blob: fcc4e2818be6db2abe48be8972274b836e0203e5 [file] [log] [blame]
/*
* Copyright (C) 2016-2019 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "GPRInfo.h"
#include "JSCJSValue.h"
#include "ResultType.h"
#include "TagRegistersMode.h"
namespace JSC {
class CCallHelpers;
struct ObservedType {
constexpr ObservedType(uint8_t bits = TypeEmpty)
: m_bits(bits)
{ }
constexpr bool sawInt32() const { return m_bits & TypeInt32; }
constexpr bool isOnlyInt32() const { return m_bits == TypeInt32; }
constexpr bool sawNumber() const { return m_bits & TypeNumber; }
constexpr bool isOnlyNumber() const { return m_bits == TypeNumber; }
constexpr bool sawNonNumber() const { return m_bits & TypeNonNumber; }
constexpr bool isOnlyNonNumber() const { return m_bits == TypeNonNumber; }
constexpr bool isEmpty() const { return !m_bits; }
constexpr uint8_t bits() const { return m_bits; }
constexpr ObservedType withInt32() const { return ObservedType(m_bits | TypeInt32); }
constexpr ObservedType withNumber() const { return ObservedType(m_bits | TypeNumber); }
constexpr ObservedType withNonNumber() const { return ObservedType(m_bits | TypeNonNumber); }
constexpr ObservedType withoutNonNumber() const { return ObservedType(m_bits & ~TypeNonNumber); }
constexpr bool operator==(const ObservedType& other) const { return m_bits == other.m_bits; }
static constexpr uint8_t TypeEmpty = 0x0;
static constexpr uint8_t TypeInt32 = 0x1;
static constexpr uint8_t TypeNumber = 0x02;
static constexpr uint8_t TypeNonNumber = 0x04;
static constexpr uint32_t numBitsNeeded = 3;
private:
uint8_t m_bits { 0 };
};
struct ArithProfile {
private:
static constexpr uint32_t numberOfFlagBits = 6;
static constexpr uint32_t rhsResultTypeShift = numberOfFlagBits;
static constexpr uint32_t lhsResultTypeShift = rhsResultTypeShift + ResultType::numBitsNeeded;
static constexpr uint32_t rhsObservedTypeShift = lhsResultTypeShift + ResultType::numBitsNeeded;
static constexpr uint32_t lhsObservedTypeShift = rhsObservedTypeShift + ObservedType::numBitsNeeded;
static_assert(ObservedType::numBitsNeeded == 3, "We make a hard assumption about that here.");
static constexpr uint32_t clearRhsObservedTypeBitMask = static_cast<uint32_t>(~((1 << rhsObservedTypeShift) | (1 << (rhsObservedTypeShift + 1)) | (1 << (rhsObservedTypeShift + 2))));
static constexpr uint32_t clearLhsObservedTypeBitMask = static_cast<uint32_t>(~((1 << lhsObservedTypeShift) | (1 << (lhsObservedTypeShift + 1)) | (1 << (lhsObservedTypeShift + 2))));
static constexpr uint32_t resultTypeMask = (1 << ResultType::numBitsNeeded) - 1;
static constexpr uint32_t observedTypeMask = (1 << ObservedType::numBitsNeeded) - 1;
enum class ConstantTag { Constant };
public:
static constexpr uint32_t specialFastPathBit = 1 << (lhsObservedTypeShift + ObservedType::numBitsNeeded);
static_assert((lhsObservedTypeShift + ObservedType::numBitsNeeded) <= (sizeof(uint32_t) * 8) - 1, "Should fit in a uint32_t.");
static_assert(!(specialFastPathBit & ~clearLhsObservedTypeBitMask), "These bits should not intersect.");
static_assert(specialFastPathBit & clearLhsObservedTypeBitMask, "These bits should intersect.");
static_assert(specialFastPathBit > ~clearLhsObservedTypeBitMask, "These bits should not intersect and specialFastPathBit should be a higher bit.");
ArithProfile(ResultType arg)
: ArithProfile(ConstantTag::Constant, arg)
{
ASSERT(lhsResultType().bits() == arg.bits());
ASSERT(lhsObservedType().isEmpty());
ASSERT(rhsObservedType().isEmpty());
}
ArithProfile(ResultType lhs, ResultType rhs)
: ArithProfile(ConstantTag::Constant, lhs, rhs)
{
ASSERT(lhsResultType().bits() == lhs.bits() && rhsResultType().bits() == rhs.bits());
ASSERT(lhsObservedType().isEmpty());
ASSERT(rhsObservedType().isEmpty());
}
ArithProfile(OperandTypes types)
: ArithProfile(types.first(), types.second())
{ }
ArithProfile() = default;
static constexpr ArithProfile fromInt(uint32_t bits)
{
return ArithProfile { ConstantTag::Constant, bits };
}
static constexpr ArithProfile observedUnaryInt()
{
constexpr ObservedType observedInt32 { ObservedType().withInt32() };
constexpr uint32_t bits = observedInt32.bits() << lhsObservedTypeShift;
static_assert(bits == 0x800000, "");
return fromInt(bits);
}
static constexpr ArithProfile observedUnaryNumber()
{
constexpr ObservedType observedNumber { ObservedType().withNumber() };
constexpr uint32_t bits = observedNumber.bits() << lhsObservedTypeShift;
static_assert(bits == 0x1000000, "");
return fromInt(bits);
}
static constexpr ArithProfile observedBinaryIntInt()
{
constexpr ObservedType observedInt32 { ObservedType().withInt32() };
constexpr uint32_t bits = (observedInt32.bits() << lhsObservedTypeShift) | (observedInt32.bits() << rhsObservedTypeShift);
static_assert(bits == 0x900000, "");
return fromInt(bits);
}
static constexpr ArithProfile observedBinaryNumberInt()
{
constexpr ObservedType observedNumber { ObservedType().withNumber() };
constexpr ObservedType observedInt32 { ObservedType().withInt32() };
constexpr uint32_t bits = (observedNumber.bits() << lhsObservedTypeShift) | (observedInt32.bits() << rhsObservedTypeShift);
static_assert(bits == 0x1100000, "");
return fromInt(bits);
}
static constexpr ArithProfile observedBinaryIntNumber()
{
constexpr ObservedType observedNumber { ObservedType().withNumber() };
constexpr ObservedType observedInt32 { ObservedType().withInt32() };
constexpr uint32_t bits = (observedInt32.bits() << lhsObservedTypeShift) | (observedNumber.bits() << rhsObservedTypeShift);
static_assert(bits == 0xa00000, "");
return fromInt(bits);
}
static constexpr ArithProfile observedBinaryNumberNumber()
{
constexpr ObservedType observedNumber { ObservedType().withNumber() };
constexpr uint32_t bits = (observedNumber.bits() << lhsObservedTypeShift) | (observedNumber.bits() << rhsObservedTypeShift);
static_assert(bits == 0x1200000, "");
return fromInt(bits);
}
enum ObservedResults {
NonNegZeroDouble = 1 << 0,
NegZeroDouble = 1 << 1,
NonNumeric = 1 << 2,
Int32Overflow = 1 << 3,
Int52Overflow = 1 << 4,
BigInt = 1 << 5,
};
ResultType lhsResultType() const { return ResultType((m_bits >> lhsResultTypeShift) & resultTypeMask); }
ResultType rhsResultType() const { return ResultType((m_bits >> rhsResultTypeShift) & resultTypeMask); }
constexpr ObservedType lhsObservedType() const { return ObservedType((m_bits >> lhsObservedTypeShift) & observedTypeMask); }
constexpr ObservedType rhsObservedType() const { return ObservedType((m_bits >> rhsObservedTypeShift) & observedTypeMask); }
void setLhsObservedType(ObservedType type)
{
uint32_t bits = m_bits;
bits &= clearLhsObservedTypeBitMask;
bits |= type.bits() << lhsObservedTypeShift;
m_bits = bits;
ASSERT(lhsObservedType() == type);
}
void setRhsObservedType(ObservedType type)
{
uint32_t bits = m_bits;
bits &= clearRhsObservedTypeBitMask;
bits |= type.bits() << rhsObservedTypeShift;
m_bits = bits;
ASSERT(rhsObservedType() == type);
}
bool tookSpecialFastPath() const { return m_bits & specialFastPathBit; }
bool didObserveNonInt32() const { return hasBits(NonNegZeroDouble | NegZeroDouble | NonNumeric | BigInt); }
bool didObserveDouble() const { return hasBits(NonNegZeroDouble | NegZeroDouble); }
bool didObserveNonNegZeroDouble() const { return hasBits(NonNegZeroDouble); }
bool didObserveNegZeroDouble() const { return hasBits(NegZeroDouble); }
bool didObserveNonNumeric() const { return hasBits(NonNumeric); }
bool didObserveBigInt() const { return hasBits(BigInt); }
bool didObserveInt32Overflow() const { return hasBits(Int32Overflow); }
bool didObserveInt52Overflow() const { return hasBits(Int52Overflow); }
void setObservedNonNegZeroDouble() { setBit(NonNegZeroDouble); }
void setObservedNegZeroDouble() { setBit(NegZeroDouble); }
void setObservedNonNumeric() { setBit(NonNumeric); }
void setObservedBigInt() { setBit(BigInt); }
void setObservedInt32Overflow() { setBit(Int32Overflow); }
void setObservedInt52Overflow() { setBit(Int52Overflow); }
const void* addressOfBits() const { return &m_bits; }
void observeResult(JSValue value)
{
if (value.isInt32())
return;
if (value.isNumber()) {
m_bits |= Int32Overflow | Int52Overflow | NonNegZeroDouble | NegZeroDouble;
return;
}
if (value && value.isBigInt()) {
m_bits |= BigInt;
return;
}
m_bits |= NonNumeric;
}
void lhsSawInt32() { setLhsObservedType(lhsObservedType().withInt32()); }
void lhsSawNumber() { setLhsObservedType(lhsObservedType().withNumber()); }
void lhsSawNonNumber() { setLhsObservedType(lhsObservedType().withNonNumber()); }
void rhsSawInt32() { setRhsObservedType(rhsObservedType().withInt32()); }
void rhsSawNumber() { setRhsObservedType(rhsObservedType().withNumber()); }
void rhsSawNonNumber() { setRhsObservedType(rhsObservedType().withNonNumber()); }
void observeLHS(JSValue lhs)
{
ArithProfile newProfile = *this;
if (lhs.isNumber()) {
if (lhs.isInt32())
newProfile.lhsSawInt32();
else
newProfile.lhsSawNumber();
} else
newProfile.lhsSawNonNumber();
m_bits = newProfile.bits();
}
void observeLHSAndRHS(JSValue lhs, JSValue rhs)
{
observeLHS(lhs);
ArithProfile newProfile = *this;
if (rhs.isNumber()) {
if (rhs.isInt32())
newProfile.rhsSawInt32();
else
newProfile.rhsSawNumber();
} else
newProfile.rhsSawNonNumber();
m_bits = newProfile.bits();
}
#if ENABLE(JIT)
// Sets (Int32Overflow | Int52Overflow | NonNegZeroDouble | NegZeroDouble) if it sees a
// double. Sets NonNumeric if it sees a non-numeric.
void emitObserveResult(CCallHelpers&, JSValueRegs, TagRegistersMode = HaveTagRegisters);
// Sets (Int32Overflow | Int52Overflow | NonNegZeroDouble | NegZeroDouble).
bool shouldEmitSetDouble() const;
void emitSetDouble(CCallHelpers&) const;
// Sets NonNumber.
void emitSetNonNumeric(CCallHelpers&) const;
bool shouldEmitSetNonNumeric() const;
// Sets BigInt
void emitSetBigInt(CCallHelpers&) const;
bool shouldEmitSetBigInt() const;
#endif // ENABLE(JIT)
constexpr uint32_t bits() const { return m_bits; }
private:
constexpr explicit ArithProfile(ConstantTag, uint32_t bits)
: m_bits(bits)
{
}
constexpr ArithProfile(ConstantTag, ResultType arg)
: m_bits(arg.bits() << lhsResultTypeShift)
{
}
constexpr ArithProfile(ConstantTag, ResultType lhs, ResultType rhs)
: m_bits((lhs.bits() << lhsResultTypeShift) | (rhs.bits() << rhsResultTypeShift))
{
}
bool hasBits(int mask) const { return m_bits & mask; }
void setBit(int mask) { m_bits |= mask; }
uint32_t m_bits { 0 }; // We take care to update m_bits only in a single operation. We don't ever store an inconsistent bit representation to it.
friend class JSC::LLIntOffsetsExtractor;
};
} // namespace JSC
namespace WTF {
void printInternal(PrintStream&, const JSC::ArithProfile&);
void printInternal(PrintStream&, const JSC::ObservedType&);
} // namespace WTF