blob: 38f5557ceced1ff9de3369a82f942bd76c848481 [file] [log] [blame]
/*
* Copyright 2017 Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <algorithm>
#include <array>
#include <atomic>
#include <cassert>
#include <functional>
#include <limits>
#include <mutex>
#include <string>
#include <type_traits>
#include <unordered_map>
#include <vector>
#include <folly/Hash.h>
#include <folly/Indestructible.h>
#include <folly/Likely.h>
#include <folly/Memory.h>
#include <folly/Portability.h>
#include <folly/ThreadId.h>
#include <folly/portability/BitsFunctexcept.h>
#include <folly/portability/Memory.h>
namespace folly {
// This file contains several classes that might be useful if you are
// trying to dynamically optimize cache locality: CacheLocality reads
// cache sharing information from sysfs to determine how CPUs should be
// grouped to minimize contention, Getcpu provides fast access to the
// current CPU via __vdso_getcpu, and AccessSpreader uses these two to
// optimally spread accesses among a predetermined number of stripes.
//
// AccessSpreader<>::current(n) microbenchmarks at 22 nanos, which is
// substantially less than the cost of a cache miss. This means that we
// can effectively use it to reduce cache line ping-pong on striped data
// structures such as IndexedMemPool or statistics counters.
//
// Because CacheLocality looks at all of the cache levels, it can be
// used for different levels of optimization. AccessSpreader(2) does
// per-chip spreading on a dual socket system. AccessSpreader(numCpus)
// does perfect per-cpu spreading. AccessSpreader(numCpus / 2) does
// perfect L1 spreading in a system with hyperthreading enabled.
struct CacheLocality {
/// 1 more than the maximum value that can be returned from sched_getcpu
/// or getcpu. This is the number of hardware thread contexts provided
/// by the processors
size_t numCpus;
/// Holds the number of caches present at each cache level (0 is
/// the closest to the cpu). This is the number of AccessSpreader
/// stripes needed to avoid cross-cache communication at the specified
/// layer. numCachesByLevel.front() is the number of L1 caches and
/// numCachesByLevel.back() is the number of last-level caches.
std::vector<size_t> numCachesByLevel;
/// A map from cpu (from sched_getcpu or getcpu) to an index in the
/// range 0..numCpus-1, where neighboring locality indices are more
/// likely to share caches then indices far away. All of the members
/// of a particular cache level be contiguous in their locality index.
/// For example, if numCpus is 32 and numCachesByLevel.back() is 2,
/// then cpus with a locality index < 16 will share one last-level
/// cache and cpus with a locality index >= 16 will share the other.
std::vector<size_t> localityIndexByCpu;
/// Returns the best CacheLocality information available for the current
/// system, cached for fast access. This will be loaded from sysfs if
/// possible, otherwise it will be correct in the number of CPUs but
/// not in their sharing structure.
///
/// If you are into yo dawgs, this is a shared cache of the local
/// locality of the shared caches.
///
/// The template parameter here is used to allow injection of a
/// repeatable CacheLocality structure during testing. Rather than
/// inject the type of the CacheLocality provider into every data type
/// that transitively uses it, all components select between the default
/// sysfs implementation and a deterministic implementation by keying
/// off the type of the underlying atomic. See DeterministicScheduler.
template <template <typename> class Atom = std::atomic>
static const CacheLocality& system();
/// Reads CacheLocality information from a tree structured like
/// the sysfs filesystem. The provided function will be evaluated
/// for each sysfs file that needs to be queried. The function
/// should return a string containing the first line of the file
/// (not including the newline), or an empty string if the file does
/// not exist. The function will be called with paths of the form
/// /sys/devices/system/cpu/cpu*/cache/index*/{type,shared_cpu_list} .
/// Throws an exception if no caches can be parsed at all.
static CacheLocality readFromSysfsTree(
const std::function<std::string(std::string)>& mapping);
/// Reads CacheLocality information from the real sysfs filesystem.
/// Throws an exception if no cache information can be loaded.
static CacheLocality readFromSysfs();
/// Returns a usable (but probably not reflective of reality)
/// CacheLocality structure with the specified number of cpus and a
/// single cache level that associates one cpu per cache.
static CacheLocality uniform(size_t numCpus);
enum {
/// Memory locations on the same cache line are subject to false
/// sharing, which is very bad for performance. Microbenchmarks
/// indicate that pairs of cache lines also see interference under
/// heavy use of atomic operations (observed for atomic increment on
/// Sandy Bridge). See FOLLY_ALIGN_TO_AVOID_FALSE_SHARING
kFalseSharingRange = 128
};
static_assert(
kFalseSharingRange == 128,
"FOLLY_ALIGN_TO_AVOID_FALSE_SHARING should track kFalseSharingRange");
};
// TODO replace __attribute__ with alignas and 128 with kFalseSharingRange
/// An attribute that will cause a variable or field to be aligned so that
/// it doesn't have false sharing with anything at a smaller memory address.
#define FOLLY_ALIGN_TO_AVOID_FALSE_SHARING FOLLY_ALIGNED(128)
/// Knows how to derive a function pointer to the VDSO implementation of
/// getcpu(2), if available
struct Getcpu {
/// Function pointer to a function with the same signature as getcpu(2).
typedef int (*Func)(unsigned* cpu, unsigned* node, void* unused);
/// Returns a pointer to the VDSO implementation of getcpu(2), if
/// available, or nullptr otherwise. This function may be quite
/// expensive, be sure to cache the result.
static Func resolveVdsoFunc();
};
#ifdef FOLLY_TLS
template <template <typename> class Atom>
struct SequentialThreadId {
/// Returns the thread id assigned to the current thread
static unsigned get() {
auto rv = currentId;
if (UNLIKELY(rv == 0)) {
rv = currentId = ++prevId;
}
return rv;
}
private:
static Atom<unsigned> prevId;
static FOLLY_TLS unsigned currentId;
};
template <template <typename> class Atom>
Atom<unsigned> SequentialThreadId<Atom>::prevId(0);
template <template <typename> class Atom>
FOLLY_TLS unsigned SequentialThreadId<Atom>::currentId(0);
// Suppress this instantiation in other translation units. It is
// instantiated in CacheLocality.cpp
extern template struct SequentialThreadId<std::atomic>;
#endif
struct HashingThreadId {
static unsigned get() {
return hash::twang_32from64(getCurrentThreadID());
}
};
/// A class that lazily binds a unique (for each implementation of Atom)
/// identifier to a thread. This is a fallback mechanism for the access
/// spreader if __vdso_getcpu can't be loaded
template <typename ThreadId>
struct FallbackGetcpu {
/// Fills the thread id into the cpu and node out params (if they
/// are non-null). This method is intended to act like getcpu when a
/// fast-enough form of getcpu isn't available or isn't desired
static int getcpu(unsigned* cpu, unsigned* node, void* /* unused */) {
auto id = ThreadId::get();
if (cpu) {
*cpu = id;
}
if (node) {
*node = id;
}
return 0;
}
};
#ifdef FOLLY_TLS
typedef FallbackGetcpu<SequentialThreadId<std::atomic>> FallbackGetcpuType;
#else
typedef FallbackGetcpu<HashingThreadId> FallbackGetcpuType;
#endif
/// AccessSpreader arranges access to a striped data structure in such a
/// way that concurrently executing threads are likely to be accessing
/// different stripes. It does NOT guarantee uncontended access.
/// Your underlying algorithm must be thread-safe without spreading, this
/// is merely an optimization. AccessSpreader::current(n) is typically
/// much faster than a cache miss (12 nanos on my dev box, tested fast
/// in both 2.6 and 3.2 kernels).
///
/// If available (and not using the deterministic testing implementation)
/// AccessSpreader uses the getcpu system call via VDSO and the
/// precise locality information retrieved from sysfs by CacheLocality.
/// This provides optimal anti-sharing at a fraction of the cost of a
/// cache miss.
///
/// When there are not as many stripes as processors, we try to optimally
/// place the cache sharing boundaries. This means that if you have 2
/// stripes and run on a dual-socket system, your 2 stripes will each get
/// all of the cores from a single socket. If you have 16 stripes on a
/// 16 core system plus hyperthreading (32 cpus), each core will get its
/// own stripe and there will be no cache sharing at all.
///
/// AccessSpreader has a fallback mechanism for when __vdso_getcpu can't be
/// loaded, or for use during deterministic testing. Using sched_getcpu
/// or the getcpu syscall would negate the performance advantages of
/// access spreading, so we use a thread-local value and a shared atomic
/// counter to spread access out. On systems lacking both a fast getcpu()
/// and TLS, we hash the thread id to spread accesses.
///
/// AccessSpreader is templated on the template type that is used
/// to implement atomics, as a way to instantiate the underlying
/// heuristics differently for production use and deterministic unit
/// testing. See DeterministicScheduler for more. If you aren't using
/// DeterministicScheduler, you can just use the default template parameter
/// all of the time.
template <template <typename> class Atom = std::atomic>
struct AccessSpreader {
/// Returns the stripe associated with the current CPU. The returned
/// value will be < numStripes.
static size_t current(size_t numStripes) {
// widthAndCpuToStripe[0] will actually work okay (all zeros), but
// something's wrong with the caller
assert(numStripes > 0);
unsigned cpu;
getcpuFunc(&cpu, nullptr, nullptr);
return widthAndCpuToStripe[std::min(size_t(kMaxCpus), numStripes)]
[cpu % kMaxCpus];
}
private:
/// If there are more cpus than this nothing will crash, but there
/// might be unnecessary sharing
enum { kMaxCpus = 128 };
typedef uint8_t CompactStripe;
static_assert(
(kMaxCpus & (kMaxCpus - 1)) == 0,
"kMaxCpus should be a power of two so modulo is fast");
static_assert(
kMaxCpus - 1 <= std::numeric_limits<CompactStripe>::max(),
"stripeByCpu element type isn't wide enough");
/// Points to the getcpu-like function we are using to obtain the
/// current cpu. It should not be assumed that the returned cpu value
/// is in range. We use a static for this so that we can prearrange a
/// valid value in the pre-constructed state and avoid the need for a
/// conditional on every subsequent invocation (not normally a big win,
/// but 20% on some inner loops here).
static Getcpu::Func getcpuFunc;
/// For each level of splitting up to kMaxCpus, maps the cpu (mod
/// kMaxCpus) to the stripe. Rather than performing any inequalities
/// or modulo on the actual number of cpus, we just fill in the entire
/// array.
static CompactStripe widthAndCpuToStripe[kMaxCpus + 1][kMaxCpus];
static bool initialized;
/// Returns the best getcpu implementation for Atom
static Getcpu::Func pickGetcpuFunc() {
auto best = Getcpu::resolveVdsoFunc();
return best ? best : &FallbackGetcpuType::getcpu;
}
/// Always claims to be on CPU zero, node zero
static int degenerateGetcpu(unsigned* cpu, unsigned* node, void*) {
if (cpu != nullptr) {
*cpu = 0;
}
if (node != nullptr) {
*node = 0;
}
return 0;
}
// The function to call for fast lookup of getcpu is a singleton, as
// is the precomputed table of locality information. AccessSpreader
// is used in very tight loops, however (we're trying to race an L1
// cache miss!), so the normal singleton mechanisms are noticeably
// expensive. Even a not-taken branch guarding access to getcpuFunc
// slows AccessSpreader::current from 12 nanos to 14. As a result, we
// populate the static members with simple (but valid) values that can
// be filled in by the linker, and then follow up with a normal static
// initializer call that puts in the proper version. This means that
// when there are initialization order issues we will just observe a
// zero stripe. Once a sanitizer gets smart enough to detect this as
// a race or undefined behavior, we can annotate it.
static bool initialize() {
getcpuFunc = pickGetcpuFunc();
auto& cacheLocality = CacheLocality::system<Atom>();
auto n = cacheLocality.numCpus;
for (size_t width = 0; width <= kMaxCpus; ++width) {
auto numStripes = std::max(size_t{1}, width);
for (size_t cpu = 0; cpu < kMaxCpus && cpu < n; ++cpu) {
auto index = cacheLocality.localityIndexByCpu[cpu];
assert(index < n);
// as index goes from 0..n, post-transform value goes from
// 0..numStripes
widthAndCpuToStripe[width][cpu] =
CompactStripe((index * numStripes) / n);
assert(widthAndCpuToStripe[width][cpu] < numStripes);
}
for (size_t cpu = n; cpu < kMaxCpus; ++cpu) {
widthAndCpuToStripe[width][cpu] = widthAndCpuToStripe[width][cpu - n];
}
}
return true;
}
};
template <template <typename> class Atom>
Getcpu::Func AccessSpreader<Atom>::getcpuFunc =
AccessSpreader<Atom>::degenerateGetcpu;
template <template <typename> class Atom>
typename AccessSpreader<Atom>::CompactStripe
AccessSpreader<Atom>::widthAndCpuToStripe[kMaxCpus + 1][kMaxCpus] = {};
template <template <typename> class Atom>
bool AccessSpreader<Atom>::initialized = AccessSpreader<Atom>::initialize();
// Suppress this instantiation in other translation units. It is
// instantiated in CacheLocality.cpp
extern template struct AccessSpreader<std::atomic>;
/**
* A simple freelist allocator. Allocates things of size sz, from
* slabs of size allocSize. Takes a lock on each
* allocation/deallocation.
*/
class SimpleAllocator {
std::mutex m_;
uint8_t* mem_{nullptr};
uint8_t* end_{nullptr};
void* freelist_{nullptr};
size_t allocSize_;
size_t sz_;
std::vector<void*> blocks_;
public:
SimpleAllocator(size_t allocSize, size_t sz);
~SimpleAllocator();
void* allocateHard();
// Inline fast-paths.
void* allocate() {
std::lock_guard<std::mutex> g(m_);
// Freelist allocation.
if (freelist_) {
auto mem = freelist_;
freelist_ = *static_cast<void**>(freelist_);
return mem;
}
// Bump-ptr allocation.
if (intptr_t(mem_) % 128 == 0) {
// Avoid allocating pointers that may look like malloc
// pointers.
mem_ += std::min(sz_, folly::max_align_v);
}
if (mem_ && (mem_ + sz_ <= end_)) {
auto mem = mem_;
mem_ += sz_;
assert(intptr_t(mem) % 128 != 0);
return mem;
}
return allocateHard();
}
void deallocate(void* mem) {
std::lock_guard<std::mutex> g(m_);
*static_cast<void**>(mem) = freelist_;
freelist_ = mem;
}
};
/**
* An allocator that can be used with CacheLocality to allocate
* core-local memory.
*
* There is actually nothing special about the memory itself (it is
* not bound to numa nodes or anything), but the allocator guarantees
* that memory allocatd from the same stripe will only come from cache
* lines also allocated to the same stripe. This means multiple
* things using CacheLocality can allocate memory in smaller-than
* cacheline increments, and be assured that it won't cause more false
* sharing than it otherwise would.
*
* Note that allocation and deallocation takes a per-sizeclass lock.
*/
template <size_t Stripes>
class CoreAllocator {
public:
class Allocator {
static constexpr size_t AllocSize{4096};
uint8_t sizeClass(size_t size) {
if (size <= 8) {
return 0;
} else if (size <= 16) {
return 1;
} else if (size <= 32) {
return 2;
} else if (size <= 64) {
return 3;
} else { // punt to malloc.
return 4;
}
}
std::array<SimpleAllocator, 4> allocators_{
{{AllocSize, 8}, {AllocSize, 16}, {AllocSize, 32}, {AllocSize, 64}}};
public:
void* allocate(size_t size) {
auto cl = sizeClass(size);
if (cl == 4) {
static_assert(
CacheLocality::kFalseSharingRange == 128,
"kFalseSharingRange changed");
// Align to a cacheline
size = size + (CacheLocality::kFalseSharingRange - 1);
size &= ~size_t(CacheLocality::kFalseSharingRange - 1);
void* mem =
detail::aligned_malloc(size, CacheLocality::kFalseSharingRange);
if (!mem) {
std::__throw_bad_alloc();
}
return mem;
}
return allocators_[cl].allocate();
}
void deallocate(void* mem) {
if (!mem) {
return;
}
// See if it came from this allocator or malloc.
if (intptr_t(mem) % 128 != 0) {
auto addr =
reinterpret_cast<void*>(intptr_t(mem) & ~intptr_t(AllocSize - 1));
auto allocator = *static_cast<SimpleAllocator**>(addr);
allocator->deallocate(mem);
} else {
detail::aligned_free(mem);
}
}
};
Allocator* get(size_t stripe) {
assert(stripe < Stripes);
return &allocators_[stripe];
}
private:
Allocator allocators_[Stripes];
};
template <size_t Stripes>
typename CoreAllocator<Stripes>::Allocator* getCoreAllocator(size_t stripe) {
// We cannot make sure that the allocator will be destroyed after
// all the objects allocated with it, so we leak it.
static Indestructible<CoreAllocator<Stripes>> allocator;
return allocator->get(stripe);
}
template <typename T, size_t Stripes>
StlAllocator<typename CoreAllocator<Stripes>::Allocator, T> getCoreAllocatorStl(
size_t stripe) {
auto alloc = getCoreAllocator<Stripes>(stripe);
return StlAllocator<typename CoreAllocator<Stripes>::Allocator, T>(alloc);
}
} // namespace folly