| /* |
| * Copyright (C) 2006 Zack Rusin <zack@kde.org> |
| * 2006 Rob Buis <buis@kde.org> |
| * 2009, 2010 Dirk Schulze <krit@webkit.org> |
| * |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "Path.h" |
| |
| #include "AffineTransform.h" |
| #include "FloatRect.h" |
| #include "GraphicsContext.h" |
| #include "ImageBuffer.h" |
| #include "PlatformString.h" |
| #include "StrokeStyleApplier.h" |
| #include <QPainterPath> |
| #include <QTransform> |
| #include <QString> |
| #include <wtf/OwnPtr.h> |
| |
| #define _USE_MATH_DEFINES |
| #include <math.h> |
| |
| #ifndef M_PI |
| # define M_PI 3.14159265358979323846 |
| #endif |
| |
| namespace WebCore { |
| |
| Path::Path() |
| { |
| } |
| |
| Path::~Path() |
| { |
| } |
| |
| Path::Path(const Path& other) |
| : m_path(other.m_path) |
| { |
| } |
| |
| Path& Path::operator=(const Path& other) |
| { |
| m_path = other.m_path; |
| return *this; |
| } |
| |
| static inline bool areCollinear(const QPointF& a, const QPointF& b, const QPointF& c) |
| { |
| // Solved from comparing the slopes of a to b and b to c: (ay-by)/(ax-bx) == (cy-by)/(cx-bx) |
| return qFuzzyCompare((c.y() - b.y()) * (a.x() - b.x()), (a.y() - b.y()) * (c.x() - b.x())); |
| } |
| |
| static inline bool withinRange(qreal p, qreal a, qreal b) |
| { |
| return (p >= a && p <= b) || (p >= b && p <= a); |
| } |
| |
| // Check whether a point is on the border |
| static bool isPointOnPathBorder(const QPolygonF& border, const QPointF& p) |
| { |
| // null border doesn't contain points |
| if (border.isEmpty()) |
| return false; |
| |
| QPointF p1 = border.at(0); |
| QPointF p2; |
| |
| for (int i = 1; i < border.size(); ++i) { |
| p2 = border.at(i); |
| if (areCollinear(p, p1, p2) |
| // Once we know that the points are collinear we |
| // only need to check one of the coordinates |
| && (qAbs(p2.x() - p1.x()) > qAbs(p2.y() - p1.y()) ? |
| withinRange(p.x(), p1.x(), p2.x()) : |
| withinRange(p.y(), p1.y(), p2.y()))) { |
| return true; |
| } |
| p1 = p2; |
| } |
| return false; |
| } |
| |
| bool Path::contains(const FloatPoint& point, WindRule rule) const |
| { |
| Qt::FillRule savedRule = m_path.fillRule(); |
| const_cast<QPainterPath*>(&m_path)->setFillRule(rule == RULE_EVENODD ? Qt::OddEvenFill : Qt::WindingFill); |
| |
| bool contains = m_path.contains(point); |
| |
| if (!contains) { |
| // check whether the point is on the border |
| contains = isPointOnPathBorder(m_path.toFillPolygon(), point); |
| } |
| |
| const_cast<QPainterPath*>(&m_path)->setFillRule(savedRule); |
| return contains; |
| } |
| |
| static GraphicsContext* scratchContext() |
| { |
| static QImage image(1, 1, QImage::Format_ARGB32_Premultiplied); |
| static QPainter painter(&image); |
| static GraphicsContext* context = new GraphicsContext(&painter); |
| return context; |
| } |
| |
| bool Path::strokeContains(StrokeStyleApplier* applier, const FloatPoint& point) const |
| { |
| ASSERT(applier); |
| |
| QPainterPathStroker stroke; |
| GraphicsContext* context = scratchContext(); |
| applier->strokeStyle(context); |
| |
| QPen pen = context->platformContext()->pen(); |
| stroke.setWidth(pen.widthF()); |
| stroke.setCapStyle(pen.capStyle()); |
| stroke.setJoinStyle(pen.joinStyle()); |
| stroke.setMiterLimit(pen.miterLimit()); |
| stroke.setDashPattern(pen.dashPattern()); |
| stroke.setDashOffset(pen.dashOffset()); |
| |
| return stroke.createStroke(m_path).contains(point); |
| } |
| |
| void Path::translate(const FloatSize& size) |
| { |
| QTransform matrix; |
| matrix.translate(size.width(), size.height()); |
| m_path = m_path * matrix; |
| } |
| |
| FloatRect Path::boundingRect() const |
| { |
| return m_path.boundingRect(); |
| } |
| |
| FloatRect Path::strokeBoundingRect(StrokeStyleApplier* applier) |
| { |
| GraphicsContext* context = scratchContext(); |
| QPainterPathStroker stroke; |
| if (applier) { |
| applier->strokeStyle(context); |
| |
| QPen pen = context->platformContext()->pen(); |
| stroke.setWidth(pen.widthF()); |
| stroke.setCapStyle(pen.capStyle()); |
| stroke.setJoinStyle(pen.joinStyle()); |
| stroke.setMiterLimit(pen.miterLimit()); |
| stroke.setDashPattern(pen.dashPattern()); |
| stroke.setDashOffset(pen.dashOffset()); |
| } |
| return stroke.createStroke(m_path).boundingRect(); |
| } |
| |
| void Path::moveTo(const FloatPoint& point) |
| { |
| m_path.moveTo(point); |
| } |
| |
| void Path::addLineTo(const FloatPoint& p) |
| { |
| m_path.lineTo(p); |
| } |
| |
| void Path::addQuadCurveTo(const FloatPoint& cp, const FloatPoint& p) |
| { |
| m_path.quadTo(cp, p); |
| } |
| |
| void Path::addBezierCurveTo(const FloatPoint& cp1, const FloatPoint& cp2, const FloatPoint& p) |
| { |
| m_path.cubicTo(cp1, cp2, p); |
| } |
| |
| void Path::addArcTo(const FloatPoint& p1, const FloatPoint& p2, float radius) |
| { |
| FloatPoint p0(m_path.currentPosition()); |
| |
| FloatPoint p1p0((p0.x() - p1.x()), (p0.y() - p1.y())); |
| FloatPoint p1p2((p2.x() - p1.x()), (p2.y() - p1.y())); |
| float p1p0_length = sqrtf(p1p0.x() * p1p0.x() + p1p0.y() * p1p0.y()); |
| float p1p2_length = sqrtf(p1p2.x() * p1p2.x() + p1p2.y() * p1p2.y()); |
| |
| double cos_phi = (p1p0.x() * p1p2.x() + p1p0.y() * p1p2.y()) / (p1p0_length * p1p2_length); |
| |
| // The points p0, p1, and p2 are on the same straight line (HTML5, 4.8.11.1.8) |
| // We could have used areCollinear() here, but since we're reusing |
| // the variables computed above later on we keep this logic. |
| if (qFuzzyCompare(qAbs(cos_phi), 1.0)) { |
| m_path.lineTo(p1); |
| return; |
| } |
| |
| float tangent = radius / tan(acos(cos_phi) / 2); |
| float factor_p1p0 = tangent / p1p0_length; |
| FloatPoint t_p1p0((p1.x() + factor_p1p0 * p1p0.x()), (p1.y() + factor_p1p0 * p1p0.y())); |
| |
| FloatPoint orth_p1p0(p1p0.y(), -p1p0.x()); |
| float orth_p1p0_length = sqrt(orth_p1p0.x() * orth_p1p0.x() + orth_p1p0.y() * orth_p1p0.y()); |
| float factor_ra = radius / orth_p1p0_length; |
| |
| // angle between orth_p1p0 and p1p2 to get the right vector orthographic to p1p0 |
| double cos_alpha = (orth_p1p0.x() * p1p2.x() + orth_p1p0.y() * p1p2.y()) / (orth_p1p0_length * p1p2_length); |
| if (cos_alpha < 0.f) |
| orth_p1p0 = FloatPoint(-orth_p1p0.x(), -orth_p1p0.y()); |
| |
| FloatPoint p((t_p1p0.x() + factor_ra * orth_p1p0.x()), (t_p1p0.y() + factor_ra * orth_p1p0.y())); |
| |
| // calculate angles for addArc |
| orth_p1p0 = FloatPoint(-orth_p1p0.x(), -orth_p1p0.y()); |
| float sa = acos(orth_p1p0.x() / orth_p1p0_length); |
| if (orth_p1p0.y() < 0.f) |
| sa = 2 * piDouble - sa; |
| |
| // anticlockwise logic |
| bool anticlockwise = false; |
| |
| float factor_p1p2 = tangent / p1p2_length; |
| FloatPoint t_p1p2((p1.x() + factor_p1p2 * p1p2.x()), (p1.y() + factor_p1p2 * p1p2.y())); |
| FloatPoint orth_p1p2((t_p1p2.x() - p.x()), (t_p1p2.y() - p.y())); |
| float orth_p1p2_length = sqrtf(orth_p1p2.x() * orth_p1p2.x() + orth_p1p2.y() * orth_p1p2.y()); |
| float ea = acos(orth_p1p2.x() / orth_p1p2_length); |
| if (orth_p1p2.y() < 0) |
| ea = 2 * piDouble - ea; |
| if ((sa > ea) && ((sa - ea) < piDouble)) |
| anticlockwise = true; |
| if ((sa < ea) && ((ea - sa) > piDouble)) |
| anticlockwise = true; |
| |
| m_path.lineTo(t_p1p0); |
| |
| addArc(p, radius, sa, ea, anticlockwise); |
| } |
| |
| void Path::closeSubpath() |
| { |
| m_path.closeSubpath(); |
| } |
| |
| #define DEGREES(t) ((t) * 180.0 / M_PI) |
| void Path::addArc(const FloatPoint& p, float r, float sar, float ear, bool anticlockwise) |
| { |
| qreal xc = p.x(); |
| qreal yc = p.y(); |
| qreal radius = r; |
| |
| |
| //### HACK |
| // In Qt we don't switch the coordinate system for degrees |
| // and still use the 0,0 as bottom left for degrees so we need |
| // to switch |
| sar = -sar; |
| ear = -ear; |
| anticlockwise = !anticlockwise; |
| //end hack |
| |
| float sa = DEGREES(sar); |
| float ea = DEGREES(ear); |
| |
| double span = 0; |
| |
| double xs = xc - radius; |
| double ys = yc - radius; |
| double width = radius*2; |
| double height = radius*2; |
| |
| if ((!anticlockwise && (ea - sa >= 360)) || (anticlockwise && (sa - ea >= 360))) { |
| // If the anticlockwise argument is false and endAngle-startAngle is equal to or greater than 2*PI, or, if the |
| // anticlockwise argument is true and startAngle-endAngle is equal to or greater than 2*PI, then the arc is the whole |
| // circumference of this circle. |
| span = 360; |
| |
| if (anticlockwise) |
| span = -span; |
| } else { |
| if (!anticlockwise && (ea < sa)) |
| span += 360; |
| else if (anticlockwise && (sa < ea)) |
| span -= 360; |
| |
| // this is also due to switched coordinate system |
| // we would end up with a 0 span instead of 360 |
| if (!(qFuzzyCompare(span + (ea - sa) + 1, 1.0) |
| && qFuzzyCompare(qAbs(span), 360.0))) { |
| // mod 360 |
| span += (ea - sa) - (static_cast<int>((ea - sa) / 360)) * 360; |
| } |
| } |
| |
| // If the path is empty, move to where the arc will start to avoid painting a line from (0,0) |
| // NOTE: QPainterPath::isEmpty() won't work here since it ignores a lone MoveToElement |
| if (!m_path.elementCount()) |
| m_path.arcMoveTo(xs, ys, width, height, sa); |
| else if (!radius) { |
| m_path.lineTo(xc, yc); |
| return; |
| } |
| |
| m_path.arcTo(xs, ys, width, height, sa, span); |
| |
| } |
| |
| void Path::addRect(const FloatRect& r) |
| { |
| m_path.addRect(r.x(), r.y(), r.width(), r.height()); |
| } |
| |
| void Path::addEllipse(const FloatRect& r) |
| { |
| m_path.addEllipse(r.x(), r.y(), r.width(), r.height()); |
| } |
| |
| void Path::clear() |
| { |
| if (!m_path.elementCount()) |
| return; |
| m_path = QPainterPath(); |
| } |
| |
| bool Path::isEmpty() const |
| { |
| // Don't use QPainterPath::isEmpty(), as that also returns true if there's only |
| // one initial MoveTo element in the path. |
| return !m_path.elementCount(); |
| } |
| |
| bool Path::hasCurrentPoint() const |
| { |
| return !isEmpty(); |
| } |
| |
| FloatPoint Path::currentPoint() const |
| { |
| return m_path.currentPosition(); |
| } |
| |
| void Path::apply(void* info, PathApplierFunction function) const |
| { |
| PathElement pelement; |
| FloatPoint points[3]; |
| pelement.points = points; |
| for (int i = 0; i < m_path.elementCount(); ++i) { |
| const QPainterPath::Element& cur = m_path.elementAt(i); |
| |
| switch (cur.type) { |
| case QPainterPath::MoveToElement: |
| pelement.type = PathElementMoveToPoint; |
| pelement.points[0] = QPointF(cur); |
| function(info, &pelement); |
| break; |
| case QPainterPath::LineToElement: |
| pelement.type = PathElementAddLineToPoint; |
| pelement.points[0] = QPointF(cur); |
| function(info, &pelement); |
| break; |
| case QPainterPath::CurveToElement: |
| { |
| const QPainterPath::Element& c1 = m_path.elementAt(i + 1); |
| const QPainterPath::Element& c2 = m_path.elementAt(i + 2); |
| |
| Q_ASSERT(c1.type == QPainterPath::CurveToDataElement); |
| Q_ASSERT(c2.type == QPainterPath::CurveToDataElement); |
| |
| pelement.type = PathElementAddCurveToPoint; |
| pelement.points[0] = QPointF(cur); |
| pelement.points[1] = QPointF(c1); |
| pelement.points[2] = QPointF(c2); |
| function(info, &pelement); |
| |
| i += 2; |
| break; |
| } |
| case QPainterPath::CurveToDataElement: |
| Q_ASSERT(false); |
| } |
| } |
| } |
| |
| void Path::transform(const AffineTransform& transform) |
| { |
| QTransform qTransform(transform); |
| #if QT_VERSION < QT_VERSION_CHECK(4, 7, 0) |
| // Workaround for http://bugreports.qt.nokia.com/browse/QTBUG-11264 |
| // QTransform.map doesn't handle the MoveTo element because of the isEmpty issue |
| if (m_path.isEmpty() && m_path.elementCount()) { |
| QPointF point = qTransform.map(m_path.currentPosition()); |
| moveTo(point); |
| } else |
| #endif |
| m_path = qTransform.map(m_path); |
| } |
| |
| float Path::length() |
| { |
| return m_path.length(); |
| } |
| |
| FloatPoint Path::pointAtLength(float length, bool& ok) |
| { |
| ok = (length >= 0 && length <= m_path.length()); |
| |
| qreal percent = m_path.percentAtLength(length); |
| QPointF point = m_path.pointAtPercent(percent); |
| |
| return point; |
| } |
| |
| float Path::normalAngleAtLength(float length, bool& ok) |
| { |
| ok = (length >= 0 && length <= m_path.length()); |
| |
| qreal percent = m_path.percentAtLength(length); |
| qreal angle = m_path.angleAtPercent(percent); |
| |
| return angle; |
| } |
| |
| } |
| |
| // vim: ts=4 sw=4 et |