blob: 5587fc62c0d705fb28df07ecb3af6750d9e6b523 [file] [log] [blame]
/*
* Copyright (C) 2011-2019 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGOSRExit.h"
#if ENABLE(DFG_JIT)
#include "AssemblyHelpers.h"
#include "BytecodeUseDef.h"
#include "ClonedArguments.h"
#include "DFGGraph.h"
#include "DFGMayExit.h"
#include "DFGOSRExitCompilerCommon.h"
#include "DFGOSRExitPreparation.h"
#include "DFGOperations.h"
#include "DFGSpeculativeJIT.h"
#include "DirectArguments.h"
#include "FrameTracers.h"
#include "InlineCallFrame.h"
#include "JSCInlines.h"
#include "JSCJSValue.h"
#include "OperandsInlines.h"
#include "ProbeContext.h"
#include "ProbeFrame.h"
namespace JSC { namespace DFG {
// Probe based OSR Exit.
using CPUState = Probe::CPUState;
using Context = Probe::Context;
using Frame = Probe::Frame;
static void reifyInlinedCallFrames(Probe::Context&, CodeBlock* baselineCodeBlock, const OSRExitBase&);
static void adjustAndJumpToTarget(Probe::Context&, VM&, CodeBlock*, CodeBlock* baselineCodeBlock, OSRExit&);
static void printOSRExit(Context&, uint32_t osrExitIndex, const OSRExit&);
static JSValue jsValueFor(CPUState& cpu, JSValueSource source)
{
if (source.isAddress()) {
JSValue result;
std::memcpy(&result, cpu.gpr<uint8_t*>(source.base()) + source.offset(), sizeof(JSValue));
return result;
}
#if USE(JSVALUE64)
return JSValue::decode(cpu.gpr<EncodedJSValue>(source.gpr()));
#else
if (source.hasKnownTag())
return JSValue(source.tag(), cpu.gpr<int32_t>(source.payloadGPR()));
return JSValue(cpu.gpr<int32_t>(source.tagGPR()), cpu.gpr<int32_t>(source.payloadGPR()));
#endif
}
#if NUMBER_OF_CALLEE_SAVES_REGISTERS > 0
// Based on AssemblyHelpers::emitRestoreCalleeSavesFor().
static void restoreCalleeSavesFor(Context& context, CodeBlock* codeBlock)
{
ASSERT(codeBlock);
const RegisterAtOffsetList* calleeSaves = codeBlock->calleeSaveRegisters();
RegisterSet dontRestoreRegisters = RegisterSet(RegisterSet::stackRegisters(), RegisterSet::allFPRs());
unsigned registerCount = calleeSaves->size();
UCPURegister* physicalStackFrame = context.fp<UCPURegister*>();
for (unsigned i = 0; i < registerCount; i++) {
RegisterAtOffset entry = calleeSaves->at(i);
if (dontRestoreRegisters.get(entry.reg()))
continue;
// The callee saved values come from the original stack, not the recovered stack.
// Hence, we read the values directly from the physical stack memory instead of
// going through context.stack().
ASSERT(!(entry.offset() % sizeof(UCPURegister)));
context.gpr(entry.reg().gpr()) = physicalStackFrame[entry.offset() / sizeof(UCPURegister)];
}
}
// Based on AssemblyHelpers::emitSaveCalleeSavesFor().
static void saveCalleeSavesFor(Context& context, CodeBlock* codeBlock)
{
auto& stack = context.stack();
ASSERT(codeBlock);
const RegisterAtOffsetList* calleeSaves = codeBlock->calleeSaveRegisters();
RegisterSet dontSaveRegisters = RegisterSet(RegisterSet::stackRegisters(), RegisterSet::allFPRs());
unsigned registerCount = calleeSaves->size();
for (unsigned i = 0; i < registerCount; i++) {
RegisterAtOffset entry = calleeSaves->at(i);
if (dontSaveRegisters.get(entry.reg()))
continue;
stack.set(context.fp(), entry.offset(), context.gpr<UCPURegister>(entry.reg().gpr()));
}
}
// Based on AssemblyHelpers::restoreCalleeSavesFromVMEntryFrameCalleeSavesBuffer().
static void restoreCalleeSavesFromVMEntryFrameCalleeSavesBuffer(Context& context)
{
VM& vm = *context.arg<VM*>();
RegisterAtOffsetList* allCalleeSaves = RegisterSet::vmCalleeSaveRegisterOffsets();
RegisterSet dontRestoreRegisters = RegisterSet::stackRegisters();
unsigned registerCount = allCalleeSaves->size();
VMEntryRecord* entryRecord = vmEntryRecord(vm.topEntryFrame);
UCPURegister* calleeSaveBuffer = reinterpret_cast<UCPURegister*>(entryRecord->calleeSaveRegistersBuffer);
// Restore all callee saves.
for (unsigned i = 0; i < registerCount; i++) {
RegisterAtOffset entry = allCalleeSaves->at(i);
if (dontRestoreRegisters.get(entry.reg()))
continue;
size_t uintptrOffset = entry.offset() / sizeof(UCPURegister);
if (entry.reg().isGPR())
context.gpr(entry.reg().gpr()) = calleeSaveBuffer[uintptrOffset];
else {
#if USE(JSVALUE64)
context.fpr(entry.reg().fpr()) = bitwise_cast<double>(calleeSaveBuffer[uintptrOffset]);
#else
// FIXME: <https://webkit.org/b/193275> support callee-saved floating point registers on 32-bit architectures
RELEASE_ASSERT_NOT_REACHED();
#endif
}
}
}
// Based on AssemblyHelpers::copyCalleeSavesToVMEntryFrameCalleeSavesBuffer().
static void copyCalleeSavesToVMEntryFrameCalleeSavesBuffer(Context& context)
{
VM& vm = *context.arg<VM*>();
auto& stack = context.stack();
VMEntryRecord* entryRecord = vmEntryRecord(vm.topEntryFrame);
void* calleeSaveBuffer = entryRecord->calleeSaveRegistersBuffer;
RegisterAtOffsetList* allCalleeSaves = RegisterSet::vmCalleeSaveRegisterOffsets();
RegisterSet dontCopyRegisters = RegisterSet::stackRegisters();
unsigned registerCount = allCalleeSaves->size();
for (unsigned i = 0; i < registerCount; i++) {
RegisterAtOffset entry = allCalleeSaves->at(i);
if (dontCopyRegisters.get(entry.reg()))
continue;
if (entry.reg().isGPR())
stack.set(calleeSaveBuffer, entry.offset(), context.gpr<UCPURegister>(entry.reg().gpr()));
else {
#if USE(JSVALUE64)
stack.set(calleeSaveBuffer, entry.offset(), context.fpr<UCPURegister>(entry.reg().fpr()));
#else
// FIXME: <https://webkit.org/b/193275> support callee-saved floating point registers on 32-bit architectures
RELEASE_ASSERT_NOT_REACHED();
#endif
}
}
}
// Based on AssemblyHelpers::emitSaveOrCopyCalleeSavesFor().
static void saveOrCopyCalleeSavesFor(Context& context, CodeBlock* codeBlock, VirtualRegister offsetVirtualRegister, bool wasCalledViaTailCall)
{
Frame frame(context.fp(), context.stack());
ASSERT(codeBlock);
const RegisterAtOffsetList* calleeSaves = codeBlock->calleeSaveRegisters();
RegisterSet dontSaveRegisters = RegisterSet(RegisterSet::stackRegisters(), RegisterSet::allFPRs());
unsigned registerCount = calleeSaves->size();
RegisterSet baselineCalleeSaves = RegisterSet::llintBaselineCalleeSaveRegisters();
for (unsigned i = 0; i < registerCount; i++) {
RegisterAtOffset entry = calleeSaves->at(i);
if (dontSaveRegisters.get(entry.reg()))
continue;
uintptr_t savedRegisterValue;
if (wasCalledViaTailCall && baselineCalleeSaves.get(entry.reg()))
savedRegisterValue = frame.get<uintptr_t>(entry.offset());
else
savedRegisterValue = context.gpr(entry.reg().gpr());
frame.set(offsetVirtualRegister.offsetInBytes() + entry.offset(), savedRegisterValue);
}
}
#else // not NUMBER_OF_CALLEE_SAVES_REGISTERS > 0
static void restoreCalleeSavesFor(Context&, CodeBlock*) { }
static void saveCalleeSavesFor(Context&, CodeBlock*) { }
static void restoreCalleeSavesFromVMEntryFrameCalleeSavesBuffer(Context&) { }
static void copyCalleeSavesToVMEntryFrameCalleeSavesBuffer(Context&) { }
static void saveOrCopyCalleeSavesFor(Context&, CodeBlock*, VirtualRegister, bool) { }
#endif // NUMBER_OF_CALLEE_SAVES_REGISTERS > 0
static JSCell* createDirectArgumentsDuringExit(Context& context, CodeBlock* codeBlock, InlineCallFrame* inlineCallFrame, JSFunction* callee, int32_t argumentCount)
{
VM& vm = *context.arg<VM*>();
ASSERT(vm.heap.isDeferred());
if (inlineCallFrame)
codeBlock = baselineCodeBlockForInlineCallFrame(inlineCallFrame);
unsigned length = argumentCount - 1;
unsigned capacity = std::max(length, static_cast<unsigned>(codeBlock->numParameters() - 1));
DirectArguments* result = DirectArguments::create(
vm, codeBlock->globalObject()->directArgumentsStructure(), length, capacity);
result->setCallee(vm, callee);
void* frameBase = context.fp<Register*>() + (inlineCallFrame ? inlineCallFrame->stackOffset : 0);
Frame frame(frameBase, context.stack());
for (unsigned i = length; i--;)
result->setIndexQuickly(vm, i, frame.argument(i));
return result;
}
static JSCell* createClonedArgumentsDuringExit(Context& context, CodeBlock* codeBlock, InlineCallFrame* inlineCallFrame, JSFunction* callee, int32_t argumentCount)
{
VM& vm = *context.arg<VM*>();
ExecState* exec = context.fp<ExecState*>();
ASSERT(vm.heap.isDeferred());
if (inlineCallFrame)
codeBlock = baselineCodeBlockForInlineCallFrame(inlineCallFrame);
unsigned length = argumentCount - 1;
ClonedArguments* result = ClonedArguments::createEmpty(
vm, codeBlock->globalObject()->clonedArgumentsStructure(), callee, length);
void* frameBase = context.fp<Register*>() + (inlineCallFrame ? inlineCallFrame->stackOffset : 0);
Frame frame(frameBase, context.stack());
for (unsigned i = length; i--;)
result->putDirectIndex(exec, i, frame.argument(i));
return result;
}
static void emitRestoreArguments(Context& context, CodeBlock* codeBlock, DFG::JITCode* dfgJITCode, const Operands<ValueRecovery>& operands)
{
Frame frame(context.fp(), context.stack());
HashMap<MinifiedID, int> alreadyAllocatedArguments; // Maps phantom arguments node ID to operand.
for (size_t index = 0; index < operands.size(); ++index) {
const ValueRecovery& recovery = operands[index];
int operand = operands.operandForIndex(index);
if (recovery.technique() != DirectArgumentsThatWereNotCreated
&& recovery.technique() != ClonedArgumentsThatWereNotCreated)
continue;
MinifiedID id = recovery.nodeID();
auto iter = alreadyAllocatedArguments.find(id);
if (iter != alreadyAllocatedArguments.end()) {
frame.setOperand(operand, frame.operand(iter->value));
continue;
}
InlineCallFrame* inlineCallFrame =
dfgJITCode->minifiedDFG.at(id)->inlineCallFrame();
int stackOffset;
if (inlineCallFrame)
stackOffset = inlineCallFrame->stackOffset;
else
stackOffset = 0;
JSFunction* callee;
if (!inlineCallFrame || inlineCallFrame->isClosureCall)
callee = jsCast<JSFunction*>(frame.operand(stackOffset + CallFrameSlot::callee).asCell());
else
callee = jsCast<JSFunction*>(inlineCallFrame->calleeRecovery.constant().asCell());
int32_t argumentCount;
if (!inlineCallFrame || inlineCallFrame->isVarargs())
argumentCount = frame.operand<int32_t>(stackOffset + CallFrameSlot::argumentCount, PayloadOffset);
else
argumentCount = inlineCallFrame->argumentCountIncludingThis;
JSCell* argumentsObject;
switch (recovery.technique()) {
case DirectArgumentsThatWereNotCreated:
argumentsObject = createDirectArgumentsDuringExit(context, codeBlock, inlineCallFrame, callee, argumentCount);
break;
case ClonedArgumentsThatWereNotCreated:
argumentsObject = createClonedArgumentsDuringExit(context, codeBlock, inlineCallFrame, callee, argumentCount);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
frame.setOperand(operand, JSValue(argumentsObject));
alreadyAllocatedArguments.add(id, operand);
}
}
// The following is a list of extra initializations that need to be done in order
// of most likely needed (lower enum value) to least likely needed (higher enum value).
// Each level initialization includes the previous lower enum value (see use of the
// extraInitializationLevel value below).
enum class ExtraInitializationLevel {
None,
SpeculationRecovery,
ValueProfileUpdate,
ArrayProfileUpdate,
Other
};
void OSRExit::executeOSRExit(Context& context)
{
VM& vm = *context.arg<VM*>();
auto scope = DECLARE_THROW_SCOPE(vm);
ExecState* exec = context.fp<ExecState*>();
ASSERT(&exec->vm() == &vm);
auto& cpu = context.cpu;
if (validateDFGDoesGC) {
// We're about to exit optimized code. So, there's no longer any optimized
// code running that expects no GC.
vm.heap.setExpectDoesGC(true);
}
if (vm.callFrameForCatch) {
exec = vm.callFrameForCatch;
context.fp() = exec;
}
CodeBlock* codeBlock = exec->codeBlock();
ASSERT(codeBlock);
ASSERT(codeBlock->jitType() == JITType::DFGJIT);
// It's sort of preferable that we don't GC while in here. Anyways, doing so wouldn't
// really be profitable.
DeferGCForAWhile deferGC(vm.heap);
uint32_t exitIndex = vm.osrExitIndex;
DFG::JITCode* dfgJITCode = codeBlock->jitCode()->dfg();
OSRExit& exit = dfgJITCode->osrExit[exitIndex];
ASSERT(!vm.callFrameForCatch || exit.m_kind == GenericUnwind);
EXCEPTION_ASSERT_UNUSED(scope, !!scope.exception() || !exit.isExceptionHandler());
if (UNLIKELY(!exit.exitState)) {
ExtraInitializationLevel extraInitializationLevel = ExtraInitializationLevel::None;
// We only need to execute this block once for each OSRExit record. The computed
// results will be cached in the OSRExitState record for use of the rest of the
// exit ramp code.
// Ensure we have baseline codeBlocks to OSR exit to.
prepareCodeOriginForOSRExit(exec, exit.m_codeOrigin);
CodeBlock* baselineCodeBlock = codeBlock->baselineAlternative();
ASSERT(baselineCodeBlock->jitType() == JITType::BaselineJIT);
SpeculationRecovery* recovery = nullptr;
if (exit.m_recoveryIndex != UINT_MAX) {
recovery = &dfgJITCode->speculationRecovery[exit.m_recoveryIndex];
extraInitializationLevel = std::max(extraInitializationLevel, ExtraInitializationLevel::SpeculationRecovery);
}
if (UNLIKELY(exit.m_kind == GenericUnwind))
extraInitializationLevel = std::max(extraInitializationLevel, ExtraInitializationLevel::Other);
ArrayProfile* arrayProfile = nullptr;
if (!!exit.m_jsValueSource) {
if (exit.m_valueProfile)
extraInitializationLevel = std::max(extraInitializationLevel, ExtraInitializationLevel::ValueProfileUpdate);
if (exit.m_kind == BadCache || exit.m_kind == BadIndexingType) {
CodeOrigin codeOrigin = exit.m_codeOriginForExitProfile;
CodeBlock* profiledCodeBlock = baselineCodeBlockForOriginAndBaselineCodeBlock(codeOrigin, baselineCodeBlock);
arrayProfile = profiledCodeBlock->getArrayProfile(codeOrigin.bytecodeIndex());
if (arrayProfile)
extraInitializationLevel = std::max(extraInitializationLevel, ExtraInitializationLevel::ArrayProfileUpdate);
}
}
int32_t activeThreshold = baselineCodeBlock->adjustedCounterValue(Options::thresholdForOptimizeAfterLongWarmUp());
double adjustedThreshold = applyMemoryUsageHeuristicsAndConvertToInt(activeThreshold, baselineCodeBlock);
ASSERT(adjustedThreshold > 0);
adjustedThreshold = BaselineExecutionCounter::clippedThreshold(codeBlock->globalObject(), adjustedThreshold);
CodeBlock* codeBlockForExit = baselineCodeBlockForOriginAndBaselineCodeBlock(exit.m_codeOrigin, baselineCodeBlock);
const JITCodeMap& codeMap = codeBlockForExit->jitCodeMap();
CodeLocationLabel<JSEntryPtrTag> codeLocation = codeMap.find(exit.m_codeOrigin.bytecodeIndex());
ASSERT(codeLocation);
void* jumpTarget = codeLocation.executableAddress();
// Compute the value recoveries.
Operands<ValueRecovery> operands;
Vector<UndefinedOperandSpan> undefinedOperandSpans;
dfgJITCode->variableEventStream.reconstruct(codeBlock, exit.m_codeOrigin, dfgJITCode->minifiedDFG, exit.m_streamIndex, operands, &undefinedOperandSpans);
ptrdiff_t stackPointerOffset = -static_cast<ptrdiff_t>(codeBlock->jitCode()->dfgCommon()->requiredRegisterCountForExit) * sizeof(Register);
exit.exitState = adoptRef(new OSRExitState(exit, codeBlock, baselineCodeBlock, operands, WTFMove(undefinedOperandSpans), recovery, stackPointerOffset, activeThreshold, adjustedThreshold, jumpTarget, arrayProfile));
if (UNLIKELY(vm.m_perBytecodeProfiler && codeBlock->jitCode()->dfgCommon()->compilation)) {
Profiler::Database& database = *vm.m_perBytecodeProfiler;
Profiler::Compilation* compilation = codeBlock->jitCode()->dfgCommon()->compilation.get();
Profiler::OSRExit* profilerExit = compilation->addOSRExit(
exitIndex, Profiler::OriginStack(database, codeBlock, exit.m_codeOrigin),
exit.m_kind, exit.m_kind == UncountableInvalidation);
exit.exitState->profilerExit = profilerExit;
extraInitializationLevel = std::max(extraInitializationLevel, ExtraInitializationLevel::Other);
}
if (UNLIKELY(Options::printEachOSRExit()))
extraInitializationLevel = std::max(extraInitializationLevel, ExtraInitializationLevel::Other);
exit.exitState->extraInitializationLevel = extraInitializationLevel;
if (UNLIKELY(Options::verboseOSR() || Options::verboseDFGOSRExit())) {
dataLogF("DFG OSR exit #%u (%s, %s) from %s, with operands = %s\n",
exitIndex, toCString(exit.m_codeOrigin).data(),
exitKindToString(exit.m_kind), toCString(*codeBlock).data(),
toCString(ignoringContext<DumpContext>(operands)).data());
}
}
OSRExitState& exitState = *exit.exitState.get();
CodeBlock* baselineCodeBlock = exitState.baselineCodeBlock;
ASSERT(baselineCodeBlock->jitType() == JITType::BaselineJIT);
Operands<ValueRecovery>& operands = exitState.operands;
Vector<UndefinedOperandSpan>& undefinedOperandSpans = exitState.undefinedOperandSpans;
context.sp() = context.fp<uint8_t*>() + exitState.stackPointerOffset;
// The only reason for using this do while loop is so we can break out midway when appropriate.
do {
auto extraInitializationLevel = static_cast<ExtraInitializationLevel>(exitState.extraInitializationLevel);
if (extraInitializationLevel == ExtraInitializationLevel::None)
break;
// Begin extra initilization level: SpeculationRecovery
// We need to do speculation recovery first because array profiling and value profiling
// may rely on a value that it recovers. However, that doesn't mean that it is likely
// to have a recovery value. So, we'll decorate it as UNLIKELY.
SpeculationRecovery* recovery = exitState.recovery;
if (UNLIKELY(recovery)) {
switch (recovery->type()) {
case SpeculativeAdd:
cpu.gpr(recovery->dest()) = cpu.gpr<uint32_t>(recovery->dest()) - cpu.gpr<uint32_t>(recovery->src());
#if USE(JSVALUE64)
ASSERT(!(cpu.gpr(recovery->dest()) >> 32));
cpu.gpr(recovery->dest()) |= JSValue::NumberTag;
#endif
break;
case SpeculativeAddSelf:
cpu.gpr(recovery->dest()) = static_cast<uint32_t>(cpu.gpr<int32_t>(recovery->dest()) >> 1) ^ 0x80000000U;
#if USE(JSVALUE64)
ASSERT(!(cpu.gpr(recovery->dest()) >> 32));
cpu.gpr(recovery->dest()) |= JSValue::NumberTag;
#endif
break;
case SpeculativeAddImmediate:
cpu.gpr(recovery->dest()) = (cpu.gpr<uint32_t>(recovery->dest()) - recovery->immediate());
#if USE(JSVALUE64)
ASSERT(!(cpu.gpr(recovery->dest()) >> 32));
cpu.gpr(recovery->dest()) |= JSValue::NumberTag;
#endif
break;
case BooleanSpeculationCheck:
#if USE(JSVALUE64)
cpu.gpr(recovery->dest()) = cpu.gpr(recovery->dest()) ^ JSValue::ValueFalse;
#endif
break;
default:
break;
}
}
if (extraInitializationLevel <= ExtraInitializationLevel::SpeculationRecovery)
break;
// Begin extra initilization level: ValueProfileUpdate
JSValue profiledValue;
if (!!exit.m_jsValueSource) {
profiledValue = jsValueFor(cpu, exit.m_jsValueSource);
if (MethodOfGettingAValueProfile profile = exit.m_valueProfile)
profile.reportValue(profiledValue);
}
if (extraInitializationLevel <= ExtraInitializationLevel::ValueProfileUpdate)
break;
// Begin extra initilization level: ArrayProfileUpdate
if (ArrayProfile* arrayProfile = exitState.arrayProfile) {
ASSERT(!!exit.m_jsValueSource);
ASSERT(exit.m_kind == BadCache || exit.m_kind == BadIndexingType);
CodeBlock* profiledCodeBlock = baselineCodeBlockForOriginAndBaselineCodeBlock(exit.m_codeOriginForExitProfile, baselineCodeBlock);
const Instruction* instruction = profiledCodeBlock->instructions().at(exit.m_codeOriginForExitProfile.bytecodeIndex()).ptr();
bool doProfile = !instruction->is<OpGetById>() || instruction->as<OpGetById>().metadata(profiledCodeBlock).m_modeMetadata.mode == GetByIdMode::ArrayLength;
if (doProfile) {
Structure* structure = profiledValue.asCell()->structure(vm);
arrayProfile->observeStructure(structure);
arrayProfile->observeArrayMode(arrayModesFromStructure(structure));
}
}
if (extraInitializationLevel <= ExtraInitializationLevel::ArrayProfileUpdate)
break;
// Begin Extra initilization level: Other
if (UNLIKELY(exit.m_kind == GenericUnwind)) {
// We are acting as a defacto op_catch because we arrive here from genericUnwind().
// So, we must restore our call frame and stack pointer.
restoreCalleeSavesFromVMEntryFrameCalleeSavesBuffer(context);
ASSERT(context.fp() == vm.callFrameForCatch);
}
if (exitState.profilerExit)
exitState.profilerExit->incCount();
if (UNLIKELY(Options::printEachOSRExit()))
printOSRExit(context, vm.osrExitIndex, exit);
} while (false); // End extra initialization.
Frame frame(cpu.fp(), context.stack());
ASSERT(!(context.fp<uintptr_t>() & 0x7));
#if USE(JSVALUE64)
ASSERT(cpu.gpr<int64_t>(GPRInfo::numberTagRegister) == JSValue::NumberTag);
ASSERT(cpu.gpr<int64_t>(GPRInfo::notCellMaskRegister) == JSValue::NotCellMask);
#endif
// Do all data format conversions and store the results into the stack.
// Note: we need to recover values before restoring callee save registers below
// because the recovery may rely on values in some of callee save registers.
int calleeSaveSpaceAsVirtualRegisters = static_cast<int>(baselineCodeBlock->calleeSaveSpaceAsVirtualRegisters());
size_t numberOfOperands = operands.size();
size_t numUndefinedOperandSpans = undefinedOperandSpans.size();
size_t nextUndefinedSpanIndex = 0;
size_t nextUndefinedOperandIndex = numberOfOperands;
if (numUndefinedOperandSpans)
nextUndefinedOperandIndex = undefinedOperandSpans[nextUndefinedSpanIndex].firstIndex;
JSValue undefined = jsUndefined();
for (size_t spanIndex = 0; spanIndex < numUndefinedOperandSpans; ++spanIndex) {
auto& span = undefinedOperandSpans[spanIndex];
int firstOffset = span.minOffset;
int lastOffset = firstOffset + span.numberOfRegisters;
for (int offset = firstOffset; offset < lastOffset; ++offset)
frame.setOperand(offset, undefined);
}
for (size_t index = 0; index < numberOfOperands; ++index) {
const ValueRecovery& recovery = operands[index];
VirtualRegister reg = operands.virtualRegisterForIndex(index);
if (UNLIKELY(index == nextUndefinedOperandIndex)) {
index += undefinedOperandSpans[nextUndefinedSpanIndex++].numberOfRegisters - 1;
if (nextUndefinedSpanIndex < numUndefinedOperandSpans)
nextUndefinedOperandIndex = undefinedOperandSpans[nextUndefinedSpanIndex].firstIndex;
else
nextUndefinedOperandIndex = numberOfOperands;
continue;
}
if (reg.isLocal() && reg.toLocal() < calleeSaveSpaceAsVirtualRegisters)
continue;
int operand = reg.offset();
switch (recovery.technique()) {
case DisplacedInJSStack:
frame.setOperand(operand, exec->r(recovery.virtualRegister()).asanUnsafeJSValue());
break;
case InFPR:
frame.setOperand(operand, cpu.fpr<JSValue>(recovery.fpr()));
break;
#if USE(JSVALUE64)
case InGPR:
frame.setOperand(operand, cpu.gpr<JSValue>(recovery.gpr()));
break;
#else
case InPair:
frame.setOperand(operand, JSValue(cpu.gpr<int32_t>(recovery.tagGPR()), cpu.gpr<int32_t>(recovery.payloadGPR())));
break;
#endif
case UnboxedCellInGPR:
frame.setOperand(operand, JSValue(cpu.gpr<JSCell*>(recovery.gpr())));
break;
case CellDisplacedInJSStack:
frame.setOperand(operand, JSValue(exec->r(recovery.virtualRegister()).asanUnsafeUnboxedCell()));
break;
#if USE(JSVALUE32_64)
case UnboxedBooleanInGPR:
frame.setOperand(operand, jsBoolean(cpu.gpr<bool>(recovery.gpr())));
break;
#endif
case BooleanDisplacedInJSStack:
#if USE(JSVALUE64)
frame.setOperand(operand, exec->r(recovery.virtualRegister()).asanUnsafeJSValue());
#else
frame.setOperand(operand, jsBoolean(exec->r(recovery.virtualRegister()).asanUnsafeJSValue().payload()));
#endif
break;
case UnboxedInt32InGPR:
frame.setOperand(operand, JSValue(cpu.gpr<int32_t>(recovery.gpr())));
break;
case Int32DisplacedInJSStack:
frame.setOperand(operand, JSValue(exec->r(recovery.virtualRegister()).asanUnsafeUnboxedInt32()));
break;
#if USE(JSVALUE64)
case UnboxedInt52InGPR:
frame.setOperand(operand, JSValue(cpu.gpr<int64_t>(recovery.gpr()) >> JSValue::int52ShiftAmount));
break;
case Int52DisplacedInJSStack:
frame.setOperand(operand, JSValue(exec->r(recovery.virtualRegister()).asanUnsafeUnboxedInt52()));
break;
case UnboxedStrictInt52InGPR:
frame.setOperand(operand, JSValue(cpu.gpr<int64_t>(recovery.gpr())));
break;
case StrictInt52DisplacedInJSStack:
frame.setOperand(operand, JSValue(exec->r(recovery.virtualRegister()).asanUnsafeUnboxedStrictInt52()));
break;
#endif
case UnboxedDoubleInFPR:
frame.setOperand(operand, JSValue(JSValue::EncodeAsDouble, purifyNaN(cpu.fpr(recovery.fpr()))));
break;
case DoubleDisplacedInJSStack:
frame.setOperand(operand, JSValue(JSValue::EncodeAsDouble, purifyNaN(exec->r(recovery.virtualRegister()).asanUnsafeUnboxedDouble())));
break;
case Constant:
frame.setOperand(operand, recovery.constant());
break;
case DirectArgumentsThatWereNotCreated:
case ClonedArgumentsThatWereNotCreated:
// Don't do this, yet.
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
}
// Restore the DFG callee saves and then save the ones the baseline JIT uses.
restoreCalleeSavesFor(context, codeBlock);
saveCalleeSavesFor(context, baselineCodeBlock);
#if USE(JSVALUE64)
cpu.gpr(GPRInfo::numberTagRegister) = JSValue::NumberTag;
cpu.gpr(GPRInfo::notCellMaskRegister) = JSValue::NotCellMask;
#endif
if (exit.isExceptionHandler())
copyCalleeSavesToVMEntryFrameCalleeSavesBuffer(context);
// Now that things on the stack are recovered, do the arguments recovery. We assume that arguments
// recoveries don't recursively refer to each other. But, we don't try to assume that they only
// refer to certain ranges of locals. Hence why we need to do this here, once the stack is sensible.
// Note that we also roughly assume that the arguments might still be materialized outside of its
// inline call frame scope - but for now the DFG wouldn't do that.
DFG::emitRestoreArguments(context, codeBlock, dfgJITCode, operands);
// Adjust the old JIT's execute counter. Since we are exiting OSR, we know
// that all new calls into this code will go to the new JIT, so the execute
// counter only affects call frames that performed OSR exit and call frames
// that were still executing the old JIT at the time of another call frame's
// OSR exit. We want to ensure that the following is true:
//
// (a) Code the performs an OSR exit gets a chance to reenter optimized
// code eventually, since optimized code is faster. But we don't
// want to do such reentery too aggressively (see (c) below).
//
// (b) If there is code on the call stack that is still running the old
// JIT's code and has never OSR'd, then it should get a chance to
// perform OSR entry despite the fact that we've exited.
//
// (c) Code the performs an OSR exit should not immediately retry OSR
// entry, since both forms of OSR are expensive. OSR entry is
// particularly expensive.
//
// (d) Frequent OSR failures, even those that do not result in the code
// running in a hot loop, result in recompilation getting triggered.
//
// To ensure (c), we'd like to set the execute counter to
// counterValueForOptimizeAfterWarmUp(). This seems like it would endanger
// (a) and (b), since then every OSR exit would delay the opportunity for
// every call frame to perform OSR entry. Essentially, if OSR exit happens
// frequently and the function has few loops, then the counter will never
// become non-negative and OSR entry will never be triggered. OSR entry
// will only happen if a loop gets hot in the old JIT, which does a pretty
// good job of ensuring (a) and (b). But that doesn't take care of (d),
// since each speculation failure would reset the execute counter.
// So we check here if the number of speculation failures is significantly
// larger than the number of successes (we want 90% success rate), and if
// there have been a large enough number of failures. If so, we set the
// counter to 0; otherwise we set the counter to
// counterValueForOptimizeAfterWarmUp().
if (UNLIKELY(codeBlock->updateOSRExitCounterAndCheckIfNeedToReoptimize(exitState) == CodeBlock::OptimizeAction::ReoptimizeNow))
triggerReoptimizationNow(baselineCodeBlock, codeBlock, &exit);
reifyInlinedCallFrames(context, baselineCodeBlock, exit);
adjustAndJumpToTarget(context, vm, codeBlock, baselineCodeBlock, exit);
}
static void reifyInlinedCallFrames(Context& context, CodeBlock* outermostBaselineCodeBlock, const OSRExitBase& exit)
{
auto& cpu = context.cpu;
Frame frame(cpu.fp(), context.stack());
// FIXME: We shouldn't leave holes on the stack when performing an OSR exit
// in presence of inlined tail calls.
// https://bugs.webkit.org/show_bug.cgi?id=147511
ASSERT(outermostBaselineCodeBlock->jitType() == JITType::BaselineJIT);
frame.setOperand<CodeBlock*>(CallFrameSlot::codeBlock, outermostBaselineCodeBlock);
const CodeOrigin* codeOrigin;
for (codeOrigin = &exit.m_codeOrigin; codeOrigin && codeOrigin->inlineCallFrame(); codeOrigin = codeOrigin->inlineCallFrame()->getCallerSkippingTailCalls()) {
InlineCallFrame* inlineCallFrame = codeOrigin->inlineCallFrame();
CodeBlock* baselineCodeBlock = baselineCodeBlockForOriginAndBaselineCodeBlock(*codeOrigin, outermostBaselineCodeBlock);
InlineCallFrame::Kind trueCallerCallKind;
CodeOrigin* trueCaller = inlineCallFrame->getCallerSkippingTailCalls(&trueCallerCallKind);
void* callerFrame = cpu.fp();
if (!trueCaller) {
ASSERT(inlineCallFrame->isTail());
void* returnPC = frame.get<void*>(CallFrame::returnPCOffset());
#if CPU(ARM64E)
void* oldEntrySP = cpu.fp<uint8_t*>() + sizeof(CallerFrameAndPC);
void* newEntrySP = cpu.fp<uint8_t*>() + inlineCallFrame->returnPCOffset() + sizeof(void*);
returnPC = retagCodePtr(returnPC, bitwise_cast<PtrTag>(oldEntrySP), bitwise_cast<PtrTag>(newEntrySP));
#endif
frame.set<void*>(inlineCallFrame->returnPCOffset(), returnPC);
callerFrame = frame.get<void*>(CallFrame::callerFrameOffset());
} else {
CodeBlock* baselineCodeBlockForCaller = baselineCodeBlockForOriginAndBaselineCodeBlock(*trueCaller, outermostBaselineCodeBlock);
unsigned callBytecodeIndex = trueCaller->bytecodeIndex();
MacroAssemblerCodePtr<JSInternalPtrTag> jumpTarget;
switch (trueCallerCallKind) {
case InlineCallFrame::Call:
case InlineCallFrame::Construct:
case InlineCallFrame::CallVarargs:
case InlineCallFrame::ConstructVarargs:
case InlineCallFrame::TailCall:
case InlineCallFrame::TailCallVarargs: {
CallLinkInfo* callLinkInfo =
baselineCodeBlockForCaller->getCallLinkInfoForBytecodeIndex(callBytecodeIndex);
RELEASE_ASSERT(callLinkInfo);
jumpTarget = callLinkInfo->callReturnLocation();
break;
}
case InlineCallFrame::GetterCall:
case InlineCallFrame::SetterCall: {
StructureStubInfo* stubInfo =
baselineCodeBlockForCaller->findStubInfo(CodeOrigin(callBytecodeIndex));
RELEASE_ASSERT(stubInfo);
jumpTarget = stubInfo->doneLocation();
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
}
if (trueCaller->inlineCallFrame())
callerFrame = cpu.fp<uint8_t*>() + trueCaller->inlineCallFrame()->stackOffset * sizeof(EncodedJSValue);
void* targetAddress = jumpTarget.executableAddress();
#if CPU(ARM64E)
void* newEntrySP = cpu.fp<uint8_t*>() + inlineCallFrame->returnPCOffset() + sizeof(void*);
targetAddress = retagCodePtr(targetAddress, JSInternalPtrTag, bitwise_cast<PtrTag>(newEntrySP));
#endif
frame.set<void*>(inlineCallFrame->returnPCOffset(), targetAddress);
}
frame.setOperand<void*>(inlineCallFrame->stackOffset + CallFrameSlot::codeBlock, baselineCodeBlock);
// Restore the inline call frame's callee save registers.
// If this inlined frame is a tail call that will return back to the original caller, we need to
// copy the prior contents of the tag registers already saved for the outer frame to this frame.
saveOrCopyCalleeSavesFor(context, baselineCodeBlock, VirtualRegister(inlineCallFrame->stackOffset), !trueCaller);
if (!inlineCallFrame->isVarargs())
frame.setOperand<uint32_t>(inlineCallFrame->stackOffset + CallFrameSlot::argumentCount, PayloadOffset, inlineCallFrame->argumentCountIncludingThis);
ASSERT(callerFrame);
frame.set<void*>(inlineCallFrame->callerFrameOffset(), callerFrame);
#if USE(JSVALUE64)
uint32_t locationBits = CallSiteIndex(codeOrigin->bytecodeIndex()).bits();
frame.setOperand<uint32_t>(inlineCallFrame->stackOffset + CallFrameSlot::argumentCount, TagOffset, locationBits);
if (!inlineCallFrame->isClosureCall)
frame.setOperand(inlineCallFrame->stackOffset + CallFrameSlot::callee, JSValue(inlineCallFrame->calleeConstant()));
#else // USE(JSVALUE64) // so this is the 32-bit part
const Instruction* instruction = baselineCodeBlock->instructions().at(codeOrigin->bytecodeIndex()).ptr();
uint32_t locationBits = CallSiteIndex(instruction).bits();
frame.setOperand<uint32_t>(inlineCallFrame->stackOffset + CallFrameSlot::argumentCount, TagOffset, locationBits);
frame.setOperand<uint32_t>(inlineCallFrame->stackOffset + CallFrameSlot::callee, TagOffset, static_cast<uint32_t>(JSValue::CellTag));
if (!inlineCallFrame->isClosureCall)
frame.setOperand(inlineCallFrame->stackOffset + CallFrameSlot::callee, PayloadOffset, inlineCallFrame->calleeConstant());
#endif // USE(JSVALUE64) // ending the #else part, so directly above is the 32-bit part
}
// Don't need to set the toplevel code origin if we only did inline tail calls
if (codeOrigin) {
#if USE(JSVALUE64)
uint32_t locationBits = CallSiteIndex(codeOrigin->bytecodeIndex()).bits();
#else
const Instruction* instruction = outermostBaselineCodeBlock->instructions().at(codeOrigin->bytecodeIndex()).ptr();
uint32_t locationBits = CallSiteIndex(instruction).bits();
#endif
frame.setOperand<uint32_t>(CallFrameSlot::argumentCount, TagOffset, locationBits);
}
}
static void adjustAndJumpToTarget(Context& context, VM& vm, CodeBlock* codeBlock, CodeBlock* baselineCodeBlock, OSRExit& exit)
{
OSRExitState* exitState = exit.exitState.get();
WTF::storeLoadFence(); // The optimizing compiler expects that the OSR exit mechanism will execute this fence.
vm.heap.writeBarrier(baselineCodeBlock);
// We barrier all inlined frames -- and not just the current inline stack --
// because we don't know which inlined function owns the value profile that
// we'll update when we exit. In the case of "f() { a(); b(); }", if both
// a and b are inlined, we might exit inside b due to a bad value loaded
// from a.
// FIXME: MethodOfGettingAValueProfile should remember which CodeBlock owns
// the value profile.
InlineCallFrameSet* inlineCallFrames = codeBlock->jitCode()->dfgCommon()->inlineCallFrames.get();
if (inlineCallFrames) {
for (InlineCallFrame* inlineCallFrame : *inlineCallFrames)
vm.heap.writeBarrier(inlineCallFrame->baselineCodeBlock.get());
}
auto* exitInlineCallFrame = exit.m_codeOrigin.inlineCallFrame();
if (exitInlineCallFrame)
context.fp() = context.fp<uint8_t*>() + exitInlineCallFrame->stackOffset * sizeof(EncodedJSValue);
void* jumpTarget = exitState->jumpTarget;
ASSERT(jumpTarget);
if (exit.isExceptionHandler()) {
// Since we're jumping to op_catch, we need to set callFrameForCatch.
vm.callFrameForCatch = context.fp<ExecState*>();
}
vm.topCallFrame = context.fp<ExecState*>();
context.pc() = untagCodePtr<JSEntryPtrTag>(jumpTarget);
}
static void printOSRExit(Context& context, uint32_t osrExitIndex, const OSRExit& exit)
{
ExecState* exec = context.fp<ExecState*>();
CodeBlock* codeBlock = exec->codeBlock();
CodeBlock* alternative = codeBlock->alternative();
ExitKind kind = exit.m_kind;
unsigned bytecodeOffset = exit.m_codeOrigin.bytecodeIndex();
dataLog("Speculation failure in ", *codeBlock);
dataLog(" @ exit #", osrExitIndex, " (bc#", bytecodeOffset, ", ", exitKindToString(kind), ") with ");
if (alternative) {
dataLog(
"executeCounter = ", alternative->jitExecuteCounter(),
", reoptimizationRetryCounter = ", alternative->reoptimizationRetryCounter(),
", optimizationDelayCounter = ", alternative->optimizationDelayCounter());
} else
dataLog("no alternative code block (i.e. we've been jettisoned)");
dataLog(", osrExitCounter = ", codeBlock->osrExitCounter(), "\n");
dataLog(" GPRs at time of exit:");
for (unsigned i = 0; i < GPRInfo::numberOfRegisters; ++i) {
GPRReg gpr = GPRInfo::toRegister(i);
dataLog(" ", context.gprName(gpr), ":", RawPointer(context.gpr<void*>(gpr)));
}
dataLog("\n");
dataLog(" FPRs at time of exit:");
for (unsigned i = 0; i < FPRInfo::numberOfRegisters; ++i) {
FPRReg fpr = FPRInfo::toRegister(i);
dataLog(" ", context.fprName(fpr), ":");
uint64_t bits = context.fpr<uint64_t>(fpr);
double value = context.fpr(fpr);
dataLogF("%llx:%lf", static_cast<long long>(bits), value);
}
dataLog("\n");
}
// JIT based OSR Exit.
OSRExit::OSRExit(ExitKind kind, JSValueSource jsValueSource, MethodOfGettingAValueProfile valueProfile, SpeculativeJIT* jit, unsigned streamIndex, unsigned recoveryIndex)
: OSRExitBase(kind, jit->m_origin.forExit, jit->m_origin.semantic, jit->m_origin.wasHoisted)
, m_jsValueSource(jsValueSource)
, m_valueProfile(valueProfile)
, m_recoveryIndex(recoveryIndex)
, m_streamIndex(streamIndex)
{
bool canExit = jit->m_origin.exitOK;
if (!canExit && jit->m_currentNode) {
ExitMode exitMode = mayExit(jit->m_jit.graph(), jit->m_currentNode);
canExit = exitMode == ExitMode::Exits || exitMode == ExitMode::ExitsForExceptions;
}
DFG_ASSERT(jit->m_jit.graph(), jit->m_currentNode, canExit);
}
CodeLocationJump<JSInternalPtrTag> OSRExit::codeLocationForRepatch() const
{
return CodeLocationJump<JSInternalPtrTag>(m_patchableJumpLocation);
}
void OSRExit::emitRestoreArguments(CCallHelpers& jit, const Operands<ValueRecovery>& operands)
{
HashMap<MinifiedID, int> alreadyAllocatedArguments; // Maps phantom arguments node ID to operand.
for (size_t index = 0; index < operands.size(); ++index) {
const ValueRecovery& recovery = operands[index];
int operand = operands.operandForIndex(index);
if (recovery.technique() != DirectArgumentsThatWereNotCreated
&& recovery.technique() != ClonedArgumentsThatWereNotCreated)
continue;
MinifiedID id = recovery.nodeID();
auto iter = alreadyAllocatedArguments.find(id);
if (iter != alreadyAllocatedArguments.end()) {
JSValueRegs regs = JSValueRegs::withTwoAvailableRegs(GPRInfo::regT0, GPRInfo::regT1);
jit.loadValue(CCallHelpers::addressFor(iter->value), regs);
jit.storeValue(regs, CCallHelpers::addressFor(operand));
continue;
}
InlineCallFrame* inlineCallFrame =
jit.codeBlock()->jitCode()->dfg()->minifiedDFG.at(id)->inlineCallFrame();
int stackOffset;
if (inlineCallFrame)
stackOffset = inlineCallFrame->stackOffset;
else
stackOffset = 0;
if (!inlineCallFrame || inlineCallFrame->isClosureCall) {
jit.loadPtr(
AssemblyHelpers::addressFor(stackOffset + CallFrameSlot::callee),
GPRInfo::regT0);
} else {
jit.move(
AssemblyHelpers::TrustedImmPtr(inlineCallFrame->calleeRecovery.constant().asCell()),
GPRInfo::regT0);
}
if (!inlineCallFrame || inlineCallFrame->isVarargs()) {
jit.load32(
AssemblyHelpers::payloadFor(stackOffset + CallFrameSlot::argumentCount),
GPRInfo::regT1);
} else {
jit.move(
AssemblyHelpers::TrustedImm32(inlineCallFrame->argumentCountIncludingThis),
GPRInfo::regT1);
}
static_assert(std::is_same<decltype(operationCreateDirectArgumentsDuringExit), decltype(operationCreateClonedArgumentsDuringExit)>::value, "We assume these functions have the same signature below.");
jit.setupArguments<decltype(operationCreateDirectArgumentsDuringExit)>(
AssemblyHelpers::TrustedImmPtr(inlineCallFrame), GPRInfo::regT0, GPRInfo::regT1);
switch (recovery.technique()) {
case DirectArgumentsThatWereNotCreated:
jit.move(AssemblyHelpers::TrustedImmPtr(tagCFunctionPtr<OperationPtrTag>(operationCreateDirectArgumentsDuringExit)), GPRInfo::nonArgGPR0);
break;
case ClonedArgumentsThatWereNotCreated:
jit.move(AssemblyHelpers::TrustedImmPtr(tagCFunctionPtr<OperationPtrTag>(operationCreateClonedArgumentsDuringExit)), GPRInfo::nonArgGPR0);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
jit.call(GPRInfo::nonArgGPR0, OperationPtrTag);
jit.storeCell(GPRInfo::returnValueGPR, AssemblyHelpers::addressFor(operand));
alreadyAllocatedArguments.add(id, operand);
}
}
void JIT_OPERATION OSRExit::compileOSRExit(ExecState* exec)
{
VM& vm = exec->vm();
auto scope = DECLARE_THROW_SCOPE(vm);
if (validateDFGDoesGC) {
// We're about to exit optimized code. So, there's no longer any optimized
// code running that expects no GC.
vm.heap.setExpectDoesGC(true);
}
if (vm.callFrameForCatch)
RELEASE_ASSERT(vm.callFrameForCatch == exec);
CodeBlock* codeBlock = exec->codeBlock();
ASSERT(codeBlock);
ASSERT(codeBlock->jitType() == JITType::DFGJIT);
// It's sort of preferable that we don't GC while in here. Anyways, doing so wouldn't
// really be profitable.
DeferGCForAWhile deferGC(vm.heap);
uint32_t exitIndex = vm.osrExitIndex;
OSRExit& exit = codeBlock->jitCode()->dfg()->osrExit[exitIndex];
ASSERT(!vm.callFrameForCatch || exit.m_kind == GenericUnwind);
EXCEPTION_ASSERT_UNUSED(scope, !!scope.exception() || !exit.isExceptionHandler());
prepareCodeOriginForOSRExit(exec, exit.m_codeOrigin);
// Compute the value recoveries.
Operands<ValueRecovery> operands;
codeBlock->jitCode()->dfg()->variableEventStream.reconstruct(codeBlock, exit.m_codeOrigin, codeBlock->jitCode()->dfg()->minifiedDFG, exit.m_streamIndex, operands);
SpeculationRecovery* recovery = 0;
if (exit.m_recoveryIndex != UINT_MAX)
recovery = &codeBlock->jitCode()->dfg()->speculationRecovery[exit.m_recoveryIndex];
{
CCallHelpers jit(codeBlock);
if (exit.m_kind == GenericUnwind) {
// We are acting as a defacto op_catch because we arrive here from genericUnwind().
// So, we must restore our call frame and stack pointer.
jit.restoreCalleeSavesFromEntryFrameCalleeSavesBuffer(vm.topEntryFrame);
jit.loadPtr(vm.addressOfCallFrameForCatch(), GPRInfo::callFrameRegister);
}
jit.addPtr(
CCallHelpers::TrustedImm32(codeBlock->stackPointerOffset() * sizeof(Register)),
GPRInfo::callFrameRegister, CCallHelpers::stackPointerRegister);
jit.jitAssertHasValidCallFrame();
if (UNLIKELY(vm.m_perBytecodeProfiler && codeBlock->jitCode()->dfgCommon()->compilation)) {
Profiler::Database& database = *vm.m_perBytecodeProfiler;
Profiler::Compilation* compilation = codeBlock->jitCode()->dfgCommon()->compilation.get();
Profiler::OSRExit* profilerExit = compilation->addOSRExit(
exitIndex, Profiler::OriginStack(database, codeBlock, exit.m_codeOrigin),
exit.m_kind, exit.m_kind == UncountableInvalidation);
jit.add64(CCallHelpers::TrustedImm32(1), CCallHelpers::AbsoluteAddress(profilerExit->counterAddress()));
}
compileExit(jit, vm, exit, operands, recovery);
LinkBuffer patchBuffer(jit, codeBlock);
exit.m_code = FINALIZE_CODE_IF(
shouldDumpDisassembly() || Options::verboseOSR() || Options::verboseDFGOSRExit(),
patchBuffer, OSRExitPtrTag,
"DFG OSR exit #%u (%s, %s) from %s, with operands = %s",
exitIndex, toCString(exit.m_codeOrigin).data(),
exitKindToString(exit.m_kind), toCString(*codeBlock).data(),
toCString(ignoringContext<DumpContext>(operands)).data());
}
MacroAssembler::repatchJump(exit.codeLocationForRepatch(), CodeLocationLabel<OSRExitPtrTag>(exit.m_code.code()));
vm.osrExitJumpDestination = exit.m_code.code().executableAddress();
}
void OSRExit::compileExit(CCallHelpers& jit, VM& vm, const OSRExit& exit, const Operands<ValueRecovery>& operands, SpeculationRecovery* recovery)
{
jit.jitAssertTagsInPlace();
// Pro-forma stuff.
if (Options::printEachOSRExit()) {
SpeculationFailureDebugInfo* debugInfo = new SpeculationFailureDebugInfo;
debugInfo->codeBlock = jit.codeBlock();
debugInfo->kind = exit.m_kind;
debugInfo->bytecodeOffset = exit.m_codeOrigin.bytecodeIndex();
jit.debugCall(vm, debugOperationPrintSpeculationFailure, debugInfo);
}
// Perform speculation recovery. This only comes into play when an operation
// starts mutating state before verifying the speculation it has already made.
if (recovery) {
switch (recovery->type()) {
case SpeculativeAdd:
jit.sub32(recovery->src(), recovery->dest());
#if USE(JSVALUE64)
jit.or64(GPRInfo::numberTagRegister, recovery->dest());
#endif
break;
case SpeculativeAddSelf:
// If A + A = A (int32_t) overflows, A can be recovered by ((static_cast<int32_t>(A) >> 1) ^ 0x8000000).
jit.rshift32(AssemblyHelpers::TrustedImm32(1), recovery->dest());
jit.xor32(AssemblyHelpers::TrustedImm32(0x80000000), recovery->dest());
#if USE(JSVALUE64)
jit.or64(GPRInfo::numberTagRegister, recovery->dest());
#endif
break;
case SpeculativeAddImmediate:
jit.sub32(AssemblyHelpers::Imm32(recovery->immediate()), recovery->dest());
#if USE(JSVALUE64)
jit.or64(GPRInfo::numberTagRegister, recovery->dest());
#endif
break;
case BooleanSpeculationCheck:
#if USE(JSVALUE64)
jit.xor64(AssemblyHelpers::TrustedImm32(JSValue::ValueFalse), recovery->dest());
#endif
break;
default:
break;
}
}
// Refine some array and/or value profile, if appropriate.
if (!!exit.m_jsValueSource) {
if (exit.m_kind == BadCache || exit.m_kind == BadIndexingType) {
// If the instruction that this originated from has an array profile, then
// refine it. If it doesn't, then do nothing. The latter could happen for
// hoisted checks, or checks emitted for operations that didn't have array
// profiling - either ops that aren't array accesses at all, or weren't
// known to be array acceses in the bytecode. The latter case is a FIXME
// while the former case is an outcome of a CheckStructure not knowing why
// it was emitted (could be either due to an inline cache of a property
// property access, or due to an array profile).
CodeOrigin codeOrigin = exit.m_codeOriginForExitProfile;
CodeBlock* codeBlock = jit.baselineCodeBlockFor(codeOrigin);
if (ArrayProfile* arrayProfile = codeBlock->getArrayProfile(codeOrigin.bytecodeIndex())) {
const Instruction* instruction = codeBlock->instructions().at(codeOrigin.bytecodeIndex()).ptr();
CCallHelpers::Jump skipProfile;
if (instruction->is<OpGetById>()) {
auto& metadata = instruction->as<OpGetById>().metadata(codeBlock);
skipProfile = jit.branch8(CCallHelpers::NotEqual, CCallHelpers::AbsoluteAddress(&metadata.m_modeMetadata.mode), CCallHelpers::TrustedImm32(static_cast<uint8_t>(GetByIdMode::ArrayLength)));
}
#if USE(JSVALUE64)
GPRReg usedRegister;
if (exit.m_jsValueSource.isAddress())
usedRegister = exit.m_jsValueSource.base();
else
usedRegister = exit.m_jsValueSource.gpr();
#else
GPRReg usedRegister1;
GPRReg usedRegister2;
if (exit.m_jsValueSource.isAddress()) {
usedRegister1 = exit.m_jsValueSource.base();
usedRegister2 = InvalidGPRReg;
} else {
usedRegister1 = exit.m_jsValueSource.payloadGPR();
if (exit.m_jsValueSource.hasKnownTag())
usedRegister2 = InvalidGPRReg;
else
usedRegister2 = exit.m_jsValueSource.tagGPR();
}
#endif
GPRReg scratch1;
GPRReg scratch2;
#if USE(JSVALUE64)
scratch1 = AssemblyHelpers::selectScratchGPR(usedRegister);
scratch2 = AssemblyHelpers::selectScratchGPR(usedRegister, scratch1);
#else
scratch1 = AssemblyHelpers::selectScratchGPR(usedRegister1, usedRegister2);
scratch2 = AssemblyHelpers::selectScratchGPR(usedRegister1, usedRegister2, scratch1);
#endif
if (isARM64()) {
jit.pushToSave(scratch1);
jit.pushToSave(scratch2);
} else {
jit.push(scratch1);
jit.push(scratch2);
}
GPRReg value;
if (exit.m_jsValueSource.isAddress()) {
value = scratch1;
jit.loadPtr(AssemblyHelpers::Address(exit.m_jsValueSource.asAddress()), value);
} else
value = exit.m_jsValueSource.payloadGPR();
jit.load32(AssemblyHelpers::Address(value, JSCell::structureIDOffset()), scratch1);
jit.store32(scratch1, arrayProfile->addressOfLastSeenStructureID());
jit.load8(AssemblyHelpers::Address(value, JSCell::typeInfoTypeOffset()), scratch2);
jit.sub32(AssemblyHelpers::TrustedImm32(FirstTypedArrayType), scratch2);
auto notTypedArray = jit.branch32(MacroAssembler::AboveOrEqual, scratch2, AssemblyHelpers::TrustedImm32(NumberOfTypedArrayTypesExcludingDataView));
jit.move(AssemblyHelpers::TrustedImmPtr(typedArrayModes), scratch1);
jit.load32(AssemblyHelpers::BaseIndex(scratch1, scratch2, AssemblyHelpers::TimesFour), scratch2);
auto storeArrayModes = jit.jump();
notTypedArray.link(&jit);
#if USE(JSVALUE64)
jit.load8(AssemblyHelpers::Address(value, JSCell::indexingTypeAndMiscOffset()), scratch1);
#else
jit.load8(AssemblyHelpers::Address(scratch1, Structure::indexingModeIncludingHistoryOffset()), scratch1);
#endif
jit.and32(AssemblyHelpers::TrustedImm32(IndexingModeMask), scratch1);
jit.move(AssemblyHelpers::TrustedImm32(1), scratch2);
jit.lshift32(scratch1, scratch2);
storeArrayModes.link(&jit);
jit.or32(scratch2, AssemblyHelpers::AbsoluteAddress(arrayProfile->addressOfArrayModes()));
if (isARM64()) {
jit.popToRestore(scratch2);
jit.popToRestore(scratch1);
} else {
jit.pop(scratch2);
jit.pop(scratch1);
}
if (skipProfile.isSet())
skipProfile.link(&jit);
}
}
if (MethodOfGettingAValueProfile profile = exit.m_valueProfile) {
#if USE(JSVALUE64)
if (exit.m_jsValueSource.isAddress()) {
// We can't be sure that we have a spare register. So use the numberTagRegister,
// since we know how to restore it.
jit.load64(AssemblyHelpers::Address(exit.m_jsValueSource.asAddress()), GPRInfo::numberTagRegister);
profile.emitReportValue(jit, JSValueRegs(GPRInfo::numberTagRegister));
jit.move(AssemblyHelpers::TrustedImm64(JSValue::NumberTag), GPRInfo::numberTagRegister);
} else
profile.emitReportValue(jit, JSValueRegs(exit.m_jsValueSource.gpr()));
#else // not USE(JSVALUE64)
if (exit.m_jsValueSource.isAddress()) {
// Save a register so we can use it.
GPRReg scratchPayload = AssemblyHelpers::selectScratchGPR(exit.m_jsValueSource.base());
GPRReg scratchTag = AssemblyHelpers::selectScratchGPR(exit.m_jsValueSource.base(), scratchPayload);
jit.pushToSave(scratchPayload);
jit.pushToSave(scratchTag);
JSValueRegs scratch(scratchTag, scratchPayload);
jit.loadValue(exit.m_jsValueSource.asAddress(), scratch);
profile.emitReportValue(jit, scratch);
jit.popToRestore(scratchTag);
jit.popToRestore(scratchPayload);
} else if (exit.m_jsValueSource.hasKnownTag()) {
GPRReg scratchTag = AssemblyHelpers::selectScratchGPR(exit.m_jsValueSource.payloadGPR());
jit.pushToSave(scratchTag);
jit.move(AssemblyHelpers::TrustedImm32(exit.m_jsValueSource.tag()), scratchTag);
JSValueRegs value(scratchTag, exit.m_jsValueSource.payloadGPR());
profile.emitReportValue(jit, value);
jit.popToRestore(scratchTag);
} else
profile.emitReportValue(jit, exit.m_jsValueSource.regs());
#endif // USE(JSVALUE64)
}
}
// What follows is an intentionally simple OSR exit implementation that generates
// fairly poor code but is very easy to hack. In particular, it dumps all state that
// needs conversion into a scratch buffer so that in step 6, where we actually do the
// conversions, we know that all temp registers are free to use and the variable is
// definitely in a well-known spot in the scratch buffer regardless of whether it had
// originally been in a register or spilled. This allows us to decouple "where was
// the variable" from "how was it represented". Consider that the
// Int32DisplacedInJSStack recovery: it tells us that the value is in a
// particular place and that that place holds an unboxed int32. We have two different
// places that a value could be (displaced, register) and a bunch of different
// ways of representing a value. The number of recoveries is two * a bunch. The code
// below means that we have to have two + a bunch cases rather than two * a bunch.
// Once we have loaded the value from wherever it was, the reboxing is the same
// regardless of its location. Likewise, before we do the reboxing, the way we get to
// the value (i.e. where we load it from) is the same regardless of its type. Because
// the code below always dumps everything into a scratch buffer first, the two
// questions become orthogonal, which simplifies adding new types and adding new
// locations.
//
// This raises the question: does using such a suboptimal implementation of OSR exit,
// where we always emit code to dump all state into a scratch buffer only to then
// dump it right back into the stack, hurt us in any way? The asnwer is that OSR exits
// are rare. Our tiering strategy ensures this. This is because if an OSR exit is
// taken more than ~100 times, we jettison the DFG code block along with all of its
// exits. It is impossible for an OSR exit - i.e. the code we compile below - to
// execute frequently enough for the codegen to matter that much. It probably matters
// enough that we don't want to turn this into some super-slow function call, but so
// long as we're generating straight-line code, that code can be pretty bad. Also
// because we tend to exit only along one OSR exit from any DFG code block - that's an
// empirical result that we're extremely confident about - the code size of this
// doesn't matter much. Hence any attempt to optimize the codegen here is just purely
// harmful to the system: it probably won't reduce either net memory usage or net
// execution time. It will only prevent us from cleanly decoupling "where was the
// variable" from "how was it represented", which will make it more difficult to add
// features in the future and it will make it harder to reason about bugs.
// Save all state from GPRs into the scratch buffer.
ScratchBuffer* scratchBuffer = vm.scratchBufferForSize(sizeof(EncodedJSValue) * operands.size());
EncodedJSValue* scratch = scratchBuffer ? static_cast<EncodedJSValue*>(scratchBuffer->dataBuffer()) : 0;
for (size_t index = 0; index < operands.size(); ++index) {
const ValueRecovery& recovery = operands[index];
switch (recovery.technique()) {
case UnboxedInt32InGPR:
case UnboxedCellInGPR:
#if USE(JSVALUE64)
case InGPR:
case UnboxedInt52InGPR:
case UnboxedStrictInt52InGPR:
jit.store64(recovery.gpr(), scratch + index);
break;
#else
case UnboxedBooleanInGPR:
jit.store32(
recovery.gpr(),
&bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload);
break;
case InPair:
jit.store32(
recovery.tagGPR(),
&bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.tag);
jit.store32(
recovery.payloadGPR(),
&bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload);
break;
#endif
default:
break;
}
}
// And voila, all GPRs are free to reuse.
// Save all state from FPRs into the scratch buffer.
for (size_t index = 0; index < operands.size(); ++index) {
const ValueRecovery& recovery = operands[index];
switch (recovery.technique()) {
case UnboxedDoubleInFPR:
case InFPR:
jit.move(AssemblyHelpers::TrustedImmPtr(scratch + index), GPRInfo::regT0);
jit.storeDouble(recovery.fpr(), MacroAssembler::Address(GPRInfo::regT0));
break;
default:
break;
}
}
// Now, all FPRs are also free.
// Save all state from the stack into the scratch buffer. For simplicity we
// do this even for state that's already in the right place on the stack.
// It makes things simpler later.
for (size_t index = 0; index < operands.size(); ++index) {
const ValueRecovery& recovery = operands[index];
switch (recovery.technique()) {
case DisplacedInJSStack:
case CellDisplacedInJSStack:
case BooleanDisplacedInJSStack:
case Int32DisplacedInJSStack:
case DoubleDisplacedInJSStack:
#if USE(JSVALUE64)
case Int52DisplacedInJSStack:
case StrictInt52DisplacedInJSStack:
jit.load64(AssemblyHelpers::addressFor(recovery.virtualRegister()), GPRInfo::regT0);
jit.store64(GPRInfo::regT0, scratch + index);
break;
#else
jit.load32(
AssemblyHelpers::tagFor(recovery.virtualRegister()),
GPRInfo::regT0);
jit.load32(
AssemblyHelpers::payloadFor(recovery.virtualRegister()),
GPRInfo::regT1);
jit.store32(
GPRInfo::regT0,
&bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.tag);
jit.store32(
GPRInfo::regT1,
&bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload);
break;
#endif
default:
break;
}
}
if (validateDFGDoesGC) {
// We're about to exit optimized code. So, there's no longer any optimized
// code running that expects no GC. We need to set this before arguments
// materialization below (see emitRestoreArguments()).
// Even though we set Heap::m_expectDoesGC in compileOSRExit(), we also need
// to set it here because compileOSRExit() is only called on the first time
// we exit from this site, but all subsequent exits will take this compiled
// ramp without calling compileOSRExit() first.
jit.store8(CCallHelpers::TrustedImm32(true), vm.heap.addressOfExpectDoesGC());
}
// Need to ensure that the stack pointer accounts for the worst-case stack usage at exit. This
// could toast some stack that the DFG used. We need to do it before storing to stack offsets
// used by baseline.
jit.addPtr(
CCallHelpers::TrustedImm32(
-jit.codeBlock()->jitCode()->dfgCommon()->requiredRegisterCountForExit * sizeof(Register)),
CCallHelpers::framePointerRegister, CCallHelpers::stackPointerRegister);
// Restore the DFG callee saves and then save the ones the baseline JIT uses.
jit.emitRestoreCalleeSaves();
jit.emitSaveCalleeSavesFor(jit.baselineCodeBlock());
// The tag registers are needed to materialize recoveries below.
jit.emitMaterializeTagCheckRegisters();
if (exit.isExceptionHandler())
jit.copyCalleeSavesToEntryFrameCalleeSavesBuffer(vm.topEntryFrame);
// Do all data format conversions and store the results into the stack.
for (size_t index = 0; index < operands.size(); ++index) {
const ValueRecovery& recovery = operands[index];
VirtualRegister reg = operands.virtualRegisterForIndex(index);
if (reg.isLocal() && reg.toLocal() < static_cast<int>(jit.baselineCodeBlock()->calleeSaveSpaceAsVirtualRegisters()))
continue;
int operand = reg.offset();
switch (recovery.technique()) {
case DisplacedInJSStack:
case InFPR:
#if USE(JSVALUE64)
case InGPR:
case UnboxedCellInGPR:
case CellDisplacedInJSStack:
case BooleanDisplacedInJSStack:
jit.load64(scratch + index, GPRInfo::regT0);
jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand));
break;
#else // not USE(JSVALUE64)
case InPair:
jit.load32(
&bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.tag,
GPRInfo::regT0);
jit.load32(
&bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload,
GPRInfo::regT1);
jit.store32(
GPRInfo::regT0,
AssemblyHelpers::tagFor(operand));
jit.store32(
GPRInfo::regT1,
AssemblyHelpers::payloadFor(operand));
break;
case UnboxedCellInGPR:
case CellDisplacedInJSStack:
jit.load32(
&bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload,
GPRInfo::regT0);
jit.store32(
AssemblyHelpers::TrustedImm32(JSValue::CellTag),
AssemblyHelpers::tagFor(operand));
jit.store32(
GPRInfo::regT0,
AssemblyHelpers::payloadFor(operand));
break;
case UnboxedBooleanInGPR:
case BooleanDisplacedInJSStack:
jit.load32(
&bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload,
GPRInfo::regT0);
jit.store32(
AssemblyHelpers::TrustedImm32(JSValue::BooleanTag),
AssemblyHelpers::tagFor(operand));
jit.store32(
GPRInfo::regT0,
AssemblyHelpers::payloadFor(operand));
break;
#endif // USE(JSVALUE64)
case UnboxedInt32InGPR:
case Int32DisplacedInJSStack:
#if USE(JSVALUE64)
jit.load64(scratch + index, GPRInfo::regT0);
jit.zeroExtend32ToPtr(GPRInfo::regT0, GPRInfo::regT0);
jit.or64(GPRInfo::numberTagRegister, GPRInfo::regT0);
jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand));
#else
jit.load32(
&bitwise_cast<EncodedValueDescriptor*>(scratch + index)->asBits.payload,
GPRInfo::regT0);
jit.store32(
AssemblyHelpers::TrustedImm32(JSValue::Int32Tag),
AssemblyHelpers::tagFor(operand));
jit.store32(
GPRInfo::regT0,
AssemblyHelpers::payloadFor(operand));
#endif
break;
#if USE(JSVALUE64)
case UnboxedInt52InGPR:
case Int52DisplacedInJSStack:
jit.load64(scratch + index, GPRInfo::regT0);
jit.rshift64(
AssemblyHelpers::TrustedImm32(JSValue::int52ShiftAmount), GPRInfo::regT0);
jit.boxInt52(GPRInfo::regT0, GPRInfo::regT0, GPRInfo::regT1, FPRInfo::fpRegT0);
jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand));
break;
case UnboxedStrictInt52InGPR:
case StrictInt52DisplacedInJSStack:
jit.load64(scratch + index, GPRInfo::regT0);
jit.boxInt52(GPRInfo::regT0, GPRInfo::regT0, GPRInfo::regT1, FPRInfo::fpRegT0);
jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand));
break;
#endif
case UnboxedDoubleInFPR:
case DoubleDisplacedInJSStack:
jit.move(AssemblyHelpers::TrustedImmPtr(scratch + index), GPRInfo::regT0);
jit.loadDouble(MacroAssembler::Address(GPRInfo::regT0), FPRInfo::fpRegT0);
jit.purifyNaN(FPRInfo::fpRegT0);
#if USE(JSVALUE64)
jit.boxDouble(FPRInfo::fpRegT0, GPRInfo::regT0);
jit.store64(GPRInfo::regT0, AssemblyHelpers::addressFor(operand));
#else
jit.storeDouble(FPRInfo::fpRegT0, AssemblyHelpers::addressFor(operand));
#endif
break;
case Constant:
#if USE(JSVALUE64)
jit.store64(
AssemblyHelpers::TrustedImm64(JSValue::encode(recovery.constant())),
AssemblyHelpers::addressFor(operand));
#else
jit.store32(
AssemblyHelpers::TrustedImm32(recovery.constant().tag()),
AssemblyHelpers::tagFor(operand));
jit.store32(
AssemblyHelpers::TrustedImm32(recovery.constant().payload()),
AssemblyHelpers::payloadFor(operand));
#endif
break;
case DirectArgumentsThatWereNotCreated:
case ClonedArgumentsThatWereNotCreated:
// Don't do this, yet.
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
}
// Now that things on the stack are recovered, do the arguments recovery. We assume that arguments
// recoveries don't recursively refer to each other. But, we don't try to assume that they only
// refer to certain ranges of locals. Hence why we need to do this here, once the stack is sensible.
// Note that we also roughly assume that the arguments might still be materialized outside of its
// inline call frame scope - but for now the DFG wouldn't do that.
emitRestoreArguments(jit, operands);
// Adjust the old JIT's execute counter. Since we are exiting OSR, we know
// that all new calls into this code will go to the new JIT, so the execute
// counter only affects call frames that performed OSR exit and call frames
// that were still executing the old JIT at the time of another call frame's
// OSR exit. We want to ensure that the following is true:
//
// (a) Code the performs an OSR exit gets a chance to reenter optimized
// code eventually, since optimized code is faster. But we don't
// want to do such reentery too aggressively (see (c) below).
//
// (b) If there is code on the call stack that is still running the old
// JIT's code and has never OSR'd, then it should get a chance to
// perform OSR entry despite the fact that we've exited.
//
// (c) Code the performs an OSR exit should not immediately retry OSR
// entry, since both forms of OSR are expensive. OSR entry is
// particularly expensive.
//
// (d) Frequent OSR failures, even those that do not result in the code
// running in a hot loop, result in recompilation getting triggered.
//
// To ensure (c), we'd like to set the execute counter to
// counterValueForOptimizeAfterWarmUp(). This seems like it would endanger
// (a) and (b), since then every OSR exit would delay the opportunity for
// every call frame to perform OSR entry. Essentially, if OSR exit happens
// frequently and the function has few loops, then the counter will never
// become non-negative and OSR entry will never be triggered. OSR entry
// will only happen if a loop gets hot in the old JIT, which does a pretty
// good job of ensuring (a) and (b). But that doesn't take care of (d),
// since each speculation failure would reset the execute counter.
// So we check here if the number of speculation failures is significantly
// larger than the number of successes (we want 90% success rate), and if
// there have been a large enough number of failures. If so, we set the
// counter to 0; otherwise we set the counter to
// counterValueForOptimizeAfterWarmUp().
handleExitCounts(jit, exit);
// Reify inlined call frames.
reifyInlinedCallFrames(jit, exit);
// And finish.
adjustAndJumpToTarget(vm, jit, exit);
}
void JIT_OPERATION OSRExit::debugOperationPrintSpeculationFailure(ExecState* exec, void* debugInfoRaw, void* scratch)
{
VM& vm = exec->vm();
NativeCallFrameTracer tracer(vm, exec);
SpeculationFailureDebugInfo* debugInfo = static_cast<SpeculationFailureDebugInfo*>(debugInfoRaw);
CodeBlock* codeBlock = debugInfo->codeBlock;
CodeBlock* alternative = codeBlock->alternative();
dataLog("Speculation failure in ", *codeBlock);
dataLog(" @ exit #", vm.osrExitIndex, " (bc#", debugInfo->bytecodeOffset, ", ", exitKindToString(debugInfo->kind), ") with ");
if (alternative) {
dataLog(
"executeCounter = ", alternative->jitExecuteCounter(),
", reoptimizationRetryCounter = ", alternative->reoptimizationRetryCounter(),
", optimizationDelayCounter = ", alternative->optimizationDelayCounter());
} else
dataLog("no alternative code block (i.e. we've been jettisoned)");
dataLog(", osrExitCounter = ", codeBlock->osrExitCounter(), "\n");
dataLog(" GPRs at time of exit:");
char* scratchPointer = static_cast<char*>(scratch);
for (unsigned i = 0; i < GPRInfo::numberOfRegisters; ++i) {
GPRReg gpr = GPRInfo::toRegister(i);
dataLog(" ", GPRInfo::debugName(gpr), ":", RawPointer(*reinterpret_cast_ptr<void**>(scratchPointer)));
scratchPointer += sizeof(EncodedJSValue);
}
dataLog("\n");
dataLog(" FPRs at time of exit:");
for (unsigned i = 0; i < FPRInfo::numberOfRegisters; ++i) {
FPRReg fpr = FPRInfo::toRegister(i);
dataLog(" ", FPRInfo::debugName(fpr), ":");
uint64_t bits = *reinterpret_cast_ptr<uint64_t*>(scratchPointer);
double value = *reinterpret_cast_ptr<double*>(scratchPointer);
dataLogF("%llx:%lf", static_cast<long long>(bits), value);
scratchPointer += sizeof(EncodedJSValue);
}
dataLog("\n");
}
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)