blob: 7ee29b00494174609814c77f571f3c9ea920eaaf [file] [log] [blame]
/*
* Copyright (C) 2011, 2015-2016 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#if ENABLE(JIT)
#include "AssemblyHelpers.h"
#include "GPRInfo.h"
#include "RegisterMap.h"
#include "StackAlignment.h"
namespace JSC {
#if CPU(MIPS) || (OS(WINDOWS) && CPU(X86_64))
#define POKE_ARGUMENT_OFFSET 4
#else
#define POKE_ARGUMENT_OFFSET 0
#endif
// EncodedJSValue in JSVALUE32_64 is a 64-bit integer. When being compiled in ARM EABI, it must be aligned even-numbered register (r0, r2 or [sp]).
// To avoid assemblies from using wrong registers, let's occupy r1 or r3 with a dummy argument when necessary.
#if (COMPILER_SUPPORTS(EABI) && CPU(ARM)) || CPU(MIPS)
#define EABI_32BIT_DUMMY_ARG CCallHelpers::TrustedImm32(0),
#else
#define EABI_32BIT_DUMMY_ARG
#endif
class CCallHelpers : public AssemblyHelpers {
public:
CCallHelpers(VM* vm, CodeBlock* codeBlock = 0)
: AssemblyHelpers(vm, codeBlock)
{
}
// The most general helper for setting arguments that fit in a GPR, if you can compute each
// argument without using any argument registers. You usually want one of the setupArguments*()
// methods below instead of this. This thing is most useful if you have *a lot* of arguments.
template<typename Functor>
void setupArgument(unsigned argumentIndex, const Functor& functor)
{
unsigned numberOfRegs = GPRInfo::numberOfArgumentRegisters; // Disguise the constant from clang's tautological compare warning.
if (argumentIndex < numberOfRegs) {
functor(GPRInfo::toArgumentRegister(argumentIndex));
return;
}
functor(GPRInfo::nonArgGPR0);
poke(GPRInfo::nonArgGPR0, POKE_ARGUMENT_OFFSET + argumentIndex - GPRInfo::numberOfArgumentRegisters);
}
void setupArgumentsWithExecState() { setupArgumentsExecState(); }
// These methods used to sort arguments into the correct registers.
// On X86 we use cdecl calling conventions, which pass all arguments on the
// stack. On other architectures we may need to sort values into the
// correct registers.
#if !NUMBER_OF_ARGUMENT_REGISTERS
unsigned m_callArgumentOffset;
void resetCallArguments() { m_callArgumentOffset = 0; }
// These methods are using internally to implement the callOperation methods.
void addCallArgument(GPRReg value)
{
poke(value, m_callArgumentOffset++);
}
void addCallArgument(TrustedImm32 imm)
{
poke(imm, m_callArgumentOffset++);
}
void addCallArgument(TrustedImmPtr pointer)
{
poke(pointer, m_callArgumentOffset++);
}
void addCallArgument(FPRReg value)
{
storeDouble(value, Address(stackPointerRegister, m_callArgumentOffset * sizeof(void*)));
m_callArgumentOffset += sizeof(double) / sizeof(void*);
}
ALWAYS_INLINE void setupArguments(FPRReg arg1)
{
resetCallArguments();
addCallArgument(arg1);
}
ALWAYS_INLINE void setupArguments(FPRReg arg1, FPRReg arg2)
{
resetCallArguments();
addCallArgument(arg1);
addCallArgument(arg2);
}
ALWAYS_INLINE void setupArguments(GPRReg arg1)
{
resetCallArguments();
addCallArgument(arg1);
}
ALWAYS_INLINE void setupArguments(GPRReg arg1, GPRReg arg2)
{
resetCallArguments();
addCallArgument(arg1);
addCallArgument(arg2);
}
ALWAYS_INLINE void setupArguments(TrustedImmPtr arg1, GPRReg arg2)
{
resetCallArguments();
addCallArgument(arg1);
addCallArgument(arg2);
}
ALWAYS_INLINE void setupArguments(GPRReg arg1, GPRReg arg2, GPRReg arg3)
{
resetCallArguments();
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
}
ALWAYS_INLINE void setupArguments(GPRReg arg1, GPRReg arg2, TrustedImmPtr arg3, TrustedImmPtr arg4)
{
resetCallArguments();
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
}
ALWAYS_INLINE void setupArguments(GPRReg arg1, GPRReg arg2, TrustedImmPtr arg3, TrustedImm32 arg4, GPRReg arg5)
{
resetCallArguments();
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
addCallArgument(arg5);
}
ALWAYS_INLINE void setupArguments(GPRReg arg1, GPRReg arg2, TrustedImmPtr arg3, TrustedImm32 arg4, GPRReg arg5, GPRReg arg6)
{
resetCallArguments();
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
addCallArgument(arg5);
addCallArgument(arg6);
}
ALWAYS_INLINE void setupArguments(TrustedImmPtr arg1)
{
resetCallArguments();
addCallArgument(arg1);
}
ALWAYS_INLINE void setupArgumentsExecState()
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImmPtr arg2)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImmPtr arg2, GPRReg arg3)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImm32 arg2)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, TrustedImm32 arg2)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, TrustedImmPtr arg2)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, TrustedImm32 arg2)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, TrustedImm32 arg2, TrustedImm32 arg3)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, TrustedImm32 arg2, GPRReg arg3)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImm32 arg3)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImmPtr arg3)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImm32 arg2, GPRReg arg3)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImmPtr arg2, GPRReg arg3, TrustedImm32 arg4)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImmPtr arg3, TrustedImm32 arg4)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImmPtr arg3, TrustedImmPtr arg4)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImm32 arg2, TrustedImmPtr arg3)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImm32 arg2, TrustedImm32 arg3)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, GPRReg arg3)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, TrustedImm32 arg3, GPRReg arg4, TrustedImm32 arg5)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
addCallArgument(arg5);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2, TrustedImmPtr arg3, TrustedImm32 arg4, TrustedImm32 arg5)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
addCallArgument(arg5);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, GPRReg arg3, TrustedImm32 arg4, GPRReg arg5, TrustedImm32 arg6)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
addCallArgument(arg5);
addCallArgument(arg6);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2, GPRReg arg3)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2, TrustedImm32 arg3)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2, TrustedImmPtr arg3)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, TrustedImmPtr arg2, TrustedImm32 arg3)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, TrustedImmPtr arg2, TrustedImmPtr arg3)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImmPtr arg2, TrustedImmPtr arg3)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImmPtr arg2, TrustedImm32 arg3, GPRReg arg4)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, TrustedImm32 arg2, GPRReg arg3, TrustedImmPtr arg4)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImm32 arg3, TrustedImmPtr arg4)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2, TrustedImm32 arg3, GPRReg arg4, GPRReg arg5)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
addCallArgument(arg5);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImmPtr arg2, TrustedImm32 arg3)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, TrustedImmPtr arg4, TrustedImm32 arg5)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
addCallArgument(arg5);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImmPtr arg2, TrustedImm32 arg3, GPRReg arg4, GPRReg arg5)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
addCallArgument(arg5);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, TrustedImmPtr arg2, GPRReg arg3, GPRReg arg4)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, TrustedImmPtr arg2, GPRReg arg3, GPRReg arg4, TrustedImm32 arg5)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
addCallArgument(arg5);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, TrustedImm32 arg4)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, TrustedImm32 arg4, GPRReg arg5)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
addCallArgument(arg5);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, TrustedImmPtr arg2, GPRReg arg3)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, TrustedImmPtr arg4)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImm32 arg3, TrustedImm32 arg4)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImm32 arg3, GPRReg arg4)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, TrustedImm32 arg2, GPRReg arg3, GPRReg arg4)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2, GPRReg arg3, TrustedImm32 arg4)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2, GPRReg arg3, TrustedImm32 arg4, TrustedImm32 arg5)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
addCallArgument(arg5);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2, GPRReg arg3, TrustedImm32 arg4, TrustedImmPtr arg5)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
addCallArgument(arg5);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, GPRReg arg5, TrustedImmPtr arg6)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
addCallArgument(arg5);
addCallArgument(arg6);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, TrustedImm32 arg5, TrustedImmPtr arg6)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
addCallArgument(arg5);
addCallArgument(arg6);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2, GPRReg arg3, TrustedImmPtr arg4)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2, TrustedImm32 arg3, TrustedImmPtr arg4)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImm32 arg2, TrustedImmPtr arg3, GPRReg arg4)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImmPtr arg2, GPRReg arg3, GPRReg arg4)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImm32 arg2, GPRReg arg3, GPRReg arg4)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, GPRReg arg5)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
addCallArgument(arg5);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImm32 arg3, GPRReg arg4, GPRReg arg5)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
addCallArgument(arg5);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, TrustedImmPtr arg5)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
addCallArgument(arg5);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, TrustedImm32 arg4, TrustedImmPtr arg5)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
addCallArgument(arg5);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, TrustedImm32 arg5)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
addCallArgument(arg5);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, GPRReg arg5, GPRReg arg6)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
addCallArgument(arg5);
addCallArgument(arg6);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, GPRReg arg5, TrustedImm32 arg6)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
addCallArgument(arg5);
addCallArgument(arg6);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, TrustedImmPtr arg5, TrustedImmPtr arg6)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
addCallArgument(arg5);
addCallArgument(arg6);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, GPRReg arg5, GPRReg arg6, TrustedImmPtr arg7)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
addCallArgument(arg5);
addCallArgument(arg6);
addCallArgument(arg7);
}
ALWAYS_INLINE void setupArgumentsWithExecState(FPRReg arg1, GPRReg arg2)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, FPRReg arg3)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, GPRReg arg5, GPRReg arg6, GPRReg arg7, GPRReg arg8)
{
resetCallArguments();
addCallArgument(GPRInfo::callFrameRegister);
addCallArgument(arg1);
addCallArgument(arg2);
addCallArgument(arg3);
addCallArgument(arg4);
addCallArgument(arg5);
addCallArgument(arg6);
addCallArgument(arg7);
addCallArgument(arg8);
}
#endif // !NUMBER_OF_ARGUMENT_REGISTERS
// These methods are suitable for any calling convention that provides for
// at least 4 argument registers, e.g. X86_64, ARMv7.
#if NUMBER_OF_ARGUMENT_REGISTERS >= 4
template<GPRReg destA, GPRReg destB>
void setupTwoStubArgsGPR(GPRReg srcA, GPRReg srcB)
{
// Assuming that srcA != srcB, there are 7 interesting states the registers may be in:
// (1) both are already in arg regs, the right way around.
// (2) both are already in arg regs, the wrong way around.
// (3) neither are currently in arg registers.
// (4) srcA in in its correct reg.
// (5) srcA in in the incorrect reg.
// (6) srcB in in its correct reg.
// (7) srcB in in the incorrect reg.
//
// The trivial approach is to simply emit two moves, to put srcA in place then srcB in
// place (the MacroAssembler will omit redundant moves). This apporach will be safe in
// cases 1, 3, 4, 5, 6, and in cases where srcA==srcB. The two problem cases are 2
// (requires a swap) and 7 (must move srcB first, to avoid trampling.)
if (srcB != destA) {
// Handle the easy cases - two simple moves.
move(srcA, destA);
move(srcB, destB);
} else if (srcA != destB) {
// Handle the non-swap case - just put srcB in place first.
move(srcB, destB);
move(srcA, destA);
} else
swap(destA, destB);
}
template<GPRReg destA, GPRReg destB, GPRReg destC>
void setupThreeStubArgsGPR(GPRReg srcA, GPRReg srcB, GPRReg srcC)
{
// If neither of srcB/srcC are in our way, then we can move srcA into place.
// Then we can use setupTwoStubArgs to fix srcB/srcC.
if (srcB != destA && srcC != destA) {
move(srcA, destA);
setupTwoStubArgsGPR<destB, destC>(srcB, srcC);
return;
}
// If neither of srcA/srcC are in our way, then we can move srcB into place.
// Then we can use setupTwoStubArgs to fix srcA/srcC.
if (srcA != destB && srcC != destB) {
move(srcB, destB);
setupTwoStubArgsGPR<destA, destC>(srcA, srcC);
return;
}
// If neither of srcA/srcB are in our way, then we can move srcC into place.
// Then we can use setupTwoStubArgs to fix srcA/srcB.
if (srcA != destC && srcB != destC) {
move(srcC, destC);
setupTwoStubArgsGPR<destA, destB>(srcA, srcB);
return;
}
// If we get here, we haven't been able to move any of srcA/srcB/srcC.
// Since all three are blocked, then all three must already be in the argument register.
// But are they in the right ones?
// First, ensure srcA is in place.
if (srcA != destA) {
swap(srcA, destA);
// If srcA wasn't in argumentGPR1, one of srcB/srcC must be.
ASSERT(srcB == destA || srcC == destA);
// If srcB was in argumentGPR1 it no longer is (due to the swap).
// Otherwise srcC must have been. Mark him as moved.
if (srcB == destA)
srcB = srcA;
else
srcC = srcA;
}
// Either srcB & srcC need swapping, or we're all done.
ASSERT((srcB == destB || srcC == destC)
|| (srcB == destC || srcC == destB));
if (srcB != destB)
swap(destB, destC);
}
void setupFourStubArgsGPR(GPRReg destA, GPRReg destB, GPRReg destC, GPRReg destD, GPRReg srcA, GPRReg srcB, GPRReg srcC, GPRReg srcD)
{
setupStubArgsGPR<4>({ { destA, destB, destC, destD } }, { { srcA, srcB, srcC, srcD } });
}
void setupFiveStubArgsGPR(GPRReg destA, GPRReg destB, GPRReg destC, GPRReg destD, GPRReg destE, GPRReg srcA, GPRReg srcB, GPRReg srcC, GPRReg srcD, GPRReg srcE)
{
setupStubArgsGPR<5>({ { destA, destB, destC, destD, destE } }, { { srcA, srcB, srcC, srcD, srcE } });
}
#if CPU(X86_64) || CPU(ARM64)
template<FPRReg destA, FPRReg destB>
void setupTwoStubArgsFPR(FPRReg srcA, FPRReg srcB)
{
// Assuming that srcA != srcB, there are 7 interesting states the registers may be in:
// (1) both are already in arg regs, the right way around.
// (2) both are already in arg regs, the wrong way around.
// (3) neither are currently in arg registers.
// (4) srcA in in its correct reg.
// (5) srcA in in the incorrect reg.
// (6) srcB in in its correct reg.
// (7) srcB in in the incorrect reg.
//
// The trivial approach is to simply emit two moves, to put srcA in place then srcB in
// place (the MacroAssembler will omit redundant moves). This apporach will be safe in
// cases 1, 3, 4, 5, 6, and in cases where srcA==srcB. The two problem cases are 2
// (requires a swap) and 7 (must move srcB first, to avoid trampling.)
if (srcB != destA) {
// Handle the easy cases - two simple moves.
moveDouble(srcA, destA);
moveDouble(srcB, destB);
return;
}
if (srcA != destB) {
// Handle the non-swap case - just put srcB in place first.
moveDouble(srcB, destB);
moveDouble(srcA, destA);
return;
}
ASSERT(srcB == destA && srcA == destB);
// Need to swap; pick a temporary register.
FPRReg temp;
if (destA != FPRInfo::argumentFPR3 && destA != FPRInfo::argumentFPR3)
temp = FPRInfo::argumentFPR3;
else if (destA != FPRInfo::argumentFPR2 && destA != FPRInfo::argumentFPR2)
temp = FPRInfo::argumentFPR2;
else {
ASSERT(destA != FPRInfo::argumentFPR1 && destA != FPRInfo::argumentFPR1);
temp = FPRInfo::argumentFPR1;
}
moveDouble(destA, temp);
moveDouble(destB, destA);
moveDouble(temp, destB);
}
#endif
void setupStubArguments(GPRReg arg1, GPRReg arg2)
{
setupTwoStubArgsGPR<GPRInfo::argumentGPR1, GPRInfo::argumentGPR2>(arg1, arg2);
}
void setupStubArguments(GPRReg arg1, GPRReg arg2, GPRReg arg3)
{
setupThreeStubArgsGPR<GPRInfo::argumentGPR1, GPRInfo::argumentGPR2, GPRInfo::argumentGPR3>(arg1, arg2, arg3);
}
#if CPU(X86_64) || CPU(ARM64)
ALWAYS_INLINE void setupArguments(FPRReg arg1)
{
moveDouble(arg1, FPRInfo::argumentFPR0);
}
ALWAYS_INLINE void setupArguments(FPRReg arg1, FPRReg arg2)
{
setupTwoStubArgsFPR<FPRInfo::argumentFPR0, FPRInfo::argumentFPR1>(arg1, arg2);
}
ALWAYS_INLINE void setupArgumentsWithExecState(FPRReg arg1, GPRReg arg2)
{
#if OS(WINDOWS) && CPU(X86_64)
// On Windows, arguments map to designated registers based on the argument positions, even when there are interlaced scalar and floating point arguments.
// See http://msdn.microsoft.com/en-us/library/zthk2dkh.aspx
moveDouble(arg1, FPRInfo::argumentFPR1);
move(arg2, GPRInfo::argumentGPR2);
#else
moveDouble(arg1, FPRInfo::argumentFPR0);
move(arg2, GPRInfo::argumentGPR1);
#endif
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, FPRReg arg3)
{
#if OS(WINDOWS) && CPU(X86_64)
// On Windows, arguments map to designated registers based on the argument positions, even when there are interlaced scalar and floating point arguments.
// See http://msdn.microsoft.com/en-us/library/zthk2dkh.aspx
moveDouble(arg3, FPRInfo::argumentFPR3);
#else
moveDouble(arg3, FPRInfo::argumentFPR0);
#endif
setupStubArguments(arg1, arg2);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
#elif CPU(ARM)
#if CPU(ARM_HARDFP)
ALWAYS_INLINE void setupArguments(FPRReg arg1)
{
moveDouble(arg1, FPRInfo::argumentFPR0);
}
ALWAYS_INLINE void setupArguments(FPRReg arg1, FPRReg arg2)
{
if (arg2 != FPRInfo::argumentFPR0) {
moveDouble(arg1, FPRInfo::argumentFPR0);
moveDouble(arg2, FPRInfo::argumentFPR1);
} else if (arg1 != FPRInfo::argumentFPR1) {
moveDouble(arg2, FPRInfo::argumentFPR1);
moveDouble(arg1, FPRInfo::argumentFPR0);
} else {
// Swap arg1, arg2.
moveDouble(FPRInfo::argumentFPR0, ARMRegisters::d2);
moveDouble(FPRInfo::argumentFPR1, FPRInfo::argumentFPR0);
moveDouble(ARMRegisters::d2, FPRInfo::argumentFPR1);
}
}
ALWAYS_INLINE void setupArgumentsWithExecState(FPRReg arg1, GPRReg arg2)
{
moveDouble(arg1, FPRInfo::argumentFPR0);
move(arg2, GPRInfo::argumentGPR1);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, FPRReg arg3)
{
moveDouble(arg3, FPRInfo::argumentFPR0);
setupStubArguments(arg1, arg2);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32, FPRReg arg2, GPRReg arg3)
{
moveDouble(arg2, FPRInfo::argumentFPR0);
move(arg3, GPRInfo::argumentGPR1);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImm32, FPRReg arg4)
{
moveDouble(arg4, FPRInfo::argumentFPR0);
setupStubArguments(arg1, arg2);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
#else
ALWAYS_INLINE void setupArguments(FPRReg arg1)
{
assembler().vmov(GPRInfo::argumentGPR0, GPRInfo::argumentGPR1, arg1);
}
ALWAYS_INLINE void setupArguments(FPRReg arg1, FPRReg arg2)
{
assembler().vmov(GPRInfo::argumentGPR0, GPRInfo::argumentGPR1, arg1);
assembler().vmov(GPRInfo::argumentGPR2, GPRInfo::argumentGPR3, arg2);
}
ALWAYS_INLINE void setupArgumentsWithExecState(FPRReg arg1, GPRReg arg2)
{
move(arg2, GPRInfo::argumentGPR3);
assembler().vmov(GPRInfo::argumentGPR1, GPRInfo::argumentGPR2, arg1);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, FPRReg arg3)
{
setupStubArguments(arg1, arg2);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
assembler().vmov(GPRInfo::argumentGPR3, GPRInfo::nonArgGPR0, arg3);
poke(GPRInfo::nonArgGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, FPRReg arg2, GPRReg arg3)
{
poke(arg3, POKE_ARGUMENT_OFFSET);
move(arg1, GPRInfo::argumentGPR1);
assembler().vmov(GPRInfo::argumentGPR2, GPRInfo::argumentGPR3, arg2);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImm32 arg3, FPRReg arg4)
{
setupStubArguments(arg1, arg2);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
move(arg3, GPRInfo::argumentGPR3);
assembler().vmov(GPRInfo::nonArgGPR0, GPRInfo::nonArgGPR1, arg4);
poke(GPRInfo::nonArgGPR0, POKE_ARGUMENT_OFFSET);
poke(GPRInfo::nonArgGPR1, POKE_ARGUMENT_OFFSET + 1);
}
#endif // CPU(ARM_HARDFP)
#elif CPU(MIPS)
ALWAYS_INLINE void setupArguments(FPRReg arg1)
{
moveDouble(arg1, FPRInfo::argumentFPR0);
}
ALWAYS_INLINE void setupArguments(FPRReg arg1, FPRReg arg2)
{
if (arg2 != FPRInfo::argumentFPR0) {
moveDouble(arg1, FPRInfo::argumentFPR0);
moveDouble(arg2, FPRInfo::argumentFPR1);
} else if (arg1 != FPRInfo::argumentFPR1) {
moveDouble(arg2, FPRInfo::argumentFPR1);
moveDouble(arg1, FPRInfo::argumentFPR0);
} else {
// Swap arg1, arg2.
swapDouble(FPRInfo::argumentFPR0, FPRInfo::argumentFPR1);
}
}
ALWAYS_INLINE void setupArgumentsWithExecState(FPRReg arg1, GPRReg arg2)
{
assembler().vmov(GPRInfo::argumentGPR2, GPRInfo::argumentGPR3, arg1);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
poke(arg2, 4);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, FPRReg arg3)
{
setupStubArguments(arg1, arg2);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
poke(arg3, 4);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32, FPRReg arg2, GPRReg arg3)
{
setupArgumentsWithExecState(arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImm32, FPRReg arg4)
{
setupArgumentsWithExecState(arg1, arg2, arg4);
}
#else
#error "JIT not supported on this platform."
#endif
ALWAYS_INLINE void setupArguments(GPRReg arg1)
{
move(arg1, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArguments(TrustedImmPtr arg1, GPRReg arg2)
{
move(arg2, GPRInfo::argumentGPR1);
move(arg1, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArguments(GPRReg arg1, GPRReg arg2)
{
setupTwoStubArgsGPR<GPRInfo::argumentGPR0, GPRInfo::argumentGPR1>(arg1, arg2);
}
ALWAYS_INLINE void setupArguments(GPRReg arg1, GPRReg arg2, GPRReg arg3)
{
setupThreeStubArgsGPR<GPRInfo::argumentGPR0, GPRInfo::argumentGPR1, GPRInfo::argumentGPR2>(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArguments(GPRReg arg1, GPRReg arg2, TrustedImmPtr arg3, TrustedImmPtr arg4)
{
setupTwoStubArgsGPR<GPRInfo::argumentGPR0, GPRInfo::argumentGPR1>(arg1, arg2);
move(arg3, GPRInfo::argumentGPR2);
move(arg4, GPRInfo::argumentGPR3);
}
ALWAYS_INLINE void setupArguments(GPRReg arg1, GPRReg arg2, GPRReg arg3, TrustedImmPtr arg4)
{
setupThreeStubArgsGPR<GPRInfo::argumentGPR0, GPRInfo::argumentGPR1, GPRInfo::argumentGPR2>(arg1, arg2, arg3);
move(arg4, GPRInfo::argumentGPR3);
}
ALWAYS_INLINE void setupArguments(GPRReg arg1, TrustedImmPtr arg2, GPRReg arg3, TrustedImmPtr arg4)
{
setupTwoStubArgsGPR<GPRInfo::argumentGPR0, GPRInfo::argumentGPR2>(arg1, arg3);
move(arg2, GPRInfo::argumentGPR1);
move(arg4, GPRInfo::argumentGPR3);
}
ALWAYS_INLINE void setupArguments(GPRReg arg1, GPRReg arg2, TrustedImmPtr arg3, TrustedImm32 arg4, GPRReg arg5, GPRReg arg6)
{
poke(arg6, POKE_ARGUMENT_OFFSET + 1);
poke(arg5, POKE_ARGUMENT_OFFSET);
setupTwoStubArgsGPR<GPRInfo::argumentGPR0, GPRInfo::argumentGPR1>(arg1, arg2);
move(arg3, GPRInfo::argumentGPR2);
move(arg4, GPRInfo::argumentGPR3);
}
ALWAYS_INLINE void setupArguments(TrustedImmPtr arg1)
{
move(arg1, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsExecState()
{
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1)
{
move(arg1, GPRInfo::argumentGPR1);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1)
{
move(arg1, GPRInfo::argumentGPR1);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1)
{
move(arg1, GPRInfo::argumentGPR1);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
#if OS(WINDOWS) && CPU(X86_64)
ALWAYS_INLINE void setupArgumentsWithExecStateForCallWithSlowPathReturnType(TrustedImm32 arg1)
{
move(arg1, GPRInfo::argumentGPR2);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR1);
}
#endif
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2)
{
setupStubArguments(arg1, arg2);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImmPtr arg2)
{
move(arg1, GPRInfo::argumentGPR1);
move(arg2, GPRInfo::argumentGPR2);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
#if CPU(X86_64) || CPU(ARM64)
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImm64 arg2)
{
move(arg1, GPRInfo::argumentGPR1);
move(arg2, GPRInfo::argumentGPR2);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm64 arg1, GPRReg arg2)
{
move(arg2, GPRInfo::argumentGPR2); // Move this first, so setting arg1 does not trample!
move(arg1, GPRInfo::argumentGPR1);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
#endif
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImm32 arg2)
{
move(arg1, GPRInfo::argumentGPR1);
move(arg2, GPRInfo::argumentGPR2);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, ImmPtr arg2)
{
move(arg1, GPRInfo::argumentGPR1);
move(arg2, GPRInfo::argumentGPR2);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2)
{
move(arg2, GPRInfo::argumentGPR2); // Move this first, so setting arg1 does not trample!
move(arg1, GPRInfo::argumentGPR1);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2)
{
move(arg2, GPRInfo::argumentGPR2); // Move this first, so setting arg1 does not trample!
move(arg1, GPRInfo::argumentGPR1);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(ImmPtr arg1, GPRReg arg2)
{
move(arg2, GPRInfo::argumentGPR2); // Move this first, so setting arg1 does not trample!
move(arg1, GPRInfo::argumentGPR1);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, TrustedImm32 arg2)
{
move(arg1, GPRInfo::argumentGPR1);
move(arg2, GPRInfo::argumentGPR2);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, TrustedImmPtr arg2)
{
move(arg1, GPRInfo::argumentGPR1);
move(arg2, GPRInfo::argumentGPR2);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, TrustedImm32 arg2)
{
move(arg1, GPRInfo::argumentGPR1);
move(arg2, GPRInfo::argumentGPR2);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, TrustedImm32 arg2, GPRReg arg3)
{
move(arg3, GPRInfo::argumentGPR3);
move(arg1, GPRInfo::argumentGPR1);
move(arg2, GPRInfo::argumentGPR2);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, TrustedImm32 arg2, TrustedImm32 arg3)
{
move(arg1, GPRInfo::argumentGPR1);
move(arg2, GPRInfo::argumentGPR2);
move(arg3, GPRInfo::argumentGPR3);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3)
{
setupStubArguments(arg1, arg2, arg3);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImm32 arg3)
{
setupStubArguments(arg1, arg2);
move(arg3, GPRInfo::argumentGPR3);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImm32 arg2, GPRReg arg3)
{
setupTwoStubArgsGPR<GPRInfo::argumentGPR1, GPRInfo::argumentGPR3>(arg1, arg3);
move(arg2, GPRInfo::argumentGPR2);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImmPtr arg2, GPRReg arg3)
{
setupTwoStubArgsGPR<GPRInfo::argumentGPR1, GPRInfo::argumentGPR3>(arg1, arg3);
move(arg2, GPRInfo::argumentGPR2);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImm32 arg2, TrustedImmPtr arg3)
{
move(arg1, GPRInfo::argumentGPR1);
move(arg2, GPRInfo::argumentGPR2);
move(arg3, GPRInfo::argumentGPR3);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImmPtr arg2, TrustedImm32 arg3)
{
move(arg1, GPRInfo::argumentGPR1);
move(arg2, GPRInfo::argumentGPR2);
move(arg3, GPRInfo::argumentGPR3);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImm32 arg2, TrustedImm32 arg3)
{
move(arg1, GPRInfo::argumentGPR1);
move(arg2, GPRInfo::argumentGPR2);
move(arg3, GPRInfo::argumentGPR3);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImmPtr arg2, TrustedImmPtr arg3)
{
move(arg1, GPRInfo::argumentGPR1);
move(arg2, GPRInfo::argumentGPR2);
move(arg3, GPRInfo::argumentGPR3);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImmPtr arg3)
{
setupStubArguments(arg1, arg2);
move(arg3, GPRInfo::argumentGPR3);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, TrustedImm32 arg2, GPRReg arg3)
{
move(arg3, GPRInfo::argumentGPR3);
move(arg1, GPRInfo::argumentGPR1);
move(arg2, GPRInfo::argumentGPR2);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, TrustedImmPtr arg2, GPRReg arg3)
{
move(arg3, GPRInfo::argumentGPR3);
move(arg1, GPRInfo::argumentGPR1);
move(arg2, GPRInfo::argumentGPR2);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, TrustedImmPtr arg2, GPRReg arg3)
{
move(arg3, GPRInfo::argumentGPR3);
move(arg1, GPRInfo::argumentGPR1);
move(arg2, GPRInfo::argumentGPR2);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, TrustedImmPtr arg2, TrustedImm32 arg3)
{
move(arg3, GPRInfo::argumentGPR3);
move(arg1, GPRInfo::argumentGPR1);
move(arg2, GPRInfo::argumentGPR2);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, TrustedImm32 arg3)
{
move(arg2, GPRInfo::argumentGPR2);
move(arg1, GPRInfo::argumentGPR1);
move(arg3, GPRInfo::argumentGPR3);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, GPRReg arg3)
{
setupTwoStubArgsGPR<GPRInfo::argumentGPR2, GPRInfo::argumentGPR3>(arg2, arg3);
move(arg1, GPRInfo::argumentGPR1);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2, GPRReg arg3)
{
setupTwoStubArgsGPR<GPRInfo::argumentGPR2, GPRInfo::argumentGPR3>(arg2, arg3);
move(arg1, GPRInfo::argumentGPR1);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2, TrustedImm32 arg3)
{
move(arg2, GPRInfo::argumentGPR2); // In case arg2 is argumentGPR1.
move(arg1, GPRInfo::argumentGPR1);
move(arg3, GPRInfo::argumentGPR3);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2, TrustedImmPtr arg3)
{
move(arg2, GPRInfo::argumentGPR2); // In case arg2 is argumentGPR1.
move(arg1, GPRInfo::argumentGPR1);
move(arg3, GPRInfo::argumentGPR3);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, TrustedImmPtr arg2, TrustedImm32 arg3)
{
move(arg1, GPRInfo::argumentGPR1);
move(arg2, GPRInfo::argumentGPR2);
move(arg3, GPRInfo::argumentGPR3);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, TrustedImmPtr arg2, TrustedImmPtr arg3)
{
move(arg1, GPRInfo::argumentGPR1);
move(arg2, GPRInfo::argumentGPR2);
move(arg3, GPRInfo::argumentGPR3);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, TrustedImm32 arg2, TrustedImm32 arg3)
{
move(arg1, GPRInfo::argumentGPR1);
move(arg2, GPRInfo::argumentGPR2);
move(arg3, GPRInfo::argumentGPR3);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
#endif // NUMBER_OF_ARGUMENT_REGISTERS >= 4
// These methods are suitable for any calling convention that provides for
// exactly 4 argument registers, e.g. ARMv7.
#if NUMBER_OF_ARGUMENT_REGISTERS == 4
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4)
{
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImmPtr arg3, TrustedImm32 arg4)
{
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, TrustedImm32 arg4)
{
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, TrustedImm32 arg4, GPRReg arg5)
{
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, TrustedImmPtr arg5, TrustedImmPtr arg6)
{
poke(arg6, POKE_ARGUMENT_OFFSET + 2);
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, TrustedImmPtr arg5)
{
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImmPtr arg2, GPRReg arg3, GPRReg arg4)
{
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImmPtr arg2, TrustedImm32 arg3, GPRReg arg4)
{
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2, GPRReg arg3, TrustedImm32 arg4)
{
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2, GPRReg arg3, TrustedImmPtr arg4)
{
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2, TrustedImm32 arg3, TrustedImm32 arg4)
{
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2, TrustedImmPtr arg3, TrustedImm32 arg4, TrustedImm32 arg5)
{
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
#if CPU(X86_64)
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2, TrustedImmPtr arg3, TrustedImm64 arg4)
{
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
#endif
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2, TrustedImm32 arg3, TrustedImmPtr arg4)
{
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, TrustedImmPtr arg2, GPRReg arg3, TrustedImm32 arg4, TrustedImm32 arg5)
{
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, TrustedImmPtr arg2, TrustedImm32 arg3, GPRReg arg4, GPRReg arg5, TrustedImm32 arg6)
{
poke(arg6, POKE_ARGUMENT_OFFSET + 2);
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2, GPRReg arg3, TrustedImm32 arg4, TrustedImm32 arg5)
{
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2, GPRReg arg3, TrustedImm32 arg4, TrustedImmPtr arg5)
{
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImmPtr arg2, TrustedImm32 arg3, GPRReg arg4, GPRReg arg5)
{
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImm32 arg3, TrustedImm32 arg4)
{
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImm32 arg2, TrustedImmPtr arg3, GPRReg arg4)
{
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImm32 arg3, TrustedImm32 arg4, TrustedImm32 arg5)
{
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, TrustedImm32 arg2, GPRReg arg3, GPRReg arg4)
{
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, TrustedImmPtr arg4)
{
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, GPRReg arg5)
{
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, TrustedImm32 arg5)
{
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4)
{
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, GPRReg arg3, TrustedImmPtr arg4)
{
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, TrustedImm32 arg3, TrustedImmPtr arg4)
{
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, TrustedImm32 arg3, GPRReg arg4)
{
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, GPRReg arg3, TrustedImm32 arg4)
{
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImm32 arg3, TrustedImmPtr arg4)
{
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImmPtr arg3, TrustedImmPtr arg4)
{
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImm32 arg3, GPRReg arg4)
{
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImm32 arg2, GPRReg arg3, GPRReg arg4)
{
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImm32 arg3, GPRReg arg4, GPRReg arg5)
{
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImm32 arg3, GPRReg arg4, TrustedImm32 arg5)
{
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, TrustedImmPtr arg5)
{
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, GPRReg arg3, TrustedImm32 arg4, TrustedImm32 arg5)
{
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2, TrustedImm32 arg3, GPRReg arg4, GPRReg arg5)
{
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, TrustedImm32 arg3, GPRReg arg4, GPRReg arg5)
{
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, TrustedImmPtr arg4, TrustedImm32 arg5)
{
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, TrustedImmPtr arg2, GPRReg arg3, GPRReg arg4)
{
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, TrustedImmPtr arg2, GPRReg arg3, GPRReg arg4, TrustedImm32 arg5)
{
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, TrustedImmPtr arg2, TrustedImm32 arg3, GPRReg arg4, GPRReg arg5)
{
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, TrustedImm32 arg2, TrustedImm32 arg3, GPRReg arg4, GPRReg arg5)
{
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, TrustedImmPtr arg2, GPRReg arg3, TrustedImm32 arg4, TrustedImm32 arg5)
{
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, GPRReg arg5)
{
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, GPRReg arg3, TrustedImmPtr arg4, TrustedImmPtr arg5)
{
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImmPtr arg3, GPRReg arg4, TrustedImm32 arg5)
{
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, GPRReg arg5, GPRReg arg6)
{
poke(arg6, POKE_ARGUMENT_OFFSET + 2);
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, GPRReg arg5, TrustedImm32 arg6)
{
poke(arg6, POKE_ARGUMENT_OFFSET + 2);
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImm32 arg3, GPRReg arg4, GPRReg arg5, TrustedImm32 arg6)
{
poke(arg6, POKE_ARGUMENT_OFFSET + 2);
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImm32 arg3, GPRReg arg4, GPRReg arg5, GPRReg arg6)
{
poke(arg6, POKE_ARGUMENT_OFFSET + 2);
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, GPRReg arg5, GPRReg arg6, TrustedImmPtr arg7)
{
poke(arg7, POKE_ARGUMENT_OFFSET + 3);
poke(arg6, POKE_ARGUMENT_OFFSET + 2);
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImmPtr arg3, GPRReg arg4, GPRReg arg5)
{
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImm32 arg3, GPRReg arg4, TrustedImm32 arg5, TrustedImmPtr arg6)
{
poke(arg6, POKE_ARGUMENT_OFFSET + 2);
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, GPRReg arg5, TrustedImmPtr arg6)
{
poke(arg6, POKE_ARGUMENT_OFFSET + 2);
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, TrustedImm32 arg5, TrustedImmPtr arg6)
{
poke(arg6, POKE_ARGUMENT_OFFSET + 2);
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, GPRReg arg5, TrustedImm32 arg6)
{
poke(arg6, POKE_ARGUMENT_OFFSET + 2);
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, GPRReg arg3, TrustedImm32 arg4, GPRReg arg5, GPRReg arg6)
{
poke(arg6, POKE_ARGUMENT_OFFSET + 2);
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, GPRReg arg3, TrustedImm32 arg4, GPRReg arg5, TrustedImm32 arg6)
{
poke(arg6, POKE_ARGUMENT_OFFSET + 2);
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, GPRReg arg5, TrustedImmPtr arg6)
{
poke(arg6, POKE_ARGUMENT_OFFSET + 2);
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, GPRReg arg5, GPRReg arg6, GPRReg arg7)
{
poke(arg7, POKE_ARGUMENT_OFFSET + 3);
poke(arg6, POKE_ARGUMENT_OFFSET + 2);
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImm32 arg3, GPRReg arg4, GPRReg arg5, GPRReg arg6, GPRReg arg7)
{
poke(arg7, POKE_ARGUMENT_OFFSET + 3);
poke(arg6, POKE_ARGUMENT_OFFSET + 2);
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, GPRReg arg5, TrustedImmPtr arg6, TrustedImmPtr arg7)
{
poke(arg7, POKE_ARGUMENT_OFFSET + 3);
poke(arg6, POKE_ARGUMENT_OFFSET + 2);
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, GPRReg arg5, GPRReg arg6, GPRReg arg7, TrustedImmPtr arg8)
{
poke(arg8, POKE_ARGUMENT_OFFSET + 4);
poke(arg7, POKE_ARGUMENT_OFFSET + 3);
poke(arg6, POKE_ARGUMENT_OFFSET + 2);
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, GPRReg arg5, GPRReg arg6, GPRReg arg7, GPRReg arg8)
{
poke(arg8, POKE_ARGUMENT_OFFSET + 4);
poke(arg7, POKE_ARGUMENT_OFFSET + 3);
poke(arg6, POKE_ARGUMENT_OFFSET + 2);
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, GPRReg arg5, GPRReg arg6, GPRReg arg7, GPRReg arg8, GPRReg arg9)
{
poke(arg9, POKE_ARGUMENT_OFFSET + 5);
poke(arg8, POKE_ARGUMENT_OFFSET + 4);
poke(arg7, POKE_ARGUMENT_OFFSET + 3);
poke(arg6, POKE_ARGUMENT_OFFSET + 2);
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, GPRReg arg3, TrustedImm32 arg4, TrustedImm32 arg5, GPRReg arg6, GPRReg arg7)
{
poke(arg7, POKE_ARGUMENT_OFFSET + 3);
poke(arg6, POKE_ARGUMENT_OFFSET + 2);
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, TrustedImm32 arg5, GPRReg arg6, GPRReg arg7)
{
poke(arg7, POKE_ARGUMENT_OFFSET + 3);
poke(arg6, POKE_ARGUMENT_OFFSET + 2);
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArguments(GPRReg arg1, GPRReg arg2, TrustedImmPtr arg3, TrustedImm32 arg4, GPRReg arg5)
{
poke(arg5, POKE_ARGUMENT_OFFSET);
setupTwoStubArgsGPR<GPRInfo::argumentGPR0, GPRInfo::argumentGPR1>(arg1, arg2);
move(arg3, GPRInfo::argumentGPR2);
move(arg4, GPRInfo::argumentGPR3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, TrustedImm32 arg3, GPRReg arg4, TrustedImm32 arg5)
{
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, TrustedImm32 arg3, TrustedImmPtr arg4, GPRReg arg5)
{
poke(arg5, POKE_ARGUMENT_OFFSET + 1);
poke(arg4, POKE_ARGUMENT_OFFSET);
setupArgumentsWithExecState(arg1, arg2, arg3);
}
#endif // NUMBER_OF_ARGUMENT_REGISTERS == 4
#if NUMBER_OF_ARGUMENT_REGISTERS >= 5
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4)
{
setupFourStubArgsGPR(GPRInfo::argumentGPR1, GPRInfo::argumentGPR2, GPRInfo::argumentGPR3, GPRInfo::argumentGPR4, arg1, arg2, arg3, arg4);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
void setupStubArguments134(GPRReg arg1, GPRReg arg3, GPRReg arg4)
{
setupThreeStubArgsGPR<GPRInfo::argumentGPR1, GPRInfo::argumentGPR3, GPRInfo::argumentGPR4>(arg1, arg3, arg4);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, TrustedImmPtr arg4)
{
setupThreeStubArgsGPR<GPRInfo::argumentGPR1, GPRInfo::argumentGPR2, GPRInfo::argumentGPR3>(arg1, arg2, arg3);
move(arg4, GPRInfo::argumentGPR4);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImmPtr arg2, TrustedImm32 arg3, GPRReg arg4)
{
setupTwoStubArgsGPR<GPRInfo::argumentGPR1, GPRInfo::argumentGPR4>(arg1, arg4);
move(arg2, GPRInfo::argumentGPR2);
move(arg3, GPRInfo::argumentGPR3);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImmPtr arg3, TrustedImm32 arg4)
{
setupTwoStubArgsGPR<GPRInfo::argumentGPR1, GPRInfo::argumentGPR2>(arg1, arg2);
move(arg3, GPRInfo::argumentGPR3);
move(arg4, GPRInfo::argumentGPR4);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImmPtr arg3, TrustedImmPtr arg4)
{
setupTwoStubArgsGPR<GPRInfo::argumentGPR1, GPRInfo::argumentGPR2>(arg1, arg2);
move(arg3, GPRInfo::argumentGPR3);
move(arg4, GPRInfo::argumentGPR4);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImmPtr arg2, TrustedImm32 arg3, GPRReg arg4, GPRReg arg5)
{
setupThreeStubArgsGPR<GPRInfo::argumentGPR1, GPRInfo::argumentGPR4, GPRInfo::argumentGPR5>(arg1, arg4, arg5);
move(arg2, GPRInfo::argumentGPR2);
move(arg3, GPRInfo::argumentGPR3);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, GPRReg arg4, GPRReg arg5)
{
setupFiveStubArgsGPR(GPRInfo::argumentGPR1, GPRInfo::argumentGPR2, GPRInfo::argumentGPR3, GPRInfo::argumentGPR4, GPRInfo::argumentGPR5, arg1, arg2, arg3, arg4, arg5);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, TrustedImmPtr arg2, GPRReg arg3, GPRReg arg4)
{
setupStubArguments134(arg1, arg3, arg4);
move(arg2, GPRInfo::argumentGPR2);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2, GPRReg arg3, TrustedImmPtr arg4)
{
setupTwoStubArgsGPR<GPRInfo::argumentGPR2, GPRInfo::argumentGPR3>(arg2, arg3);
move(arg1, GPRInfo::argumentGPR1);
move(arg4, GPRInfo::argumentGPR4);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2, TrustedImm32 arg3, TrustedImm32 arg4)
{
move(arg2, GPRInfo::argumentGPR2); // In case arg2 is argumentGPR1.
move(arg1, GPRInfo::argumentGPR1);
move(arg3, GPRInfo::argumentGPR3);
move(arg4, GPRInfo::argumentGPR4);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2, TrustedImmPtr arg3, TrustedImm64 arg4)
{
move(arg2, GPRInfo::argumentGPR2); // In case arg2 is argumentGPR1.
move(arg1, GPRInfo::argumentGPR1);
move(arg3, GPRInfo::argumentGPR3);
move(arg4, GPRInfo::argumentGPR4);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2, TrustedImmPtr arg3, TrustedImm32 arg4, TrustedImm32 arg5)
{
move(arg2, GPRInfo::argumentGPR2); // In case arg2 is argumentGPR1.
move(arg1, GPRInfo::argumentGPR1);
move(arg3, GPRInfo::argumentGPR3);
move(arg4, GPRInfo::argumentGPR4);
move(arg5, GPRInfo::argumentGPR5);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, TrustedImmPtr arg2, GPRReg arg3, TrustedImm32 arg4, TrustedImm32 arg5)
{
move(arg3, GPRInfo::argumentGPR3);
move(arg1, GPRInfo::argumentGPR1);
move(arg2, GPRInfo::argumentGPR2);
move(arg4, GPRInfo::argumentGPR4);
move(arg5, GPRInfo::argumentGPR5);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImm32 arg1, GPRReg arg2, TrustedImm32 arg3, GPRReg arg4, TrustedImm32 arg5)
{
setupTwoStubArgsGPR<GPRInfo::argumentGPR2, GPRInfo::argumentGPR4>(arg2, arg4);
move(arg1, GPRInfo::argumentGPR1);
move(arg3, GPRInfo::argumentGPR3);
move(arg5, GPRInfo::argumentGPR5);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(TrustedImmPtr arg1, GPRReg arg2, GPRReg arg3, TrustedImm32 arg4, TrustedImm32 arg5)
{
setupTwoStubArgsGPR<GPRInfo::argumentGPR2, GPRInfo::argumentGPR3>(arg2, arg3);
move(arg1, GPRInfo::argumentGPR1);
move(arg4, GPRInfo::argumentGPR4);
move(arg5, GPRInfo::argumentGPR5);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, GPRReg arg3, TrustedImm32 arg4)
{
setupThreeStubArgsGPR<GPRInfo::argumentGPR1, GPRInfo::argumentGPR2, GPRInfo::argumentGPR3>(arg1, arg2, arg3);
move(arg4, GPRInfo::argumentGPR4);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArgumentsWithExecState(GPRReg arg1, GPRReg arg2, TrustedImm32 arg3, GPRReg arg4)
{
setupThreeStubArgsGPR<GPRInfo::argumentGPR1, GPRInfo::argumentGPR2, GPRInfo::argumentGPR4>(arg1, arg2, arg4);
move(arg3, GPRInfo::argumentGPR3);
move(GPRInfo::callFrameRegister, GPRInfo::argumentGPR0);
}
ALWAYS_INLINE void setupArguments(GPRReg arg1, TrustedImmPtr arg2, GPRReg arg3, GPRReg arg4, TrustedImmPtr arg5)
{
setupThreeStubArgsGPR<GPRInfo::argumentGPR0, GPRInfo::argumentGPR2, GPRInfo::argumentGPR3>(arg1, arg3, arg4);
move(arg2, GPRInfo::argumentGPR1);
move(arg5, GPRInfo::argumentGPR4);
}
ALWAYS_INLINE void setupArguments(GPRReg arg1, GPRReg arg2, TrustedImmPtr arg3, TrustedImm32 arg4, GPRReg arg5)
{
setupThreeStubArgsGPR<GPRInfo::argumentGPR0, GPRInfo::argumentGPR1, GPRInfo::argumentGPR4>(arg1, arg2, arg5);
move(arg3, GPRInfo::argumentGPR2);
move(arg4, GPRInfo::argumentGPR3);
}
#endif
void setupArgumentsWithExecState(JSValueRegs arg)
{
#if USE(JSVALUE64)
setupArgumentsWithExecState(arg.gpr());
#else
setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg.payloadGPR(), arg.tagGPR());
#endif
}
void setupArgumentsWithExecState(JSValueRegs arg1, JSValueRegs arg2)
{
#if USE(JSVALUE64)
setupArgumentsWithExecState(arg1.gpr(), arg2.gpr());
#else
setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1.payloadGPR(), arg1.tagGPR(), arg2.payloadGPR(), arg2.tagGPR());
#endif
}
void setupArgumentsWithExecState(JSValueRegs arg1, TrustedImmPtr arg2)
{
#if USE(JSVALUE64)
setupArgumentsWithExecState(arg1.gpr(), arg2);
#else
setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1.payloadGPR(), arg1.tagGPR(), arg2);
#endif
}
void setupArgumentsWithExecState(JSValueRegs arg1, JSValueRegs arg2, TrustedImmPtr arg3)
{
#if USE(JSVALUE64)
setupArgumentsWithExecState(arg1.gpr(), arg2.gpr(), arg3);
#else
setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1.payloadGPR(), arg1.tagGPR(), arg2.payloadGPR(), arg2.tagGPR(), arg3);
#endif
}
void setupArgumentsWithExecState(JSValueRegs arg1, JSValueRegs arg2, TrustedImmPtr arg3, TrustedImmPtr arg4)
{
#if USE(JSVALUE64)
setupArgumentsWithExecState(arg1.gpr(), arg2.gpr(), arg3, arg4);
#else
setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1.payloadGPR(), arg1.tagGPR(), arg2.payloadGPR(), arg2.tagGPR(), arg3, arg4);
#endif
}
void setupArgumentsWithExecState(JSValueRegs arg1, TrustedImmPtr arg2, TrustedImmPtr arg3)
{
#if USE(JSVALUE64)
setupArgumentsWithExecState(arg1.gpr(), arg2, arg3);
#else
setupArgumentsWithExecState(EABI_32BIT_DUMMY_ARG arg1.payloadGPR(), arg1.tagGPR(), arg2, arg3);
#endif
}
void setupArguments(JSValueRegs arg1)
{
#if USE(JSVALUE64)
setupArguments(arg1.gpr());
#else
setupArguments(arg1.payloadGPR(), arg1.tagGPR());
#endif
}
void setupResults(GPRReg destA, GPRReg destB)
{
GPRReg srcA = GPRInfo::returnValueGPR;
GPRReg srcB = GPRInfo::returnValueGPR2;
if (destA == InvalidGPRReg)
move(srcB, destB);
else if (destB == InvalidGPRReg)
move(srcA, destA);
else if (srcB != destA) {
// Handle the easy cases - two simple moves.
move(srcA, destA);
move(srcB, destB);
} else if (srcA != destB) {
// Handle the non-swap case - just put srcB in place first.
move(srcB, destB);
move(srcA, destA);
} else
swap(destA, destB);
}
void setupResults(JSValueRegs regs)
{
#if USE(JSVALUE64)
move(GPRInfo::returnValueGPR, regs.gpr());
#else
setupResults(regs.payloadGPR(), regs.tagGPR());
#endif
}
void jumpToExceptionHandler()
{
// genericUnwind() leaves the handler CallFrame* in vm->callFrameForCatch,
// and the address of the handler in vm->targetMachinePCForThrow.
loadPtr(&vm()->targetMachinePCForThrow, GPRInfo::regT1);
jump(GPRInfo::regT1);
}
void prepareForTailCallSlow(GPRReg calleeGPR = InvalidGPRReg)
{
GPRReg temp1 = calleeGPR == GPRInfo::regT0 ? GPRInfo::regT3 : GPRInfo::regT0;
GPRReg temp2 = calleeGPR == GPRInfo::regT1 ? GPRInfo::regT3 : GPRInfo::regT1;
GPRReg temp3 = calleeGPR == GPRInfo::regT2 ? GPRInfo::regT3 : GPRInfo::regT2;
GPRReg newFramePointer = temp1;
GPRReg newFrameSizeGPR = temp2;
{
// The old frame size is its number of arguments (or number of
// parameters in case of arity fixup), plus the frame header size,
// aligned
GPRReg oldFrameSizeGPR = temp2;
{
GPRReg argCountGPR = oldFrameSizeGPR;
load32(Address(framePointerRegister, CallFrameSlot::argumentCount * static_cast<int>(sizeof(Register)) + PayloadOffset), argCountGPR);
{
GPRReg numParametersGPR = temp1;
{
GPRReg codeBlockGPR = numParametersGPR;
loadPtr(Address(framePointerRegister, CallFrameSlot::codeBlock * static_cast<int>(sizeof(Register))), codeBlockGPR);
load32(Address(codeBlockGPR, CodeBlock::offsetOfNumParameters()), numParametersGPR);
}
ASSERT(numParametersGPR != argCountGPR);
Jump argumentCountWasNotFixedUp = branch32(BelowOrEqual, numParametersGPR, argCountGPR);
move(numParametersGPR, argCountGPR);
argumentCountWasNotFixedUp.link(this);
}
add32(TrustedImm32(stackAlignmentRegisters() + CallFrame::headerSizeInRegisters - 1), argCountGPR, oldFrameSizeGPR);
and32(TrustedImm32(-stackAlignmentRegisters()), oldFrameSizeGPR);
// We assume < 2^28 arguments
mul32(TrustedImm32(sizeof(Register)), oldFrameSizeGPR, oldFrameSizeGPR);
}
// The new frame pointer is at framePointer + oldFrameSize - newFrameSize
ASSERT(newFramePointer != oldFrameSizeGPR);
addPtr(framePointerRegister, oldFrameSizeGPR, newFramePointer);
// The new frame size is just the number of arguments plus the
// frame header size, aligned
ASSERT(newFrameSizeGPR != newFramePointer);
load32(Address(stackPointerRegister, CallFrameSlot::argumentCount * static_cast<int>(sizeof(Register)) + PayloadOffset - sizeof(CallerFrameAndPC)),
newFrameSizeGPR);
add32(TrustedImm32(stackAlignmentRegisters() + CallFrame::headerSizeInRegisters - 1), newFrameSizeGPR);
and32(TrustedImm32(-stackAlignmentRegisters()), newFrameSizeGPR);
// We assume < 2^28 arguments
mul32(TrustedImm32(sizeof(Register)), newFrameSizeGPR, newFrameSizeGPR);
}
GPRReg tempGPR = temp3;
ASSERT(tempGPR != newFramePointer && tempGPR != newFrameSizeGPR);
// We don't need the current frame beyond this point. Masquerade as our
// caller.
#if CPU(ARM) || CPU(ARM64)
loadPtr(Address(framePointerRegister, sizeof(void*)), linkRegister);
subPtr(TrustedImm32(2 * sizeof(void*)), newFrameSizeGPR);
#elif CPU(MIPS)
loadPtr(Address(framePointerRegister, sizeof(void*)), returnAddressRegister);
subPtr(TrustedImm32(2 * sizeof(void*)), newFrameSizeGPR);
#elif CPU(X86) || CPU(X86_64)
loadPtr(Address(framePointerRegister, sizeof(void*)), tempGPR);
push(tempGPR);
subPtr(TrustedImm32(sizeof(void*)), newFrameSizeGPR);
#else
UNREACHABLE_FOR_PLATFORM();
#endif
subPtr(newFrameSizeGPR, newFramePointer);
loadPtr(Address(framePointerRegister), framePointerRegister);
// We need to move the newFrameSizeGPR slots above the stack pointer by
// newFramePointer registers. We use pointer-sized chunks.
MacroAssembler::Label copyLoop(label());
subPtr(TrustedImm32(sizeof(void*)), newFrameSizeGPR);
loadPtr(BaseIndex(stackPointerRegister, newFrameSizeGPR, TimesOne), tempGPR);
storePtr(tempGPR, BaseIndex(newFramePointer, newFrameSizeGPR, TimesOne));
branchTest32(MacroAssembler::NonZero, newFrameSizeGPR).linkTo(copyLoop, this);
// Ready for a jump!
move(newFramePointer, stackPointerRegister);
}
#if NUMBER_OF_ARGUMENT_REGISTERS >= 4
template<unsigned NumberOfRegisters>
void setupStubArgsGPR(std::array<GPRReg, NumberOfRegisters> destinations, std::array<GPRReg, NumberOfRegisters> sources)
{
if (!ASSERT_DISABLED) {
RegisterSet set;
for (GPRReg dest : destinations)
set.set(dest);
ASSERT_WITH_MESSAGE(set.numberOfSetGPRs() == NumberOfRegisters, "Destinations should not be aliased.");
}
typedef std::pair<GPRReg, GPRReg> RegPair;
Vector<RegPair, NumberOfRegisters> pairs;
for (unsigned i = 0; i < NumberOfRegisters; ++i) {
if (sources[i] != destinations[i])
pairs.append(std::make_pair(sources[i], destinations[i]));
}
#if !ASSERT_DISABLED
auto numUniqueSources = [&] () -> unsigned {
RegisterSet set;
for (auto& pair : pairs) {
GPRReg source = pair.first;
set.set(source);
}
return set.numberOfSetGPRs();
};
auto numUniqueDests = [&] () -> unsigned {
RegisterSet set;
for (auto& pair : pairs) {
GPRReg dest = pair.second;
set.set(dest);
}
return set.numberOfSetGPRs();
};
#endif
while (pairs.size()) {
RegisterSet freeDestinations;
for (auto& pair : pairs) {
GPRReg dest = pair.second;
freeDestinations.set(dest);
}
for (auto& pair : pairs) {
GPRReg source = pair.first;
freeDestinations.clear(source);
}
if (freeDestinations.numberOfSetGPRs()) {
bool madeMove = false;
for (unsigned i = 0; i < pairs.size(); i++) {
auto& pair = pairs[i];
GPRReg source = pair.first;
GPRReg dest = pair.second;
if (freeDestinations.get(dest)) {
move(source, dest);
pairs.remove(i);
madeMove = true;
break;
}
}
ASSERT_UNUSED(madeMove, madeMove);
continue;
}
ASSERT(numUniqueDests() == numUniqueSources());
ASSERT(numUniqueDests() == pairs.size());
// The set of source and destination registers are equivalent sets. This means we don't have
// any free destination registers that won't also clobber a source. We get around this by
// exchanging registers.
GPRReg source = pairs[0].first;
GPRReg dest = pairs[0].second;
swap(source, dest);
pairs.remove(0);
GPRReg newSource = source;
for (auto& pair : pairs) {
GPRReg source = pair.first;
if (source == dest) {
pair.first = newSource;
break;
}
}
// We may have introduced pairs that have the same source and destination. Remove those now.
for (unsigned i = 0; i < pairs.size(); i++) {
auto& pair = pairs[i];
if (pair.first == pair.second) {
pairs.remove(i);
i--;
}
}
}
}
#endif // NUMBER_OF_ARGUMENT_REGISTERS >= 4
// These operations clobber all volatile registers. They assume that there is room on the top of
// stack to marshall call arguments.
void logShadowChickenProloguePacket(GPRReg shadowPacket, GPRReg scratch1, GPRReg scope);
void logShadowChickenTailPacket(GPRReg shadowPacket, JSValueRegs thisRegs, GPRReg scope, CodeBlock*, CallSiteIndex);
// Leaves behind a pointer to the Packet we should write to in shadowPacket.
void ensureShadowChickenPacket(GPRReg shadowPacket, GPRReg scratch1NonArgGPR, GPRReg scratch2);
};
} // namespace JSC
#endif // ENABLE(JIT)