| /* |
| * Copyright (C) 2008, 2016 Apple Inc. All Rights Reserved. |
| * Copyright (C) 2013 Patrick Gansterer <paroga@paroga.com> |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #ifndef WTF_StdLibExtras_h |
| #define WTF_StdLibExtras_h |
| |
| #include <cstring> |
| #include <memory> |
| #include <type_traits> |
| #include <wtf/Assertions.h> |
| #include <wtf/CheckedArithmetic.h> |
| #include <wtf/Compiler.h> |
| |
| // This was used to declare and define a static local variable (static T;) so that |
| // it was leaked so that its destructors were not called at exit. |
| // Newly written code should use static NeverDestroyed<T> instead. |
| #ifndef DEPRECATED_DEFINE_STATIC_LOCAL |
| #define DEPRECATED_DEFINE_STATIC_LOCAL(type, name, arguments) \ |
| static type& name = *new type arguments |
| #endif |
| |
| // Use this macro to declare and define a debug-only global variable that may have a |
| // non-trivial constructor and destructor. When building with clang, this will suppress |
| // warnings about global constructors and exit-time destructors. |
| #define DEFINE_GLOBAL_FOR_LOGGING(type, name, arguments) \ |
| _Pragma("clang diagnostic push") \ |
| _Pragma("clang diagnostic ignored \"-Wglobal-constructors\"") \ |
| _Pragma("clang diagnostic ignored \"-Wexit-time-destructors\"") \ |
| static type name arguments; \ |
| _Pragma("clang diagnostic pop") |
| |
| #ifndef NDEBUG |
| #if COMPILER(CLANG) |
| #define DEFINE_DEBUG_ONLY_GLOBAL(type, name, arguments) DEFINE_GLOBAL_FOR_LOGGING(type, name, arguments) |
| #else |
| #define DEFINE_DEBUG_ONLY_GLOBAL(type, name, arguments) \ |
| static type name arguments; |
| #endif // COMPILER(CLANG) |
| #else |
| #define DEFINE_DEBUG_ONLY_GLOBAL(type, name, arguments) |
| #endif // NDEBUG |
| |
| // OBJECT_OFFSETOF: Like the C++ offsetof macro, but you can use it with classes. |
| // The magic number 0x4000 is insignificant. We use it to avoid using NULL, since |
| // NULL can cause compiler problems, especially in cases of multiple inheritance. |
| #define OBJECT_OFFSETOF(class, field) (reinterpret_cast<ptrdiff_t>(&(reinterpret_cast<class*>(0x4000)->field)) - 0x4000) |
| |
| #define CAST_OFFSET(from, to) (reinterpret_cast<uintptr_t>(static_cast<to>((reinterpret_cast<from>(0x4000)))) - 0x4000) |
| |
| // STRINGIZE: Can convert any value to quoted string, even expandable macros |
| #define STRINGIZE(exp) #exp |
| #define STRINGIZE_VALUE_OF(exp) STRINGIZE(exp) |
| |
| // WTF_CONCAT: concatenate two symbols into one, even expandable macros |
| #define WTF_CONCAT_INTERNAL_DONT_USE(a, b) a ## b |
| #define WTF_CONCAT(a, b) WTF_CONCAT_INTERNAL_DONT_USE(a, b) |
| |
| |
| /* |
| * The reinterpret_cast<Type1*>([pointer to Type2]) expressions - where |
| * sizeof(Type1) > sizeof(Type2) - cause the following warning on ARM with GCC: |
| * increases required alignment of target type. |
| * |
| * An implicit or an extra static_cast<void*> bypasses the warning. |
| * For more info see the following bugzilla entries: |
| * - https://bugs.webkit.org/show_bug.cgi?id=38045 |
| * - http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43976 |
| */ |
| #if (CPU(ARM) || CPU(MIPS)) && COMPILER(GCC_OR_CLANG) |
| template<typename Type> |
| inline bool isPointerTypeAlignmentOkay(Type* ptr) |
| { |
| return !(reinterpret_cast<intptr_t>(ptr) % __alignof__(Type)); |
| } |
| |
| template<typename TypePtr> |
| inline TypePtr reinterpret_cast_ptr(void* ptr) |
| { |
| ASSERT(isPointerTypeAlignmentOkay(reinterpret_cast<TypePtr>(ptr))); |
| return reinterpret_cast<TypePtr>(ptr); |
| } |
| |
| template<typename TypePtr> |
| inline TypePtr reinterpret_cast_ptr(const void* ptr) |
| { |
| ASSERT(isPointerTypeAlignmentOkay(reinterpret_cast<TypePtr>(ptr))); |
| return reinterpret_cast<TypePtr>(ptr); |
| } |
| #else |
| template<typename Type> |
| inline bool isPointerTypeAlignmentOkay(Type*) |
| { |
| return true; |
| } |
| #define reinterpret_cast_ptr reinterpret_cast |
| #endif |
| |
| namespace WTF { |
| |
| enum CheckMoveParameterTag { CheckMoveParameter }; |
| |
| static const size_t KB = 1024; |
| static const size_t MB = 1024 * 1024; |
| static const size_t GB = 1024 * 1024 * 1024; |
| |
| inline bool isPointerAligned(void* p) |
| { |
| return !((intptr_t)(p) & (sizeof(char*) - 1)); |
| } |
| |
| inline bool is8ByteAligned(void* p) |
| { |
| return !((uintptr_t)(p) & (sizeof(double) - 1)); |
| } |
| |
| /* |
| * C++'s idea of a reinterpret_cast lacks sufficient cojones. |
| */ |
| template<typename ToType, typename FromType> |
| inline ToType bitwise_cast(FromType from) |
| { |
| static_assert(sizeof(FromType) == sizeof(ToType), "bitwise_cast size of FromType and ToType must be equal!"); |
| #if COMPILER_SUPPORTS(BUILTIN_IS_TRIVIALLY_COPYABLE) |
| // Not all recent STL implementations support the std::is_trivially_copyable type trait. Work around this by only checking on toolchains which have the equivalent compiler intrinsic. |
| static_assert(__is_trivially_copyable(ToType), "bitwise_cast of non-trivially-copyable type!"); |
| static_assert(__is_trivially_copyable(FromType), "bitwise_cast of non-trivially-copyable type!"); |
| #endif |
| typename std::remove_const<ToType>::type to { }; |
| std::memcpy(&to, &from, sizeof(to)); |
| return to; |
| } |
| |
| template<typename ToType, typename FromType> |
| inline ToType safeCast(FromType value) |
| { |
| RELEASE_ASSERT(isInBounds<ToType>(value)); |
| return static_cast<ToType>(value); |
| } |
| |
| // Returns a count of the number of bits set in 'bits'. |
| inline size_t bitCount(unsigned bits) |
| { |
| bits = bits - ((bits >> 1) & 0x55555555); |
| bits = (bits & 0x33333333) + ((bits >> 2) & 0x33333333); |
| return (((bits + (bits >> 4)) & 0xF0F0F0F) * 0x1010101) >> 24; |
| } |
| |
| inline size_t bitCount(uint64_t bits) |
| { |
| return bitCount(static_cast<unsigned>(bits)) + bitCount(static_cast<unsigned>(bits >> 32)); |
| } |
| |
| // Macro that returns a compile time constant with the length of an array, but gives an error if passed a non-array. |
| template<typename T, size_t Size> char (&ArrayLengthHelperFunction(T (&)[Size]))[Size]; |
| // GCC needs some help to deduce a 0 length array. |
| #if COMPILER(GCC_OR_CLANG) |
| template<typename T> char (&ArrayLengthHelperFunction(T (&)[0]))[0]; |
| #endif |
| #define WTF_ARRAY_LENGTH(array) sizeof(::WTF::ArrayLengthHelperFunction(array)) |
| |
| ALWAYS_INLINE constexpr size_t roundUpToMultipleOfImpl0(size_t remainderMask, size_t x) |
| { |
| return (x + remainderMask) & ~remainderMask; |
| } |
| |
| ALWAYS_INLINE constexpr size_t roundUpToMultipleOfImpl(size_t divisor, size_t x) |
| { |
| return roundUpToMultipleOfImpl0(divisor - 1, x); |
| } |
| |
| // Efficient implementation that takes advantage of powers of two. |
| inline size_t roundUpToMultipleOf(size_t divisor, size_t x) |
| { |
| ASSERT(divisor && !(divisor & (divisor - 1))); |
| return roundUpToMultipleOfImpl(divisor, x); |
| } |
| |
| template<size_t divisor> inline constexpr size_t roundUpToMultipleOf(size_t x) |
| { |
| static_assert(divisor && !(divisor & (divisor - 1)), "divisor must be a power of two!"); |
| return roundUpToMultipleOfImpl(divisor, x); |
| } |
| |
| enum BinarySearchMode { |
| KeyMustBePresentInArray, |
| KeyMightNotBePresentInArray, |
| ReturnAdjacentElementIfKeyIsNotPresent |
| }; |
| |
| template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey, BinarySearchMode mode> |
| inline ArrayElementType* binarySearchImpl(ArrayType& array, size_t size, KeyType key, const ExtractKey& extractKey = ExtractKey()) |
| { |
| size_t offset = 0; |
| while (size > 1) { |
| size_t pos = (size - 1) >> 1; |
| KeyType val = extractKey(&array[offset + pos]); |
| |
| if (val == key) |
| return &array[offset + pos]; |
| // The item we are looking for is smaller than the item being check; reduce the value of 'size', |
| // chopping off the right hand half of the array. |
| if (key < val) |
| size = pos; |
| // Discard all values in the left hand half of the array, up to and including the item at pos. |
| else { |
| size -= (pos + 1); |
| offset += (pos + 1); |
| } |
| |
| ASSERT(mode != KeyMustBePresentInArray || size); |
| } |
| |
| if (mode == KeyMightNotBePresentInArray && !size) |
| return 0; |
| |
| ArrayElementType* result = &array[offset]; |
| |
| if (mode == KeyMightNotBePresentInArray && key != extractKey(result)) |
| return 0; |
| |
| if (mode == KeyMustBePresentInArray) { |
| ASSERT(size == 1); |
| ASSERT(key == extractKey(result)); |
| } |
| |
| return result; |
| } |
| |
| // If the element is not found, crash if asserts are enabled, and behave like approximateBinarySearch in release builds. |
| template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey> |
| inline ArrayElementType* binarySearch(ArrayType& array, size_t size, KeyType key, ExtractKey extractKey = ExtractKey()) |
| { |
| return binarySearchImpl<ArrayElementType, KeyType, ArrayType, ExtractKey, KeyMustBePresentInArray>(array, size, key, extractKey); |
| } |
| |
| // Return zero if the element is not found. |
| template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey> |
| inline ArrayElementType* tryBinarySearch(ArrayType& array, size_t size, KeyType key, ExtractKey extractKey = ExtractKey()) |
| { |
| return binarySearchImpl<ArrayElementType, KeyType, ArrayType, ExtractKey, KeyMightNotBePresentInArray>(array, size, key, extractKey); |
| } |
| |
| // Return the element that is either to the left, or the right, of where the element would have been found. |
| template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey> |
| inline ArrayElementType* approximateBinarySearch(ArrayType& array, size_t size, KeyType key, ExtractKey extractKey = ExtractKey()) |
| { |
| return binarySearchImpl<ArrayElementType, KeyType, ArrayType, ExtractKey, ReturnAdjacentElementIfKeyIsNotPresent>(array, size, key, extractKey); |
| } |
| |
| // Variants of the above that use const. |
| template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey> |
| inline ArrayElementType* binarySearch(const ArrayType& array, size_t size, KeyType key, ExtractKey extractKey = ExtractKey()) |
| { |
| return binarySearchImpl<ArrayElementType, KeyType, ArrayType, ExtractKey, KeyMustBePresentInArray>(const_cast<ArrayType&>(array), size, key, extractKey); |
| } |
| template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey> |
| inline ArrayElementType* tryBinarySearch(const ArrayType& array, size_t size, KeyType key, ExtractKey extractKey = ExtractKey()) |
| { |
| return binarySearchImpl<ArrayElementType, KeyType, ArrayType, ExtractKey, KeyMightNotBePresentInArray>(const_cast<ArrayType&>(array), size, key, extractKey); |
| } |
| template<typename ArrayElementType, typename KeyType, typename ArrayType, typename ExtractKey> |
| inline ArrayElementType* approximateBinarySearch(const ArrayType& array, size_t size, KeyType key, ExtractKey extractKey = ExtractKey()) |
| { |
| return binarySearchImpl<ArrayElementType, KeyType, ArrayType, ExtractKey, ReturnAdjacentElementIfKeyIsNotPresent>(const_cast<ArrayType&>(array), size, key, extractKey); |
| } |
| |
| template<typename VectorType, typename ElementType> |
| inline void insertIntoBoundedVector(VectorType& vector, size_t size, const ElementType& element, size_t index) |
| { |
| for (size_t i = size; i-- > index + 1;) |
| vector[i] = vector[i - 1]; |
| vector[index] = element; |
| } |
| |
| // This is here instead of CompilationThread.h to prevent that header from being included |
| // everywhere. The fact that this method, and that header, exist outside of JSC is a bug. |
| // https://bugs.webkit.org/show_bug.cgi?id=131815 |
| WTF_EXPORT_PRIVATE bool isCompilationThread(); |
| |
| template<typename Func> |
| bool isStatelessLambda() |
| { |
| return std::is_empty<Func>::value; |
| } |
| |
| template<typename ResultType, typename Func, typename... ArgumentTypes> |
| ResultType callStatelessLambda(ArgumentTypes&&... arguments) |
| { |
| uint64_t data[(sizeof(Func) + sizeof(uint64_t) - 1) / sizeof(uint64_t)]; |
| memset(data, 0, sizeof(data)); |
| return (*bitwise_cast<Func*>(data))(std::forward<ArgumentTypes>(arguments)...); |
| } |
| |
| template<typename T, typename U> |
| bool checkAndSet(T& left, U right) |
| { |
| if (left == right) |
| return false; |
| left = right; |
| return true; |
| } |
| |
| template<typename T> |
| bool findBitInWord(T word, size_t& index, size_t endIndex, bool value) |
| { |
| static_assert(std::is_unsigned<T>::value, "Type used in findBitInWord must be unsigned"); |
| |
| word >>= index; |
| |
| while (index < endIndex) { |
| if ((word & 1) == static_cast<T>(value)) |
| return true; |
| index++; |
| word >>= 1; |
| } |
| |
| index = endIndex; |
| return false; |
| } |
| |
| // Visitor adapted from http://stackoverflow.com/questions/25338795/is-there-a-name-for-this-tuple-creation-idiom |
| |
| template <class A, class... B> |
| struct Visitor : Visitor<A>, Visitor<B...> { |
| Visitor(A a, B... b) |
| : Visitor<A>(a) |
| , Visitor<B...>(b...) |
| { |
| } |
| |
| using Visitor<A>::operator (); |
| using Visitor<B...>::operator (); |
| }; |
| |
| template <class A> |
| struct Visitor<A> : A { |
| Visitor(A a) |
| : A(a) |
| { |
| } |
| |
| using A::operator(); |
| }; |
| |
| template <class... F> |
| Visitor<F...> makeVisitor(F... f) |
| { |
| return Visitor<F...>(f...); |
| } |
| |
| namespace Detail |
| { |
| template <typename, template <typename...> class> |
| struct IsTemplate_ : std::false_type |
| { |
| }; |
| |
| template <typename... Ts, template <typename...> class C> |
| struct IsTemplate_<C<Ts...>, C> : std::true_type |
| { |
| }; |
| } |
| |
| template <typename T, template <typename...> class Template> |
| struct IsTemplate : public std::integral_constant<bool, Detail::IsTemplate_<T, Template>::value> {}; |
| |
| namespace Detail |
| { |
| template <template <typename...> class Base, typename Derived> |
| struct IsBaseOfTemplateImpl |
| { |
| template <typename... Args> |
| static std::true_type test(Base<Args...>*); |
| static std::false_type test(void*); |
| |
| static constexpr const bool value = decltype(test(std::declval<typename std::remove_cv<Derived>::type*>()))::value; |
| }; |
| } |
| |
| template <template <typename...> class Base, typename Derived> |
| struct IsBaseOfTemplate : public std::integral_constant<bool, Detail::IsBaseOfTemplateImpl<Base, Derived>::value> {}; |
| |
| template <class T> |
| struct RemoveCVAndReference { |
| typedef typename std::remove_cv<typename std::remove_reference<T>::type>::type type; |
| }; |
| |
| template<typename IteratorTypeLeft, typename IteratorTypeRight, typename IteratorTypeDst> |
| IteratorTypeDst mergeDeduplicatedSorted(IteratorTypeLeft leftBegin, IteratorTypeLeft leftEnd, IteratorTypeRight rightBegin, IteratorTypeRight rightEnd, IteratorTypeDst dstBegin) |
| { |
| IteratorTypeLeft leftIter = leftBegin; |
| IteratorTypeRight rightIter = rightBegin; |
| IteratorTypeDst dstIter = dstBegin; |
| |
| if (leftIter < leftEnd && rightIter < rightEnd) { |
| for (;;) { |
| auto left = *leftIter; |
| auto right = *rightIter; |
| if (left < right) { |
| *dstIter++ = left; |
| leftIter++; |
| if (leftIter >= leftEnd) |
| break; |
| } else if (left == right) { |
| *dstIter++ = left; |
| leftIter++; |
| rightIter++; |
| if (leftIter >= leftEnd || rightIter >= rightEnd) |
| break; |
| } else { |
| *dstIter++ = right; |
| rightIter++; |
| if (rightIter >= rightEnd) |
| break; |
| } |
| } |
| } |
| |
| while (leftIter < leftEnd) |
| *dstIter++ = *leftIter++; |
| while (rightIter < rightEnd) |
| *dstIter++ = *rightIter++; |
| |
| return dstIter; |
| } |
| |
| } // namespace WTF |
| |
| // This version of placement new omits a 0 check. |
| enum NotNullTag { NotNull }; |
| inline void* operator new(size_t, NotNullTag, void* location) |
| { |
| ASSERT(location); |
| return location; |
| } |
| |
| // This adds various C++14 features for versions of the STL that may not yet have them. |
| namespace std { |
| #if COMPILER(CLANG) && __cplusplus < 201400L |
| template<class T> struct _Unique_if { |
| typedef unique_ptr<T> _Single_object; |
| }; |
| |
| template<class T> struct _Unique_if<T[]> { |
| typedef unique_ptr<T[]> _Unknown_bound; |
| }; |
| |
| template<class T, size_t N> struct _Unique_if<T[N]> { |
| typedef void _Known_bound; |
| }; |
| |
| template<class T, class... Args> inline typename _Unique_if<T>::_Single_object |
| make_unique(Args&&... args) |
| { |
| return unique_ptr<T>(new T(std::forward<Args>(args)...)); |
| } |
| |
| template<class T> inline typename _Unique_if<T>::_Unknown_bound |
| make_unique(size_t n) |
| { |
| typedef typename remove_extent<T>::type U; |
| return unique_ptr<T>(new U[n]()); |
| } |
| |
| template<class T, class... Args> typename _Unique_if<T>::_Known_bound |
| make_unique(Args&&...) = delete; |
| |
| // std::exchange |
| template<class T, class U = T> |
| T exchange(T& t, U&& newValue) |
| { |
| T oldValue = std::move(t); |
| t = std::forward<U>(newValue); |
| |
| return oldValue; |
| } |
| #endif |
| |
| template<WTF::CheckMoveParameterTag, typename T> |
| ALWAYS_INLINE constexpr typename remove_reference<T>::type&& move(T&& value) |
| { |
| static_assert(is_lvalue_reference<T>::value, "T is not an lvalue reference; move() is unnecessary."); |
| |
| using NonRefQualifiedType = typename remove_reference<T>::type; |
| static_assert(!is_const<NonRefQualifiedType>::value, "T is const qualified."); |
| |
| return move(forward<T>(value)); |
| } |
| |
| #if __cplusplus < 201703L && (!defined(_MSC_FULL_VER) || _MSC_FULL_VER < 190023918) |
| template<class...> struct wtf_conjunction_impl; |
| template<> struct wtf_conjunction_impl<> : true_type { }; |
| template<class B0> struct wtf_conjunction_impl<B0> : B0 { }; |
| template<class B0, class B1> struct wtf_conjunction_impl<B0, B1> : conditional<B0::value, B1, B0>::type { }; |
| template<class B0, class B1, class B2, class... Bn> struct wtf_conjunction_impl<B0, B1, B2, Bn...> : conditional<B0::value, wtf_conjunction_impl<B1, B2, Bn...>, B0>::type { }; |
| template<class... _Args> struct conjunction : wtf_conjunction_impl<_Args...> { }; |
| #endif |
| |
| } // namespace std |
| |
| #define WTFMove(value) std::move<WTF::CheckMoveParameter>(value) |
| |
| using WTF::KB; |
| using WTF::MB; |
| using WTF::GB; |
| using WTF::approximateBinarySearch; |
| using WTF::binarySearch; |
| using WTF::bitwise_cast; |
| using WTF::callStatelessLambda; |
| using WTF::checkAndSet; |
| using WTF::findBitInWord; |
| using WTF::insertIntoBoundedVector; |
| using WTF::isCompilationThread; |
| using WTF::isPointerAligned; |
| using WTF::isStatelessLambda; |
| using WTF::is8ByteAligned; |
| using WTF::mergeDeduplicatedSorted; |
| using WTF::roundUpToMultipleOf; |
| using WTF::safeCast; |
| using WTF::tryBinarySearch; |
| |
| #endif // WTF_StdLibExtras_h |