86 SSE. Hence why we have both Def and ZDef. |
| ZDef, |
| |
| // This is a combined Use and Def. It means that both things happen. |
| UseDef, |
| |
| // This is a combined Use and ZDef. It means that both things happen. |
| UseZDef, |
| |
| // This is like Def, but implies that the assignment occurs before the start of the Inst's |
| // execution rather than after. Note that specifying the same Tmp once as EarlyDef and once |
| // as Use has undefined behavior: the use may happen before the def, or it may happen after |
| // it. |
| EarlyDef, |
| |
| EarlyZDef, |
| |
| // Some instructions need a scratch register. We model this by saying that the temporary is |
| // defined early and used late. This role implies that. |
| Scratch, |
| |
| // This is a special kind of use that is only valid for addresses. It means that the |
| // instruction will evaluate the address expression and consume the effective address, but it |
| // will neither load nor store. This is an escaping use, because now the address may be |
| // passed along to who-knows-where. Note that this isn't really a Use of the Arg, but it does |
| // imply that we're Use'ing any registers that the Arg contains. |
| UseAddr |
| }; |
| |
| enum Signedness : int8_t { |
| Signed, |
| Unsigned |
| }; |
| |
| // Returns true if the Role implies that the Inst will Use the Arg. It's deliberately false for |
| // UseAddr, since isAnyUse() for an Arg::addr means that we are loading from the address. |
| static bool isAnyUse(Role role) |
| { |
| switch (role) { |
| case Use: |
| case ColdUse: |
| case UseDef: |
| case UseZDef: |
| case LateUse: |
| case LateColdUse: |
| case Scratch: |
| return true; |
| case Def: |
| case ZDef: |
| case UseAddr: |
| case EarlyDef: |
| case EarlyZDef: |
| return false; |
| } |
| ASSERT_NOT_REACHED(); |
| } |
| |
| static bool isColdUse(Role role) |
| { |
| switch (role) { |
| case ColdUse: |
| case LateColdUse: |
| return true; |
| case Use: |
| case UseDef: |
| case UseZDef: |
| case LateUse: |
| case Def: |
| case ZDef: |
| case UseAddr: |
| case Scratch: |
| case EarlyDef: |
| case EarlyZDef: |
| return false; |
| } |
| ASSERT_NOT_REACHED(); |
| } |
| |
| static bool isWarmUse(Role role) |
| { |
| return isAnyUse(role) && !isColdUse(role); |
| } |
| |
| static Role cooled(Role role) |
| { |
| switch (role) { |
| case ColdUse: |
| case LateColdUse: |
| case UseDef: |
| case UseZDef: |
| case Def: |
| case ZDef: |
| case UseAddr: |
| case Scratch: |
| case EarlyDef: |
| case EarlyZDef: |
| return role; |
| case Use: |
| return ColdUse; |
| case LateUse: |
| return LateColdUse; |
| } |
| ASSERT_NOT_REACHED(); |
| } |
| |
| static Temperature temperature(Role role) |
| { |
| return isColdUse(role) ? Cold : Warm; |
| } |
| |
| static bool activeAt(Role role, Phase phase) |
| { |
| switch (role) { |
| case Use: |
| case ColdUse: |
| case EarlyDef: |
| case EarlyZDef: |
| case UseAddr: |
| return phase == Early; |
| case LateUse: |
| case LateColdUse: |
| case Def: |
| case ZDef: |
| return phase == Late; |
| case UseDef: |
| case UseZDef: |
| case Scratch: |
| return true; |
| } |
| ASSERT_NOT_REACHED(); |
| } |
| |
| static bool activeAt(Timing timing, Phase phase) |
| { |
| switch (timing) { |
| case OnlyEarly: |
| return phase == Early; |
| case OnlyLate: |
| return phase == Late; |
| case EarlyAndLate: |
| return true; |
| } |
| ASSERT_NOT_REACHED(); |
| } |
| |
| static Timing timing(Role role) |
| { |
| switch (role) { |
| case Use: |
| case ColdUse: |
| case EarlyDef: |
| case EarlyZDef: |
| case UseAddr: |
| return OnlyEarly; |
| case LateUse: |
| case LateColdUse: |
| case Def: |
| case ZDef: |
| return OnlyLate; |
| case UseDef: |
| case UseZDef: |
| case Scratch: |
| return EarlyAndLate; |
| } |
| ASSERT_NOT_REACHED(); |
| } |
| |
| template<typename Func> |
| static void forEachPhase(Timing timing, const Func& func) |
| { |
| if (activeAt(timing, Early)) |
| func(Early); |
| if (activeAt(timing, Late)) |
| func(Late); |
| } |
| |
| template<typename Func> |
| static void forEachPhase(Role role, const Func& func) |
| { |
| if (activeAt(role, Early)) |
| func(Early); |
| if (activeAt(role, Late)) |
| func(Late); |
| } |
| |
| // Returns true if the Role implies that the Inst will Use the Arg before doing anything else. |
| static bool isEarlyUse(Role role) |
| { |
| switch (role) { |
| case Use: |
| case ColdUse: |
| case UseDef: |
| case UseZDef: |
| return true; |
| case Def: |
| case ZDef: |
| case UseAddr: |
| case LateUse: |
| case LateColdUse: |
| case Scratch: |
| case EarlyDef: |
| case EarlyZDef: |
| return false; |
| } |
| ASSERT_NOT_REACHED(); |
| } |
| |
| // Returns true if the Role implies that the Inst will Use the Arg after doing everything else. |
| static bool isLateUse(Role role) |
| { |
| switch (role) { |
| case LateUse: |
| case LateColdUse: |
| case Scratch: |
| return true; |
| case ColdUse: |
| case Use: |
| case UseDef: |
| case UseZDef: |
| case Def: |
| case ZDef: |
| case UseAddr: |
| case EarlyDef: |
| case EarlyZDef: |
| return false; |
| } |
| ASSERT_NOT_REACHED(); |
| } |
| |
| // Returns true if the Role implies that the Inst will Def the Arg. |
| static bool isAnyDef(Role role) |
| { |
| switch (role) { |
| case Use: |
| case ColdUse: |
| case UseAddr: |
| case LateUse: |
| case LateColdUse: |
| return false; |
| case Def: |
| case UseDef: |
| case ZDef: |
| case UseZDef: |
| case EarlyDef: |
| case EarlyZDef: |
| case Scratch: |
| return true; |
| } |
| ASSERT_NOT_REACHED(); |
| } |
| |
| // Returns true if the Role implies that the Inst will Def the Arg before start of execution. |
| static bool isEarlyDef(Role role) |
| { |
| switch (role) { |
| case Use: |
| case ColdUse: |
| case UseAddr: |
| case LateUse: |
| case Def: |
| case UseDef: |
| case ZDef: |
| case UseZDef: |
| case LateColdUse: |
| return false; |
| case EarlyDef: |
| case EarlyZDef: |
| case Scratch: |
| return true; |
| } |
| ASSERT_NOT_REACHED(); |
| } |
| |
| // Returns true if the Role implies that the Inst will Def the Arg after the end of execution. |
| static bool isLateDef(Role role) |
| { |
| switch (role) { |
| case Use: |
| case ColdUse: |
| case UseAddr: |
| case LateUse: |
| case EarlyDef: |
| case EarlyZDef: |
| case Scratch: |
| case LateColdUse: |
| return false; |
| case Def: |
| case UseDef: |
| case ZDef: |
| case UseZDef: |
| return true; |
| } |
| ASSERT_NOT_REACHED(); |
| } |
| |
| // Returns true if the Role implies that the Inst will ZDef the Arg. |
| static bool isZDef(Role role) |
| { |
| switch (role) { |
| case Use: |
| case ColdUse: |
| case UseAddr: |
| case LateUse: |
| case Def: |
| case UseDef: |
| case EarlyDef: |
| case Scratch: |
| case LateColdUse: |
| return false; |
| case ZDef: |
| case UseZDef: |
| case EarlyZDef: |
| return true; |
| } |
| ASSERT_NOT_REACHED(); |
| } |
| |
| Arg() |
| : m_kind(Invalid) |
| { |
| } |
| |
| Arg(Air::Tmp tmp) |
| : m_kind(Tmp) |
| , m_base(tmp) |
| { |
| } |
| |
| Arg(Reg reg) |
| : Arg(Air::Tmp(reg)) |
| { |
| } |
| |
| static Arg imm(int64_t value) |
| { |
| Arg result; |
| result.m_kind = Imm; |
| result.m_offset = value; |
| return result; |
| } |
| |
| static Arg bigImm(int64_t value) |
| { |
| Arg result; |
| result.m_kind = BigImm; |
| result.m_offset = value; |
| return result; |
| } |
| |
| static Arg bitImm(int64_t value) |
| { |
| Arg result; |
| result.m_kind = BitImm; |
| result.m_offset = value; |
| return result; |
| } |
| |
| static Arg bitImm64(int64_t value) |
| { |
| Arg result; |
| result.m_kind = BitImm64; |
| result.m_offset = value; |
| return result; |
| } |
| |
| static Arg immPtr(const void* address) |
| { |
| return bigImm(bitwise_cast<intptr_t>(address)); |
| } |
| |
| static Arg simpleAddr(Air::Tmp ptr) |
| { |
| ASSERT(ptr.isGP()); |
| Arg result; |
| result.m_kind = SimpleAddr; |
| result.m_base = ptr; |
| return result; |
| } |
| |
| template<typename Int, typename = Value::IsLegalOffset<Int>> |
| static Arg addr(Air::Tmp base, Int offset) |
| { |
| ASSERT(base.isGP()); |
| Arg result; |
| result.m_kind = Addr; |
| result.m_base = base; |
| result.m_offset = offset; |
| return result; |
| } |
| |
| template<typename Int, typename = Value::IsLegalOffset<Int>> |
| static Arg extendedOffsetAddr(Int offsetFromFP) |
| { |
| Arg result; |
| result.m_kind = ExtendedOffsetAddr; |
| result.m_base = Air::Tmp(MacroAssembler::framePointerRegister); |
| result.m_offset = offsetFromFP; |
| return result; |
| } |
| |
| static Arg addr(Air::Tmp base) |
| { |
| return addr(base, 0); |
| } |
| |
| template<typename Int, typename = Value::IsLegalOffset<Int>> |
| static Arg stack(StackSlot* value, Int offset) |
| { |
| Arg result; |
| result.m_kind = Stack; |
| result.m_offset = bitwise_cast<intptr_t>(value); |
| result.m_scale = offset; // I know, yuck. |
| return result; |
| } |
| |
| static Arg stack(StackSlot* value) |
| { |
| return stack(value, 0); |
| } |
| |
| template<typename Int, typename = Value::IsLegalOffset<Int>> |
| static Arg callArg(Int offset) |
| { |
| Arg result; |
| result.m_kind = CallArg; |
| result.m_offset = offset; |
| return result; |
| } |
| |
| // If you don't pass a Width, this optimistically assumes that you're using the right width. |
| static bool isValidScale(unsigned scale, Optional<Width> width = WTF::nullopt) |
| { |
| switch (scale) { |
| case 1: |
| if (isX86() || isARM64()) |
| return true; |
| return false; |
| case 2: |
| case 4: |
| case 8: |
| if (isX86()) |
| return true; |
| if (isARM64()) { |
| if (!width) |
| return true; |
| return scale == 1 || scale == bytes(*width); |
| } |
| return false; |
| default: |
| return false; |
| } |
| } |
| |
| static unsigned logScale(unsigned scale) |
| { |
| switch (scale) { |
| case 1: |
| return 0; |
| case 2: |
| return 1; |
| case 4: |
| return 2; |
| case 8: |
| return 3; |
| default: |
| ASSERT_NOT_REACHED(); |
| return 0; |
| } |
| } |
| |
| template<typename Int, typename = Value::IsLegalOffset<Int>> |
| static Arg index(Air::Tmp base, Air::Tmp index, unsigned scale, Int offset) |
| { |
| ASSERT(base.isGP()); |
| ASSERT(index.isGP()); |
| ASSERT(isValidScale(scale)); |
| Arg result; |
| result.m_kind = Index; |
| result.m_base = base; |
| result.m_index = index; |
| result.m_scale = static_cast<int32_t>(scale); |
| result.m_offset = offset; |
| return result; |
| } |
| |
| static Arg index(Air::Tmp base, Air::Tmp index, unsigned scale = 1) |
| { |
| return Arg::index(base, index, scale, 0); |
| } |
| |
| static Arg relCond(MacroAssembler::RelationalCondition condition) |
| { |
| Arg result; |
| result.m_kind = RelCond; |
| result.m_offset = condition; |
| return result; |
| } |
| |
| static Arg resCond(MacroAssembler::ResultCondition condition) |
| { |
| Arg result; |
| result.m_kind = ResCond; |
| result.m_offset = condition; |
| return result; |
| } |
| |
| static Arg doubleCond(MacroAssembler::DoubleCondition condition) |
| { |
| Arg result; |
| result.m_kind = DoubleCond; |
| result.m_offset = condition; |
| return result; |
| } |
| |
| static Arg statusCond(MacroAssembler::StatusCondition condition) |
| { |
| Arg result; |
| result.m_kind = StatusCond; |
| result.m_offset = condition; |
| return result; |
| } |
| |
| static Arg special(Air::Special* special) |
| { |
| Arg result; |
| result.m_kind = Special; |
| result.m_offset = bitwise_cast<intptr_t>(special); |
| return result; |
| } |
| |
| static Arg widthArg(Width width) |
| { |
| Arg result; |
| result.m_kind = WidthArg; |
| result.m_offset = width; |
| return result; |
| } |
| |
| bool operator==(const Arg& other) const |
| { |
| return m_offset == other.m_offset |
| && m_kind == other.m_kind |
| && m_base == other.m_base |
| && m_index == other.m_index |
| && m_scale == other.m_scale; |
| } |
| |
| bool operator!=(const Arg& other) const |
| { |
| return !(*this == other); |
| } |
| |
| explicit operator bool() const { return *this != Arg(); } |
| |
| Kind kind() const |
| { |
| return m_kind; |
| } |
| |
| bool isTmp() const |
| { |
| return kind() == Tmp; |
| } |
| |
| bool isImm() const |
| { |
| return kind() == Imm; |
| } |
| |
| bool isBigImm() const |
| { |
| return kind() == BigImm; |
| } |
| |
| bool isBitImm() const |
| { |
| return kind() == BitImm; |
| } |
| |
| bool isBitImm64() const |
| { |
| return kind() == BitImm64; |
| } |
| |
| bool isSomeImm() const |
| { |
| switch (kind()) { |
| case Imm: |
| case BigImm: |
| case BitImm: |
| case BitImm64: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| bool isSimpleAddr() const |
| { |
| return kind() == SimpleAddr; |
| } |
| |
| bool isAddr() const |
| { |
| return kind() == Addr; |
| } |
| |
| bool isExtendedOffsetAddr() const |
| { |
| return kind() == ExtendedOffsetAddr; |
| } |
| |
| bool isStack() const |
| { |
| return kind() == Stack; |
| } |
| |
| bool isCallArg() const |
| { |
| return kind() == CallArg; |
| } |
| |
| bool isIndex() const |
| { |
| return kind() == Index; |
| } |
| |
| bool isMemory() const |
| { |
| switch (kind()) { |
| case SimpleAddr: |
| case Addr: |
| case ExtendedOffsetAddr: |
| case Stack: |
| case CallArg: |
| case Index: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| // Returns true if this is an idiomatic stack reference. It may return false for some kinds of |
| // stack references. The following idioms are recognized: |
| // - the Stack kind |
| // - the CallArg kind |
| // - the ExtendedOffsetAddr kind |
| // - the Addr kind with the base being either SP or FP |
| // Callers of this function are allowed to expect that if it returns true, then it must be one of |
| // these easy-to-recognize kinds. So, making this function recognize more kinds could break things. |
| bool isStackMemory() const; |
| |
| bool isRelCond() const |
| { |
| return kind() == RelCond; |
| } |
| |
| bool isResCond() const |
| { |
| return kind() == ResCond; |
| } |
| |
| bool isDoubleCond() const |
| { |
| return kind() == DoubleCond; |
| } |
| |
| bool isStatusCond() const |
| { |
| return kind() == StatusCond; |
| } |
| |
| bool isCondition() const |
| { |
| switch (kind()) { |
| case RelCond: |
| case ResCond: |
| case DoubleCond: |
| case StatusCond: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| bool isSpecial() const |
| { |
| return kind() == Special; |
| } |
| |
| bool isWidthArg() const |
| { |
| return kind() == WidthArg; |
| } |
| |
| bool isAlive() const |
| { |
| return isTmp() || isStack(); |
| } |
| |
| Air::Tmp tmp() const |
| { |
| ASSERT(kind() == Tmp); |
| return m_base; |
| } |
| |
| int64_t value() const |
| { |
| ASSERT(isSomeImm()); |
| return m_offset; |
| } |
| |
| template<typename T> |
| bool isRepresentableAs() const |
| { |
| return B3::isRepresentableAs<T>(value()); |
| } |
| |
| static bool isRepresentableAs(Width width, Signedness signedness, int64_t value) |
| { |
| switch (signedness) { |
| case Signed: |
| switch (width) { |
| case Width8: |
| return B3::isRepresentableAs<int8_t>(value); |
| case Width16: |
| return B3::isRepresentableAs<int16_t>(value); |
| case Width32: |
| return B3::isRepresentableAs<int32_t>(value); |
| case Width64: |
| return B3::isRepresentableAs<int64_t>(value); |
| } |
| RELEASE_ASSERT_NOT_REACHED(); |
| case Unsigned: |
| switch (width) { |
| case Width8: |
| return B3::isRepresentableAs<uint8_t>(value); |
| case Width16: |
| return B3::isRepresentableAs<uint16_t>(value); |
| case Width32: |
| return B3::isRepresentableAs<uint32_t>(value); |
| case Width64: |
| return B3::isRepresentableAs<uint64_t>(value); |
| } |
| } |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| |
| bool isRepresentableAs(Width, Signedness) const; |
| |
| static int64_t castToType(Width width, Signedness signedness, int64_t value) |
| { |
| switch (signedness) { |
| case Signed: |
| switch (width) { |
| case Width8: |
| return static_cast<int8_t>(value); |
| case Width16: |
| return static_cast<int16_t>(value); |
| case Width32: |
| return static_cast<int32_t>(value); |
| case Width64: |
| return static_cast<int64_t>(value); |
| } |
| RELEASE_ASSERT_NOT_REACHED(); |
| case Unsigned: |
| switch (width) { |
| case Width8: |
| return static_cast<uint8_t>(value); |
| case Width16: |
| return static_cast<uint16_t>(value); |
| case Width32: |
| return static_cast<uint32_t>(value); |
| case Width64: |
| return static_cast<uint64_t>(value); |
| } |
| } |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| |
| template<typename T> |
| T asNumber() const |
| { |
| return static_cast<T>(value()); |
| } |
| |
| void* pointerValue() const |
| { |
| ASSERT(kind() == BigImm); |
| return bitwise_cast<void*>(static_cast<intptr_t>(m_offset)); |
| } |
| |
| Air::Tmp ptr() const |
| { |
| ASSERT(kind() == SimpleAddr); |
| return m_base; |
| } |
| |
| Air::Tmp base() const |
| { |
| ASSERT(kind() == SimpleAddr || kind() == Addr || kind() == ExtendedOffsetAddr || kind() == Index); |
| return m_base; |
| } |
| |
| bool hasOffset() const { return isMemory(); } |
| |
| Value::OffsetType offset() const |
| { |
| if (kind() == Stack) |
| return static_cast<Value::OffsetType>(m_scale); |
| ASSERT(kind() == Addr || kind() == ExtendedOffsetAddr || kind() == CallArg || kind() == Index); |
| return static_cast<Value::OffsetType>(m_offset); |
| } |
| |
| StackSlot* stackSlot() const |
| { |
| ASSERT(kind() == Stack); |
| return bitwise_cast<StackSlot*>(static_cast<uintptr_t>(m_offset)); |
| } |
| |
| Air::Tmp index() const |
| { |
| ASSERT(kind() == Index); |
| return m_index; |
| } |
| |
| unsigned scale() const |
| { |
| ASSERT(kind() == Index); |
| return m_scale; |
| } |
| |
| unsigned logScale() const |
| { |
| return logScale(scale()); |
| } |
| |
| Air::Special* special() const |
| { |
| ASSERT(kind() == Special); |
| return bitwise_cast<Air::Special*>(static_cast<uintptr_t>(m_offset)); |
| } |
| |
| Width width() const |
| { |
| ASSERT(kind() == WidthArg); |
| return static_cast<Width>(m_offset); |
| } |
| |
| bool isGPTmp() const |
| { |
| return isTmp() && tmp().isGP(); |
| } |
| |
| bool isFPTmp() const |
| { |
| return isTmp() && tmp().isFP(); |
| } |
| |
| // Tells us if this Arg can be used in a position that requires a GP value. |
| bool isGP() const |
| { |
| switch (kind()) { |
| case Imm: |
| case BigImm: |
| case BitImm: |
| case BitImm64: |
| case SimpleAddr: |
| case Addr: |
| case ExtendedOffsetAddr: |
| case Index: |
| case Stack: |
| case CallArg: |
| case RelCond: |
| case ResCond: |
| case DoubleCond: |
| case StatusCond: |
| case Special: |
| case WidthArg: |
| return true; |
| case Tmp: |
| return isGPTmp(); |
| case Invalid: |
| return false; |
| } |
| ASSERT_NOT_REACHED(); |
| } |
| |
| // Tells us if this Arg can be used in a position that requires a FP value. |
| bool isFP() const |
| { |
| switch (kind()) { |
| case Imm: |
| case BitImm: |
| case BitImm64: |
| case RelCond: |
| case ResCond: |
| case DoubleCond: |
| case StatusCond: |
| case Special: |
| case WidthArg: |
| case Invalid: |
| return false; |
| case SimpleAddr: |
| case Addr: |
| case ExtendedOffsetAddr: |
| case Index: |
| case Stack: |
| case CallArg: |
| case BigImm: // Yes, we allow BigImm as a double immediate. We use this for implementing stackmaps. |
| return true; |
| case Tmp: |
| return isFPTmp(); |
| } |
| ASSERT_NOT_REACHED(); |
| } |
| |
| bool hasBank() const |
| { |
| switch (kind()) { |
| case Imm: |
| case BitImm: |
| case BitImm64: |
| case Special: |
| case Tmp: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| // The type is ambiguous for some arg kinds. Call with care. |
| Bank bank() const |
| { |
| return isGP() ? GP : FP; |
| } |
| |
| bool isBank(Bank bank) const |
| { |
| switch (bank) { |
| case GP: |
| return isGP(); |
| case FP: |
| return isFP(); |
| } |
| ASSERT_NOT_REACHED(); |
| } |
| |
| bool canRepresent(Type) const; |
| bool canRepresent(Value* value) const; |
| |
| bool isCompatibleBank(const Arg& other) const; |
| |
| bool isGPR() const |
| { |
| return isTmp() && tmp().isGPR(); |
| } |
| |
| GPRReg gpr() const |
| { |
| return tmp().gpr(); |
| } |
| |
| bool isFPR() const |
| { |
| return isTmp() && tmp().isFPR(); |
| } |
| |
| FPRReg fpr() const |
| { |
| return tmp().fpr(); |
| } |
| |
| bool isReg() const |
| { |
| return isTmp() && tmp().isReg(); |
| } |
| |
| Reg reg() const |
| { |
| return tmp().reg(); |
| } |
| |
| unsigned gpTmpIndex() const |
| { |
| return tmp().gpTmpIndex(); |
| } |
| |
| unsigned fpTmpIndex() const |
| { |
| return tmp().fpTmpIndex(); |
| } |
| |
| unsigned tmpIndex() const |
| { |
| return tmp().tmpIndex(); |
| } |
| |
| static bool isValidImmForm(int64_t value) |
| { |
| if (isX86()) |
| return B3::isRepresentableAs<int32_t>(value); |
| if (isARM64()) |
| return isUInt12(value); |
| return false; |
| } |
| |
| static bool isValidBitImmForm(int64_t value) |
| { |
| if (isX86()) |
| return B3::isRepresentableAs<int32_t>(value); |
| if (isARM64()) |
| return ARM64LogicalImmediate::create32(value).isValid(); |
| return false; |
| } |
| |
| static bool isValidBitImm64Form(int64_t value) |
| { |
| if (isX86()) |
| return B3::isRepresentableAs<int32_t>(value); |
| if (isARM64()) |
| return ARM64LogicalImmediate::create64(value).isValid(); |
| return false; |
| } |
| |
| template<typename Int, typename = Value::IsLegalOffset<Int>> |
| static bool isValidAddrForm(Int offset, Optional<Width> width = WTF::nullopt) |
| { |
| if (isX86()) |
| return true; |
| if (isARM64()) { |
| if (!width) |
| return true; |
| |
| if (isValidSignedImm9(offset)) |
| return true; |
| |
| switch (*width) { |
| case Width8: |
| return isValidScaledUImm12<8>(offset); |
| case Width16: |
| return isValidScaledUImm12<16>(offset); |
| case Width32: |
| return isValidScaledUImm12<32>(offset); |
| case Width64: |
| return isValidScaledUImm12<64>(offset); |
| } |
| } |
| return false; |
| } |
| |
| template<typename Int, typename = Value::IsLegalOffset<Int>> |
| static bool isValidIndexForm(unsigned scale, Int offset, Optional<Width> width = WTF::nullopt) |
| { |
| if (!isValidScale(scale, width)) |
| return false; |
| if (isX86()) |
| return true; |
| if (isARM64()) |
| return !offset; |
| return false; |
| } |
| |
| // If you don't pass a width then this optimistically assumes that you're using the right width. But |
| // the width is relevant to validity, so passing a null width is only useful for assertions. Don't |
| // pass null widths when cascading through Args in the instruction selector! |
| bool isValidForm(Optional<Width> width = WTF::nullopt) const |
| { |
| switch (kind()) { |
| case Invalid: |
| return false; |
| case Tmp: |
| return true; |
| case Imm: |
| return isValidImmForm(value()); |
| case BigImm: |
| return true; |
| case BitImm: |
| return isValidBitImmForm(value()); |
| case BitImm64: |
| return isValidBitImm64Form(value()); |
| case SimpleAddr: |
| case ExtendedOffsetAddr: |
| return true; |
| case Addr: |
| case Stack: |
| case CallArg: |
| return isValidAddrForm(offset(), width); |
| case Index: |
| return isValidIndexForm(scale(), offset(), width); |
| case RelCond: |
| case ResCond: |
| case DoubleCond: |
| case StatusCond: |
| case Special: |
| case WidthArg: |
| return true; |
| } |
| ASSERT_NOT_REACHED(); |
| } |
| |
| template<typename Functor> |
| void forEachTmpFast(const Functor& functor) |
| { |
| switch (m_kind) { |
| case Tmp: |
| case SimpleAddr: |
| case Addr: |
| case ExtendedOffsetAddr: |
| functor(m_base); |
| break; |
| case Index: |
| functor(m_base); |
| functor(m_index); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| bool usesTmp(Air::Tmp tmp) const; |
| |
| template<typename Thing> |
| bool is() const; |
| |
| template<typename Thing> |
| Thing as() const; |
| |
| template<typename Thing, typename Functor> |
| void forEachFast(const Functor&); |
| |
| template<typename Thing, typename Functor> |
| void forEach(Role, Bank, Width, const Functor&); |
| |
| // This is smart enough to know that an address arg in a Def or UseDef rule will use its |
| // tmps and never def them. For example, this: |
| // |
| // mov %rax, (%rcx) |
| // |
| // This defs (%rcx) but uses %rcx. |
| template<typename Functor> |
| void forEachTmp(Role argRole, Bank argBank, Width argWidth, const Functor& functor) |
| { |
| switch (m_kind) { |
| case Tmp: |
| ASSERT(isAnyUse(argRole) || isAnyDef(argRole)); |
| functor(m_base, argRole, argBank, argWidth); |
| break; |
| case SimpleAddr: |
| case Addr: |
| case ExtendedOffsetAddr: |
| functor(m_base, Use, GP, argRole == UseAddr ? argWidth : pointerWidth()); |
| break; |
| case Index: |
| functor(m_base, Use, GP, argRole == UseAddr ? argWidth : pointerWidth()); |
| functor(m_index, Use, GP, argRole == UseAddr ? argWidth : pointerWidth()); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| MacroAssembler::TrustedImm32 asTrustedImm32() const |
| { |
| ASSERT(isImm() || isBitImm()); |
| return MacroAssembler::TrustedImm32(static_cast<Value::OffsetType>(m_offset)); |
| } |
| |
| #if USE(JSVALUE64) |
| MacroAssembler::TrustedImm64 asTrustedImm64() const |
| { |
| ASSERT(isBigImm() || isBitImm64()); |
| return MacroAssembler::TrustedImm64(value()); |
| } |
| #endif |
| |
| MacroAssembler::TrustedImmPtr asTrustedImmPtr() const |
| { |
| if (is64Bit()) |
| ASSERT(isBigImm()); |
| else |
| ASSERT(isImm()); |
| return MacroAssembler::TrustedImmPtr(pointerValue()); |
| } |
| |
| MacroAssembler::Address asAddress() const |
| { |
| if (isSimpleAddr()) |
| return MacroAssembler::Address(m_base.gpr()); |
| ASSERT(isAddr() || isExtendedOffsetAddr()); |
| return MacroAssembler::Address(m_base.gpr(), static_cast<Value::OffsetType>(m_offset)); |
| } |
| |
| MacroAssembler::BaseIndex asBaseIndex() const |
| { |
| ASSERT(isIndex()); |
| return MacroAssembler::BaseIndex( |
| m_base.gpr(), m_index.gpr(), static_cast<MacroAssembler::Scale>(logScale()), |
| static_cast<Value::OffsetType>(m_offset)); |
| } |
| |
| MacroAssembler::RelationalCondition asRelationalCondition() const |
| { |
| ASSERT(isRelCond()); |
| return static_cast<MacroAssembler::RelationalCondition>(m_offset); |
| } |
| |
| MacroAssembler::ResultCondition asResultCondition() const |
| { |
| ASSERT(isResCond()); |
| return static_cast<MacroAssembler::ResultCondition>(m_offset); |
| } |
| |
| MacroAssembler::DoubleCondition asDoubleCondition() const |
| { |
| ASSERT(isDoubleCond()); |
| return static_cast<MacroAssembler::DoubleCondition>(m_offset); |
| } |
| |
| MacroAssembler::StatusCondition asStatusCondition() const |
| { |
| ASSERT(isStatusCond()); |
| return static_cast<MacroAssembler::StatusCondition>(m_offset); |
| } |
| |
| // Tells you if the Arg is invertible. Only condition arguments are invertible, and even for those, there |
| // are a few exceptions - notably Overflow and Signed. |
| bool isInvertible() const |
| { |
| switch (kind()) { |
| case RelCond: |
| case DoubleCond: |
| case StatusCond: |
| return true; |
| case ResCond: |
| return MacroAssembler::isInvertible(asResultCondition()); |
| default: |
| return false; |
| } |
| } |
| |
| // This is valid for condition arguments. It will invert them. |
| Arg inverted(bool inverted = true) const |
| { |
| if (!inverted) |
| return *this; |
| switch (kind()) { |
| case RelCond: |
| return relCond(MacroAssembler::invert(asRelationalCondition())); |
| case ResCond: |
| return resCond(MacroAssembler::invert(asResultCondition())); |
| case DoubleCond: |
| return doubleCond(MacroAssembler::invert(asDoubleCondition())); |
| case StatusCond: |
| return statusCond(MacroAssembler::invert(asStatusCondition())); |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| return Arg(); |
| } |
| } |
| |
| Arg flipped(bool flipped = true) const |
| { |
| if (!flipped) |
| return Arg(); |
| return relCond(MacroAssembler::flip(asRelationalCondition())); |
| } |
| |
| bool isSignedCond() const |
| { |
| return isRelCond() && MacroAssembler::isSigned(asRelationalCondition()); |
| } |
| |
| bool isUnsignedCond() const |
| { |
| return isRelCond() && MacroAssembler::isUnsigned(asRelationalCondition()); |
| } |
| |
| // This computes a hash for comparing this to JSAir's Arg. |
| unsigned jsHash() const; |
| |
| void dump(PrintStream&) const; |
| |
| Arg(WTF::HashTableDeletedValueType) |
| : m_base(WTF::HashTableDeletedValue) |
| { |
| } |
| |
| bool isHashTableDeletedValue() const |
| { |
| return *this == Arg(WTF::HashTableDeletedValue); |
| } |
| |
| unsigned hash() const |
| { |
| // This really doesn't have to be that great. |
| return WTF::IntHash<int64_t>::hash(m_offset) + m_kind + m_scale + m_base.hash() + |
| m_index.hash(); |
| } |
| |
| private: |
| int64_t m_offset { 0 }; |
| Kind m_kind { Invalid }; |
| int32_t m_scale { 1 }; |
| Air::Tmp m_base; |
| Air::Tmp m_index; |
| }; |
| |
| struct ArgHash { |
| static unsigned hash(const Arg& key) { return key.hash(); } |
| static bool equal(const Arg& a, const Arg& b) { return a == b; } |
| static constexpr bool safeToCompareToEmptyOrDeleted = true; |
| }; |
| |
| } } } // namespace JSC::B3::Air |
| |
| namespace WTF { |
| |
| JS_EXPORT_PRIVATE void printInternal(PrintStream&, JSC::B3::Air::Arg::Kind); |
| JS_EXPORT_PRIVATE void printInternal(PrintStream&, JSC::B3::Air::Arg::Temperature); |
| JS_EXPORT_PRIVATE void printInternal(PrintStream&, JSC::B3::Air::Arg::Phase); |
| JS_EXPORT_PRIVATE void printInternal(PrintStream&, JSC::B3::Air::Arg::Timing); |
| JS_EXPORT_PRIVATE void printInternal(PrintStream&, JSC::B3::Air::Arg::Role); |
| JS_EXPORT_PRIVATE void printInternal(PrintStream&, JSC::B3::Air::Arg::Signedness); |
| |
| template<typename T> struct DefaultHash; |
| template<> struct DefaultHash<JSC::B3::Air::Arg> : JSC::B3::Air::ArgHash { }; |
| |
| template<typename T> struct HashTraits; |
| template<> struct HashTraits<JSC::B3::Air::Arg> : SimpleClassHashTraits<JSC::B3::Air::Arg> { |
| // Because m_scale is 1 in the empty value. |
| static constexpr bool emptyValueIsZero = false; |
| }; |
| |
| } // namespace WTF |
| |
| #if !ASSERT_ENABLED |
| IGNORE_RETURN_TYPE_WARNINGS_END |
| #endif |
| |
| #endif // ENABLE(B3_JIT) |