| /* |
| * Copyright (C) 1999 Lars Knoll (knoll@kde.org) |
| * (C) 1999 Antti Koivisto (koivisto@kde.org) |
| * (C) 2007 David Smith (catfish.man@gmail.com) |
| * Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 Apple Inc. All rights reserved. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Library General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Library General Public License for more details. |
| * |
| * You should have received a copy of the GNU Library General Public License |
| * along with this library; see the file COPYING.LIB. If not, write to |
| * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, |
| * Boston, MA 02110-1301, USA. |
| */ |
| |
| #include "config.h" |
| #include "RenderBlock.h" |
| |
| #include "Document.h" |
| #include "Element.h" |
| #include "Frame.h" |
| #include "FrameView.h" |
| #include "GraphicsContext.h" |
| #include "HTMLNames.h" |
| #include "HitTestResult.h" |
| #include "InlineTextBox.h" |
| #include "RenderImage.h" |
| #include "RenderMarquee.h" |
| #include "RenderReplica.h" |
| #include "RenderTableCell.h" |
| #include "RenderTextFragment.h" |
| #include "RenderTheme.h" |
| #include "RenderView.h" |
| #include "SelectionController.h" |
| #include <wtf/StdLibExtras.h> |
| |
| using namespace std; |
| using namespace WTF; |
| using namespace Unicode; |
| |
| namespace WebCore { |
| |
| // Number of pixels to allow as a fudge factor when clicking above or below a line. |
| // clicking up to verticalLineClickFudgeFactor pixels above a line will correspond to the closest point on the line. |
| const int verticalLineClickFudgeFactor= 3; |
| |
| using namespace HTMLNames; |
| |
| struct ColumnInfo { |
| ColumnInfo() |
| : m_desiredColumnWidth(0) |
| , m_desiredColumnCount(1) |
| { } |
| int m_desiredColumnWidth; |
| unsigned m_desiredColumnCount; |
| Vector<IntRect> m_columnRects; |
| }; |
| |
| typedef WTF::HashMap<const RenderBox*, ColumnInfo*> ColumnInfoMap; |
| static ColumnInfoMap* gColumnInfoMap = 0; |
| |
| typedef WTF::HashMap<const RenderBlock*, HashSet<RenderBox*>*> PercentHeightDescendantsMap; |
| static PercentHeightDescendantsMap* gPercentHeightDescendantsMap = 0; |
| |
| typedef WTF::HashMap<const RenderBox*, HashSet<RenderBlock*>*> PercentHeightContainerMap; |
| static PercentHeightContainerMap* gPercentHeightContainerMap = 0; |
| |
| typedef WTF::HashMap<RenderBlock*, RenderFlowSequencedSet*> ContinuationOutlineTableMap; |
| |
| // Our MarginInfo state used when laying out block children. |
| RenderBlock::MarginInfo::MarginInfo(RenderBlock* block, int top, int bottom) |
| { |
| // Whether or not we can collapse our own margins with our children. We don't do this |
| // if we had any border/padding (obviously), if we're the root or HTML elements, or if |
| // we're positioned, floating, a table cell. |
| m_canCollapseWithChildren = !block->isRenderView() && !block->isRoot() && !block->isPositioned() && |
| !block->isFloating() && !block->isTableCell() && !block->hasOverflowClip() && !block->isInlineBlockOrInlineTable(); |
| |
| m_canCollapseTopWithChildren = m_canCollapseWithChildren && (top == 0) && block->style()->marginTopCollapse() != MSEPARATE; |
| |
| // If any height other than auto is specified in CSS, then we don't collapse our bottom |
| // margins with our children's margins. To do otherwise would be to risk odd visual |
| // effects when the children overflow out of the parent block and yet still collapse |
| // with it. We also don't collapse if we have any bottom border/padding. |
| m_canCollapseBottomWithChildren = m_canCollapseWithChildren && (bottom == 0) && |
| (block->style()->height().isAuto() && block->style()->height().value() == 0) && block->style()->marginBottomCollapse() != MSEPARATE; |
| |
| m_quirkContainer = block->isTableCell() || block->isBody() || block->style()->marginTopCollapse() == MDISCARD || |
| block->style()->marginBottomCollapse() == MDISCARD; |
| |
| m_atTopOfBlock = true; |
| m_atBottomOfBlock = false; |
| |
| m_posMargin = m_canCollapseTopWithChildren ? block->maxTopMargin(true) : 0; |
| m_negMargin = m_canCollapseTopWithChildren ? block->maxTopMargin(false) : 0; |
| |
| m_selfCollapsingBlockClearedFloat = false; |
| |
| m_topQuirk = m_bottomQuirk = m_determinedTopQuirk = false; |
| } |
| |
| // ------------------------------------------------------------------------------------------------------- |
| |
| RenderBlock::RenderBlock(Node* node) |
| : RenderFlow(node) |
| , m_floatingObjects(0) |
| , m_positionedObjects(0) |
| , m_maxMargin(0) |
| , m_overflowHeight(0) |
| , m_overflowWidth(0) |
| , m_overflowLeft(0) |
| , m_overflowTop(0) |
| { |
| } |
| |
| RenderBlock::~RenderBlock() |
| { |
| delete m_floatingObjects; |
| delete m_positionedObjects; |
| delete m_maxMargin; |
| |
| if (m_hasColumns) |
| delete gColumnInfoMap->take(this); |
| |
| if (gPercentHeightDescendantsMap) { |
| if (HashSet<RenderBox*>* descendantSet = gPercentHeightDescendantsMap->take(this)) { |
| HashSet<RenderBox*>::iterator end = descendantSet->end(); |
| for (HashSet<RenderBox*>::iterator descendant = descendantSet->begin(); descendant != end; ++descendant) { |
| HashSet<RenderBlock*>* containerSet = gPercentHeightContainerMap->get(*descendant); |
| ASSERT(containerSet); |
| if (!containerSet) |
| continue; |
| ASSERT(containerSet->contains(this)); |
| containerSet->remove(this); |
| if (containerSet->isEmpty()) { |
| gPercentHeightContainerMap->remove(*descendant); |
| delete containerSet; |
| } |
| } |
| delete descendantSet; |
| } |
| } |
| } |
| |
| void RenderBlock::styleWillChange(RenderStyle::Diff diff, const RenderStyle* newStyle) |
| { |
| setReplaced(newStyle->isDisplayReplacedType()); |
| RenderFlow::styleWillChange(diff, newStyle); |
| } |
| |
| void RenderBlock::styleDidChange(RenderStyle::Diff diff, const RenderStyle* oldStyle) |
| { |
| RenderFlow::styleDidChange(diff, oldStyle); |
| |
| // FIXME: We could save this call when the change only affected non-inherited properties |
| for (RenderObject* child = firstChild(); child; child = child->nextSibling()) { |
| if (child->isAnonymousBlock()) { |
| RefPtr<RenderStyle> newStyle = RenderStyle::create(); |
| newStyle->inheritFrom(style()); |
| newStyle->setDisplay(BLOCK); |
| child->setStyle(newStyle.release()); |
| } |
| } |
| |
| m_lineHeight = -1; |
| |
| // Update pseudos for :before and :after now. |
| if (!isAnonymous() && canHaveChildren()) { |
| updateBeforeAfterContent(RenderStyle::BEFORE); |
| updateBeforeAfterContent(RenderStyle::AFTER); |
| } |
| updateFirstLetter(); |
| } |
| |
| void RenderBlock::addChildToFlow(RenderObject* newChild, RenderObject* beforeChild) |
| { |
| // Make sure we don't append things after :after-generated content if we have it. |
| if (!beforeChild && isAfterContent(lastChild())) |
| beforeChild = lastChild(); |
| |
| bool madeBoxesNonInline = false; |
| |
| // If the requested beforeChild is not one of our children, then this is because |
| // there is an anonymous container within this object that contains the beforeChild. |
| if (beforeChild && beforeChild->parent() != this) { |
| RenderObject* anonymousChild = beforeChild->parent(); |
| ASSERT(anonymousChild); |
| |
| while (anonymousChild->parent() != this) |
| anonymousChild = anonymousChild->parent(); |
| |
| ASSERT(anonymousChild->isAnonymous()); |
| |
| if (anonymousChild->isAnonymousBlock()) { |
| // Insert the child into the anonymous block box instead of here. |
| if (newChild->isInline() || beforeChild->parent()->firstChild() != beforeChild) |
| beforeChild->parent()->addChild(newChild, beforeChild); |
| else |
| addChildToFlow(newChild, beforeChild->parent()); |
| return; |
| } |
| |
| ASSERT(anonymousChild->isTable()); |
| if (newChild->isTableCol() && newChild->style()->display() == TABLE_COLUMN_GROUP |
| || newChild->isRenderBlock() && newChild->style()->display() == TABLE_CAPTION |
| || newChild->isTableSection() |
| || newChild->isTableRow() |
| || newChild->isTableCell()) { |
| // Insert into the anonymous table. |
| anonymousChild->addChild(newChild, beforeChild); |
| return; |
| } |
| |
| // Go on to insert before the anonymous table. |
| beforeChild = anonymousChild; |
| } |
| |
| // A block has to either have all of its children inline, or all of its children as blocks. |
| // So, if our children are currently inline and a block child has to be inserted, we move all our |
| // inline children into anonymous block boxes. |
| if (m_childrenInline && !newChild->isInline() && !newChild->isFloatingOrPositioned()) { |
| // This is a block with inline content. Wrap the inline content in anonymous blocks. |
| makeChildrenNonInline(beforeChild); |
| madeBoxesNonInline = true; |
| |
| if (beforeChild && beforeChild->parent() != this) { |
| beforeChild = beforeChild->parent(); |
| ASSERT(beforeChild->isAnonymousBlock()); |
| ASSERT(beforeChild->parent() == this); |
| } |
| } else if (!m_childrenInline && (newChild->isFloatingOrPositioned() || newChild->isInline())) { |
| // If we're inserting an inline child but all of our children are blocks, then we have to make sure |
| // it is put into an anomyous block box. We try to use an existing anonymous box if possible, otherwise |
| // a new one is created and inserted into our list of children in the appropriate position. |
| RenderObject* afterChild = beforeChild ? beforeChild->previousSibling() : lastChild(); |
| |
| if (afterChild && afterChild->isAnonymousBlock()) { |
| afterChild->addChild(newChild); |
| return; |
| } |
| |
| if (newChild->isInline()) { |
| // No suitable existing anonymous box - create a new one. |
| RenderBlock* newBox = createAnonymousBlock(); |
| RenderContainer::addChild(newBox, beforeChild); |
| newBox->addChild(newChild); |
| return; |
| } |
| } |
| |
| RenderContainer::addChild(newChild, beforeChild); |
| // ### care about aligned stuff |
| |
| if (madeBoxesNonInline && parent() && isAnonymousBlock()) |
| parent()->removeLeftoverAnonymousBlock(this); |
| // this object may be dead here |
| } |
| |
| static void getInlineRun(RenderObject* start, RenderObject* boundary, |
| RenderObject*& inlineRunStart, |
| RenderObject*& inlineRunEnd) |
| { |
| // Beginning at |start| we find the largest contiguous run of inlines that |
| // we can. We denote the run with start and end points, |inlineRunStart| |
| // and |inlineRunEnd|. Note that these two values may be the same if |
| // we encounter only one inline. |
| // |
| // We skip any non-inlines we encounter as long as we haven't found any |
| // inlines yet. |
| // |
| // |boundary| indicates a non-inclusive boundary point. Regardless of whether |boundary| |
| // is inline or not, we will not include it in a run with inlines before it. It's as though we encountered |
| // a non-inline. |
| |
| // Start by skipping as many non-inlines as we can. |
| RenderObject * curr = start; |
| bool sawInline; |
| do { |
| while (curr && !(curr->isInline() || curr->isFloatingOrPositioned())) |
| curr = curr->nextSibling(); |
| |
| inlineRunStart = inlineRunEnd = curr; |
| |
| if (!curr) |
| return; // No more inline children to be found. |
| |
| sawInline = curr->isInline(); |
| |
| curr = curr->nextSibling(); |
| while (curr && (curr->isInline() || curr->isFloatingOrPositioned()) && (curr != boundary)) { |
| inlineRunEnd = curr; |
| if (curr->isInline()) |
| sawInline = true; |
| curr = curr->nextSibling(); |
| } |
| } while (!sawInline); |
| } |
| |
| void RenderBlock::deleteLineBoxTree() |
| { |
| InlineFlowBox* line = m_firstLineBox; |
| InlineFlowBox* nextLine; |
| while (line) { |
| nextLine = line->nextFlowBox(); |
| line->deleteLine(renderArena()); |
| line = nextLine; |
| } |
| m_firstLineBox = m_lastLineBox = 0; |
| } |
| |
| void RenderBlock::makeChildrenNonInline(RenderObject *insertionPoint) |
| { |
| // makeChildrenNonInline takes a block whose children are *all* inline and it |
| // makes sure that inline children are coalesced under anonymous |
| // blocks. If |insertionPoint| is defined, then it represents the insertion point for |
| // the new block child that is causing us to have to wrap all the inlines. This |
| // means that we cannot coalesce inlines before |insertionPoint| with inlines following |
| // |insertionPoint|, because the new child is going to be inserted in between the inlines, |
| // splitting them. |
| ASSERT(isInlineBlockOrInlineTable() || !isInline()); |
| ASSERT(!insertionPoint || insertionPoint->parent() == this); |
| |
| m_childrenInline = false; |
| |
| RenderObject *child = firstChild(); |
| if (!child) |
| return; |
| |
| deleteLineBoxTree(); |
| |
| while (child) { |
| RenderObject *inlineRunStart, *inlineRunEnd; |
| getInlineRun(child, insertionPoint, inlineRunStart, inlineRunEnd); |
| |
| if (!inlineRunStart) |
| break; |
| |
| child = inlineRunEnd->nextSibling(); |
| |
| RenderBlock* box = createAnonymousBlock(); |
| insertChildNode(box, inlineRunStart); |
| RenderObject* o = inlineRunStart; |
| while(o != inlineRunEnd) |
| { |
| RenderObject* no = o; |
| o = no->nextSibling(); |
| box->moveChildNode(no); |
| } |
| box->moveChildNode(inlineRunEnd); |
| } |
| |
| #ifndef NDEBUG |
| for (RenderObject *c = firstChild(); c; c = c->nextSibling()) |
| ASSERT(!c->isInline()); |
| #endif |
| |
| repaint(); |
| } |
| |
| void RenderBlock::removeChild(RenderObject *oldChild) |
| { |
| // If this child is a block, and if our previous and next siblings are |
| // both anonymous blocks with inline content, then we can go ahead and |
| // fold the inline content back together. |
| RenderObject* prev = oldChild->previousSibling(); |
| RenderObject* next = oldChild->nextSibling(); |
| bool canDeleteAnonymousBlocks = !documentBeingDestroyed() && !isInline() && !oldChild->isInline() && |
| !oldChild->continuation() && |
| (!prev || (prev->isAnonymousBlock() && prev->childrenInline())) && |
| (!next || (next->isAnonymousBlock() && next->childrenInline())); |
| if (canDeleteAnonymousBlocks && prev && next) { |
| // Take all the children out of the |next| block and put them in |
| // the |prev| block. |
| prev->setNeedsLayoutAndPrefWidthsRecalc(); |
| RenderObject* o = next->firstChild(); |
| while (o) { |
| RenderObject* no = o; |
| o = no->nextSibling(); |
| prev->moveChildNode(no); |
| } |
| |
| RenderBlock* nextBlock = static_cast<RenderBlock*>(next); |
| nextBlock->deleteLineBoxTree(); |
| |
| // Nuke the now-empty block. |
| next->destroy(); |
| } |
| |
| RenderFlow::removeChild(oldChild); |
| |
| RenderObject* child = prev ? prev : next; |
| if (canDeleteAnonymousBlocks && child && !child->previousSibling() && !child->nextSibling() && !isFlexibleBox()) { |
| // The removal has knocked us down to containing only a single anonymous |
| // box. We can go ahead and pull the content right back up into our |
| // box. |
| setNeedsLayoutAndPrefWidthsRecalc(); |
| RenderBlock* anonBlock = static_cast<RenderBlock*>(removeChildNode(child, false)); |
| m_childrenInline = true; |
| RenderObject* o = anonBlock->firstChild(); |
| while (o) { |
| RenderObject* no = o; |
| o = no->nextSibling(); |
| moveChildNode(no); |
| } |
| |
| // Delete the now-empty block's lines and nuke it. |
| anonBlock->deleteLineBoxTree(); |
| anonBlock->destroy(); |
| } |
| } |
| |
| int RenderBlock::overflowHeight(bool includeInterior) const |
| { |
| if (!includeInterior && hasOverflowClip()) { |
| int shadowHeight = 0; |
| for (ShadowData* boxShadow = style()->boxShadow(); boxShadow; boxShadow = boxShadow->next) |
| shadowHeight = max(boxShadow->y + boxShadow->blur, shadowHeight); |
| int height = m_height + shadowHeight; |
| if (hasReflection()) |
| height = max(height, reflectionBox().bottom()); |
| return height; |
| } |
| return m_overflowHeight; |
| } |
| |
| int RenderBlock::overflowWidth(bool includeInterior) const |
| { |
| if (!includeInterior && hasOverflowClip()) { |
| int shadowWidth = 0; |
| for (ShadowData* boxShadow = style()->boxShadow(); boxShadow; boxShadow = boxShadow->next) |
| shadowWidth = max(boxShadow->x + boxShadow->blur, shadowWidth); |
| int width = m_width + shadowWidth; |
| if (hasReflection()) |
| width = max(width, reflectionBox().right()); |
| return width; |
| } |
| return m_overflowWidth; |
| } |
| |
| int RenderBlock::overflowLeft(bool includeInterior) const |
| { |
| if (!includeInterior && hasOverflowClip()) { |
| int shadowLeft = 0; |
| for (ShadowData* boxShadow = style()->boxShadow(); boxShadow; boxShadow = boxShadow->next) |
| shadowLeft = min(boxShadow->x - boxShadow->blur, shadowLeft); |
| int left = shadowLeft; |
| if (hasReflection()) |
| left = min(left, reflectionBox().x()); |
| return left; |
| } |
| return m_overflowLeft; |
| } |
| |
| int RenderBlock::overflowTop(bool includeInterior) const |
| { |
| if (!includeInterior && hasOverflowClip()) { |
| int shadowTop = 0; |
| for (ShadowData* boxShadow = style()->boxShadow(); boxShadow; boxShadow = boxShadow->next) |
| shadowTop = min(boxShadow->y - boxShadow->blur, shadowTop); |
| int top = shadowTop; |
| if (hasReflection()) |
| top = min(top, reflectionBox().y()); |
| return top; |
| } |
| return m_overflowTop; |
| } |
| |
| IntRect RenderBlock::overflowRect(bool includeInterior) const |
| { |
| if (!includeInterior && hasOverflowClip()) { |
| IntRect box = borderBox(); |
| int shadowLeft = 0; |
| int shadowRight = 0; |
| int shadowTop = 0; |
| int shadowBottom = 0; |
| |
| for (ShadowData* boxShadow = style()->boxShadow(); boxShadow; boxShadow = boxShadow->next) { |
| shadowLeft = min(boxShadow->x - boxShadow->blur, shadowLeft); |
| shadowRight = max(boxShadow->x + boxShadow->blur, shadowRight); |
| shadowTop = min(boxShadow->y - boxShadow->blur, shadowTop); |
| shadowBottom = max(boxShadow->y + boxShadow->blur, shadowBottom); |
| } |
| |
| box.move(shadowLeft, shadowTop); |
| box.setWidth(box.width() - shadowLeft + shadowRight); |
| box.setHeight(box.height() - shadowTop + shadowBottom); |
| |
| if (hasReflection()) { |
| IntRect reflection(reflectionBox()); |
| int reflectTop = min(box.y(), reflection.y()); |
| int reflectBottom = max(box.bottom(), reflection.bottom()); |
| box.setHeight(reflectBottom - reflectTop); |
| box.setY(reflectTop); |
| |
| int reflectLeft = min(box.x(), reflection.x()); |
| int reflectRight = max(box.right(), reflection.right()); |
| box.setWidth(reflectRight - reflectLeft); |
| box.setX(reflectLeft); |
| } |
| return box; |
| } |
| |
| if (!includeInterior && hasOverflowClip()) |
| return borderBox(); |
| int l = overflowLeft(includeInterior); |
| int t = min(overflowTop(includeInterior), -borderTopExtra()); |
| return IntRect(l, t, overflowWidth(includeInterior) - l, max(overflowHeight(includeInterior), height() + borderBottomExtra()) - t); |
| } |
| |
| bool RenderBlock::isSelfCollapsingBlock() const |
| { |
| // We are not self-collapsing if we |
| // (a) have a non-zero height according to layout (an optimization to avoid wasting time) |
| // (b) are a table, |
| // (c) have border/padding, |
| // (d) have a min-height |
| // (e) have specified that one of our margins can't collapse using a CSS extension |
| if (m_height > 0 || |
| isTable() || (borderBottom() + paddingBottom() + borderTop() + paddingTop()) != 0 || |
| style()->minHeight().isPositive() || |
| style()->marginTopCollapse() == MSEPARATE || style()->marginBottomCollapse() == MSEPARATE) |
| return false; |
| |
| bool hasAutoHeight = style()->height().isAuto(); |
| if (style()->height().isPercent() && !style()->htmlHacks()) { |
| hasAutoHeight = true; |
| for (RenderBlock* cb = containingBlock(); !cb->isRenderView(); cb = cb->containingBlock()) { |
| if (cb->style()->height().isFixed() || cb->isTableCell()) |
| hasAutoHeight = false; |
| } |
| } |
| |
| // If the height is 0 or auto, then whether or not we are a self-collapsing block depends |
| // on whether we have content that is all self-collapsing or not. |
| if (hasAutoHeight || ((style()->height().isFixed() || style()->height().isPercent()) && style()->height().isZero())) { |
| // If the block has inline children, see if we generated any line boxes. If we have any |
| // line boxes, then we can't be self-collapsing, since we have content. |
| if (childrenInline()) |
| return !firstLineBox(); |
| |
| // Whether or not we collapse is dependent on whether all our normal flow children |
| // are also self-collapsing. |
| for (RenderObject* child = firstChild(); child; child = child->nextSibling()) { |
| if (child->isFloatingOrPositioned()) |
| continue; |
| if (!child->isSelfCollapsingBlock()) |
| return false; |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| void RenderBlock::layout() |
| { |
| // Update our first letter info now. |
| updateFirstLetter(); |
| |
| // Table cells call layoutBlock directly, so don't add any logic here. Put code into |
| // layoutBlock(). |
| layoutBlock(false); |
| |
| // It's safe to check for control clip here, since controls can never be table cells. |
| if (hasControlClip()) { |
| // Because of the lightweight clip, there can never be any overflow from children. |
| m_overflowWidth = m_width; |
| m_overflowHeight = m_height; |
| m_overflowLeft = 0; |
| m_overflowTop = 0; |
| } |
| } |
| |
| void RenderBlock::layoutBlock(bool relayoutChildren) |
| { |
| ASSERT(needsLayout()); |
| |
| if (isInline() && !isInlineBlockOrInlineTable()) // Inline <form>s inside various table elements can |
| return; // cause us to come in here. Just bail. |
| |
| if (!relayoutChildren && layoutOnlyPositionedObjects()) |
| return; |
| |
| IntRect oldBounds; |
| IntRect oldOutlineBox; |
| bool checkForRepaint = m_everHadLayout && checkForRepaintDuringLayout(); |
| if (checkForRepaint) { |
| oldBounds = absoluteClippedOverflowRect(); |
| oldOutlineBox = absoluteOutlineBounds(); |
| } |
| |
| LayoutStateMaintainer statePusher(view(), this, IntSize(xPos(), yPos()), !m_hasColumns && !hasTransform() && !hasReflection()); |
| |
| int oldWidth = m_width; |
| int oldColumnWidth = desiredColumnWidth(); |
| |
| calcWidth(); |
| calcColumnWidth(); |
| |
| m_overflowWidth = m_width; |
| m_overflowLeft = 0; |
| |
| if (oldWidth != m_width || oldColumnWidth != desiredColumnWidth()) |
| relayoutChildren = true; |
| |
| clearFloats(); |
| |
| int previousHeight = m_height; |
| m_height = 0; |
| m_overflowHeight = 0; |
| |
| // We use four values, maxTopPos, maxPosNeg, maxBottomPos, and maxBottomNeg, to track |
| // our current maximal positive and negative margins. These values are used when we |
| // are collapsed with adjacent blocks, so for example, if you have block A and B |
| // collapsing together, then you'd take the maximal positive margin from both A and B |
| // and subtract it from the maximal negative margin from both A and B to get the |
| // true collapsed margin. This algorithm is recursive, so when we finish layout() |
| // our block knows its current maximal positive/negative values. |
| // |
| // Start out by setting our margin values to our current margins. Table cells have |
| // no margins, so we don't fill in the values for table cells. |
| bool isCell = isTableCell(); |
| if (!isCell) { |
| initMaxMarginValues(); |
| |
| m_topMarginQuirk = style()->marginTop().quirk(); |
| m_bottomMarginQuirk = style()->marginBottom().quirk(); |
| |
| Node* node = element(); |
| if (node && node->hasTagName(formTag) && static_cast<HTMLFormElement*>(node)->isMalformed()) { |
| // See if this form is malformed (i.e., unclosed). If so, don't give the form |
| // a bottom margin. |
| setMaxBottomMargins(0, 0); |
| } |
| } |
| |
| // For overflow:scroll blocks, ensure we have both scrollbars in place always. |
| if (scrollsOverflow()) { |
| if (style()->overflowX() == OSCROLL) |
| m_layer->setHasHorizontalScrollbar(true); |
| if (style()->overflowY() == OSCROLL) |
| m_layer->setHasVerticalScrollbar(true); |
| } |
| |
| int repaintTop = 0; |
| int repaintBottom = 0; |
| int maxFloatBottom = 0; |
| if (childrenInline()) |
| layoutInlineChildren(relayoutChildren, repaintTop, repaintBottom); |
| else |
| layoutBlockChildren(relayoutChildren, maxFloatBottom); |
| |
| // Expand our intrinsic height to encompass floats. |
| int toAdd = borderBottom() + paddingBottom() + horizontalScrollbarHeight(); |
| if (floatBottom() > (m_height - toAdd) && (isInlineBlockOrInlineTable() || isFloatingOrPositioned() || hasOverflowClip() || |
| (parent() && parent()->isFlexibleBox() || m_hasColumns))) |
| m_height = floatBottom() + toAdd; |
| |
| // Now lay out our columns within this intrinsic height, since they can slightly affect the intrinsic height as |
| // we adjust for clean column breaks. |
| int singleColumnBottom = layoutColumns(); |
| |
| // Calculate our new height. |
| int oldHeight = m_height; |
| calcHeight(); |
| if (oldHeight != m_height) { |
| if (oldHeight > m_height && maxFloatBottom > m_height && !childrenInline()) { |
| // One of our children's floats may have become an overhanging float for us. We need to look for it. |
| for (RenderObject* child = firstChild(); child; child = child->nextSibling()) { |
| if (child->isBlockFlow() && !child->isFloatingOrPositioned()) { |
| RenderBlock* block = static_cast<RenderBlock*>(child); |
| if (block->floatBottom() + block->yPos() > m_height) |
| addOverhangingFloats(block, -block->xPos(), -block->yPos(), false); |
| } |
| } |
| } |
| // We have to rebalance columns to the new height. |
| layoutColumns(singleColumnBottom); |
| |
| // If the block got expanded in size, then increase our overflowheight to match. |
| if (m_overflowHeight > m_height) |
| m_overflowHeight -= toAdd; |
| if (m_overflowHeight < m_height) |
| m_overflowHeight = m_height; |
| } |
| if (previousHeight != m_height) |
| relayoutChildren = true; |
| |
| // Some classes of objects (floats and fieldsets with no specified heights and table cells) expand to encompass |
| // overhanging floats. |
| if (hasOverhangingFloats() && expandsToEncloseOverhangingFloats()) { |
| m_height = floatBottom(); |
| m_height += borderBottom() + paddingBottom(); |
| } |
| |
| if ((isCell || isInline() || isFloatingOrPositioned() || isRoot()) && !hasOverflowClip() && !hasControlClip()) |
| addVisualOverflow(floatRect()); |
| |
| layoutPositionedObjects(relayoutChildren || isRoot()); |
| |
| positionListMarker(); |
| |
| // Always ensure our overflow width/height are at least as large as our width/height. |
| m_overflowWidth = max(m_overflowWidth, m_width); |
| m_overflowHeight = max(m_overflowHeight, m_height); |
| |
| if (!hasOverflowClip()) { |
| for (ShadowData* boxShadow = style()->boxShadow(); boxShadow; boxShadow = boxShadow->next) { |
| m_overflowLeft = min(m_overflowLeft, boxShadow->x - boxShadow->blur); |
| m_overflowWidth = max(m_overflowWidth, m_width + boxShadow->x + boxShadow->blur); |
| m_overflowTop = min(m_overflowTop, boxShadow->y - boxShadow->blur); |
| m_overflowHeight = max(m_overflowHeight, m_height + boxShadow->y + boxShadow->blur); |
| } |
| |
| if (hasReflection()) { |
| m_overflowTop = min(m_overflowTop, reflectionBox().y()); |
| m_overflowHeight = max(m_overflowHeight, reflectionBox().bottom()); |
| } |
| } |
| |
| statePusher.pop(); |
| |
| // Update our scroll information if we're overflow:auto/scroll/hidden now that we know if |
| // we overflow or not. |
| if (hasOverflowClip()) |
| m_layer->updateScrollInfoAfterLayout(); |
| |
| // Repaint with our new bounds if they are different from our old bounds. |
| bool didFullRepaint = false; |
| if (checkForRepaint) |
| didFullRepaint = repaintAfterLayoutIfNeeded(oldBounds, oldOutlineBox); |
| if (!didFullRepaint && repaintTop != repaintBottom && (style()->visibility() == VISIBLE || enclosingLayer()->hasVisibleContent())) { |
| IntRect repaintRect(m_overflowLeft, repaintTop, m_overflowWidth - m_overflowLeft, repaintBottom - repaintTop); |
| |
| // FIXME: Deal with multiple column repainting. We have to split the repaint |
| // rect up into multiple rects if it spans columns. |
| |
| repaintRect.inflate(maximalOutlineSize(PaintPhaseOutline)); |
| |
| if (hasOverflowClip()) { |
| // Adjust repaint rect for scroll offset |
| int x = repaintRect.x(); |
| int y = repaintRect.y(); |
| layer()->subtractScrolledContentOffset(x, y); |
| repaintRect.setX(x); |
| repaintRect.setY(y); |
| |
| // Don't allow this rect to spill out of our overflow box. |
| repaintRect.intersect(IntRect(0, 0, m_width, m_height)); |
| } |
| |
| // Make sure the rect is still non-empty after intersecting for overflow above |
| if (!repaintRect.isEmpty()) { |
| repaintRectangle(repaintRect); // We need to do a partial repaint of our content. |
| if (hasReflection()) |
| layer()->reflection()->repaintRectangle(repaintRect); |
| } |
| } |
| setNeedsLayout(false); |
| } |
| |
| void RenderBlock::adjustPositionedBlock(RenderObject* child, const MarginInfo& marginInfo) |
| { |
| if (child->hasStaticX()) { |
| if (style()->direction() == LTR) |
| child->setStaticX(borderLeft() + paddingLeft()); |
| else |
| child->setStaticX(borderRight() + paddingRight()); |
| } |
| |
| if (child->hasStaticY()) { |
| int y = m_height; |
| if (!marginInfo.canCollapseWithTop()) { |
| child->calcVerticalMargins(); |
| int marginTop = child->marginTop(); |
| int collapsedTopPos = marginInfo.posMargin(); |
| int collapsedTopNeg = marginInfo.negMargin(); |
| if (marginTop > 0) { |
| if (marginTop > collapsedTopPos) |
| collapsedTopPos = marginTop; |
| } else { |
| if (-marginTop > collapsedTopNeg) |
| collapsedTopNeg = -marginTop; |
| } |
| y += (collapsedTopPos - collapsedTopNeg) - marginTop; |
| } |
| child->setStaticY(y); |
| } |
| } |
| |
| void RenderBlock::adjustFloatingBlock(const MarginInfo& marginInfo) |
| { |
| // The float should be positioned taking into account the bottom margin |
| // of the previous flow. We add that margin into the height, get the |
| // float positioned properly, and then subtract the margin out of the |
| // height again. In the case of self-collapsing blocks, we always just |
| // use the top margins, since the self-collapsing block collapsed its |
| // own bottom margin into its top margin. |
| // |
| // Note also that the previous flow may collapse its margin into the top of |
| // our block. If this is the case, then we do not add the margin in to our |
| // height when computing the position of the float. This condition can be tested |
| // for by simply calling canCollapseWithTop. See |
| // http://www.hixie.ch/tests/adhoc/css/box/block/margin-collapse/046.html for |
| // an example of this scenario. |
| int marginOffset = marginInfo.canCollapseWithTop() ? 0 : marginInfo.margin(); |
| m_height += marginOffset; |
| positionNewFloats(); |
| m_height -= marginOffset; |
| } |
| |
| RenderObject* RenderBlock::handleSpecialChild(RenderObject* child, const MarginInfo& marginInfo, CompactInfo& compactInfo, bool& handled) |
| { |
| // Handle positioned children first. |
| RenderObject* next = handlePositionedChild(child, marginInfo, handled); |
| if (handled) return next; |
| |
| // Handle floating children next. |
| next = handleFloatingChild(child, marginInfo, handled); |
| if (handled) return next; |
| |
| // See if we have a compact element. If we do, then try to tuck the compact element into the margin space of the next block. |
| next = handleCompactChild(child, compactInfo, handled); |
| if (handled) return next; |
| |
| // Finally, see if we have a run-in element. |
| return handleRunInChild(child, handled); |
| } |
| |
| |
| RenderObject* RenderBlock::handlePositionedChild(RenderObject* child, const MarginInfo& marginInfo, bool& handled) |
| { |
| if (child->isPositioned()) { |
| handled = true; |
| child->containingBlock()->insertPositionedObject(child); |
| adjustPositionedBlock(child, marginInfo); |
| return child->nextSibling(); |
| } |
| |
| return 0; |
| } |
| |
| RenderObject* RenderBlock::handleFloatingChild(RenderObject* child, const MarginInfo& marginInfo, bool& handled) |
| { |
| if (child->isFloating()) { |
| handled = true; |
| insertFloatingObject(child); |
| adjustFloatingBlock(marginInfo); |
| return child->nextSibling(); |
| } |
| |
| return 0; |
| } |
| |
| RenderObject* RenderBlock::handleCompactChild(RenderObject* child, CompactInfo& compactInfo, bool& handled) |
| { |
| // FIXME: We only deal with one compact at a time. It is unclear what should be |
| // done if multiple contiguous compacts are encountered. For now we assume that |
| // compact A followed by another compact B should simply be treated as block A. |
| if (child->isCompact() && !compactInfo.compact() && (child->childrenInline() || child->isReplaced())) { |
| // Get the next non-positioned/non-floating RenderBlock. |
| RenderObject* next = child->nextSibling(); |
| RenderObject* curr = next; |
| while (curr && curr->isFloatingOrPositioned()) |
| curr = curr->nextSibling(); |
| if (curr && curr->isRenderBlock() && !curr->isCompact() && !curr->isRunIn()) { |
| curr->calcWidth(); // So that horizontal margins are correct. |
| |
| child->setInline(true); // Need to compute the margins/width for the child as though it is an inline, so that it won't try to puff up the margins to |
| // fill the containing block width. |
| child->calcWidth(); |
| int childMargins = child->marginLeft() + child->marginRight(); |
| int margin = style()->direction() == LTR ? curr->marginLeft() : curr->marginRight(); |
| if (margin >= (childMargins + child->maxPrefWidth())) { |
| // The compact will fit in the margin. |
| handled = true; |
| compactInfo.set(child, curr); |
| child->setPos(0,0); // This position will be updated to reflect the compact's |
| // desired position and the line box for the compact will |
| // pick that position up. |
| |
| // Remove the child. |
| RenderObject* next = child->nextSibling(); |
| removeChildNode(child); |
| |
| // Now insert the child under |curr|. |
| curr->insertChildNode(child, curr->firstChild()); |
| return next; |
| } |
| else |
| child->setInline(false); // We didn't fit, so we remain a block-level element. |
| } |
| } |
| return 0; |
| } |
| |
| void RenderBlock::insertCompactIfNeeded(RenderObject* child, CompactInfo& compactInfo) |
| { |
| if (compactInfo.matches(child)) { |
| // We have a compact child to squeeze in. |
| RenderObject* compactChild = compactInfo.compact(); |
| int compactXPos = borderLeft() + paddingLeft() + compactChild->marginLeft(); |
| if (style()->direction() == RTL) { |
| compactChild->calcWidth(); // have to do this because of the capped maxwidth |
| compactXPos = width() - borderRight() - paddingRight() - marginRight() - |
| compactChild->width() - compactChild->marginRight(); |
| } |
| compactXPos -= child->xPos(); // Put compactXPos into the child's coordinate space. |
| compactChild->setPos(compactXPos, compactChild->yPos()); // Set the x position. |
| compactInfo.clear(); |
| } |
| } |
| |
| RenderObject* RenderBlock::handleRunInChild(RenderObject* child, bool& handled) |
| { |
| // See if we have a run-in element with inline children. If the |
| // children aren't inline, then just treat the run-in as a normal |
| // block. |
| if (child->isRunIn() && (child->childrenInline() || child->isReplaced())) { |
| // Get the next non-positioned/non-floating RenderBlock. |
| RenderObject* curr = child->nextSibling(); |
| while (curr && curr->isFloatingOrPositioned()) |
| curr = curr->nextSibling(); |
| if (curr && (curr->isRenderBlock() && curr->childrenInline() && !curr->isCompact() && !curr->isRunIn())) { |
| // The block acts like an inline, so just null out its |
| // position. |
| handled = true; |
| child->setInline(true); |
| child->setPos(0,0); |
| |
| // Remove the child. |
| RenderObject* next = child->nextSibling(); |
| removeChildNode(child); |
| |
| // Now insert the child under |curr|. |
| curr->insertChildNode(child, curr->firstChild()); |
| return next; |
| } |
| } |
| return 0; |
| } |
| |
| void RenderBlock::collapseMargins(RenderObject* child, MarginInfo& marginInfo, int yPosEstimate) |
| { |
| // Get our max pos and neg top margins. |
| int posTop = child->maxTopMargin(true); |
| int negTop = child->maxTopMargin(false); |
| |
| // For self-collapsing blocks, collapse our bottom margins into our |
| // top to get new posTop and negTop values. |
| if (child->isSelfCollapsingBlock()) { |
| posTop = max(posTop, child->maxBottomMargin(true)); |
| negTop = max(negTop, child->maxBottomMargin(false)); |
| } |
| |
| // See if the top margin is quirky. We only care if this child has |
| // margins that will collapse with us. |
| bool topQuirk = child->isTopMarginQuirk() || style()->marginTopCollapse() == MDISCARD; |
| |
| if (marginInfo.canCollapseWithTop()) { |
| // This child is collapsing with the top of the |
| // block. If it has larger margin values, then we need to update |
| // our own maximal values. |
| if (!style()->htmlHacks() || !marginInfo.quirkContainer() || !topQuirk) |
| setMaxTopMargins(max(posTop, maxTopPosMargin()), max(negTop, maxTopNegMargin())); |
| |
| // The minute any of the margins involved isn't a quirk, don't |
| // collapse it away, even if the margin is smaller (www.webreference.com |
| // has an example of this, a <dt> with 0.8em author-specified inside |
| // a <dl> inside a <td>. |
| if (!marginInfo.determinedTopQuirk() && !topQuirk && (posTop-negTop)) { |
| m_topMarginQuirk = false; |
| marginInfo.setDeterminedTopQuirk(true); |
| } |
| |
| if (!marginInfo.determinedTopQuirk() && topQuirk && marginTop() == 0) |
| // We have no top margin and our top child has a quirky margin. |
| // We will pick up this quirky margin and pass it through. |
| // This deals with the <td><div><p> case. |
| // Don't do this for a block that split two inlines though. You do |
| // still apply margins in this case. |
| m_topMarginQuirk = true; |
| } |
| |
| if (marginInfo.quirkContainer() && marginInfo.atTopOfBlock() && (posTop - negTop)) |
| marginInfo.setTopQuirk(topQuirk); |
| |
| int ypos = m_height; |
| if (child->isSelfCollapsingBlock()) { |
| // This child has no height. We need to compute our |
| // position before we collapse the child's margins together, |
| // so that we can get an accurate position for the zero-height block. |
| int collapsedTopPos = max(marginInfo.posMargin(), child->maxTopMargin(true)); |
| int collapsedTopNeg = max(marginInfo.negMargin(), child->maxTopMargin(false)); |
| marginInfo.setMargin(collapsedTopPos, collapsedTopNeg); |
| |
| // Now collapse the child's margins together, which means examining our |
| // bottom margin values as well. |
| marginInfo.setPosMarginIfLarger(child->maxBottomMargin(true)); |
| marginInfo.setNegMarginIfLarger(child->maxBottomMargin(false)); |
| |
| if (!marginInfo.canCollapseWithTop()) |
| // We need to make sure that the position of the self-collapsing block |
| // is correct, since it could have overflowing content |
| // that needs to be positioned correctly (e.g., a block that |
| // had a specified height of 0 but that actually had subcontent). |
| ypos = m_height + collapsedTopPos - collapsedTopNeg; |
| } |
| else { |
| if (child->style()->marginTopCollapse() == MSEPARATE) { |
| m_height += marginInfo.margin() + child->marginTop(); |
| ypos = m_height; |
| } |
| else if (!marginInfo.atTopOfBlock() || |
| (!marginInfo.canCollapseTopWithChildren() |
| && (!style()->htmlHacks() || !marginInfo.quirkContainer() || !marginInfo.topQuirk()))) { |
| // We're collapsing with a previous sibling's margins and not |
| // with the top of the block. |
| m_height += max(marginInfo.posMargin(), posTop) - max(marginInfo.negMargin(), negTop); |
| ypos = m_height; |
| } |
| |
| marginInfo.setPosMargin(child->maxBottomMargin(true)); |
| marginInfo.setNegMargin(child->maxBottomMargin(false)); |
| |
| if (marginInfo.margin()) |
| marginInfo.setBottomQuirk(child->isBottomMarginQuirk() || style()->marginBottomCollapse() == MDISCARD); |
| |
| marginInfo.setSelfCollapsingBlockClearedFloat(false); |
| } |
| |
| view()->addLayoutDelta(IntSize(0, yPosEstimate - ypos)); |
| child->setPos(child->xPos(), ypos); |
| if (ypos != yPosEstimate) { |
| if (child->shrinkToAvoidFloats()) |
| // The child's width depends on the line width. |
| // When the child shifts to clear an item, its width can |
| // change (because it has more available line width). |
| // So go ahead and mark the item as dirty. |
| child->setChildNeedsLayout(true, false); |
| |
| if (!child->avoidsFloats() && child->containsFloats()) |
| child->markAllDescendantsWithFloatsForLayout(); |
| |
| // Our guess was wrong. Make the child lay itself out again. |
| child->layoutIfNeeded(); |
| } |
| } |
| |
| void RenderBlock::clearFloatsIfNeeded(RenderObject* child, MarginInfo& marginInfo, int oldTopPosMargin, int oldTopNegMargin) |
| { |
| int heightIncrease = getClearDelta(child); |
| if (!heightIncrease) |
| return; |
| |
| // The child needs to be lowered. Move the child so that it just clears the float. |
| view()->addLayoutDelta(IntSize(0, -heightIncrease)); |
| child->setPos(child->xPos(), child->yPos() + heightIncrease); |
| |
| if (child->isSelfCollapsingBlock()) { |
| // For self-collapsing blocks that clear, they can still collapse their |
| // margins with following siblings. Reset the current margins to represent |
| // the self-collapsing block's margins only. |
| marginInfo.setPosMargin(max(child->maxTopMargin(true), child->maxBottomMargin(true))); |
| marginInfo.setNegMargin(max(child->maxTopMargin(false), child->maxBottomMargin(false))); |
| |
| // Adjust our height such that we are ready to be collapsed with subsequent siblings. |
| m_height = child->yPos() - max(0, marginInfo.margin()); |
| |
| // Set a flag that we cleared a float so that we know both to increase the height of the block |
| // to compensate for the clear and to avoid collapsing our margins with the parent block's |
| // bottom margin. |
| marginInfo.setSelfCollapsingBlockClearedFloat(true); |
| } else |
| // Increase our height by the amount we had to clear. |
| m_height += heightIncrease; |
| |
| if (marginInfo.canCollapseWithTop()) { |
| // We can no longer collapse with the top of the block since a clear |
| // occurred. The empty blocks collapse into the cleared block. |
| // FIXME: This isn't quite correct. Need clarification for what to do |
| // if the height the cleared block is offset by is smaller than the |
| // margins involved. |
| setMaxTopMargins(oldTopPosMargin, oldTopNegMargin); |
| marginInfo.setAtTopOfBlock(false); |
| } |
| |
| // If our value of clear caused us to be repositioned vertically to be |
| // underneath a float, we might have to do another layout to take into account |
| // the extra space we now have available. |
| if (child->shrinkToAvoidFloats()) |
| // The child's width depends on the line width. |
| // When the child shifts to clear an item, its width can |
| // change (because it has more available line width). |
| // So go ahead and mark the item as dirty. |
| child->setChildNeedsLayout(true, false); |
| if (!child->avoidsFloats() && child->containsFloats()) |
| child->markAllDescendantsWithFloatsForLayout(); |
| child->layoutIfNeeded(); |
| } |
| |
| int RenderBlock::estimateVerticalPosition(RenderObject* child, const MarginInfo& marginInfo) |
| { |
| // FIXME: We need to eliminate the estimation of vertical position, because when it's wrong we sometimes trigger a pathological |
| // relayout if there are intruding floats. |
| int yPosEstimate = m_height; |
| if (!marginInfo.canCollapseWithTop()) { |
| int childMarginTop = child->selfNeedsLayout() ? child->marginTop() : child->collapsedMarginTop(); |
| yPosEstimate += max(marginInfo.margin(), childMarginTop); |
| } |
| return yPosEstimate; |
| } |
| |
| void RenderBlock::determineHorizontalPosition(RenderObject* child) |
| { |
| if (style()->direction() == LTR) { |
| int xPos = borderLeft() + paddingLeft(); |
| |
| // Add in our left margin. |
| int chPos = xPos + child->marginLeft(); |
| |
| // Some objects (e.g., tables, horizontal rules, overflow:auto blocks) avoid floats. They need |
| // to shift over as necessary to dodge any floats that might get in the way. |
| if (child->avoidsFloats()) { |
| int leftOff = leftOffset(m_height); |
| if (style()->textAlign() != WEBKIT_CENTER && child->style()->marginLeft().type() != Auto) { |
| if (child->marginLeft() < 0) |
| leftOff += child->marginLeft(); |
| chPos = max(chPos, leftOff); // Let the float sit in the child's margin if it can fit. |
| } |
| else if (leftOff != xPos) { |
| // The object is shifting right. The object might be centered, so we need to |
| // recalculate our horizontal margins. Note that the containing block content |
| // width computation will take into account the delta between |leftOff| and |xPos| |
| // so that we can just pass the content width in directly to the |calcHorizontalMargins| |
| // function. |
| static_cast<RenderBox*>(child)->calcHorizontalMargins(child->style()->marginLeft(), child->style()->marginRight(), lineWidth(child->yPos())); |
| chPos = leftOff + child->marginLeft(); |
| } |
| } |
| view()->addLayoutDelta(IntSize(child->xPos() - chPos, 0)); |
| child->setPos(chPos, child->yPos()); |
| } else { |
| int xPos = m_width - borderRight() - paddingRight() - verticalScrollbarWidth(); |
| int chPos = xPos - (child->width() + child->marginRight()); |
| if (child->avoidsFloats()) { |
| int rightOff = rightOffset(m_height); |
| if (style()->textAlign() != WEBKIT_CENTER && child->style()->marginRight().type() != Auto) { |
| if (child->marginRight() < 0) |
| rightOff -= child->marginRight(); |
| chPos = min(chPos, rightOff - child->width()); // Let the float sit in the child's margin if it can fit. |
| } else if (rightOff != xPos) { |
| // The object is shifting left. The object might be centered, so we need to |
| // recalculate our horizontal margins. Note that the containing block content |
| // width computation will take into account the delta between |rightOff| and |xPos| |
| // so that we can just pass the content width in directly to the |calcHorizontalMargins| |
| // function. |
| static_cast<RenderBox*>(child)->calcHorizontalMargins(child->style()->marginLeft(), child->style()->marginRight(), lineWidth(child->yPos())); |
| chPos = rightOff - child->marginRight() - child->width(); |
| } |
| } |
| view()->addLayoutDelta(IntSize(child->xPos() - chPos, 0)); |
| child->setPos(chPos, child->yPos()); |
| } |
| } |
| |
| void RenderBlock::setCollapsedBottomMargin(const MarginInfo& marginInfo) |
| { |
| if (marginInfo.canCollapseWithBottom() && !marginInfo.canCollapseWithTop()) { |
| // Update our max pos/neg bottom margins, since we collapsed our bottom margins |
| // with our children. |
| setMaxBottomMargins(max(maxBottomPosMargin(), marginInfo.posMargin()), max(maxBottomNegMargin(), marginInfo.negMargin())); |
| |
| if (!marginInfo.bottomQuirk()) |
| m_bottomMarginQuirk = false; |
| |
| if (marginInfo.bottomQuirk() && marginBottom() == 0) |
| // We have no bottom margin and our last child has a quirky margin. |
| // We will pick up this quirky margin and pass it through. |
| // This deals with the <td><div><p> case. |
| m_bottomMarginQuirk = true; |
| } |
| } |
| |
| void RenderBlock::handleBottomOfBlock(int top, int bottom, MarginInfo& marginInfo) |
| { |
| // If our last flow was a self-collapsing block that cleared a float, then we don't |
| // collapse it with the bottom of the block. |
| if (!marginInfo.selfCollapsingBlockClearedFloat()) |
| marginInfo.setAtBottomOfBlock(true); |
| else { |
| // We have to special case the negative margin situation (where the collapsed |
| // margin of the self-collapsing block is negative), since there's no need |
| // to make an adjustment in that case. |
| if (marginInfo.margin() < 0) |
| marginInfo.clearMargin(); |
| } |
| |
| // If we can't collapse with children then go ahead and add in the bottom margin. |
| if (!marginInfo.canCollapseWithBottom() && !marginInfo.canCollapseWithTop() |
| && (!style()->htmlHacks() || !marginInfo.quirkContainer() || !marginInfo.bottomQuirk())) |
| m_height += marginInfo.margin(); |
| |
| // Now add in our bottom border/padding. |
| m_height += bottom; |
| |
| // Negative margins can cause our height to shrink below our minimal height (border/padding). |
| // If this happens, ensure that the computed height is increased to the minimal height. |
| m_height = max(m_height, top + bottom); |
| |
| // Always make sure our overflow height is at least our height. |
| m_overflowHeight = max(m_height, m_overflowHeight); |
| |
| // Update our bottom collapsed margin info. |
| setCollapsedBottomMargin(marginInfo); |
| } |
| |
| void RenderBlock::layoutBlockChildren(bool relayoutChildren, int& maxFloatBottom) |
| { |
| if (gPercentHeightDescendantsMap) { |
| if (HashSet<RenderBox*>* descendants = gPercentHeightDescendantsMap->get(this)) { |
| HashSet<RenderBox*>::iterator end = descendants->end(); |
| for (HashSet<RenderBox*>::iterator it = descendants->begin(); it != end; ++it) { |
| RenderBox* box = *it; |
| while (box != this) { |
| if (box->normalChildNeedsLayout()) |
| break; |
| box->setChildNeedsLayout(true, false); |
| box = box->containingBlock(); |
| ASSERT(box); |
| if (!box) |
| break; |
| } |
| } |
| } |
| } |
| |
| int top = borderTop() + paddingTop(); |
| int bottom = borderBottom() + paddingBottom() + horizontalScrollbarHeight(); |
| |
| m_height = m_overflowHeight = top; |
| |
| // The margin struct caches all our current margin collapsing state. The compact struct caches state when we encounter compacts, |
| MarginInfo marginInfo(this, top, bottom); |
| CompactInfo compactInfo; |
| |
| // Fieldsets need to find their legend and position it inside the border of the object. |
| // The legend then gets skipped during normal layout. |
| RenderObject* legend = layoutLegend(relayoutChildren); |
| |
| int previousFloatBottom = 0; |
| maxFloatBottom = 0; |
| |
| RenderObject* child = firstChild(); |
| while (child) { |
| if (legend == child) { |
| child = child->nextSibling(); |
| continue; // Skip the legend, since it has already been positioned up in the fieldset's border. |
| } |
| |
| int oldTopPosMargin = maxTopPosMargin(); |
| int oldTopNegMargin = maxTopNegMargin(); |
| |
| // Make sure we layout children if they need it. |
| // FIXME: Technically percentage height objects only need a relayout if their percentage isn't going to be turned into |
| // an auto value. Add a method to determine this, so that we can avoid the relayout. |
| if (relayoutChildren || ((child->style()->height().isPercent() || child->style()->minHeight().isPercent() || child->style()->maxHeight().isPercent()) && !isRenderView())) |
| child->setChildNeedsLayout(true, false); |
| |
| // If relayoutChildren is set and we have percentage padding, we also need to invalidate the child's pref widths. |
| if (relayoutChildren && (child->style()->paddingLeft().isPercent() || child->style()->paddingRight().isPercent())) |
| child->setPrefWidthsDirty(true, false); |
| |
| // Handle the four types of special elements first. These include positioned content, floating content, compacts and |
| // run-ins. When we encounter these four types of objects, we don't actually lay them out as normal flow blocks. |
| bool handled = false; |
| RenderObject* next = handleSpecialChild(child, marginInfo, compactInfo, handled); |
| if (handled) { |
| child = next; |
| continue; |
| } |
| |
| // The child is a normal flow object. Compute its vertical margins now. |
| child->calcVerticalMargins(); |
| |
| // Do not allow a collapse if the margin top collapse style is set to SEPARATE. |
| if (child->style()->marginTopCollapse() == MSEPARATE) { |
| marginInfo.setAtTopOfBlock(false); |
| marginInfo.clearMargin(); |
| } |
| |
| // Try to guess our correct y position. In most cases this guess will |
| // be correct. Only if we're wrong (when we compute the real y position) |
| // will we have to potentially relayout. |
| int yPosEstimate = estimateVerticalPosition(child, marginInfo); |
| |
| // Cache our old rect so that we can dirty the proper repaint rects if the child moves. |
| IntRect oldRect(child->xPos(), child->yPos() , child->width(), child->height()); |
| |
| // Go ahead and position the child as though it didn't collapse with the top. |
| view()->addLayoutDelta(IntSize(0, child->yPos() - yPosEstimate)); |
| child->setPos(child->xPos(), yPosEstimate); |
| |
| bool markDescendantsWithFloats = false; |
| if (yPosEstimate != oldRect.y() && !child->avoidsFloats() && child->containsFloats()) |
| markDescendantsWithFloats = true; |
| else if (!child->avoidsFloats() || child->shrinkToAvoidFloats()) { |
| // If an element might be affected by the presence of floats, then always mark it for |
| // layout. |
| int fb = max(previousFloatBottom, floatBottom()); |
| if (fb > m_height || fb > yPosEstimate) |
| markDescendantsWithFloats = true; |
| } |
| |
| if (markDescendantsWithFloats) |
| child->markAllDescendantsWithFloatsForLayout(); |
| |
| if (child->isRenderBlock()) |
| previousFloatBottom = max(previousFloatBottom, oldRect.y() + static_cast<RenderBlock*>(child)->floatBottom()); |
| |
| bool childHadLayout = child->m_everHadLayout; |
| bool childNeededLayout = child->needsLayout(); |
| if (childNeededLayout) |
| child->layout(); |
| |
| // Now determine the correct ypos based off examination of collapsing margin |
| // values. |
| collapseMargins(child, marginInfo, yPosEstimate); |
| |
| // Now check for clear. |
| clearFloatsIfNeeded(child, marginInfo, oldTopPosMargin, oldTopNegMargin); |
| |
| // We are no longer at the top of the block if we encounter a non-empty child. |
| // This has to be done after checking for clear, so that margins can be reset if a clear occurred. |
| if (marginInfo.atTopOfBlock() && !child->isSelfCollapsingBlock()) |
| marginInfo.setAtTopOfBlock(false); |
| |
| // Now place the child in the correct horizontal position |
| determineHorizontalPosition(child); |
| |
| // Update our height now that the child has been placed in the correct position. |
| m_height += child->height(); |
| if (child->style()->marginBottomCollapse() == MSEPARATE) { |
| m_height += child->marginBottom(); |
| marginInfo.clearMargin(); |
| } |
| // If the child has overhanging floats that intrude into following siblings (or possibly out |
| // of this block), then the parent gets notified of the floats now. |
| maxFloatBottom = max(maxFloatBottom, addOverhangingFloats(static_cast<RenderBlock *>(child), -child->xPos(), -child->yPos(), !childNeededLayout)); |
| |
| // Update our overflow in case the child spills out the block. |
| m_overflowTop = min(m_overflowTop, child->yPos() + child->overflowTop(false)); |
| m_overflowHeight = max(m_overflowHeight, m_height + child->overflowHeight(false) - child->height()); |
| m_overflowWidth = max(child->xPos() + child->overflowWidth(false), m_overflowWidth); |
| m_overflowLeft = min(child->xPos() + child->overflowLeft(false), m_overflowLeft); |
| |
| // Insert our compact into the block margin if we have one. |
| insertCompactIfNeeded(child, compactInfo); |
| |
| IntSize childOffset(child->xPos() - oldRect.x(), child->yPos() - oldRect.y()); |
| if (childOffset.width() || childOffset.height()) { |
| view()->addLayoutDelta(childOffset); |
| |
| // If the child moved, we have to repaint it as well as any floating/positioned |
| // descendants. An exception is if we need a layout. In this case, we know we're going to |
| // repaint ourselves (and the child) anyway. |
| if (childHadLayout && !selfNeedsLayout() && child->checkForRepaintDuringLayout()) |
| child->repaintDuringLayoutIfMoved(oldRect); |
| } |
| |
| if (!childHadLayout && child->checkForRepaintDuringLayout()) |
| child->repaint(); |
| |
| child = child->nextSibling(); |
| } |
| |
| // Now do the handling of the bottom of the block, adding in our bottom border/padding and |
| // determining the correct collapsed bottom margin information. |
| handleBottomOfBlock(top, bottom, marginInfo); |
| } |
| |
| bool RenderBlock::layoutOnlyPositionedObjects() |
| { |
| if (!posChildNeedsLayout() || normalChildNeedsLayout() || selfNeedsLayout()) |
| return false; |
| |
| LayoutStateMaintainer statePusher(view(), this, IntSize(xPos(), yPos()), !m_hasColumns && !hasTransform() && !hasReflection()); |
| |
| if (needsPositionedMovementLayout()) { |
| tryLayoutDoingPositionedMovementOnly(); |
| if (needsLayout()) |
| return false; |
| } |
| |
| // All we have to is lay out our positioned objects. |
| layoutPositionedObjects(false); |
| |
| statePusher.pop(); |
| |
| if (hasOverflowClip()) |
| m_layer->updateScrollInfoAfterLayout(); |
| |
| setNeedsLayout(false); |
| return true; |
| } |
| |
| void RenderBlock::layoutPositionedObjects(bool relayoutChildren) |
| { |
| if (m_positionedObjects) { |
| RenderObject* r; |
| Iterator end = m_positionedObjects->end(); |
| for (Iterator it = m_positionedObjects->begin(); it != end; ++it) { |
| r = *it; |
| // When a non-positioned block element moves, it may have positioned children that are implicitly positioned relative to the |
| // non-positioned block. Rather than trying to detect all of these movement cases, we just always lay out positioned |
| // objects that are positioned implicitly like this. Such objects are rare, and so in typical DHTML menu usage (where everything is |
| // positioned explicitly) this should not incur a performance penalty. |
| if (relayoutChildren || (r->hasStaticY() && r->parent() != this && r->parent()->isBlockFlow())) |
| r->setChildNeedsLayout(true, false); |
| |
| // If relayoutChildren is set and we have percentage padding, we also need to invalidate the child's pref widths. |
| if (relayoutChildren && (r->style()->paddingLeft().isPercent() || r->style()->paddingRight().isPercent())) |
| r->setPrefWidthsDirty(true, false); |
| |
| // We don't have to do a full layout. We just have to update our position. Try that first. If we have shrink-to-fit width |
| // and we hit the available width constraint, the layoutIfNeeded() will catch it and do a full layout. |
| if (r->needsPositionedMovementLayoutOnly()) |
| r->tryLayoutDoingPositionedMovementOnly(); |
| r->layoutIfNeeded(); |
| } |
| } |
| } |
| |
| void RenderBlock::markPositionedObjectsForLayout() |
| { |
| if (m_positionedObjects) { |
| RenderObject* r; |
| Iterator end = m_positionedObjects->end(); |
| for (Iterator it = m_positionedObjects->begin(); it != end; ++it) { |
| r = *it; |
| r->setChildNeedsLayout(true); |
| } |
| } |
| } |
| |
| void RenderBlock::repaintOverhangingFloats(bool paintAllDescendants) |
| { |
| // Repaint any overhanging floats (if we know we're the one to paint them). |
| if (hasOverhangingFloats()) { |
| // We think that we must be in a bad state if m_floatingObjects is nil at this point, so |
| // we assert on Debug builds and nil-check Release builds. |
| ASSERT(m_floatingObjects); |
| if (!m_floatingObjects) |
| return; |
| |
| FloatingObject* r; |
| DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects); |
| |
| // FIXME: Avoid disabling LayoutState. At the very least, don't disable it for floats originating |
| // in this block. Better yet would be to push extra state for the containers of other floats. |
| view()->disableLayoutState(); |
| for ( ; (r = it.current()); ++it) { |
| // Only repaint the object if it is overhanging, is not in its own layer, and |
| // is our responsibility to paint (m_shouldPaint is set). When paintAllDescendants is true, the latter |
| // condition is replaced with being a descendant of us. |
| if (r->m_bottom > m_height && (paintAllDescendants && r->m_renderer->isDescendantOf(this) || r->m_shouldPaint) && !r->m_renderer->hasLayer()) { |
| r->m_renderer->repaint(); |
| r->m_renderer->repaintOverhangingFloats(); |
| } |
| } |
| view()->enableLayoutState(); |
| } |
| } |
| |
| void RenderBlock::paint(PaintInfo& paintInfo, int tx, int ty) |
| { |
| tx += m_x; |
| ty += m_y; |
| |
| PaintPhase phase = paintInfo.phase; |
| |
| // Check if we need to do anything at all. |
| // FIXME: Could eliminate the isRoot() check if we fix background painting so that the RenderView |
| // paints the root's background. |
| if (!isInlineFlow() && !isRoot()) { |
| IntRect overflowBox = overflowRect(false); |
| overflowBox.inflate(maximalOutlineSize(paintInfo.phase)); |
| overflowBox.move(tx, ty); |
| if (!overflowBox.intersects(paintInfo.rect)) |
| return; |
| } |
| |
| bool useControlClip = phase != PaintPhaseBlockBackground && phase != PaintPhaseSelfOutline && phase != PaintPhaseMask && hasControlClip(); |
| |
| // Push a clip. |
| if (useControlClip) { |
| if (phase == PaintPhaseOutline) |
| paintInfo.phase = PaintPhaseChildOutlines; |
| else if (phase == PaintPhaseChildBlockBackground) { |
| paintInfo.phase = PaintPhaseBlockBackground; |
| paintObject(paintInfo, tx, ty); |
| paintInfo.phase = PaintPhaseChildBlockBackgrounds; |
| } |
| IntRect clipRect(controlClipRect(tx, ty)); |
| if (clipRect.isEmpty()) |
| return; |
| paintInfo.context->save(); |
| paintInfo.context->clip(clipRect); |
| } |
| |
| paintObject(paintInfo, tx, ty); |
| |
| // Pop the clip. |
| if (useControlClip) { |
| paintInfo.context->restore(); |
| if (phase == PaintPhaseOutline) { |
| paintInfo.phase = PaintPhaseSelfOutline; |
| paintObject(paintInfo, tx, ty); |
| paintInfo.phase = phase; |
| } else if (phase == PaintPhaseChildBlockBackground) |
| paintInfo.phase = phase; |
| } |
| } |
| |
| void RenderBlock::paintColumns(PaintInfo& paintInfo, int tx, int ty, bool paintingFloats) |
| { |
| // We need to do multiple passes, breaking up our child painting into strips. |
| GraphicsContext* context = paintInfo.context; |
| int currXOffset = 0; |
| int currYOffset = 0; |
| int ruleAdd = borderLeft() + paddingLeft(); |
| int ruleX = 0; |
| int colGap = columnGap(); |
| const Color& ruleColor = style()->columnRuleColor(); |
| bool ruleTransparent = style()->columnRuleIsTransparent(); |
| EBorderStyle ruleStyle = style()->columnRuleStyle(); |
| int ruleWidth = style()->columnRuleWidth(); |
| bool renderRule = !paintingFloats && ruleStyle > BHIDDEN && !ruleTransparent && ruleWidth <= colGap; |
| Vector<IntRect>* colRects = columnRects(); |
| unsigned colCount = colRects->size(); |
| for (unsigned i = 0; i < colCount; i++) { |
| // For each rect, we clip to the rect, and then we adjust our coords. |
| IntRect colRect = colRects->at(i); |
| colRect.move(tx, ty); |
| context->save(); |
| |
| // Each strip pushes a clip, since column boxes are specified as being |
| // like overflow:hidden. |
| context->clip(colRect); |
| |
| // Adjust tx and ty to change where we paint. |
| PaintInfo info(paintInfo); |
| info.rect.intersect(colRect); |
| |
| // Adjust our x and y when painting. |
| int finalX = tx + currXOffset; |
| int finalY = ty + currYOffset; |
| if (paintingFloats) |
| paintFloats(info, finalX, finalY, paintInfo.phase == PaintPhaseSelection || paintInfo.phase == PaintPhaseTextClip); |
| else |
| paintContents(info, finalX, finalY); |
| |
| // Move to the next position. |
| if (style()->direction() == LTR) { |
| ruleX += colRect.width() + colGap / 2; |
| currXOffset += colRect.width() + colGap; |
| } else { |
| ruleX -= (colRect.width() + colGap / 2); |
| currXOffset -= (colRect.width() + colGap); |
| } |
| |
| currYOffset -= colRect.height(); |
| |
| context->restore(); |
| |
| // Now paint the column rule. |
| if (renderRule && paintInfo.phase == PaintPhaseForeground && i < colCount - 1) { |
| int ruleStart = ruleX - ruleWidth / 2 + ruleAdd; |
| int ruleEnd = ruleStart + ruleWidth; |
| drawBorder(paintInfo.context, tx + ruleStart, ty + borderTop() + paddingTop(), tx + ruleEnd, ty + borderTop() + paddingTop() + contentHeight(), |
| style()->direction() == LTR ? BSLeft : BSRight, ruleColor, style()->color(), ruleStyle, 0, 0); |
| } |
| |
| ruleX = currXOffset; |
| } |
| } |
| |
| void RenderBlock::paintContents(PaintInfo& paintInfo, int tx, int ty) |
| { |
| // Avoid painting descendants of the root element when stylesheets haven't loaded. This eliminates FOUC. |
| // It's ok not to draw, because later on, when all the stylesheets do load, updateStyleSelector on the Document |
| // will do a full repaint(). |
| if (document()->didLayoutWithPendingStylesheets() && !isRenderView()) |
| return; |
| |
| if (childrenInline()) |
| paintLines(paintInfo, tx, ty); |
| else |
| paintChildren(paintInfo, tx, ty); |
| } |
| |
| void RenderBlock::paintChildren(PaintInfo& paintInfo, int tx, int ty) |
| { |
| PaintPhase newPhase = (paintInfo.phase == PaintPhaseChildOutlines) ? PaintPhaseOutline : paintInfo.phase; |
| newPhase = (newPhase == PaintPhaseChildBlockBackgrounds) ? PaintPhaseChildBlockBackground : newPhase; |
| |
| // We don't paint our own background, but we do let the kids paint their backgrounds. |
| PaintInfo info(paintInfo); |
| info.phase = newPhase; |
| info.paintingRoot = paintingRootForChildren(paintInfo); |
| bool isPrinting = document()->printing(); |
| |
| for (RenderObject* child = firstChild(); child; child = child->nextSibling()) { |
| // Check for page-break-before: always, and if it's set, break and bail. |
| if (isPrinting && !childrenInline() && child->style()->pageBreakBefore() == PBALWAYS && |
| inRootBlockContext() && (ty + child->yPos()) > paintInfo.rect.y() && |
| (ty + child->yPos()) < paintInfo.rect.bottom()) { |
| view()->setBestTruncatedAt(ty + child->yPos(), this, true); |
| return; |
| } |
| |
| if (!child->hasLayer() && !child->isFloating()) |
| child->paint(info, tx, ty); |
| |
| // Check for page-break-after: always, and if it's set, break and bail. |
| if (isPrinting && !childrenInline() && child->style()->pageBreakAfter() == PBALWAYS && |
| inRootBlockContext() && (ty + child->yPos() + child->height()) > paintInfo.rect.y() && |
| (ty + child->yPos() + child->height()) < paintInfo.rect.bottom()) { |
| view()->setBestTruncatedAt(ty + child->yPos() + child->height() + max(0, child->collapsedMarginBottom()), this, true); |
| return; |
| } |
| } |
| } |
| |
| void RenderBlock::paintCaret(PaintInfo& paintInfo, int tx, int ty, CaretType type) |
| { |
| SelectionController* selection = type == CursorCaret ? document()->frame()->selection() : document()->frame()->dragCaretController(); |
| |
| // Ask the SelectionController if the caret should be painted by this block |
| RenderObject* caretPainter = selection->caretRenderer(); |
| if (caretPainter == this && selection->isContentEditable()) { |
| // Convert the painting offset into the local coordinate system of this renderer, |
| // to match the localCaretRect computed by the SelectionController |
| offsetForContents(tx, ty); |
| |
| if (type == CursorCaret) |
| document()->frame()->paintCaret(paintInfo.context, tx, ty, paintInfo.rect); |
| else |
| document()->frame()->paintDragCaret(paintInfo.context, tx, ty, paintInfo.rect); |
| } |
| } |
| |
| void RenderBlock::paintObject(PaintInfo& paintInfo, int tx, int ty) |
| { |
| PaintPhase paintPhase = paintInfo.phase; |
| |
| // If we're a repositioned run-in or a compact, don't paint background/borders. |
| bool inlineFlow = isInlineFlow(); |
| |
| // 1. paint background, borders etc |
| if (!inlineFlow && |
| (paintPhase == PaintPhaseBlockBackground || paintPhase == PaintPhaseChildBlockBackground) && |
| hasBoxDecorations() && style()->visibility() == VISIBLE) { |
| paintBoxDecorations(paintInfo, tx, ty); |
| } |
| |
| if (paintPhase == PaintPhaseMask && style()->visibility() == VISIBLE) { |
| paintMask(paintInfo, tx, ty); |
| return; |
| } |
| |
| // We're done. We don't bother painting any children. |
| if (paintPhase == PaintPhaseBlockBackground) |
| return; |
| |
| // Adjust our painting position if we're inside a scrolled layer (e.g., an overflow:auto div).s |
| int scrolledX = tx; |
| int scrolledY = ty; |
| if (hasOverflowClip()) |
| m_layer->subtractScrolledContentOffset(scrolledX, scrolledY); |
| |
| // 2. paint contents |
| if (paintPhase != PaintPhaseSelfOutline) { |
| if (m_hasColumns) |
| paintColumns(paintInfo, scrolledX, scrolledY); |
| else |
| paintContents(paintInfo, scrolledX, scrolledY); |
| } |
| |
| // 3. paint selection |
| // FIXME: Make this work with multi column layouts. For now don't fill gaps. |
| bool isPrinting = document()->printing(); |
| if (!inlineFlow && !isPrinting && !m_hasColumns) |
| paintSelection(paintInfo, scrolledX, scrolledY); // Fill in gaps in selection on lines and between blocks. |
| |
| // 4. paint floats. |
| if (!inlineFlow && (paintPhase == PaintPhaseFloat || paintPhase == PaintPhaseSelection || paintPhase == PaintPhaseTextClip)) { |
| if (m_hasColumns) |
| paintColumns(paintInfo, scrolledX, scrolledY, true); |
| else |
| paintFloats(paintInfo, scrolledX, scrolledY, paintPhase == PaintPhaseSelection || paintPhase == PaintPhaseTextClip); |
| } |
| |
| // 5. paint outline. |
| if (!inlineFlow && (paintPhase == PaintPhaseOutline || paintPhase == PaintPhaseSelfOutline) && hasOutline() && style()->visibility() == VISIBLE) |
| RenderObject::paintOutline(paintInfo.context, tx, ty, width(), height(), style()); |
| |
| // 6. paint continuation outlines. |
| if (!inlineFlow && (paintPhase == PaintPhaseOutline || paintPhase == PaintPhaseChildOutlines)) { |
| if (continuation() && continuation()->hasOutline() && continuation()->style()->visibility() == VISIBLE) { |
| RenderFlow* inlineFlow = static_cast<RenderFlow*>(continuation()->element()->renderer()); |
| if (!inlineFlow->hasLayer()) |
| containingBlock()->addContinuationWithOutline(inlineFlow); |
| else if (!inlineFlow->firstLineBox()) |
| inlineFlow->paintOutline(paintInfo.context, tx - xPos() + inlineFlow->containingBlock()->xPos(), |
| ty - yPos() + inlineFlow->containingBlock()->yPos()); |
| } |
| paintContinuationOutlines(paintInfo, tx, ty); |
| } |
| |
| // 7. paint caret. |
| // If the caret's node's render object's containing block is this block, and the paint action is PaintPhaseForeground, |
| // then paint the caret. |
| if (!inlineFlow && paintPhase == PaintPhaseForeground) { |
| paintCaret(paintInfo, scrolledX, scrolledY, CursorCaret); |
| paintCaret(paintInfo, scrolledX, scrolledY, DragCaret); |
| } |
| } |
| |
| void RenderBlock::paintFloats(PaintInfo& paintInfo, int tx, int ty, bool preservePhase) |
| { |
| if (!m_floatingObjects) |
| return; |
| |
| FloatingObject* r; |
| DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects); |
| for (; (r = it.current()); ++it) { |
| // Only paint the object if our m_shouldPaint flag is set. |
| if (r->m_shouldPaint && !r->m_renderer->hasLayer()) { |
| PaintInfo currentPaintInfo(paintInfo); |
| currentPaintInfo.phase = preservePhase ? paintInfo.phase : PaintPhaseBlockBackground; |
| int currentTX = tx + r->m_left - r->m_renderer->xPos() + r->m_renderer->marginLeft(); |
| int currentTY = ty + r->m_top - r->m_renderer->yPos() + r->m_renderer->marginTop(); |
| r->m_renderer->paint(currentPaintInfo, currentTX, currentTY); |
| if (!preservePhase) { |
| currentPaintInfo.phase = PaintPhaseChildBlockBackgrounds; |
| r->m_renderer->paint(currentPaintInfo, currentTX, currentTY); |
| currentPaintInfo.phase = PaintPhaseFloat; |
| r->m_renderer->paint(currentPaintInfo, currentTX, currentTY); |
| currentPaintInfo.phase = PaintPhaseForeground; |
| r->m_renderer->paint(currentPaintInfo, currentTX, currentTY); |
| currentPaintInfo.phase = PaintPhaseOutline; |
| r->m_renderer->paint(currentPaintInfo, currentTX, currentTY); |
| } |
| } |
| } |
| } |
| |
| void RenderBlock::paintEllipsisBoxes(PaintInfo& paintInfo, int tx, int ty) |
| { |
| if (!shouldPaintWithinRoot(paintInfo) || !firstLineBox()) |
| return; |
| |
| if (style()->visibility() == VISIBLE && paintInfo.phase == PaintPhaseForeground) { |
| // We can check the first box and last box and avoid painting if we don't |
| // intersect. |
| int yPos = ty + firstLineBox()->yPos(); |
| int h = lastLineBox()->yPos() + lastLineBox()->height() - firstLineBox()->yPos(); |
| if (yPos >= paintInfo.rect.bottom() || yPos + h <= paintInfo.rect.y()) |
| return; |
| |
| // See if our boxes intersect with the dirty rect. If so, then we paint |
| // them. Note that boxes can easily overlap, so we can't make any assumptions |
| // based off positions of our first line box or our last line box. |
| for (RootInlineBox* curr = firstRootBox(); curr; curr = curr->nextRootBox()) { |
| yPos = ty + curr->yPos(); |
| h = curr->height(); |
| if (curr->ellipsisBox() && yPos < paintInfo.rect.bottom() && yPos + h > paintInfo.rect.y()) |
| curr->paintEllipsisBox(paintInfo, tx, ty); |
| } |
| } |
| } |
| |
| ContinuationOutlineTableMap* continuationOutlineTable() |
| { |
| DEFINE_STATIC_LOCAL(ContinuationOutlineTableMap, table, ()); |
| return &table; |
| } |
| |
| void RenderBlock::addContinuationWithOutline(RenderFlow* flow) |
| { |
| // We can't make this work if the inline is in a layer. We'll just rely on the broken |
| // way of painting. |
| ASSERT(!flow->layer()); |
| |
| ContinuationOutlineTableMap* table = continuationOutlineTable(); |
| RenderFlowSequencedSet* continuations = table->get(this); |
| if (!continuations) { |
| continuations = new RenderFlowSequencedSet; |
| table->set(this, continuations); |
| } |
| |
| continuations->add(flow); |
| } |
| |
| void RenderBlock::paintContinuationOutlines(PaintInfo& info, int tx, int ty) |
| { |
| ContinuationOutlineTableMap* table = continuationOutlineTable(); |
| if (table->isEmpty()) |
| return; |
| |
| RenderFlowSequencedSet* continuations = table->get(this); |
| if (!continuations) |
| return; |
| |
| // Paint each continuation outline. |
| RenderFlowSequencedSet::iterator end = continuations->end(); |
| for (RenderFlowSequencedSet::iterator it = continuations->begin(); it != end; ++it) { |
| // Need to add in the coordinates of the intervening blocks. |
| RenderFlow* flow = *it; |
| RenderBlock* block = flow->containingBlock(); |
| for ( ; block && block != this; block = block->containingBlock()) { |
| tx += block->xPos(); |
| ty += block->yPos(); |
| } |
| ASSERT(block); |
| flow->paintOutline(info.context, tx, ty); |
| } |
| |
| // Delete |
| delete continuations; |
| table->remove(this); |
| } |
| |
| void RenderBlock::setSelectionState(SelectionState s) |
| { |
| if (selectionState() == s) |
| return; |
| |
| if (s == SelectionInside && selectionState() != SelectionNone) |
| return; |
| |
| if ((s == SelectionStart && selectionState() == SelectionEnd) || |
| (s == SelectionEnd && selectionState() == SelectionStart)) |
| m_selectionState = SelectionBoth; |
| else |
| m_selectionState = s; |
| |
| RenderBlock* cb = containingBlock(); |
| if (cb && !cb->isRenderView()) |
| cb->setSelectionState(s); |
| } |
| |
| bool RenderBlock::shouldPaintSelectionGaps() const |
| { |
| return m_selectionState != SelectionNone && style()->visibility() == VISIBLE && isSelectionRoot(); |
| } |
| |
| bool RenderBlock::isSelectionRoot() const |
| { |
| if (!element()) |
| return false; |
| |
| // FIXME: Eventually tables should have to learn how to fill gaps between cells, at least in simple non-spanning cases. |
| if (isTable()) |
| return false; |
| |
| if (isBody() || isRoot() || hasOverflowClip() || isRelPositioned() || |
| isFloatingOrPositioned() || isTableCell() || isInlineBlockOrInlineTable() || hasTransform() || |
| hasReflection() || hasMask()) |
| return true; |
| |
| if (view() && view()->selectionStart()) { |
| Node* startElement = view()->selectionStart()->element(); |
| if (startElement && startElement->rootEditableElement() == element()) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| GapRects RenderBlock::selectionGapRects() |
| { |
| ASSERT(!needsLayout()); |
| |
| if (!shouldPaintSelectionGaps()) |
| return GapRects(); |
| |
| // FIXME: this is broken with transforms |
| FloatPoint absContentPoint = localToAbsoluteForContent(FloatPoint()); |
| if (hasOverflowClip()) |
| absContentPoint -= layer()->scrolledContentOffset(); |
| |
| int lastTop = -borderTopExtra(); |
| int lastLeft = leftSelectionOffset(this, lastTop); |
| int lastRight = rightSelectionOffset(this, lastTop); |
| |
| return fillSelectionGaps(this, absContentPoint.x(), absContentPoint.y(), absContentPoint.x(), absContentPoint.y(), lastTop, lastLeft, lastRight); |
| } |
| |
| void RenderBlock::paintSelection(PaintInfo& paintInfo, int tx, int ty) |
| { |
| if (shouldPaintSelectionGaps() && paintInfo.phase == PaintPhaseForeground) { |
| int lastTop = -borderTopExtra(); |
| int lastLeft = leftSelectionOffset(this, lastTop); |
| int lastRight = rightSelectionOffset(this, lastTop); |
| paintInfo.context->save(); |
| fillSelectionGaps(this, tx, ty, tx, ty, lastTop, lastLeft, lastRight, &paintInfo); |
| paintInfo.context->restore(); |
| } |
| } |
| |
| static void clipOutPositionedObjects(const RenderObject::PaintInfo* paintInfo, int tx, int ty, ListHashSet<RenderObject*>* positionedObjects) |
| { |
| if (!positionedObjects) |
| return; |
| |
| ListHashSet<RenderObject*>::const_iterator end = positionedObjects->end(); |
| for (ListHashSet<RenderObject*>::const_iterator it = positionedObjects->begin(); it != end; ++it) { |
| RenderObject* r = *it; |
| paintInfo->context->clipOut(IntRect(tx + r->xPos(), ty + r->yPos(), r->width(), r->height())); |
| } |
| } |
| |
| GapRects RenderBlock::fillSelectionGaps(RenderBlock* rootBlock, int blockX, int blockY, int tx, int ty, |
| int& lastTop, int& lastLeft, int& lastRight, const PaintInfo* paintInfo) |
| { |
| // IMPORTANT: Callers of this method that intend for painting to happen need to do a save/restore. |
| // Clip out floating and positioned objects when painting selection gaps. |
| if (paintInfo) { |
| // Note that we don't clip out overflow for positioned objects. We just stick to the border box. |
| clipOutPositionedObjects(paintInfo, tx, ty, m_positionedObjects); |
| if (isBody() || isRoot()) // The <body> must make sure to examine its containingBlock's positioned objects. |
| for (RenderBlock* cb = containingBlock(); cb && !cb->isRenderView(); cb = cb->containingBlock()) |
| clipOutPositionedObjects(paintInfo, cb->xPos(), cb->yPos(), cb->m_positionedObjects); |
| if (m_floatingObjects) { |
| for (DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects); it.current(); ++it) { |
| FloatingObject* r = it.current(); |
| paintInfo->context->clipOut(IntRect(tx + r->m_left + r->m_renderer->marginLeft(), |
| ty + r->m_top + r->m_renderer->marginTop(), |
| r->m_renderer->width(), r->m_renderer->height())); |
| } |
| } |
| } |
| |
| // FIXME: overflow: auto/scroll regions need more math here, since painting in the border box is different from painting in the padding box (one is scrolled, the other is |
| // fixed). |
| GapRects result; |
| if (!isBlockFlow()) // FIXME: Make multi-column selection gap filling work someday. |
| return result; |
| |
| if (m_hasColumns || hasTransform()) { |
| // FIXME: We should learn how to gap fill multiple columns and transforms eventually. |
| lastTop = (ty - blockY) + height(); |
| lastLeft = leftSelectionOffset(rootBlock, height()); |
| lastRight = rightSelectionOffset(rootBlock, height()); |
| return result; |
| } |
| |
| if (childrenInline()) |
| result = fillInlineSelectionGaps(rootBlock, blockX, blockY, tx, ty, lastTop, lastLeft, lastRight, paintInfo); |
| else |
| result = fillBlockSelectionGaps(rootBlock, blockX, blockY, tx, ty, lastTop, lastLeft, lastRight, paintInfo); |
| |
| // Go ahead and fill the vertical gap all the way to the bottom of our block if the selection extends past our block. |
| if (rootBlock == this && (m_selectionState != SelectionBoth && m_selectionState != SelectionEnd)) |
| result.uniteCenter(fillVerticalSelectionGap(lastTop, lastLeft, lastRight, ty + height() + borderBottomExtra(), |
| rootBlock, blockX, blockY, paintInfo)); |
| return result; |
| } |
| |
| GapRects RenderBlock::fillInlineSelectionGaps(RenderBlock* rootBlock, int blockX, int blockY, int tx, int ty, |
| int& lastTop, int& lastLeft, int& lastRight, const PaintInfo* paintInfo) |
| { |
| GapRects result; |
| |
| bool containsStart = selectionState() == SelectionStart || selectionState() == SelectionBoth; |
| |
| if (!firstLineBox()) { |
| if (containsStart) { |
| // Go ahead and update our lastY to be the bottom of the block. <hr>s or empty blocks with height can trip this |
| // case. |
| lastTop = (ty - blockY) + height(); |
| lastLeft = leftSelectionOffset(rootBlock, height()); |
| lastRight = rightSelectionOffset(rootBlock, height()); |
| } |
| return result; |
| } |
| |
| RootInlineBox* lastSelectedLine = 0; |
| RootInlineBox* curr; |
| for (curr = firstRootBox(); curr && !curr->hasSelectedChildren(); curr = curr->nextRootBox()) { } |
| |
| // Now paint the gaps for the lines. |
| for (; curr && curr->hasSelectedChildren(); curr = curr->nextRootBox()) { |
| int selTop = curr->selectionTop(); |
| int selHeight = curr->selectionHeight(); |
| |
| if (!containsStart && !lastSelectedLine && |
| selectionState() != SelectionStart && selectionState() != SelectionBoth) |
| result.uniteCenter(fillVerticalSelectionGap(lastTop, lastLeft, lastRight, ty + selTop, |
| rootBlock, blockX, blockY, paintInfo)); |
| |
| if (!paintInfo || ty + selTop < paintInfo->rect.bottom() && ty + selTop + selHeight > paintInfo->rect.y()) |
| result.unite(curr->fillLineSelectionGap(selTop, selHeight, rootBlock, blockX, blockY, tx, ty, paintInfo)); |
| |
| lastSelectedLine = curr; |
| } |
| |
| if (containsStart && !lastSelectedLine) |
| // Selection must start just after our last line. |
| lastSelectedLine = lastRootBox(); |
| |
| if (lastSelectedLine && selectionState() != SelectionEnd && selectionState() != SelectionBoth) { |
| // Go ahead and update our lastY to be the bottom of the last selected line. |
| lastTop = (ty - blockY) + lastSelectedLine->bottomOverflow(); |
| lastLeft = leftSelectionOffset(rootBlock, lastSelectedLine->bottomOverflow()); |
| lastRight = rightSelectionOffset(rootBlock, lastSelectedLine->bottomOverflow()); |
| } |
| return result; |
| } |
| |
| GapRects RenderBlock::fillBlockSelectionGaps(RenderBlock* rootBlock, int blockX, int blockY, int tx, int ty, |
| int& lastTop, int& lastLeft, int& lastRight, const PaintInfo* paintInfo) |
| { |
| GapRects result; |
| |
| // Go ahead and jump right to the first block child that contains some selected objects. |
| RenderObject* curr; |
| for (curr = firstChild(); curr && curr->selectionState() == SelectionNone; curr = curr->nextSibling()) { } |
| |
| for (bool sawSelectionEnd = false; curr && !sawSelectionEnd; curr = curr->nextSibling()) { |
| SelectionState childState = curr->selectionState(); |
| if (childState == SelectionBoth || childState == SelectionEnd) |
| sawSelectionEnd = true; |
| |
| if (curr->isFloatingOrPositioned()) |
| continue; // We must be a normal flow object in order to even be considered. |
| |
| if (curr->isRelPositioned() && curr->hasLayer()) { |
| // If the relposition offset is anything other than 0, then treat this just like an absolute positioned element. |
| // Just disregard it completely. |
| IntSize relOffset = curr->layer()->relativePositionOffset(); |
| if (relOffset.width() || relOffset.height()) |
| continue; |
| } |
| |
| bool paintsOwnSelection = curr->shouldPaintSelectionGaps() || curr->isTable(); // FIXME: Eventually we won't special-case table like this. |
| bool fillBlockGaps = paintsOwnSelection || (curr->canBeSelectionLeaf() && childState != SelectionNone); |
| if (fillBlockGaps) { |
| // We need to fill the vertical gap above this object. |
| if (childState == SelectionEnd || childState == SelectionInside) |
| // Fill the gap above the object. |
| result.uniteCenter(fillVerticalSelectionGap(lastTop, lastLeft, lastRight, |
| ty + curr->yPos(), rootBlock, blockX, blockY, paintInfo)); |
| |
| // Only fill side gaps for objects that paint their own selection if we know for sure the selection is going to extend all the way *past* |
| // our object. We know this if the selection did not end inside our object. |
| if (paintsOwnSelection && (childState == SelectionStart || sawSelectionEnd)) |
| childState = SelectionNone; |
| |
| // Fill side gaps on this object based off its state. |
| bool leftGap, rightGap; |
| getHorizontalSelectionGapInfo(childState, leftGap, rightGap); |
| |
| if (leftGap) |
| result.uniteLeft(fillLeftSelectionGap(this, curr->xPos(), curr->yPos(), curr->height(), rootBlock, blockX, blockY, tx, ty, paintInfo)); |
| if (rightGap) |
| result.uniteRight(fillRightSelectionGap(this, curr->xPos() + curr->width(), curr->yPos(), curr->height(), rootBlock, blockX, blockY, tx, ty, paintInfo)); |
| |
| // Update lastTop to be just underneath the object. lastLeft and lastRight extend as far as |
| // they can without bumping into floating or positioned objects. Ideally they will go right up |
| // to the border of the root selection block. |
| lastTop = (ty - blockY) + (curr->yPos() + curr->height()); |
| lastLeft = leftSelectionOffset(rootBlock, curr->yPos() + curr->height()); |
| lastRight = rightSelectionOffset(rootBlock, curr->yPos() + curr->height()); |
| } else if (childState != SelectionNone) |
| // We must be a block that has some selected object inside it. Go ahead and recur. |
| result.unite(static_cast<RenderBlock*>(curr)->fillSelectionGaps(rootBlock, blockX, blockY, tx + curr->xPos(), ty + curr->yPos(), |
| lastTop, lastLeft, lastRight, paintInfo)); |
| } |
| return result; |
| } |
| |
| IntRect RenderBlock::fillHorizontalSelectionGap(RenderObject* selObj, int xPos, int yPos, int width, int height, const PaintInfo* paintInfo) |
| { |
| if (width <= 0 || height <= 0) |
| return IntRect(); |
| IntRect gapRect(xPos, yPos, width, height); |
| if (paintInfo && selObj->style()->visibility() == VISIBLE) |
| paintInfo->context->fillRect(gapRect, selObj->selectionBackgroundColor()); |
| return gapRect; |
| } |
| |
| IntRect RenderBlock::fillVerticalSelectionGap(int lastTop, int lastLeft, int lastRight, int bottomY, RenderBlock* rootBlock, |
| int blockX, int blockY, const PaintInfo* paintInfo) |
| { |
| int top = blockY + lastTop; |
| int height = bottomY - top; |
| if (height <= 0) |
| return IntRect(); |
| |
| // Get the selection offsets for the bottom of the gap |
| int left = blockX + max(lastLeft, leftSelectionOffset(rootBlock, bottomY)); |
| int right = blockX + min(lastRight, rightSelectionOffset(rootBlock, bottomY)); |
| int width = right - left; |
| if (width <= 0) |
| return IntRect(); |
| |
| IntRect gapRect(left, top, width, height); |
| if (paintInfo) |
| paintInfo->context->fillRect(gapRect, selectionBackgroundColor()); |
| return gapRect; |
| } |
| |
| IntRect RenderBlock::fillLeftSelectionGap(RenderObject* selObj, int xPos, int yPos, int height, RenderBlock* rootBlock, |
| int blockX, int /*blockY*/, int tx, int ty, const PaintInfo* paintInfo) |
| { |
| int top = yPos + ty; |
| int left = blockX + max(leftSelectionOffset(rootBlock, yPos), leftSelectionOffset(rootBlock, yPos + height)); |
| int right = min(xPos + tx, blockX + min(rightSelectionOffset(rootBlock, yPos), rightSelectionOffset(rootBlock, yPos + height))); |
| int width = right - left; |
| if (width <= 0) |
| return IntRect(); |
| |
| IntRect gapRect(left, top, width, height); |
| if (paintInfo) |
| paintInfo->context->fillRect(gapRect, selObj->selectionBackgroundColor()); |
| return gapRect; |
| } |
| |
| IntRect RenderBlock::fillRightSelectionGap(RenderObject* selObj, int xPos, int yPos, int height, RenderBlock* rootBlock, |
| int blockX, int /*blockY*/, int tx, int ty, const PaintInfo* paintInfo) |
| { |
| int left = max(xPos + tx, blockX + max(leftSelectionOffset(rootBlock, yPos), leftSelectionOffset(rootBlock, yPos + height))); |
| int top = yPos + ty; |
| int right = blockX + min(rightSelectionOffset(rootBlock, yPos), rightSelectionOffset(rootBlock, yPos + height)); |
| int width = right - left; |
| if (width <= 0) |
| return IntRect(); |
| |
| IntRect gapRect(left, top, width, height); |
| if (paintInfo) |
| paintInfo->context->fillRect(gapRect, selObj->selectionBackgroundColor()); |
| return gapRect; |
| } |
| |
| void RenderBlock::getHorizontalSelectionGapInfo(SelectionState state, bool& leftGap, bool& rightGap) |
| { |
| bool ltr = style()->direction() == LTR; |
| leftGap = (state == RenderObject::SelectionInside) || |
| (state == RenderObject::SelectionEnd && ltr) || |
| (state == RenderObject::SelectionStart && !ltr); |
| rightGap = (state == RenderObject::SelectionInside) || |
| (state == RenderObject::SelectionStart && ltr) || |
| (state == RenderObject::SelectionEnd && !ltr); |
| } |
| |
| int RenderBlock::leftSelectionOffset(RenderBlock* rootBlock, int y) |
| { |
| int left = leftOffset(y); |
| if (left == borderLeft() + paddingLeft()) { |
| if (rootBlock != this) |
| // The border can potentially be further extended by our containingBlock(). |
| return containingBlock()->leftSelectionOffset(rootBlock, y + yPos()); |
| return left; |
| } |
| else { |
| RenderBlock* cb = this; |
| while (cb != rootBlock) { |
| left += cb->xPos(); |
| cb = cb->containingBlock(); |
| } |
| } |
| |
| return left; |
| } |
| |
| int RenderBlock::rightSelectionOffset(RenderBlock* rootBlock, int y) |
| { |
| int right = rightOffset(y); |
| if (right == (contentWidth() + (borderLeft() + paddingLeft()))) { |
| if (rootBlock != this) |
| // The border can potentially be further extended by our containingBlock(). |
| return containingBlock()->rightSelectionOffset(rootBlock, y + yPos()); |
| return right; |
| } |
| else { |
| RenderBlock* cb = this; |
| while (cb != rootBlock) { |
| right += cb->xPos(); |
| cb = cb->containingBlock(); |
| } |
| } |
| return right; |
| } |
| |
| void RenderBlock::insertPositionedObject(RenderObject *o) |
| { |
| // Create the list of special objects if we don't aleady have one |
| if (!m_positionedObjects) |
| m_positionedObjects = new ListHashSet<RenderObject*>; |
| |
| m_positionedObjects->add(o); |
| } |
| |
| void RenderBlock::removePositionedObject(RenderObject *o) |
| { |
| if (m_positionedObjects) |
| m_positionedObjects->remove(o); |
| } |
| |
| void RenderBlock::removePositionedObjects(RenderBlock* o) |
| { |
| if (!m_positionedObjects) |
| return; |
| |
| RenderObject* r; |
| |
| Iterator end = m_positionedObjects->end(); |
| |
| Vector<RenderObject*, 16> deadObjects; |
| |
| for (Iterator it = m_positionedObjects->begin(); it != end; ++it) { |
| r = *it; |
| if (!o || r->isDescendantOf(o)) { |
| if (o) |
| r->setChildNeedsLayout(true, false); |
| |
| // It is parent blocks job to add positioned child to positioned objects list of its containing block |
| // Parent layout needs to be invalidated to ensure this happens. |
| RenderObject* p = r->parent(); |
| while (p && !p->isRenderBlock()) |
| p = p->parent(); |
| if (p) |
| p->setChildNeedsLayout(true); |
| |
| deadObjects.append(r); |
| } |
| } |
| |
| for (unsigned i = 0; i < deadObjects.size(); i++) |
| m_positionedObjects->remove(deadObjects.at(i)); |
| } |
| |
| void RenderBlock::insertFloatingObject(RenderObject *o) |
| { |
| ASSERT(o->isFloating()); |
| |
| // Create the list of special objects if we don't aleady have one |
| if (!m_floatingObjects) { |
| m_floatingObjects = new DeprecatedPtrList<FloatingObject>; |
| m_floatingObjects->setAutoDelete(true); |
| } else { |
| // Don't insert the object again if it's already in the list |
| DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects); |
| FloatingObject* f; |
| while ( (f = it.current()) ) { |
| if (f->m_renderer == o) return; |
| ++it; |
| } |
| } |
| |
| // Create the special object entry & append it to the list |
| |
| o->layoutIfNeeded(); |
| |
| FloatingObject* newObj = new FloatingObject(o->style()->floating() == FLEFT ? FloatingObject::FloatLeft : FloatingObject::FloatRight); |
| |
| newObj->m_top = -1; |
| newObj->m_bottom = -1; |
| newObj->m_width = o->width() + o->marginLeft() + o->marginRight(); |
| newObj->m_shouldPaint = !o->hasLayer(); // If a layer exists, the float will paint itself. Otherwise someone else will. |
| newObj->m_isDescendant = true; |
| newObj->m_renderer = o; |
| |
| m_floatingObjects->append(newObj); |
| } |
| |
| void RenderBlock::removeFloatingObject(RenderObject *o) |
| { |
| if (m_floatingObjects) { |
| DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects); |
| while (it.current()) { |
| if (it.current()->m_renderer == o) { |
| if (childrenInline()) |
| markLinesDirtyInVerticalRange(0, it.current()->m_bottom); |
| m_floatingObjects->removeRef(it.current()); |
| } |
| ++it; |
| } |
| } |
| } |
| |
| bool RenderBlock::positionNewFloats() |
| { |
| if (!m_floatingObjects) |
| return false; |
| |
| FloatingObject* f = m_floatingObjects->last(); |
| |
| // If all floats have already been positioned, then we have no work to do. |
| if (!f || f->m_top != -1) |
| return false; |
| |
| // Move backwards through our floating object list until we find a float that has |
| // already been positioned. Then we'll be able to move forward, positioning all of |
| // the new floats that need it. |
| FloatingObject* lastFloat = m_floatingObjects->getPrev(); |
| while (lastFloat && lastFloat->m_top == -1) { |
| f = m_floatingObjects->prev(); |
| lastFloat = m_floatingObjects->getPrev(); |
| } |
| |
| int y = m_height; |
| |
| // The float cannot start above the y position of the last positioned float. |
| if (lastFloat) |
| y = max(lastFloat->m_top, y); |
| |
| // Now walk through the set of unpositioned floats and place them. |
| while (f) { |
| // The containing block is responsible for positioning floats, so if we have floats in our |
| // list that come from somewhere else, do not attempt to position them. |
| if (f->m_renderer->containingBlock() != this) { |
| f = m_floatingObjects->next(); |
| continue; |
| } |
| |
| RenderObject* o = f->m_renderer; |
| int _height = o->height() + o->marginTop() + o->marginBottom(); |
| |
| int ro = rightOffset(); // Constant part of right offset. |
| int lo = leftOffset(); // Constat part of left offset. |
| int fwidth = f->m_width; // The width we look for. |
| if (ro - lo < fwidth) |
| fwidth = ro - lo; // Never look for more than what will be available. |
| |
| IntRect oldRect(o->xPos(), o->yPos() , o->width(), o->height()); |
| |
| if (o->style()->clear() & CLEFT) |
| y = max(leftBottom(), y); |
| if (o->style()->clear() & CRIGHT) |
| y = max(rightBottom(), y); |
| |
| if (o->style()->floating() == FLEFT) { |
| int heightRemainingLeft = 1; |
| int heightRemainingRight = 1; |
| int fx = leftRelOffset(y,lo, false, &heightRemainingLeft); |
| while (rightRelOffset(y,ro, false, &heightRemainingRight)-fx < fwidth) { |
| y += min(heightRemainingLeft, heightRemainingRight); |
| fx = leftRelOffset(y,lo, false, &heightRemainingLeft); |
| } |
| fx = max(0, fx); |
| f->m_left = fx; |
| o->setPos(fx + o->marginLeft(), y + o->marginTop()); |
| } else { |
| int heightRemainingLeft = 1; |
| int heightRemainingRight = 1; |
| int fx = rightRelOffset(y,ro, false, &heightRemainingRight); |
| while (fx - leftRelOffset(y,lo, false, &heightRemainingLeft) < fwidth) { |
| y += min(heightRemainingLeft, heightRemainingRight); |
| fx = rightRelOffset(y, ro, false, &heightRemainingRight); |
| } |
| f->m_left = fx - f->m_width; |
| o->setPos(fx - o->marginRight() - o->width(), y + o->marginTop()); |
| } |
| |
| f->m_top = y; |
| f->m_bottom = f->m_top + _height; |
| |
| // If the child moved, we have to repaint it. |
| if (o->checkForRepaintDuringLayout()) |
| o->repaintDuringLayoutIfMoved(oldRect); |
| |
| f = m_floatingObjects->next(); |
| } |
| return true; |
| } |
| |
| void RenderBlock::newLine(EClear clear) |
| { |
| positionNewFloats(); |
| // set y position |
| int newY = 0; |
| switch(clear) |
| { |
| case CLEFT: |
| newY = leftBottom(); |
| break; |
| case CRIGHT: |
| newY = rightBottom(); |
| break; |
| case CBOTH: |
| newY = floatBottom(); |
| default: |
| break; |
| } |
| if (m_height < newY) |
| m_height = newY; |
| } |
| |
| void RenderBlock::addPercentHeightDescendant(RenderBox* descendant) |
| { |
| if (!gPercentHeightDescendantsMap) { |
| gPercentHeightDescendantsMap = new PercentHeightDescendantsMap; |
| gPercentHeightContainerMap = new PercentHeightContainerMap; |
| } |
| |
| HashSet<RenderBox*>* descendantSet = gPercentHeightDescendantsMap->get(this); |
| if (!descendantSet) { |
| descendantSet = new HashSet<RenderBox*>; |
| gPercentHeightDescendantsMap->set(this, descendantSet); |
| } |
| bool added = descendantSet->add(descendant).second; |
| if (!added) { |
| ASSERT(gPercentHeightContainerMap->get(descendant)); |
| ASSERT(gPercentHeightContainerMap->get(descendant)->contains(this)); |
| return; |
| } |
| |
| HashSet<RenderBlock*>* containerSet = gPercentHeightContainerMap->get(descendant); |
| if (!containerSet) { |
| containerSet = new HashSet<RenderBlock*>; |
| gPercentHeightContainerMap->set(descendant, containerSet); |
| } |
| ASSERT(!containerSet->contains(this)); |
| containerSet->add(this); |
| } |
| |
| void RenderBlock::removePercentHeightDescendant(RenderBox* descendant) |
| { |
| if (!gPercentHeightContainerMap) |
| return; |
| |
| HashSet<RenderBlock*>* containerSet = gPercentHeightContainerMap->take(descendant); |
| if (!containerSet) |
| return; |
| |
| HashSet<RenderBlock*>::iterator end = containerSet->end(); |
| for (HashSet<RenderBlock*>::iterator it = containerSet->begin(); it != end; ++it) { |
| RenderBlock* container = *it; |
| HashSet<RenderBox*>* descendantSet = gPercentHeightDescendantsMap->get(container); |
| ASSERT(descendantSet); |
| if (!descendantSet) |
| continue; |
| ASSERT(descendantSet->contains(descendant)); |
| descendantSet->remove(descendant); |
| if (descendantSet->isEmpty()) { |
| gPercentHeightDescendantsMap->remove(container); |
| delete descendantSet; |
| } |
| } |
| |
| delete containerSet; |
| } |
| |
| int |
| RenderBlock::leftOffset() const |
| { |
| return borderLeft()+paddingLeft(); |
| } |
| |
| int |
| RenderBlock::leftRelOffset(int y, int fixedOffset, bool applyTextIndent, |
| int *heightRemaining ) const |
| { |
| int left = fixedOffset; |
| if (m_floatingObjects) { |
| if ( heightRemaining ) *heightRemaining = 1; |
| FloatingObject* r; |
| DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects); |
| for ( ; (r = it.current()); ++it ) |
| { |
| if (r->m_top <= y && r->m_bottom > y && |
| r->type() == FloatingObject::FloatLeft && |
| r->m_left + r->m_width > left) { |
| left = r->m_left + r->m_width; |
| if ( heightRemaining ) *heightRemaining = r->m_bottom - y; |
| } |
| } |
| } |
| |
| if (applyTextIndent && m_firstLine && style()->direction() == LTR) { |
| int cw = 0; |
| if (style()->textIndent().isPercent()) |
| cw = containingBlock()->availableWidth(); |
| left += style()->textIndent().calcMinValue(cw); |
| } |
| |
| return left; |
| } |
| |
| int |
| RenderBlock::rightOffset() const |
| { |
| return borderLeft() + paddingLeft() + availableWidth(); |
| } |
| |
| int |
| RenderBlock::rightRelOffset(int y, int fixedOffset, bool applyTextIndent, |
| int *heightRemaining ) const |
| { |
| int right = fixedOffset; |
| |
| if (m_floatingObjects) { |
| if (heightRemaining) *heightRemaining = 1; |
| FloatingObject* r; |
| DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects); |
| for ( ; (r = it.current()); ++it ) |
| { |
| if (r->m_top <= y && r->m_bottom > y && |
| r->type() == FloatingObject::FloatRight && |
| r->m_left < right) { |
| right = r->m_left; |
| if ( heightRemaining ) *heightRemaining = r->m_bottom - y; |
| } |
| } |
| } |
| |
| if (applyTextIndent && m_firstLine && style()->direction() == RTL) { |
| int cw = 0; |
| if (style()->textIndent().isPercent()) |
| cw = containingBlock()->availableWidth(); |
| right -= style()->textIndent().calcMinValue(cw); |
| } |
| |
| return right; |
| } |
| |
| int |
| RenderBlock::lineWidth(int y) const |
| { |
| int result = rightOffset(y) - leftOffset(y); |
| return (result < 0) ? 0 : result; |
| } |
| |
| int RenderBlock::nextFloatBottomBelow(int height) const |
| { |
| if (!m_floatingObjects) |
| return 0; |
| |
| int bottom = INT_MAX; |
| FloatingObject* r; |
| DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects); |
| for ( ; (r = it.current()); ++it) { |
| if (r->m_bottom > height) |
| bottom = min(r->m_bottom, bottom); |
| } |
| |
| return bottom == INT_MAX ? 0 : bottom; |
| } |
| |
| int |
| RenderBlock::floatBottom() const |
| { |
| if (!m_floatingObjects) return 0; |
| int bottom=0; |
| FloatingObject* r; |
| DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects); |
| for ( ; (r = it.current()); ++it ) |
| if (r->m_bottom>bottom) |
| bottom=r->m_bottom; |
| return bottom; |
| } |
| |
| IntRect RenderBlock::floatRect() const |
| { |
| IntRect result; |
| if (!m_floatingObjects || hasOverflowClip()) |
| return result; |
| FloatingObject* r; |
| DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects); |
| for (; (r = it.current()); ++it) { |
| if (r->m_shouldPaint && !r->m_renderer->hasLayer()) { |
| IntRect childRect = r->m_renderer->overflowRect(false); |
| childRect.move(r->m_left + r->m_renderer->marginLeft(), r->m_top + r->m_renderer->marginTop()); |
| result.unite(childRect); |
| } |
| } |
| |
| return result; |
| } |
| |
| int RenderBlock::lowestPosition(bool includeOverflowInterior, bool includeSelf) const |
| { |
| int bottom = RenderFlow::lowestPosition(includeOverflowInterior, includeSelf); |
| if (!includeOverflowInterior && hasOverflowClip()) |
| return bottom; |
| |
| int relativeOffset = includeSelf && isRelPositioned() ? relativePositionOffsetY() : 0; |
| |
| if (includeSelf) |
| bottom = max(bottom, m_overflowHeight + relativeOffset); |
| |
| if (m_positionedObjects) { |
| RenderObject* r; |
| Iterator end = m_positionedObjects->end(); |
| for (Iterator it = m_positionedObjects->begin(); it != end; ++it) { |
| r = *it; |
| // Fixed positioned objects do not scroll and thus should not constitute |
| // part of the lowest position. |
| if (r->style()->position() != FixedPosition) { |
| // FIXME: Should work for overflow sections too. |
| // If a positioned object lies completely to the left of the root it will be unreachable via scrolling. |
| // Therefore we should not allow it to contribute to the lowest position. |
| if (!isRenderView() || r->xPos() + r->width() > 0 || r->xPos() + r->rightmostPosition(false) > 0) { |
| int lp = r->yPos() + r->lowestPosition(false); |
| bottom = max(bottom, lp + relativeOffset); |
| } |
| } |
| } |
| } |
| |
| if (m_hasColumns) { |
| Vector<IntRect>* colRects = columnRects(); |
| for (unsigned i = 0; i < colRects->size(); i++) |
| bottom = max(bottom, colRects->at(i).bottom() + relativeOffset); |
| return bottom; |
| } |
| |
| if (m_floatingObjects) { |
| FloatingObject* r; |
| DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects); |
| for ( ; (r = it.current()); ++it ) { |
| if (r->m_shouldPaint || r->m_renderer->hasLayer()) { |
| int lp = r->m_top + r->m_renderer->marginTop() + r->m_renderer->lowestPosition(false); |
| bottom = max(bottom, lp + relativeOffset); |
| } |
| } |
| } |
| |
| |
| if (!includeSelf && lastLineBox()) { |
| int lp = lastLineBox()->yPos() + lastLineBox()->height(); |
| bottom = max(bottom, lp); |
| } |
| |
| return bottom; |
| } |
| |
| int RenderBlock::rightmostPosition(bool includeOverflowInterior, bool includeSelf) const |
| { |
| int right = RenderFlow::rightmostPosition(includeOverflowInterior, includeSelf); |
| if (!includeOverflowInterior && hasOverflowClip()) |
| return right; |
| |
| int relativeOffset = includeSelf && isRelPositioned() ? relativePositionOffsetX() : 0; |
| |
| if (includeSelf) |
| right = max(right, m_overflowWidth + relativeOffset); |
| |
| if (m_positionedObjects) { |
| RenderObject* r; |
| Iterator end = m_positionedObjects->end(); |
| for (Iterator it = m_positionedObjects->begin() ; it != end; ++it) { |
| r = *it; |
| // Fixed positioned objects do not scroll and thus should not constitute |
| // part of the rightmost position. |
| if (r->style()->position() != FixedPosition) { |
| // FIXME: Should work for overflow sections too. |
| // If a positioned object lies completely above the root it will be unreachable via scrolling. |
| // Therefore we should not allow it to contribute to the rightmost position. |
| if (!isRenderView() || r->yPos() + r->height() > 0 || r->yPos() + r->lowestPosition(false) > 0) { |
| int rp = r->xPos() + r->rightmostPosition(false); |
| right = max(right, rp + relativeOffset); |
| } |
| } |
| } |
| } |
| |
| if (m_hasColumns) { |
| // This only matters for LTR |
| if (style()->direction() == LTR) |
| right = max(columnRects()->last().right() + relativeOffset, right); |
| return right; |
| } |
| |
| if (m_floatingObjects) { |
| FloatingObject* r; |
| DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects); |
| for ( ; (r = it.current()); ++it ) { |
| if (r->m_shouldPaint || r->m_renderer->hasLayer()) { |
| int rp = r->m_left + r->m_renderer->marginLeft() + r->m_renderer->rightmostPosition(false); |
| right = max(right, rp + relativeOffset); |
| } |
| } |
| } |
| |
| if (!includeSelf && firstLineBox()) { |
| for (InlineRunBox* currBox = firstLineBox(); currBox; currBox = currBox->nextLineBox()) { |
| int rp = currBox->xPos() + currBox->width(); |
| // If this node is a root editable element, then the rightmostPosition should account for a caret at the end. |
| // FIXME: Need to find another way to do this, since scrollbars could show when we don't want them to. |
| if (node()->isContentEditable() && node() == node()->rootEditableElement() && style()->direction() == LTR) |
| rp += 1; |
| right = max(right, rp); |
| } |
| } |
| |
| return right; |
| } |
| |
| int RenderBlock::leftmostPosition(bool includeOverflowInterior, bool includeSelf) const |
| { |
| int left = RenderFlow::leftmostPosition(includeOverflowInterior, includeSelf); |
| if (!includeOverflowInterior && hasOverflowClip()) |
| return left; |
| |
| int relativeOffset = includeSelf && isRelPositioned() ? relativePositionOffsetX() : 0; |
| |
| if (includeSelf) |
| left = min(left, m_overflowLeft + relativeOffset); |
| |
| if (m_positionedObjects) { |
| RenderObject* r; |
| Iterator end = m_positionedObjects->end(); |
| for (Iterator it = m_positionedObjects->begin(); it != end; ++it) { |
| r = *it; |
| // Fixed positioned objects do not scroll and thus should not constitute |
| // part of the leftmost position. |
| if (r->style()->position() != FixedPosition) { |
| // FIXME: Should work for overflow sections too. |
| // If a positioned object lies completely above the root it will be unreachable via scrolling. |
| // Therefore we should not allow it to contribute to the leftmost position. |
| if (!isRenderView() || r->yPos() + r->height() > 0 || r->yPos() + r->lowestPosition(false) > 0) { |
| int lp = r->xPos() + r->leftmostPosition(false); |
| left = min(left, lp + relativeOffset); |
| } |
| } |
| } |
| } |
| |
| if (m_hasColumns) { |
| // This only matters for RTL |
| if (style()->direction() == RTL) |
| left = min(columnRects()->last().x() + relativeOffset, left); |
| return left; |
| } |
| |
| if (m_floatingObjects) { |
| FloatingObject* r; |
| DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects); |
| for ( ; (r = it.current()); ++it ) { |
| if (r->m_shouldPaint || r->m_renderer->hasLayer()) { |
| int lp = r->m_left + r->m_renderer->marginLeft() + r->m_renderer->leftmostPosition(false); |
| left = min(left, lp + relativeOffset); |
| } |
| } |
| } |
| |
| if (!includeSelf && firstLineBox()) { |
| for (InlineRunBox* currBox = firstLineBox(); currBox; currBox = currBox->nextLineBox()) |
| left = min(left, (int)currBox->xPos()); |
| } |
| |
| return left; |
| } |
| |
| int |
| RenderBlock::leftBottom() |
| { |
| if (!m_floatingObjects) return 0; |
| int bottom=0; |
| FloatingObject* r; |
| DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects); |
| for ( ; (r = it.current()); ++it ) |
| if (r->m_bottom > bottom && r->type() == FloatingObject::FloatLeft) |
| bottom=r->m_bottom; |
| |
| return bottom; |
| } |
| |
| int |
| RenderBlock::rightBottom() |
| { |
| if (!m_floatingObjects) return 0; |
| int bottom=0; |
| FloatingObject* r; |
| DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects); |
| for ( ; (r = it.current()); ++it ) |
| if (r->m_bottom>bottom && r->type() == FloatingObject::FloatRight) |
| bottom=r->m_bottom; |
| |
| return bottom; |
| } |
| |
| void RenderBlock::markLinesDirtyInVerticalRange(int top, int bottom) |
| { |
| if (top >= bottom) |
| return; |
| |
| RootInlineBox* lowestDirtyLine = lastRootBox(); |
| RootInlineBox* afterLowest = lowestDirtyLine; |
| while (lowestDirtyLine && lowestDirtyLine->blockHeight() >= bottom) { |
| afterLowest = lowestDirtyLine; |
| lowestDirtyLine = lowestDirtyLine->prevRootBox(); |
| } |
| |
| while (afterLowest && afterLowest->blockHeight() >= top) { |
| afterLowest->markDirty(); |
| afterLowest = afterLowest->prevRootBox(); |
| } |
| } |
| |
| void RenderBlock::clearFloats() |
| { |
| // Inline blocks are covered by the isReplaced() check in the avoidFloats method. |
| if (avoidsFloats() || isRoot() || isRenderView() || isFloatingOrPositioned() || isTableCell()) { |
| if (m_floatingObjects) |
| m_floatingObjects->clear(); |
| return; |
| } |
| |
| typedef HashMap<RenderObject*, FloatingObject*> RendererToFloatInfoMap; |
| RendererToFloatInfoMap floatMap; |
| |
| if (m_floatingObjects) { |
| if (childrenInline()) { |
| m_floatingObjects->first(); |
| while (FloatingObject* f = m_floatingObjects->take()) |
| floatMap.add(f->m_renderer, f); |
| } else |
| m_floatingObjects->clear(); |
| } |
| |
| // Attempt to locate a previous sibling with overhanging floats. We skip any elements that are |
| // out of flow (like floating/positioned elements), and we also skip over any objects that may have shifted |
| // to avoid floats. |
| bool parentHasFloats = false; |
| RenderObject *prev = previousSibling(); |
| while (prev && (!prev->isRenderBlock() || prev->avoidsFloats() || prev->isFloatingOrPositioned())) { |
| if (prev->isFloating()) |
| parentHasFloats = true; |
| prev = prev->previousSibling(); |
| } |
| |
| // First add in floats from the parent. |
| int offset = m_y; |
| if (parentHasFloats) |
| addIntrudingFloats(static_cast<RenderBlock *>(parent()), |
| parent()->borderLeft() + parent()->paddingLeft(), offset); |
| |
| int xoffset = 0; |
| if (prev) |
| offset -= prev->yPos(); |
| else { |
| prev = parent(); |
| xoffset += prev->borderLeft() + prev->paddingLeft(); |
| } |
| |
| // Add overhanging floats from the previous RenderBlock, but only if it has a float that intrudes into our space. |
| if (!prev->isRenderBlock()) return; |
| RenderBlock* block = static_cast<RenderBlock *>(prev); |
| |
| if (block->m_floatingObjects && block->floatBottom() > offset) |
| addIntrudingFloats(block, xoffset, offset); |
| |
| if (childrenInline()) { |
| int changeTop = INT_MAX; |
| int changeBottom = INT_MIN; |
| if (m_floatingObjects) { |
| for (FloatingObject* f = m_floatingObjects->first(); f; f = m_floatingObjects->next()) { |
| FloatingObject* oldFloatingObject = floatMap.get(f->m_renderer); |
| if (oldFloatingObject) { |
| if (f->m_width != oldFloatingObject->m_width || f->m_left != oldFloatingObject->m_left) { |
| changeTop = 0; |
| changeBottom = max(changeBottom, max(f->m_bottom, oldFloatingObject->m_bottom)); |
| } else if (f->m_bottom != oldFloatingObject->m_bottom) { |
| changeTop = min(changeTop, min(f->m_bottom, oldFloatingObject->m_bottom)); |
| changeBottom = max(changeBottom, max(f->m_bottom, oldFloatingObject->m_bottom)); |
| } |
| |
| floatMap.remove(f->m_renderer); |
| delete oldFloatingObject; |
| } else { |
| changeTop = 0; |
| changeBottom = max(changeBottom, f->m_bottom); |
| } |
| } |
| } |
| |
| RendererToFloatInfoMap::iterator end = floatMap.end(); |
| for (RendererToFloatInfoMap::iterator it = floatMap.begin(); it != end; ++it) { |
| FloatingObject* floatingObject = (*it).second; |
| if (!floatingObject->m_isDescendant) { |
| changeTop = 0; |
| changeBottom = max(changeBottom, floatingObject->m_bottom); |
| } |
| } |
| deleteAllValues(floatMap); |
| |
| markLinesDirtyInVerticalRange(changeTop, changeBottom); |
| } |
| } |
| |
| int RenderBlock::addOverhangingFloats(RenderBlock* child, int xoff, int yoff, bool makeChildPaintOtherFloats) |
| { |
| // Prevent floats from being added to the canvas by the root element, e.g., <html>. |
| if (child->hasOverflowClip() || !child->containsFloats() || child->isRoot()) |
| return 0; |
| |
| int lowestFloatBottom = 0; |
| |
| // Floats that will remain the child's responsiblity to paint should factor into its |
| // visual overflow. |
| IntRect floatsOverflowRect; |
| DeprecatedPtrListIterator<FloatingObject> it(*child->m_floatingObjects); |
| for (FloatingObject* r; (r = it.current()); ++it) { |
| int bottom = child->yPos() + r->m_bottom; |
| lowestFloatBottom = max(lowestFloatBottom, bottom); |
| |
| if (bottom > height()) { |
| // If the object is not in the list, we add it now. |
| if (!containsFloat(r->m_renderer)) { |
| FloatingObject *floatingObj = new FloatingObject(r->type()); |
| floatingObj->m_top = r->m_top - yoff; |
| floatingObj->m_bottom = r->m_bottom - yoff; |
| floatingObj->m_left = r->m_left - xoff; |
| floatingObj->m_width = r->m_width; |
| floatingObj->m_renderer = r->m_renderer; |
| |
| // The nearest enclosing layer always paints the float (so that zindex and stacking |
| // behaves properly). We always want to propagate the desire to paint the float as |
| // far out as we can, to the outermost block that overlaps the float, stopping only |
| // if we hit a layer boundary. |
| if (r->m_renderer->enclosingLayer() == enclosingLayer()) |
| r->m_shouldPaint = false; |
| else |
| floatingObj->m_shouldPaint = false; |
| |
| // We create the floating object list lazily. |
| if (!m_floatingObjects) { |
| m_floatingObjects = new DeprecatedPtrList<FloatingObject>; |
| m_floatingObjects->setAutoDelete(true); |
| } |
| m_floatingObjects->append(floatingObj); |
| } |
| } else if (makeChildPaintOtherFloats && !r->m_shouldPaint && !r->m_renderer->hasLayer() && r->m_renderer->isDescendantOf(child) && r->m_renderer->enclosingLayer() == child->enclosingLayer()) |
| // The float is not overhanging from this block, so if it is a descendant of the child, the child should |
| // paint it (the other case is that it is intruding into the child), unless it has its own layer or enclosing |
| // layer. |
| // If makeChildPaintOtherFloats is false, it means that the child must already know about all the floats |
| // it should paint. |
| r->m_shouldPaint = true; |
| |
| if (r->m_shouldPaint && !r->m_renderer->hasLayer()) { |
| IntRect floatOverflowRect = r->m_renderer->overflowRect(false); |
| floatOverflowRect.move(r->m_left + r->m_renderer->marginLeft(), r->m_top + r->m_renderer->marginTop()); |
| floatsOverflowRect.unite(floatOverflowRect); |
| } |
| } |
| child->addVisualOverflow(floatsOverflowRect); |
| return lowestFloatBottom; |
| } |
| |
| void RenderBlock::addIntrudingFloats(RenderBlock* prev, int xoff, int yoff) |
| { |
| // If the parent or previous sibling doesn't have any floats to add, don't bother. |
| if (!prev->m_floatingObjects) |
| return; |
| |
| DeprecatedPtrListIterator<FloatingObject> it(*prev->m_floatingObjects); |
| for (FloatingObject *r; (r = it.current()); ++it) { |
| if (r->m_bottom > yoff) { |
| // The object may already be in our list. Check for it up front to avoid |
| // creating duplicate entries. |
| FloatingObject* f = 0; |
| if (m_floatingObjects) { |
| DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects); |
| while ((f = it.current())) { |
| if (f->m_renderer == r->m_renderer) break; |
| ++it; |
| } |
| } |
| if (!f) { |
| FloatingObject *floatingObj = new FloatingObject(r->type()); |
| floatingObj->m_top = r->m_top - yoff; |
| floatingObj->m_bottom = r->m_bottom - yoff; |
| floatingObj->m_left = r->m_left - xoff; |
| // Applying the child's margin makes no sense in the case where the child was passed in. |
| // since his own margin was added already through the subtraction of the |xoff| variable |
| // above. |xoff| will equal -flow->marginLeft() in this case, so it's already been taken |
| // into account. Only apply this code if |child| is false, since otherwise the left margin |
| // will get applied twice. |
| if (prev != parent()) |
| floatingObj->m_left += prev->marginLeft(); |
| floatingObj->m_left -= marginLeft(); |
| floatingObj->m_shouldPaint = false; // We are not in the direct inheritance chain for this float. We will never paint it. |
| floatingObj->m_width = r->m_width; |
| floatingObj->m_renderer = r->m_renderer; |
| |
| // We create the floating object list lazily. |
| if (!m_floatingObjects) { |
| m_floatingObjects = new DeprecatedPtrList<FloatingObject>; |
| m_floatingObjects->setAutoDelete(true); |
| } |
| m_floatingObjects->append(floatingObj); |
| } |
| } |
| } |
| } |
| |
| bool RenderBlock::avoidsFloats() const |
| { |
| // Floats can't intrude into our box if we have a non-auto column count or width. |
| return RenderFlow::avoidsFloats() || !style()->hasAutoColumnCount() || !style()->hasAutoColumnWidth(); |
| } |
| |
| bool RenderBlock::containsFloat(RenderObject* o) |
| { |
| if (m_floatingObjects) { |
| DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects); |
| while (it.current()) { |
| if (it.current()->m_renderer == o) |
| return true; |
| ++it; |
| } |
| } |
| return false; |
| } |
| |
| void RenderBlock::markAllDescendantsWithFloatsForLayout(RenderObject* floatToRemove) |
| { |
| setChildNeedsLayout(true); |
| |
| if (floatToRemove) |
| removeFloatingObject(floatToRemove); |
| |
| // Iterate over our children and mark them as needed. |
| if (!childrenInline()) { |
| for (RenderObject* child = firstChild(); child; child = child->nextSibling()) { |
| if (isBlockFlow() && !child->isFloatingOrPositioned() && |
| ((floatToRemove ? child->containsFloat(floatToRemove) : child->containsFloats()) || child->shrinkToAvoidFloats())) |
| child->markAllDescendantsWithFloatsForLayout(floatToRemove); |
| } |
| } |
| } |
| |
| int RenderBlock::getClearDelta(RenderObject *child) |
| { |
| // There is no need to compute clearance if we have no floats. |
| if (!containsFloats()) |
| return 0; |
| |
| // At least one float is present. We need to perform the clearance computation. |
| bool clearSet = child->style()->clear() != CNONE; |
| int bottom = 0; |
| switch (child->style()->clear()) { |
| case CNONE: |
| break; |
| case CLEFT: |
| bottom = leftBottom(); |
| break; |
| case CRIGHT: |
| bottom = rightBottom(); |
| break; |
| case CBOTH: |
| bottom = floatBottom(); |
| break; |
| } |
| |
| // We also clear floats if we are too big to sit on the same line as a float (and wish to avoid floats by default). |
| // FIXME: Note that the remaining space checks aren't quite accurate, since you should be able to clear only some floats (the minimum # needed |
| // to fit) and not all (we should be using nextFloatBottomBelow and looping). |
| // Do not allow tables to wrap in quirks or even in almost strict mode |
| // (ebay on the PLT, finance.yahoo.com in the real world, versiontracker.com forces even almost strict mode not to work) |
| int result = clearSet ? max(0, bottom - child->yPos()) : 0; |
| if (!result && child->avoidsFloats() && child->style()->width().isFixed() && |
| child->minPrefWidth() > lineWidth(child->yPos()) && child->minPrefWidth() <= availableWidth() && |
| document()->inStrictMode()) |
| result = max(0, floatBottom() - child->yPos()); |
| return result; |
| } |
| |
| void RenderBlock::addVisualOverflow(const IntRect& r) |
| { |
| if (r.isEmpty()) |
| return; |
| m_overflowLeft = min(m_overflowLeft, r.x()); |
| m_overflowWidth = max(m_overflowWidth, r.right()); |
| m_overflowTop = min(m_overflowTop, r.y()); |
| m_overflowHeight = max(m_overflowHeight, r.bottom()); |
| } |
| |
| bool RenderBlock::isPointInOverflowControl(HitTestResult& result, int, int, int, int) |
| { |
| if (!scrollsOverflow()) |
| return false; |
| |
| return layer()->hitTestOverflowControls(result); |
| } |
| |
| bool RenderBlock::nodeAtPoint(const HitTestRequest& request, HitTestResult& result, int _x, int _y, int _tx, int _ty, HitTestAction hitTestAction) |
| { |
| bool inlineFlow = isInlineFlow(); |
| |
| int tx = _tx + m_x; |
| int ty = _ty + m_y + borderTopExtra(); |
| |
| if (!inlineFlow && !isRenderView()) { |
| // Check if we need to do anything at all. |
| IntRect overflowBox = overflowRect(false); |
| overflowBox.move(tx, ty); |
| if (!overflowBox.contains(_x, _y)) |
| return false; |
| } |
| |
| if (isPointInOverflowControl(result, _x, _y, tx, ty)) { |
| if (hitTestAction == HitTestBlockBackground) { |
| updateHitTestResult(result, IntPoint(_x - tx, _y - ty)); |
| return true; |
| } |
| return false; |
| } |
| |
| // If we have lightweight control clipping, then we can't have any spillout. |
| if (!hasControlClip() || controlClipRect(tx, ty).contains(_x, _y)) { |
| // Hit test descendants first. |
| int scrolledX = tx; |
| int scrolledY = ty; |
| if (hasOverflowClip()) |
| m_layer->subtractScrolledContentOffset(scrolledX, scrolledY); |
| |
| // Hit test contents if we don't have columns. |
| if (!m_hasColumns && hitTestContents(request, result, _x, _y, scrolledX, scrolledY, hitTestAction)) |
| return true; |
| |
| // Hit test our columns if we do have them. |
| if (m_hasColumns && hitTestColumns(request, result, _x, _y, scrolledX, scrolledY, hitTestAction)) |
| return true; |
| |
| // Hit test floats. |
| if (hitTestAction == HitTestFloat && m_floatingObjects) { |
| if (isRenderView()) { |
| scrolledX += static_cast<RenderView*>(this)->frameView()->scrollX(); |
| scrolledY += static_cast<RenderView*>(this)->frameView()->scrollY(); |
| } |
| |
| FloatingObject* o; |
| DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects); |
| for (it.toLast(); (o = it.current()); --it) { |
| if (o->m_shouldPaint && !o->m_renderer->hasLayer()) { |
| int xoffset = scrolledX + o->m_left + o->m_renderer->marginLeft() - o->m_renderer->xPos(); |
| int yoffset = scrolledY + o->m_top + o->m_renderer->marginTop() - o->m_renderer->yPos(); |
| if (o->m_renderer->hitTest(request, result, IntPoint(_x, _y), xoffset, yoffset)) { |
| updateHitTestResult(result, IntPoint(_x - xoffset, _y - yoffset)); |
| return true; |
| } |
| } |
| } |
| } |
| } |
| |
| // Now hit test our background |
| if (!inlineFlow && (hitTestAction == HitTestBlockBackground || hitTestAction == HitTestChildBlockBackground)) { |
| int topExtra = borderTopExtra(); |
| IntRect boundsRect(tx, ty - topExtra, m_width, m_height + topExtra + borderBottomExtra()); |
| if (visibleToHitTesting() && boundsRect.contains(_x, _y)) { |
| updateHitTestResult(result, IntPoint(_x - tx, _y - ty + topExtra)); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool RenderBlock::hitTestColumns(const HitTestRequest& request, HitTestResult& result, int x, int y, int tx, int ty, HitTestAction hitTestAction) |
| { |
| // We need to do multiple passes, breaking up our hit testing into strips. |
| // We can always go left to right, since column contents are clipped (meaning that there |
| // can't be any overlap). |
| int currXOffset = 0; |
| int currYOffset = 0; |
| int colGap = columnGap(); |
| Vector<IntRect>* colRects = columnRects(); |
| for (unsigned i = 0; i < colRects->size(); i++) { |
| IntRect colRect = colRects->at(i); |
| colRect.move(tx, ty); |
| |
| if (colRect.contains(x, y)) { |
| // The point is inside this column. |
| // Adjust tx and ty to change where we hit test. |
| |
| int finalX = tx + currXOffset; |
| int finalY = ty + currYOffset; |
| return hitTestContents(request, result, x, y, finalX, finalY, hitTestAction); |
| } |
| |
| // Move to the next position. |
| if (style()->direction() == LTR) |
| currXOffset += colRect.width() + colGap; |
| else |
| currXOffset -= (colRect.width() + colGap); |
| |
| currYOffset -= colRect.height(); |
| } |
| |
| return false; |
| } |
| |
| bool RenderBlock::hitTestContents(const HitTestRequest& request, HitTestResult& result, int x, int y, int tx, int ty, HitTestAction hitTestAction) |
| { |
| if (childrenInline() && !isTable()) { |
| // We have to hit-test our line boxes. |
| if (hitTestLines(request, result, x, y, tx, ty, hitTestAction)) { |
| updateHitTestResult(result, IntPoint(x - tx, y - ty)); |
| return true; |
| } |
| } else { |
| // Hit test our children. |
| HitTestAction childHitTest = hitTestAction; |
| if (hitTestAction == HitTestChildBlockBackgrounds) |
| childHitTest = HitTestChildBlockBackground; |
| for (RenderObject* child = lastChild(); child; child = child->previousSibling()) { |
| // FIXME: We have to skip over inline flows, since they can show up inside RenderTables at the moment (a demoted inline <form> for example). If we ever implement a |
| // table-specific hit-test method (which we should do for performance reasons anyway), then we can remove this check. |
| if (!child->hasLayer() && !child->isFloating() && !child->isInlineFlow() && child->nodeAtPoint(request, result, x, y, tx, ty, childHitTest)) { |
| updateHitTestResult(result, IntPoint(x - tx, y - ty)); |
| return true; |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| Position RenderBlock::positionForBox(InlineBox *box, bool start) const |
| { |
| if (!box) |
| return Position(); |
| |
| if (!box->object()->element()) |
| return Position(element(), start ? caretMinOffset() : caretMaxOffset()); |
| |
| if (!box->isInlineTextBox()) |
| return Position(box->object()->element(), start ? box->object()->caretMinOffset() : box->object()->caretMaxOffset()); |
| |
| InlineTextBox *textBox = static_cast<InlineTextBox *>(box); |
| return Position(box->object()->element(), start ? textBox->start() : textBox->start() + textBox->len()); |
| } |
| |
| Position RenderBlock::positionForRenderer(RenderObject* renderer, bool start) const |
| { |
| if (!renderer) |
| return Position(element(), 0); |
| |
| Node* node = renderer->element() ? renderer->element() : element(); |
| if (!node) |
| return Position(); |
| |
| ASSERT(renderer == node->renderer()); |
| |
| int offset = start ? renderer->caretMinOffset() : renderer->caretMaxOffset(); |
| |
| // FIXME: This was a runtime check that seemingly couldn't fail; changed it to an assertion for now. |
| ASSERT(!node->isCharacterDataNode() || renderer->isText()); |
| |
| return Position(node, offset); |
| } |
| |
| VisiblePosition RenderBlock::positionForCoordinates(int x, int y) |
| { |
| if (isTable()) |
| return RenderFlow::positionForCoordinates(x, y); |
| |
| int top = borderTop(); |
| int bottom = top + borderTopExtra() + paddingTop() + contentHeight() + paddingBottom() + borderBottomExtra(); |
| |
| int left = borderLeft(); |
| int right = left + paddingLeft() + contentWidth() + paddingRight(); |
| |
| Node* n = element(); |
| |
| int contentsX = x; |
| int contentsY = y; |
| offsetForContents(contentsX, contentsY); |
| |
| if (isReplaced()) { |
| if (y < 0 || y < height() && x < 0) |
| return VisiblePosition(n, caretMinOffset(), DOWNSTREAM); |
| if (y >= height() || y >= 0 && x >= width()) |
| return VisiblePosition(n, caretMaxOffset(), DOWNSTREAM); |
| } |
| |
| // If we start inside the shadow tree, we will stay inside (even if the point is above or below). |
| if (!(n && n->isShadowNode()) && !childrenInline()) { |
| // Don't return positions inside editable roots for coordinates outside those roots, except for coordinates outside |
| // a document that is entirely editable. |
| bool isEditableRoot = n && n->rootEditableElement() == n && !n->hasTagName(bodyTag) && !n->hasTagName(htmlTag); |
| |
| if (y < top || (isEditableRoot && (y < bottom && x < left))) { |
| if (!isEditableRoot) |
| if (RenderObject* c = firstChild()) { // FIXME: This code doesn't make any sense. This child could be an inline or a positioned element or a float or a compact, etc. |
| VisiblePosition p = c->positionForCoordinates(contentsX - c->xPos(), contentsY - c->yPos()); |
| if (p.isNotNull()) |
| return p; |
| } |
| if (n) { |
| if (Node* sp = n->shadowParentNode()) |
| n = sp; |
| if (Node* p = n->parent()) |
| return VisiblePosition(p, n->nodeIndex(), DOWNSTREAM); |
| } |
| return VisiblePosition(n, 0, DOWNSTREAM); |
| } |
| |
| if (y >= bottom || (isEditableRoot && (y >= top && x >= right))) { |
| if (!isEditableRoot) |
| if (RenderObject* c = lastChild()) { // FIXME: This code doesn't make any sense. This child could be an inline or a positioned element or a float or a compact, ect. |
| VisiblePosition p = c->positionForCoordinates(contentsX - c->xPos(), contentsY - c->yPos()); |
| if (p.isNotNull()) |
| return p; |
| } |
| if (n) { |
| if (Node* sp = n->shadowParentNode()) |
| n = sp; |
| if (Node* p = n->parent()) |
| return VisiblePosition(p, n->nodeIndex() + 1, DOWNSTREAM); |
| } |
| return VisiblePosition(n, 0, DOWNSTREAM); |
| } |
| } |
| |
| if (childrenInline()) { |
| if (!firstRootBox()) |
| return VisiblePosition(n, 0, DOWNSTREAM); |
| |
| if (contentsY < firstRootBox()->topOverflow() - verticalLineClickFudgeFactor) |
| // y coordinate is above first root line box |
| return VisiblePosition(positionForBox(firstRootBox()->firstLeafChild(), true), DOWNSTREAM); |
| |
| // look for the closest line box in the root box which is at the passed-in y coordinate |
| for (RootInlineBox* root = firstRootBox(); root; root = root->nextRootBox()) { |
| // set the bottom based on whether there is a next root box |
| if (root->nextRootBox()) |
| // FIXME: make the break point halfway between the bottom of the previous root box and the top of the next root box |
| bottom = root->nextRootBox()->topOverflow(); |
| else |
| bottom = root->bottomOverflow() + verticalLineClickFudgeFactor; |
| // check if this root line box is located at this y coordinate |
| if (contentsY < bottom && root->firstChild()) { |
| InlineBox* closestBox = root->closestLeafChildForXPos(x); |
| if (closestBox) |
| // pass the box a y position that is inside it |
| return closestBox->object()->positionForCoordinates(contentsX, closestBox->m_y); |
| } |
| } |
| |
| if (lastRootBox()) |
| // y coordinate is below last root line box |
| return VisiblePosition(positionForBox(lastRootBox()->lastLeafChild(), false), DOWNSTREAM); |
| |
| return VisiblePosition(n, 0, DOWNSTREAM); |
| } |
| |
| // See if any child blocks exist at this y coordinate. |
| if (firstChild() && contentsY < firstChild()->yPos()) |
| return VisiblePosition(n, 0, DOWNSTREAM); |
| for (RenderObject* renderer = firstChild(); renderer; renderer = renderer->nextSibling()) { |
| if (renderer->height() == 0 || renderer->style()->visibility() != VISIBLE || renderer->isFloatingOrPositioned()) |
| continue; |
| RenderObject* next = renderer->nextSibling(); |
| while (next && next->isFloatingOrPositioned()) |
| next = next->nextSibling(); |
| if (next) |
| bottom = next->yPos(); |
| else |
| bottom = top + scrollHeight(); |
| if (contentsY >= renderer->yPos() && contentsY < bottom) |
| return renderer->positionForCoordinates(contentsX - renderer->xPos(), contentsY - renderer->yPos()); |
| } |
| |
| return RenderFlow::positionForCoordinates(x, y); |
| } |
| |
| void RenderBlock::offsetForContents(int& tx, int& ty) const |
| { |
| ty -= borderTopExtra(); |
| |
| if (hasOverflowClip()) |
| m_layer->addScrolledContentOffset(tx, ty); |
| |
| if (m_hasColumns) { |
| IntPoint contentsPoint(tx, ty); |
| adjustPointToColumnContents(contentsPoint); |
| tx = contentsPoint.x(); |
| ty = contentsPoint.y(); |
| } |
| } |
| |
| int RenderBlock::availableWidth() const |
| { |
| // If we have multiple columns, then the available width is reduced to our column width. |
| if (m_hasColumns) |
| return desiredColumnWidth(); |
| return contentWidth(); |
| } |
| |
| int RenderBlock::columnGap() const |
| { |
| if (style()->hasNormalColumnGap()) |
| return style()->fontDescription().computedPixelSize(); // "1em" is recommended as the normal gap setting. Matches <p> margins. |
| return static_cast<int>(style()->columnGap()); |
| } |
| |
| void RenderBlock::calcColumnWidth() |
| { |
| // Calculate our column width and column count. |
| unsigned desiredColumnCount = 1; |
| int desiredColumnWidth = contentWidth(); |
| |
| // For now, we don't support multi-column layouts when printing, since we have to do a lot of work for proper pagination. |
| if (document()->printing() || (style()->hasAutoColumnCount() && style()->hasAutoColumnWidth())) { |
| setDesiredColumnCountAndWidth(desiredColumnCount, desiredColumnWidth); |
| return; |
| } |
| |
| int availWidth = desiredColumnWidth; |
| int colGap = columnGap(); |
| int colWidth = max(1, static_cast<int>(style()->columnWidth())); |
| int colCount = max(1, static_cast<int>(style()->columnCount())); |
| |
| if (style()->hasAutoColumnWidth()) { |
| if ((colCount - 1) * colGap < availWidth) { |
| desiredColumnCount = colCount; |
| desiredColumnWidth = (availWidth - (desiredColumnCount - 1) * colGap) / desiredColumnCount; |
| } else if (colGap < availWidth) { |
| desiredColumnCount = availWidth / colGap; |
| desiredColumnWidth = (availWidth - (desiredColumnCount - 1) * colGap) / desiredColumnCount; |
| } |
| } else if (style()->hasAutoColumnCount()) { |
| if (colWidth < availWidth) { |
| desiredColumnCount = (availWidth + colGap) / (colWidth + colGap); |
| desiredColumnWidth = (availWidth - (desiredColumnCount - 1) * colGap) / desiredColumnCount; |
| } |
| } else { |
| // Both are set. |
| if (colCount * colWidth + (colCount - 1) * colGap <= availWidth) { |
| desiredColumnCount = colCount; |
| desiredColumnWidth = colWidth; |
| } else if (colWidth < availWidth) { |
| desiredColumnCount = (availWidth + colGap) / (colWidth + colGap); |
| desiredColumnWidth = (availWidth - (desiredColumnCount - 1) * colGap) / desiredColumnCount; |
| } |
| } |
| setDesiredColumnCountAndWidth(desiredColumnCount, desiredColumnWidth); |
| } |
| |
| void RenderBlock::setDesiredColumnCountAndWidth(int count, int width) |
| { |
| if (count == 1) { |
| if (m_hasColumns) { |
| delete gColumnInfoMap->take(this); |
| m_hasColumns = false; |
| } |
| } else { |
| ColumnInfo* info; |
| if (m_hasColumns) |
| info = gColumnInfoMap->get(this); |
| else { |
| if (!gColumnInfoMap) |
| gColumnInfoMap = new ColumnInfoMap; |
| info = new ColumnInfo; |
| gColumnInfoMap->add(this, info); |
| m_hasColumns = true; |
| } |
| info->m_desiredColumnCount = count; |
| info->m_desiredColumnWidth = width; |
| } |
| } |
| |
| int RenderBlock::desiredColumnWidth() const |
| { |
| if (!m_hasColumns) |
| return contentWidth(); |
| return gColumnInfoMap->get(this)->m_desiredColumnWidth; |
| } |
| |
| unsigned RenderBlock::desiredColumnCount() const |
| { |
| if (!m_hasColumns) |
| return 1; |
| return gColumnInfoMap->get(this)->m_desiredColumnCount; |
| } |
| |
| Vector<IntRect>* RenderBlock::columnRects() const |
| { |
| if (!m_hasColumns) |
| return 0; |
| return &gColumnInfoMap->get(this)->m_columnRects; |
| } |
| |
| int RenderBlock::layoutColumns(int endOfContent) |
| { |
| // Don't do anything if we have no columns |
| if (!m_hasColumns) |
| return -1; |
| |
| ColumnInfo* info = gColumnInfoMap->get(this); |
| int desiredColumnWidth = info->m_desiredColumnWidth; |
| int desiredColumnCount = info->m_desiredColumnCount; |
| Vector<IntRect>* columnRects = &info->m_columnRects; |
| |
| bool computeIntrinsicHeight = (endOfContent == -1); |
| |
| // Fill the columns in to the available height. Attempt to balance the height of the columns |
| int availableHeight = contentHeight(); |
| int colHeight = computeIntrinsicHeight ? availableHeight / desiredColumnCount : availableHeight; |
| |
| // Add in half our line-height to help with best-guess initial balancing. |
| int columnSlop = lineHeight(false) / 2; |
| int remainingSlopSpace = columnSlop * desiredColumnCount; |
| |
| if (computeIntrinsicHeight) |
| colHeight += columnSlop; |
| |
| int colGap = columnGap(); |
| |
| // Compute a collection of column rects. |
| columnRects->clear(); |
| |
| // Then we do a simulated "paint" into the column slices and allow the content to slightly adjust our individual column rects. |
| // FIXME: We need to take into account layers that are affected by the columns as well here so that they can have an opportunity |
| // to adjust column rects also. |
| RenderView* v = view(); |
| int left = borderLeft() + paddingLeft(); |
| int top = borderTop() + paddingTop(); |
| int currX = style()->direction() == LTR ? borderLeft() + paddingLeft() : borderLeft() + paddingLeft() + contentWidth() - desiredColumnWidth; |
| int currY = top; |
| unsigned colCount = desiredColumnCount; |
| int maxColBottom = borderTop() + paddingTop(); |
| int contentBottom = top + availableHeight; |
| for (unsigned i = 0; i < colCount; i++) { |
| // If we aren't constrained, then the last column can just get all the remaining space. |
| if (computeIntrinsicHeight && i == colCount - 1) |
| colHeight = availableHeight; |
| |
| // This represents the real column position. |
| IntRect colRect(currX, top, desiredColumnWidth, colHeight); |
| |
| // For the simulated paint, we pretend like everything is in one long strip. |
| IntRect pageRect(left, currY, desiredColumnWidth, colHeight); |
| v->setPrintRect(pageRect); |
| v->setTruncatedAt(currY + colHeight); |
| GraphicsContext context((PlatformGraphicsContext*)0); |
| RenderObject::PaintInfo paintInfo(&context, pageRect, PaintPhaseForeground, false, 0, 0); |
| |
| m_hasColumns = false; |
| paintObject(paintInfo, 0, 0); |
| m_hasColumns = true; |
| |
| int adjustedBottom = v->bestTruncatedAt(); |
| if (adjustedBottom <= currY) |
| adjustedBottom = currY + colHeight; |
| |
| colRect.setHeight(adjustedBottom - currY); |
| |
| // Add in the lost space to the subsequent columns. |
| // FIXME: This will create a "staircase" effect if there are enough columns, but the effect should be pretty subtle. |
| if (computeIntrinsicHeight) { |
| int lostSpace = colHeight - colRect.height(); |
| if (lostSpace > remainingSlopSpace) { |
| // Redestribute the space among the remaining columns. |
| int spaceToRedistribute = lostSpace - remainingSlopSpace; |
| int remainingColumns = colCount - i + 1; |
| colHeight += spaceToRedistribute / remainingColumns; |
| } |
| remainingSlopSpace = max(0, remainingSlopSpace - lostSpace); |
| } |
| |
| if (style()->direction() == LTR) |
| currX += desiredColumnWidth + colGap; |
| else |
| currX -= (desiredColumnWidth + colGap); |
| |
| currY += colRect.height(); |
| availableHeight -= colRect.height(); |
| |
| maxColBottom = max(colRect.bottom(), maxColBottom); |
| |
| columnRects->append(colRect); |
| |
| // Start adding in more columns as long as there's still content left. |
| if (currY < endOfContent && i == colCount - 1 && (computeIntrinsicHeight || contentHeight())) |
| colCount++; |
| } |
| |
| m_overflowWidth = max(m_width, currX - colGap); |
| m_overflowLeft = min(0, currX + desiredColumnWidth + colGap); |
| |
| m_overflowHeight = maxColBottom; |
| int toAdd = borderBottom() + paddingBottom() + horizontalScrollbarHeight(); |
| |
| if (computeIntrinsicHeight) |
| m_height = m_overflowHeight + toAdd; |
| |
| v->setPrintRect(IntRect()); |
| v->setTruncatedAt(0); |
| |
| ASSERT(colCount == columnRects->size()); |
| |
| return contentBottom; |
| } |
| |
| void RenderBlock::adjustPointToColumnContents(IntPoint& point) const |
| { |
| // Just bail if we have no columns. |
| if (!m_hasColumns) |
| return; |
| |
| Vector<IntRect>* colRects = columnRects(); |
| |
| // Determine which columns we intersect. |
| int colGap = columnGap(); |
| int leftGap = colGap / 2; |
| IntPoint columnPoint(colRects->at(0).location()); |
| int yOffset = 0; |
| for (unsigned i = 0; i < colRects->size(); i++) { |
| // Add in half the column gap to the left and right of the rect. |
| IntRect colRect = colRects->at(i); |
| IntRect gapAndColumnRect(colRect.x() - leftGap, colRect.y(), colRect.width() + colGap, colRect.height()); |
| |
| if (gapAndColumnRect.contains(point)) { |
| // We're inside the column. Translate the x and y into our column coordinate space. |
| point.move(columnPoint.x() - colRect.x(), yOffset); |
| return; |
| } |
| |
| // Move to the next position. |
| yOffset += colRect.height(); |
| } |
| } |
| |
| void RenderBlock::adjustRectForColumns(IntRect& r) const |
| { |
| // Just bail if we have no columns. |
| if (!m_hasColumns) |
| return; |
| |
| Vector<IntRect>* colRects = columnRects(); |
| |
| // Begin with a result rect that is empty. |
| IntRect result; |
| |
| // Determine which columns we intersect. |
| int currXOffset = 0; |
| int currYOffset = 0; |
| int colGap = columnGap(); |
| for (unsigned i = 0; i < colRects->size(); i++) { |
| IntRect colRect = colRects->at(i); |
| |
| IntRect repaintRect = r; |
| repaintRect.move(currXOffset, currYOffset); |
| |
| repaintRect.intersect(colRect); |
| |
| result.unite(repaintRect); |
| |
| // Move to the next position. |
| if (style()->direction() == LTR) |
| currXOffset += colRect.width() + colGap; |
| else |
| currXOffset -= (colRect.width() + colGap); |
| |
| currYOffset -= colRect.height(); |
| } |
| |
| r = result; |
| } |
| |
| void RenderBlock::calcPrefWidths() |
| { |
| ASSERT(prefWidthsDirty()); |
| |
| updateFirstLetter(); |
| |
| if (!isTableCell() && style()->width().isFixed() && style()->width().value() > 0) |
| m_minPrefWidth = m_maxPrefWidth = calcContentBoxWidth(style()->width().value()); |
| else { |
| m_minPrefWidth = 0; |
| m_maxPrefWidth = 0; |
| |
| if (childrenInline()) |
| calcInlinePrefWidths(); |
| else |
| calcBlockPrefWidths(); |
| |
| m_maxPrefWidth = max(m_minPrefWidth, m_maxPrefWidth); |
| |
| if (!style()->autoWrap() && childrenInline()) { |
| m_minPrefWidth = m_maxPrefWidth; |
| |
| // A horizontal marquee with inline children has no minimum width. |
| if (m_layer && m_layer->marquee() && m_layer->marquee()->isHorizontal()) |
| m_minPrefWidth = 0; |
| } |
| |
| if (isTableCell()) { |
| Length w = static_cast<const RenderTableCell*>(this)->styleOrColWidth(); |
| if (w.isFixed() && w.value() > 0) |
| m_maxPrefWidth = max(m_minPrefWidth, calcContentBoxWidth(w.value())); |
| } |
| } |
| |
| if (style()->minWidth().isFixed() && style()->minWidth().value() > 0) { |
| m_maxPrefWidth = max(m_maxPrefWidth, calcContentBoxWidth(style()->minWidth().value())); |
| m_minPrefWidth = max(m_minPrefWidth, calcContentBoxWidth(style()->minWidth().value())); |
| } |
| |
| if (style()->maxWidth().isFixed() && style()->maxWidth().value() != undefinedLength) { |
| m_maxPrefWidth = min(m_maxPrefWidth, calcContentBoxWidth(style()->maxWidth().value())); |
| m_minPrefWidth = min(m_minPrefWidth, calcContentBoxWidth(style()->maxWidth().value())); |
| } |
| |
| int toAdd = 0; |
| toAdd = borderLeft() + borderRight() + paddingLeft() + paddingRight(); |
| |
| m_minPrefWidth += toAdd; |
| m_maxPrefWidth += toAdd; |
| |
| setPrefWidthsDirty(false); |
| } |
| |
| struct InlineMinMaxIterator |
| { |
| /* InlineMinMaxIterator is a class that will iterate over all render objects that contribute to |
| inline min/max width calculations. Note the following about the way it walks: |
| (1) Positioned content is skipped (since it does not contribute to min/max width of a block) |
| (2) We do not drill into the children of floats or replaced elements, since you can't break |
| in the middle of such an element. |
| (3) Inline flows (e.g., <a>, <span>, <i>) are walked twice, since each side can have |
| distinct borders/margin/padding that contribute to the min/max width. |
| */ |
| RenderObject* parent; |
| RenderObject* current; |
| bool endOfInline; |
| |
| InlineMinMaxIterator(RenderObject* p, bool end = false) |
| :parent(p), current(p), endOfInline(end) {} |
| |
| RenderObject* next(); |
| }; |
| |
| RenderObject* InlineMinMaxIterator::next() |
| { |
| RenderObject* result = 0; |
| bool oldEndOfInline = endOfInline; |
| endOfInline = false; |
| while (current || current == parent) { |
| if (!oldEndOfInline && |
| (current == parent || |
| (!current->isFloating() && !current->isReplaced() && !current->isPositioned()))) |
| result = current->firstChild(); |
| if (!result) { |
| // We hit the end of our inline. (It was empty, e.g., <span></span>.) |
| if (!oldEndOfInline && current->isInlineFlow()) { |
| result = current; |
| endOfInline = true; |
| break; |
| } |
| |
| while (current && current != parent) { |
| result = current->nextSibling(); |
| if (result) break; |
| current = current->parent(); |
| if (current && current != parent && current->isInlineFlow()) { |
| result = current; |
| endOfInline = true; |
| break; |
| } |
| } |
| } |
| |
| if (!result) |
| break; |
| |
| if (!result->isPositioned() && (result->isText() || result->isFloating() || result->isReplaced() || result->isInlineFlow())) |
| break; |
| |
| current = result; |
| result = 0; |
| } |
| |
| // Update our position. |
| current = result; |
| return current; |
| } |
| |
| static int getBPMWidth(int childValue, Length cssUnit) |
| { |
| if (cssUnit.type() != Auto) |
| return (cssUnit.isFixed() ? cssUnit.value() : childValue); |
| return 0; |
| } |
| |
| static int getBorderPaddingMargin(const RenderObject* child, bool endOfInline) |
| { |
| RenderStyle* cstyle = child->style(); |
| int result = 0; |
| bool leftSide = (cstyle->direction() == LTR) ? !endOfInline : endOfInline; |
| result += getBPMWidth((leftSide ? child->marginLeft() : child->marginRight()), |
| (leftSide ? cstyle->marginLeft() : |
| cstyle->marginRight())); |
| result += getBPMWidth((leftSide ? child->paddingLeft() : child->paddingRight()), |
| (leftSide ? cstyle->paddingLeft() : |
| cstyle->paddingRight())); |
| result += leftSide ? child->borderLeft() : child->borderRight(); |
| return result; |
| } |
| |
| static inline void stripTrailingSpace(int& inlineMax, int& inlineMin, |
| RenderObject* trailingSpaceChild) |
| { |
| if (trailingSpaceChild && trailingSpaceChild->isText()) { |
| // Collapse away the trailing space at the end of a block. |
| RenderText* t = static_cast<RenderText*>(trailingSpaceChild); |
| const UChar space = ' '; |
| const Font& font = t->style()->font(); // FIXME: This ignores first-line. |
| int spaceWidth = font.width(TextRun(&space, 1)); |
| inlineMax -= spaceWidth + font.wordSpacing(); |
| if (inlineMin > inlineMax) |
| inlineMin = inlineMax; |
| } |
| } |
| |
| void RenderBlock::calcInlinePrefWidths() |
| { |
| int inlineMax = 0; |
| int inlineMin = 0; |
| |
| int cw = containingBlock()->contentWidth(); |
| |
| // If we are at the start of a line, we want to ignore all white-space. |
| // Also strip spaces if we previously had text that ended in a trailing space. |
| bool stripFrontSpaces = true; |
| RenderObject* trailingSpaceChild = 0; |
| |
| // Firefox and Opera will allow a table cell to grow to fit an image inside it under |
| // very specific cirucumstances (in order to match common WinIE renderings). |
| // Not supporting the quirk has caused us to mis-render some real sites. (See Bugzilla 10517.) |
| bool allowImagesToBreak = !style()->htmlHacks() || !isTableCell() || !style()->width().isIntrinsicOrAuto(); |
| |
| bool autoWrap, oldAutoWrap; |
| autoWrap = oldAutoWrap = style()->autoWrap(); |
| |
| InlineMinMaxIterator childIterator(this); |
| bool addedTextIndent = false; // Only gets added in once. |
| RenderObject* prevFloat = 0; |
| RenderObject* previousLeaf = 0; |
| while (RenderObject* child = childIterator.next()) { |
| autoWrap = child->isReplaced() ? child->parent()->style()->autoWrap() : |
| child->style()->autoWrap(); |
| |
| if (!child->isBR()) { |
| // Step One: determine whether or not we need to go ahead and |
| // terminate our current line. Each discrete chunk can become |
| // the new min-width, if it is the widest chunk seen so far, and |
| // it can also become the max-width. |
| |
| // Children fall into three categories: |
| // (1) An inline flow object. These objects always have a min/max of 0, |
| // and are included in the iteration solely so that their margins can |
| // be added in. |
| // |
| // (2) An inline non-text non-flow object, e.g., an inline replaced element. |
| // These objects can always be on a line by themselves, so in this situation |
| // we need to go ahead and break the current line, and then add in our own |
| // margins and min/max width on its own line, and then terminate the line. |
| // |
| // (3) A text object. Text runs can have breakable characters at the start, |
| // the middle or the end. They may also lose whitespace off the front if |
| // we're already ignoring whitespace. In order to compute accurate min-width |
| // information, we need three pieces of information. |
| // (a) the min-width of the first non-breakable run. Should be 0 if the text string |
| // starts with whitespace. |
| // (b) the min-width of the last non-breakable run. Should be 0 if the text string |
| // ends with whitespace. |
| // (c) the min/max width of the string (trimmed for whitespace). |
| // |
| // If the text string starts with whitespace, then we need to go ahead and |
| // terminate our current line (unless we're already in a whitespace stripping |
| // mode. |
| // |
| // If the text string has a breakable character in the middle, but didn't start |
| // with whitespace, then we add the width of the first non-breakable run and |
| // then end the current line. We then need to use the intermediate min/max width |
| // values (if any of them are larger than our current min/max). We then look at |
| // the width of the last non-breakable run and use that to start a new line |
| // (unless we end in whitespace). |
| RenderStyle* cstyle = child->style(); |
| int childMin = 0; |
| int childMax = 0; |
| |
| if (!child->isText()) { |
| // Case (1) and (2). Inline replaced and inline flow elements. |
| if (child->isInlineFlow()) { |
| // Add in padding/border/margin from the appropriate side of |
| // the element. |
| int bpm = getBorderPaddingMargin(child, childIterator.endOfInline); |
| childMin += bpm; |
| childMax += bpm; |
| |
| inlineMin += childMin; |
| inlineMax += childMax; |
| |
| child->setPrefWidthsDirty(false); |
| } else { |
| // Inline replaced elts add in their margins to their min/max values. |
| int margins = 0; |
| Length leftMargin = cstyle->marginLeft(); |
| Length rightMargin = cstyle->marginRight(); |
| if (leftMargin.isFixed()) |
| margins += leftMargin.value(); |
| if (rightMargin.isFixed()) |
| margins += rightMargin.value(); |
| childMin += margins; |
| childMax += margins; |
| } |
| } |
| |
| if (!child->isRenderInline() && !child->isText()) { |
| // Case (2). Inline replaced elements and floats. |
| // Go ahead and terminate the current line as far as |
| // minwidth is concerned. |
| childMin += child->minPrefWidth(); |
| childMax += child->maxPrefWidth(); |
| |
| bool clearPreviousFloat; |
| if (child->isFloating()) { |
| clearPreviousFloat = (prevFloat |
| && (prevFloat->style()->floating() == FLEFT && (child->style()->clear() & CLEFT) |
| || prevFloat->style()->floating() == FRIGHT && (child->style()->clear() & CRIGHT))); |
| prevFloat = child; |
| } else |
| clearPreviousFloat = false; |
| |
| bool canBreakReplacedElement = !child->isImage() || allowImagesToBreak; |
| if (canBreakReplacedElement && (autoWrap || oldAutoWrap) || clearPreviousFloat) { |
| m_minPrefWidth = max(inlineMin, m_minPrefWidth); |
| inlineMin = 0; |
| } |
| |
| // If we're supposed to clear the previous float, then terminate maxwidth as well. |
| if (clearPreviousFloat) { |
| m_maxPrefWidth = max(inlineMax, m_maxPrefWidth); |
| inlineMax = 0; |
| } |
| |
| // Add in text-indent. This is added in only once. |
| int ti = 0; |
| if (!addedTextIndent) { |
| addedTextIndent = true; |
| ti = style()->textIndent().calcMinValue(cw); |
| childMin+=ti; |
| childMax+=ti; |
| } |
| |
| // Add our width to the max. |
| inlineMax += childMax; |
| |
| if (!autoWrap || !canBreakReplacedElement) { |
| if (child->isFloating()) |
| m_minPrefWidth = max(childMin, m_minPrefWidth); |
| else |
| inlineMin += childMin; |
| } else { |
| // Now check our line. |
| m_minPrefWidth = max(childMin, m_minPrefWidth); |
| |
| // Now start a new line. |
| inlineMin = 0; |
| } |
| |
| // We are no longer stripping whitespace at the start of |
| // a line. |
| if (!child->isFloating()) { |
| stripFrontSpaces = false; |
| trailingSpaceChild = 0; |
| } |
| } else if (child->isText()) { |
| // Case (3). Text. |
| RenderText* t = static_cast<RenderText *>(child); |
| |
| if (t->isWordBreak()) { |
| m_minPrefWidth = max(inlineMin, m_minPrefWidth); |
| inlineMin = 0; |
| continue; |
| } |
| |
| // Determine if we have a breakable character. Pass in |
| // whether or not we should ignore any spaces at the front |
| // of the string. If those are going to be stripped out, |
| // then they shouldn't be considered in the breakable char |
| // check. |
| bool hasBreakableChar, hasBreak; |
| int beginMin, endMin; |
| bool beginWS, endWS; |
| int beginMax, endMax; |
| t->trimmedPrefWidths(inlineMax, beginMin, beginWS, endMin, endWS, |
| hasBreakableChar, hasBreak, beginMax, endMax, |
| childMin, childMax, stripFrontSpaces); |
| |
| // This text object will not be rendered, but it may still provide a breaking opportunity. |
| if (!hasBreak && childMax == 0) { |
| if (autoWrap && (beginWS || endWS)) { |
| m_minPrefWidth = max(inlineMin, m_minPrefWidth); |
| inlineMin = 0; |
| } |
| continue; |
| } |
| |
| if (stripFrontSpaces) |
| trailingSpaceChild = child; |
| else |
| trailingSpaceChild = 0; |
| |
| // Add in text-indent. This is added in only once. |
| int ti = 0; |
| if (!addedTextIndent) { |
| addedTextIndent = true; |
| ti = style()->textIndent().calcMinValue(cw); |
| childMin+=ti; beginMin += ti; |
| childMax+=ti; beginMax += ti; |
| } |
| |
| // If we have no breakable characters at all, |
| // then this is the easy case. We add ourselves to the current |
| // min and max and continue. |
| if (!hasBreakableChar) { |
| inlineMin += childMin; |
| } else { |
| // We have a breakable character. Now we need to know if |
| // we start and end with whitespace. |
| if (beginWS) |
| // Go ahead and end the current line. |
| m_minPrefWidth = max(inlineMin, m_minPrefWidth); |
| else { |
| inlineMin += beginMin; |
| m_minPrefWidth = max(inlineMin, m_minPrefWidth); |
| childMin -= ti; |
| } |
| |
| inlineMin = childMin; |
| |
| if (endWS) { |
| // We end in whitespace, which means we can go ahead |
| // and end our current line. |
| m_minPrefWidth = max(inlineMin, m_minPrefWidth); |
| inlineMin = 0; |
| } else { |
| m_minPrefWidth = max(inlineMin, m_minPrefWidth); |
| inlineMin = endMin; |
| } |
| } |
| |
| if (hasBreak) { |
| inlineMax += beginMax; |
| m_maxPrefWidth = max(inlineMax, m_maxPrefWidth); |
| m_maxPrefWidth = max(childMax, m_maxPrefWidth); |
| inlineMax = endMax; |
| } else |
| inlineMax += childMax; |
| } |
| } else { |
| m_minPrefWidth = max(inlineMin, m_minPrefWidth); |
| m_maxPrefWidth = max(inlineMax, m_maxPrefWidth); |
| inlineMin = inlineMax = 0; |
| stripFrontSpaces = true; |
| trailingSpaceChild = 0; |
| } |
| |
| oldAutoWrap = autoWrap; |
| if (!child->isInlineFlow()) |
| previousLeaf = child; |
| } |
| |
| if (style()->collapseWhiteSpace()) |
| stripTrailingSpace(inlineMax, inlineMin, trailingSpaceChild); |
| |
| m_minPrefWidth = max(inlineMin, m_minPrefWidth); |
| m_maxPrefWidth = max(inlineMax, m_maxPrefWidth); |
| } |
| |
| // Use a very large value (in effect infinite). |
| #define BLOCK_MAX_WIDTH 15000 |
| |
| void RenderBlock::calcBlockPrefWidths() |
| { |
| bool nowrap = style()->whiteSpace() == NOWRAP; |
| |
| RenderObject *child = firstChild(); |
| int floatLeftWidth = 0, floatRightWidth = 0; |
| while (child) { |
| // Positioned children don't affect the min/max width |
| if (child->isPositioned()) { |
| child = child->nextSibling(); |
| continue; |
| } |
| |
| if (child->isFloating() || child->avoidsFloats()) { |
| int floatTotalWidth = floatLeftWidth + floatRightWidth; |
| if (child->style()->clear() & CLEFT) { |
| m_maxPrefWidth = max(floatTotalWidth, m_maxPrefWidth); |
| floatLeftWidth = 0; |
| } |
| if (child->style()->clear() & CRIGHT) { |
| m_maxPrefWidth = max(floatTotalWidth, m_maxPrefWidth); |
| floatRightWidth = 0; |
| } |
| } |
| |
| // A margin basically has three types: fixed, percentage, and auto (variable). |
| // Auto and percentage margins simply become 0 when computing min/max width. |
| // Fixed margins can be added in as is. |
| Length ml = child->style()->marginLeft(); |
| Length mr = child->style()->marginRight(); |
| int margin = 0, marginLeft = 0, marginRight = 0; |
| if (ml.isFixed()) |
| marginLeft += ml.value(); |
| if (mr.isFixed()) |
| marginRight += mr.value(); |
| margin = marginLeft + marginRight; |
| |
| int w = child->minPrefWidth() + margin; |
| m_minPrefWidth = max(w, m_minPrefWidth); |
| |
| // IE ignores tables for calculation of nowrap. Makes some sense. |
| if (nowrap && !child->isTable()) |
| m_maxPrefWidth = max(w, m_maxPrefWidth); |
| |
| w = child->maxPrefWidth() + margin; |
| |
| if (!child->isFloating()) { |
| if (child->avoidsFloats()) { |
| // Determine a left and right max value based off whether or not the floats can fit in the |
| // margins of the object. For negative margins, we will attempt to overlap the float if the negative margin |
| // is smaller than the float width. |
| int maxLeft = marginLeft > 0 ? max(floatLeftWidth, marginLeft) : floatLeftWidth + marginLeft; |
| int maxRight = marginRight > 0 ? max(floatRightWidth, marginRight) : floatRightWidth + marginRight; |
| w = child->maxPrefWidth() + maxLeft + maxRight; |
| w = max(w, floatLeftWidth + floatRightWidth); |
| } |
| else |
| m_maxPrefWidth = max(floatLeftWidth + floatRightWidth, m_maxPrefWidth); |
| floatLeftWidth = floatRightWidth = 0; |
| } |
| |
| if (child->isFloating()) { |
| if (style()->floating() == FLEFT) |
| floatLeftWidth += w; |
| else |
| floatRightWidth += w; |
| } else |
| m_maxPrefWidth = max(w, m_maxPrefWidth); |
| |
| // A very specific WinIE quirk. |
| // Example: |
| /* |
| <div style="position:absolute; width:100px; top:50px;"> |
| <div style="position:absolute;left:0px;top:50px;height:50px;background-color:green"> |
| <table style="width:100%"><tr><td></table> |
| </div> |
| </div> |
| */ |
| // In the above example, the inner absolute positioned block should have a computed width |
| // of 100px because of the table. |
| // We can achieve this effect by making the maxwidth of blocks that contain tables |
| // with percentage widths be infinite (as long as they are not inside a table cell). |
| if (style()->htmlHacks() && child->style()->width().isPercent() && |
| !isTableCell() && child->isTable() && m_maxPrefWidth < BLOCK_MAX_WIDTH) { |
| RenderBlock* cb = containingBlock(); |
| while (!cb->isRenderView() && !cb->isTableCell()) |
| cb = cb->containingBlock(); |
| if (!cb->isTableCell()) |
| m_maxPrefWidth = BLOCK_MAX_WIDTH; |
| } |
| |
| child = child->nextSibling(); |
| } |
| |
| // Always make sure these values are non-negative. |
| m_minPrefWidth = max(0, m_minPrefWidth); |
| m_maxPrefWidth = max(0, m_maxPrefWidth); |
| |
| m_maxPrefWidth = max(floatLeftWidth + floatRightWidth, m_maxPrefWidth); |
| } |
| |
| bool RenderBlock::hasLineIfEmpty() const |
| { |
| return element() && (element()->isContentEditable() && element()->rootEditableElement() == element() || |
| element()->isShadowNode() && element()->shadowParentNode()->hasTagName(inputTag)); |
| } |
| |
| int RenderBlock::lineHeight(bool b, bool isRootLineBox) const |
| { |
| // Inline blocks are replaced elements. Otherwise, just pass off to |
| // the base class. If we're being queried as though we're the root line |
| // box, then the fact that we're an inline-block is irrelevant, and we behave |
| // just like a block. |
| if (isReplaced() && !isRootLineBox) |
| return height() + marginTop() + marginBottom(); |
| return RenderFlow::lineHeight(b, isRootLineBox); |
| } |
| |
| int RenderBlock::baselinePosition(bool b, bool isRootLineBox) const |
| { |
| // Inline blocks are replaced elements. Otherwise, just pass off to |
| // the base class. If we're being queried as though we're the root line |
| // box, then the fact that we're an inline-block is irrelevant, and we behave |
| // just like a block. |
| if (isReplaced() && !isRootLineBox) { |
| // For "leaf" theme objects, let the theme decide what the baseline position is. |
| // FIXME: Might be better to have a custom CSS property instead, so that if the theme |
| // is turned off, checkboxes/radios will still have decent baselines. |
| if (style()->hasAppearance() && !theme()->isControlContainer(style()->appearance())) |
| return theme()->baselinePosition(this); |
| |
| // CSS2.1 states that the baseline of an inline block is the baseline of the last line box in |
| // the normal flow. We make an exception for marquees, since their baselines are meaningless |
| // (the content inside them moves). This matches WinIE as well, which just bottom-aligns them. |
| // We also give up on finding a baseline if we have a vertical scrollbar, or if we are scrolled |
| // vertically (e.g., an overflow:hidden block that has had scrollTop moved) or if the baseline is outside |
| // of our content box. |
| int baselinePos = (m_layer && (m_layer->marquee() || m_layer->verticalScrollbar() || m_layer->scrollYOffset() != 0)) ? -1 : getBaselineOfLastLineBox(); |
| if (baselinePos != -1 && baselinePos <= borderTop() + paddingTop() + contentHeight()) |
| return marginTop() + baselinePos; |
| return height() + marginTop() + marginBottom(); |
| } |
| return RenderFlow::baselinePosition(b, isRootLineBox); |
| } |
| |
| int RenderBlock::getBaselineOfFirstLineBox() const |
| { |
| if (!isBlockFlow()) |
| return RenderFlow::getBaselineOfFirstLineBox(); |
| |
| if (childrenInline()) { |
| if (firstLineBox()) |
| return firstLineBox()->yPos() + firstLineBox()->baseline(); |
| else |
| return -1; |
| } |
| else { |
| for (RenderObject* curr = firstChild(); curr; curr = curr->nextSibling()) { |
| if (!curr->isFloatingOrPositioned()) { |
| int result = curr->getBaselineOfFirstLineBox(); |
| if (result != -1) |
| return curr->yPos() + result; // Translate to our coordinate space. |
| } |
| } |
| } |
| |
| return -1; |
| } |
| |
| int RenderBlock::getBaselineOfLastLineBox() const |
| { |
| if (!isBlockFlow()) |
| return RenderFlow::getBaselineOfLastLineBox(); |
| |
| if (childrenInline()) { |
| if (!firstLineBox() && hasLineIfEmpty()) |
| return RenderFlow::baselinePosition(true, true) + borderTop() + paddingTop(); |
| if (lastLineBox()) |
| return lastLineBox()->yPos() + lastLineBox()->baseline(); |
| return -1; |
| } |
| else { |
| bool haveNormalFlowChild = false; |
| for (RenderObject* curr = lastChild(); curr; curr = curr->previousSibling()) { |
| if (!curr->isFloatingOrPositioned()) { |
| haveNormalFlowChild = true; |
| int result = curr->getBaselineOfLastLineBox(); |
| if (result != -1) |
| return curr->yPos() + result; // Translate to our coordinate space. |
| } |
| } |
| if (!haveNormalFlowChild && hasLineIfEmpty()) |
| return RenderFlow::baselinePosition(true, true) + borderTop() + paddingTop(); |
| } |
| |
| return -1; |
| } |
| |
| bool RenderBlock::containsNonZeroBidiLevel() const |
| { |
| for (RootInlineBox* root = firstRootBox(); root; root = root->nextRootBox()) { |
| for (InlineBox* box = root->firstLeafChild(); box; box = box->nextLeafChild()) { |
| if (box->bidiLevel()) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| RenderBlock* RenderBlock::firstLineBlock() const |
| { |
| const RenderObject* firstLineBlock = this; |
| bool hasPseudo = false; |
| while (true) { |
| hasPseudo = firstLineBlock->style()->hasPseudoStyle(RenderStyle::FIRST_LINE); |
| if (hasPseudo) |
| break; |
| RenderObject* parentBlock = firstLineBlock->parent(); |
| if (firstLineBlock->isReplaced() || firstLineBlock->isFloating() || |
| !parentBlock || parentBlock->firstChild() != firstLineBlock || !parentBlock->isBlockFlow()) |
| break; |
| firstLineBlock = parentBlock; |
| } |
| |
| if (!hasPseudo) |
| return 0; |
| |
| return (RenderBlock*)(firstLineBlock); |
| } |
| |
| void RenderBlock::updateFirstLetter() |
| { |
| if (!document()->usesFirstLetterRules()) |
| return; |
| // Don't recurse |
| if (style()->styleType() == RenderStyle::FIRST_LETTER) |
| return; |
| |
| // FIXME: We need to destroy the first-letter object if it is no longer the first child. Need to find |
| // an efficient way to check for that situation though before implementing anything. |
| RenderObject* firstLetterBlock = this; |
| bool hasPseudoStyle = false; |
| while (true) { |
| // We only honor first-letter if the firstLetterBlock can have children in the DOM. This correctly |
| // prevents form controls from honoring first-letter. |
| hasPseudoStyle = firstLetterBlock->style()->hasPseudoStyle(RenderStyle::FIRST_LETTER) |
| && firstLetterBlock->canHaveChildren(); |
| if (hasPseudoStyle) |
| break; |
| RenderObject* parentBlock = firstLetterBlock->parent(); |
| if (firstLetterBlock->isReplaced() || !parentBlock || parentBlock->firstChild() != firstLetterBlock || |
| !parentBlock->isBlockFlow()) |
| break; |
| firstLetterBlock = parentBlock; |
| } |
| |
| if (!hasPseudoStyle) |
| return; |
| |
| // Drill into inlines looking for our first text child. |
| RenderObject* currChild = firstLetterBlock->firstChild(); |
| while (currChild && currChild->needsLayout() && (!currChild->isReplaced() || currChild->isFloatingOrPositioned()) && !currChild->isText()) { |
| if (currChild->isFloatingOrPositioned()) { |
| if (currChild->style()->styleType() == RenderStyle::FIRST_LETTER) |
| break; |
| currChild = currChild->nextSibling(); |
| } else |
| currChild = currChild->firstChild(); |
| } |
| |
| // Get list markers out of the way. |
| while (currChild && currChild->isListMarker()) |
| currChild = currChild->nextSibling(); |
| |
| if (!currChild) |
| return; |
| |
| RenderObject* firstLetterContainer = currChild->parent(); |
| |
| // If the child already has style, then it has already been created, so we just want |
| // to update it. |
| if (currChild->style()->styleType() == RenderStyle::FIRST_LETTER) { |
| RenderStyle* pseudo = firstLetterBlock->getCachedPseudoStyle(RenderStyle::FIRST_LETTER, |
| firstLetterContainer->firstLineStyle()); |
| currChild->setStyle(pseudo); |
| for (RenderObject* genChild = currChild->firstChild(); genChild; genChild = genChild->nextSibling()) { |
| if (genChild->isText()) |
| genChild->setStyle(pseudo); |
| } |
| return; |
| } |
| |
| // If the child does not already have style, we create it here. |
| if (currChild->isText() && !currChild->isBR() && currChild->parent()->style()->styleType() != RenderStyle::FIRST_LETTER) { |
| // Our layout state is not valid for the repaints we are going to trigger by |
| // adding and removing children of firstLetterContainer. |
| view()->disableLayoutState(); |
| |
| RenderText* textObj = static_cast<RenderText*>(currChild); |
| |
| // Create our pseudo style now that we have our firstLetterContainer determined. |
| RenderStyle* pseudoStyle = firstLetterBlock->getCachedPseudoStyle(RenderStyle::FIRST_LETTER, |
| firstLetterContainer->firstLineStyle()); |
| |
| // Force inline display (except for floating first-letters) |
| pseudoStyle->setDisplay( pseudoStyle->isFloating() ? BLOCK : INLINE); |
| pseudoStyle->setPosition( StaticPosition ); // CSS2 says first-letter can't be positioned. |
| |
| RenderObject* firstLetter = RenderFlow::createAnonymousFlow(document(), pseudoStyle); // anonymous box |
| firstLetterContainer->addChild(firstLetter, currChild); |
| |
| // The original string is going to be either a generated content string or a DOM node's |
| // string. We want the original string before it got transformed in case first-letter has |
| // no text-transform or a different text-transform applied to it. |
| RefPtr<StringImpl> oldText = textObj->originalText(); |
| ASSERT(oldText); |
| |
| if (oldText && oldText->length() > 0) { |
| unsigned int length = 0; |
| |
| // account for leading spaces and punctuation |
| while (length < oldText->length() && (isSpaceOrNewline((*oldText)[length]) || Unicode::isPunct((*oldText)[length]))) |
| length++; |
| |
| // account for first letter |
| length++; |
| |
| // construct text fragment for the text after the first letter |
| // NOTE: this might empty |
| RenderTextFragment* remainingText = |
| new (renderArena()) RenderTextFragment(textObj->node(), oldText.get(), length, oldText->length() - length); |
| remainingText->setStyle(textObj->style()); |
| if (remainingText->element()) |
| remainingText->element()->setRenderer(remainingText); |
| |
| RenderObject* nextObj = textObj->nextSibling(); |
| firstLetterContainer->removeChild(textObj); |
| firstLetterContainer->addChild(remainingText, nextObj); |
| remainingText->setFirstLetter(firstLetter); |
| |
| // construct text fragment for the first letter |
| RenderTextFragment* letter = |
| new (renderArena()) RenderTextFragment(remainingText->node(), oldText.get(), 0, length); |
| RefPtr<RenderStyle> newStyle = RenderStyle::create(); |
| newStyle->inheritFrom(pseudoStyle); |
| letter->setStyle(newStyle.release()); |
| firstLetter->addChild(letter); |
| |
| textObj->destroy(); |
| } |
| view()->enableLayoutState(); |
| } |
| } |
| |
| bool RenderBlock::inRootBlockContext() const |
| { |
| if (isTableCell() || isFloatingOrPositioned() || hasOverflowClip()) |
| return false; |
| |
| if (isRoot() || isRenderView()) |
| return true; |
| |
| return containingBlock()->inRootBlockContext(); |
| } |
| |
| // Helper methods for obtaining the last line, computing line counts and heights for line counts |
| // (crawling into blocks). |
| static bool shouldCheckLines(RenderObject* obj) |
| { |
| return !obj->isFloatingOrPositioned() && !obj->isCompact() && !obj->isRunIn() && |
| obj->isBlockFlow() && obj->style()->height().isAuto() && |
| (!obj->isFlexibleBox() || obj->style()->boxOrient() == VERTICAL); |
| } |
| |
| static RootInlineBox* getLineAtIndex(RenderBlock* block, int i, int& count) |
| { |
| if (block->style()->visibility() == VISIBLE) { |
| if (block->childrenInline()) { |
| for (RootInlineBox* box = block->firstRootBox(); box; box = box->nextRootBox()) { |
| if (count++ == i) |
| return box; |
| } |
| } |
| else { |
| for (RenderObject* obj = block->firstChild(); obj; obj = obj->nextSibling()) { |
| if (shouldCheckLines(obj)) { |
| RootInlineBox *box = getLineAtIndex(static_cast<RenderBlock*>(obj), i, count); |
| if (box) |
| return box; |
| } |
| } |
| } |
| } |
| return 0; |
| } |
| |
| int getHeightForLineCount(RenderBlock* block, int l, bool includeBottom, int& count) |
| { |
| if (block->style()->visibility() == VISIBLE) { |
| if (block->childrenInline()) { |
| for (RootInlineBox* box = block->firstRootBox(); box; box = box->nextRootBox()) { |
| if (++count == l) |
| return box->bottomOverflow() + (includeBottom ? (block->borderBottom() + block->paddingBottom()) : 0); |
| } |
| } |
| else { |
| RenderObject* normalFlowChildWithoutLines = 0; |
| for (RenderObject* obj = block->firstChild(); obj; obj = obj->nextSibling()) { |
| if (shouldCheckLines(obj)) { |
| int result = getHeightForLineCount(static_cast<RenderBlock*>(obj), l, false, count); |
| if (result != -1) |
| return result + obj->yPos() + (includeBottom ? (block->borderBottom() + block->paddingBottom()) : 0); |
| } |
| else if (!obj->isFloatingOrPositioned() && !obj->isCompact() && !obj->isRunIn()) |
| normalFlowChildWithoutLines = obj; |
| } |
| if (normalFlowChildWithoutLines && l == 0) |
| return normalFlowChildWithoutLines->yPos() + normalFlowChildWithoutLines->height(); |
| } |
| } |
| |
| return -1; |
| } |
| |
| RootInlineBox* RenderBlock::lineAtIndex(int i) |
| { |
| int count = 0; |
| return getLineAtIndex(this, i, count); |
| } |
| |
| int RenderBlock::lineCount() |
| { |
| int count = 0; |
| if (style()->visibility() == VISIBLE) { |
| if (childrenInline()) |
| for (RootInlineBox* box = firstRootBox(); box; box = box->nextRootBox()) |
| count++; |
| else |
| for (RenderObject* obj = firstChild(); obj; obj = obj->nextSibling()) |
| if (shouldCheckLines(obj)) |
| count += static_cast<RenderBlock*>(obj)->lineCount(); |
| } |
| return count; |
| } |
| |
| int RenderBlock::heightForLineCount(int l) |
| { |
| int count = 0; |
| return getHeightForLineCount(this, l, true, count); |
| } |
| |
| void RenderBlock::adjustForBorderFit(int x, int& left, int& right) const |
| { |
| // We don't deal with relative positioning. Our assumption is that you shrink to fit the lines without accounting |
| // for either overflow or translations via relative positioning. |
| if (style()->visibility() == VISIBLE) { |
| if (childrenInline()) { |
| for (RootInlineBox* box = firstRootBox(); box; box = box->nextRootBox()) { |
| if (box->firstChild()) |
| left = min(left, x + box->firstChild()->xPos()); |
| if (box->lastChild()) |
| right = max(right, x + box->lastChild()->xPos() + box->lastChild()->width()); |
| } |
| } |
| else { |
| for (RenderObject* obj = firstChild(); obj; obj = obj->nextSibling()) { |
| if (!obj->isFloatingOrPositioned()) { |
| if (obj->isBlockFlow() && !obj->hasOverflowClip()) |
| static_cast<RenderBlock*>(obj)->adjustForBorderFit(x + obj->xPos(), left, right); |
| else if (obj->style()->visibility() == VISIBLE) { |
| // We are a replaced element or some kind of non-block-flow object. |
| left = min(left, x + obj->xPos()); |
| right = max(right, x + obj->xPos() + obj->width()); |
| } |
| } |
| } |
| } |
| |
| if (m_floatingObjects) { |
| FloatingObject* r; |
| DeprecatedPtrListIterator<FloatingObject> it(*m_floatingObjects); |
| for (; (r = it.current()); ++it) { |
| // Only examine the object if our m_shouldPaint flag is set. |
| if (r->m_shouldPaint) { |
| int floatLeft = r->m_left - r->m_renderer->xPos() + r->m_renderer->marginLeft(); |
| int floatRight = floatLeft + r->m_renderer->width(); |
| left = min(left, floatLeft); |
| right = max(right, floatRight); |
| } |
| } |
| } |
| } |
| } |
| |
| void RenderBlock::borderFitAdjust(int& x, int& w) const |
| { |
| if (style()->borderFit() == BorderFitBorder) |
| return; |
| |
| // Walk any normal flow lines to snugly fit. |
| int left = INT_MAX; |
| int right = INT_MIN; |
| int oldWidth = w; |
| adjustForBorderFit(0, left, right); |
| if (left != INT_MAX) { |
| left -= (borderLeft() + paddingLeft()); |
| if (left > 0) { |
| x += left; |
| w -= left; |
| } |
| } |
| if (right != INT_MIN) { |
| right += (borderRight() + paddingRight()); |
| if (right < oldWidth) |
| w -= (oldWidth - right); |
| } |
| } |
| |
| void RenderBlock::clearTruncation() |
| { |
| if (style()->visibility() == VISIBLE) { |
| if (childrenInline() && hasMarkupTruncation()) { |
| setHasMarkupTruncation(false); |
| for (RootInlineBox* box = firstRootBox(); box; box = box->nextRootBox()) |
| box->clearTruncation(); |
| } |
| else |
| for (RenderObject* obj = firstChild(); obj; obj = obj->nextSibling()) |
| if (shouldCheckLines(obj)) |
| static_cast<RenderBlock*>(obj)->clearTruncation(); |
| } |
| } |
| |
| void RenderBlock::setMaxTopMargins(int pos, int neg) |
| { |
| if (!m_maxMargin) { |
| if (pos == MaxMargin::topPosDefault(this) && neg == MaxMargin::topNegDefault(this)) |
| return; |
| m_maxMargin = new MaxMargin(this); |
| } |
| m_maxMargin->m_topPos = pos; |
| m_maxMargin->m_topNeg = neg; |
| } |
| |
| void RenderBlock::setMaxBottomMargins(int pos, int neg) |
| { |
| if (!m_maxMargin) { |
| if (pos == MaxMargin::bottomPosDefault(this) && neg == MaxMargin::bottomNegDefault(this)) |
| return; |
| m_maxMargin = new MaxMargin(this); |
| } |
| m_maxMargin->m_bottomPos = pos; |
| m_maxMargin->m_bottomNeg = neg; |
| } |
| |
| const char* RenderBlock::renderName() const |
| { |
| if (isBody()) |
| return "RenderBody"; // FIXME: Temporary hack until we know that the regression tests pass. |
| |
| if (isFloating()) |
| return "RenderBlock (floating)"; |
| if (isPositioned()) |
| return "RenderBlock (positioned)"; |
| if (isAnonymousBlock()) |
| return "RenderBlock (anonymous)"; |
| else if (isAnonymous()) |
| return "RenderBlock (generated)"; |
| if (isRelPositioned()) |
| return "RenderBlock (relative positioned)"; |
| if (isCompact()) |
| return "RenderBlock (compact)"; |
| if (isRunIn()) |
| return "RenderBlock (run-in)"; |
| return "RenderBlock"; |
| } |
| |
| } // namespace WebCore |