blob: 5f865a4e46b071367657186c6be5460d2c2f3b6c [file] [log] [blame]
/*
* Copyright (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 1999 Antti Koivisto (koivisto@kde.org)
* (C) 2001 Dirk Mueller ( mueller@kde.org )
* Copyright (C) 2003-2009, 2013-2016 Apple Inc. All rights reserved.
* Copyright (C) 2006 Andrew Wellington (proton@wiretapped.net)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include "config.h"
#include "StringImpl.h"
#include "AtomicString.h"
#include "StringBuffer.h"
#include "StringHash.h"
#include <wtf/ProcessID.h>
#include <wtf/StdLibExtras.h>
#include <wtf/text/CString.h>
#include <wtf/text/StringView.h>
#include <wtf/text/SymbolImpl.h>
#include <wtf/text/SymbolRegistry.h>
#include <wtf/unicode/CharacterNames.h>
#include <wtf/unicode/UTF8.h>
#if STRING_STATS
#include <unistd.h>
#include <wtf/DataLog.h>
#endif
namespace WTF {
using namespace Unicode;
static_assert(sizeof(StringImpl) == 2 * sizeof(int) + 2 * sizeof(void*), "StringImpl should stay small");
#if STRING_STATS
StringStats StringImpl::m_stringStats;
std::atomic<unsigned> StringStats::s_stringRemovesTillPrintStats(s_printStringStatsFrequency);
void StringStats::removeString(StringImpl& string)
{
unsigned length = string.length();
bool isSubString = string.isSubString();
--m_totalNumberStrings;
if (string.is8Bit()) {
--m_number8BitStrings;
if (!isSubString)
m_total8BitData -= length;
} else {
--m_number16BitStrings;
if (!isSubString)
m_total16BitData -= length;
}
if (!--s_stringRemovesTillPrintStats) {
s_stringRemovesTillPrintStats = s_printStringStatsFrequency;
printStats();
}
}
void StringStats::printStats()
{
dataLogF("String stats for process id %d:\n", getCurrentProcessID());
unsigned long long totalNumberCharacters = m_total8BitData + m_total16BitData;
double percent8Bit = m_totalNumberStrings ? ((double)m_number8BitStrings * 100) / (double)m_totalNumberStrings : 0.0;
double average8bitLength = m_number8BitStrings ? (double)m_total8BitData / (double)m_number8BitStrings : 0.0;
dataLogF("%8u (%5.2f%%) 8 bit %12llu chars %12llu bytes avg length %6.1f\n", m_number8BitStrings.load(), percent8Bit, m_total8BitData.load(), m_total8BitData.load(), average8bitLength);
double percent16Bit = m_totalNumberStrings ? ((double)m_number16BitStrings * 100) / (double)m_totalNumberStrings : 0.0;
double average16bitLength = m_number16BitStrings ? (double)m_total16BitData / (double)m_number16BitStrings : 0.0;
dataLogF("%8u (%5.2f%%) 16 bit %12llu chars %12llu bytes avg length %6.1f\n", m_number16BitStrings.load(), percent16Bit, m_total16BitData.load(), m_total16BitData * 2, average16bitLength);
double averageLength = m_totalNumberStrings ? (double)totalNumberCharacters / (double)m_totalNumberStrings : 0.0;
unsigned long long totalDataBytes = m_total8BitData + m_total16BitData * 2;
dataLogF("%8u Total %12llu chars %12llu bytes avg length %6.1f\n", m_totalNumberStrings.load(), totalNumberCharacters, totalDataBytes, averageLength);
unsigned long long totalSavedBytes = m_total8BitData;
double percentSavings = totalSavedBytes ? ((double)totalSavedBytes * 100) / (double)(totalDataBytes + totalSavedBytes) : 0.0;
dataLogF(" Total savings %12llu bytes (%5.2f%%)\n", totalSavedBytes, percentSavings);
dataLogF("%8u StringImpl::ref calls\n", m_refCalls.load());
dataLogF("%8u StringImpl::deref calls\n", m_derefCalls.load());
}
#endif
StringImpl::StaticStringImpl StringImpl::s_atomicEmptyString("", StringImpl::StringAtomic);
StringImpl::~StringImpl()
{
ASSERT(!isStatic());
StringView::invalidate(*this);
STRING_STATS_REMOVE_STRING(*this);
if (isAtomic()) {
ASSERT(!isSymbol());
if (length())
AtomicStringImpl::remove(static_cast<AtomicStringImpl*>(this));
} else if (isSymbol()) {
auto& symbol = static_cast<SymbolImpl&>(*this);
auto* symbolRegistry = symbol.symbolRegistry();
if (symbolRegistry)
symbolRegistry->remove(*symbol.asRegisteredSymbolImpl());
}
BufferOwnership ownership = bufferOwnership();
if (ownership == BufferInternal)
return;
if (ownership == BufferOwned) {
// We use m_data8, but since it is a union with m_data16 this works either way.
ASSERT(m_data8);
fastFree(const_cast<LChar*>(m_data8));
return;
}
ASSERT(ownership == BufferSubstring);
ASSERT(substringBuffer());
substringBuffer()->deref();
}
void StringImpl::destroy(StringImpl* stringImpl)
{
stringImpl->~StringImpl();
fastFree(stringImpl);
}
Ref<StringImpl> StringImpl::createFromLiteral(const char* characters, unsigned length)
{
ASSERT_WITH_MESSAGE(length, "Use StringImpl::empty() to create an empty string");
ASSERT(charactersAreAllASCII<LChar>(reinterpret_cast<const LChar*>(characters), length));
return adoptRef(*new StringImpl(reinterpret_cast<const LChar*>(characters), length, ConstructWithoutCopying));
}
Ref<StringImpl> StringImpl::createFromLiteral(const char* characters)
{
return createFromLiteral(characters, strlen(characters));
}
Ref<StringImpl> StringImpl::createWithoutCopying(const UChar* characters, unsigned length)
{
if (!length)
return *empty();
return adoptRef(*new StringImpl(characters, length, ConstructWithoutCopying));
}
Ref<StringImpl> StringImpl::createWithoutCopying(const LChar* characters, unsigned length)
{
if (!length)
return *empty();
return adoptRef(*new StringImpl(characters, length, ConstructWithoutCopying));
}
template <typename CharType>
inline Ref<StringImpl> StringImpl::createUninitializedInternal(unsigned length, CharType*& data)
{
if (!length) {
data = 0;
return *empty();
}
return createUninitializedInternalNonEmpty(length, data);
}
template <typename CharType>
inline Ref<StringImpl> StringImpl::createUninitializedInternalNonEmpty(unsigned length, CharType*& data)
{
ASSERT(length);
// Allocate a single buffer large enough to contain the StringImpl
// struct as well as the data which it contains. This removes one
// heap allocation from this call.
if (length > ((std::numeric_limits<unsigned>::max() - sizeof(StringImpl)) / sizeof(CharType)))
CRASH();
StringImpl* string = static_cast<StringImpl*>(fastMalloc(allocationSize<CharType>(length)));
data = string->tailPointer<CharType>();
return constructInternal<CharType>(string, length);
}
Ref<StringImpl> StringImpl::createUninitialized(unsigned length, LChar*& data)
{
return createUninitializedInternal(length, data);
}
Ref<StringImpl> StringImpl::createUninitialized(unsigned length, UChar*& data)
{
return createUninitializedInternal(length, data);
}
template <typename CharType>
inline Ref<StringImpl> StringImpl::reallocateInternal(Ref<StringImpl>&& originalString, unsigned length, CharType*& data)
{
ASSERT(originalString->hasOneRef());
ASSERT(originalString->bufferOwnership() == BufferInternal);
if (!length) {
data = 0;
return *empty();
}
// Same as createUninitialized() except here we use fastRealloc.
if (length > ((std::numeric_limits<unsigned>::max() - sizeof(StringImpl)) / sizeof(CharType)))
CRASH();
originalString->~StringImpl();
auto* string = static_cast<StringImpl*>(fastRealloc(&originalString.leakRef(), allocationSize<CharType>(length)));
data = string->tailPointer<CharType>();
return constructInternal<CharType>(string, length);
}
Ref<StringImpl> StringImpl::reallocate(Ref<StringImpl>&& originalString, unsigned length, LChar*& data)
{
ASSERT(originalString->is8Bit());
return reallocateInternal(WTFMove(originalString), length, data);
}
Ref<StringImpl> StringImpl::reallocate(Ref<StringImpl>&& originalString, unsigned length, UChar*& data)
{
ASSERT(!originalString->is8Bit());
return reallocateInternal(WTFMove(originalString), length, data);
}
template <typename CharType>
inline Ref<StringImpl> StringImpl::createInternal(const CharType* characters, unsigned length)
{
if (!characters || !length)
return *empty();
CharType* data;
auto string = createUninitializedInternalNonEmpty(length, data);
memcpy(data, characters, length * sizeof(CharType));
return string;
}
Ref<StringImpl> StringImpl::create(const UChar* characters, unsigned length)
{
return createInternal(characters, length);
}
Ref<StringImpl> StringImpl::create(const LChar* characters, unsigned length)
{
return createInternal(characters, length);
}
Ref<StringImpl> StringImpl::create8BitIfPossible(const UChar* characters, unsigned length)
{
if (!characters || !length)
return *empty();
LChar* data;
auto string = createUninitializedInternalNonEmpty(length, data);
for (size_t i = 0; i < length; ++i) {
if (characters[i] & 0xff00)
return create(characters, length);
data[i] = static_cast<LChar>(characters[i]);
}
return string;
}
Ref<StringImpl> StringImpl::create8BitIfPossible(const UChar* string)
{
return StringImpl::create8BitIfPossible(string, lengthOfNullTerminatedString(string));
}
Ref<StringImpl> StringImpl::create(const LChar* string)
{
if (!string)
return *empty();
size_t length = strlen(reinterpret_cast<const char*>(string));
if (length > std::numeric_limits<unsigned>::max())
CRASH();
return create(string, length);
}
bool StringImpl::containsOnlyWhitespace()
{
// FIXME: The definition of whitespace here includes a number of characters
// that are not whitespace from the point of view of RenderText; I wonder if
// that's a problem in practice.
if (is8Bit()) {
for (unsigned i = 0; i < m_length; ++i) {
UChar c = m_data8[i];
if (!isASCIISpace(c))
return false;
}
return true;
}
for (unsigned i = 0; i < m_length; ++i) {
UChar c = m_data16[i];
if (!isASCIISpace(c))
return false;
}
return true;
}
Ref<StringImpl> StringImpl::substring(unsigned start, unsigned length)
{
if (start >= m_length)
return *empty();
unsigned maxLength = m_length - start;
if (length >= maxLength) {
if (!start)
return *this;
length = maxLength;
}
if (is8Bit())
return create(m_data8 + start, length);
return create(m_data16 + start, length);
}
UChar32 StringImpl::characterStartingAt(unsigned i)
{
if (is8Bit())
return m_data8[i];
if (U16_IS_SINGLE(m_data16[i]))
return m_data16[i];
if (i + 1 < m_length && U16_IS_LEAD(m_data16[i]) && U16_IS_TRAIL(m_data16[i + 1]))
return U16_GET_SUPPLEMENTARY(m_data16[i], m_data16[i + 1]);
return 0;
}
Ref<StringImpl> StringImpl::convertToLowercaseWithoutLocale()
{
// Note: At one time this was a hot function in the Dromaeo benchmark, specifically the
// no-op code path that may return ourself if we find no upper case letters and no invalid
// ASCII letters.
// First scan the string for uppercase and non-ASCII characters:
if (is8Bit()) {
for (unsigned i = 0; i < m_length; ++i) {
LChar character = m_data8[i];
if (UNLIKELY((character & ~0x7F) || isASCIIUpper(character)))
return convertToLowercaseWithoutLocaleStartingAtFailingIndex8Bit(i);
}
return *this;
}
bool noUpper = true;
unsigned ored = 0;
for (unsigned i = 0; i < m_length; ++i) {
UChar character = m_data16[i];
if (UNLIKELY(isASCIIUpper(character)))
noUpper = false;
ored |= character;
}
// Nothing to do if the string is all ASCII with no uppercase.
if (noUpper && !(ored & ~0x7F))
return *this;
if (!(ored & ~0x7F)) {
UChar* data16;
auto newImpl = createUninitializedInternalNonEmpty(m_length, data16);
for (unsigned i = 0; i < m_length; ++i) {
UChar c = m_data16[i];
data16[i] = toASCIILower(c);
}
return newImpl;
}
if (m_length > static_cast<unsigned>(std::numeric_limits<int32_t>::max()))
CRASH();
int32_t length = m_length;
// Do a slower implementation for cases that include non-ASCII characters.
UChar* data16;
auto newImpl = createUninitializedInternalNonEmpty(m_length, data16);
UErrorCode status = U_ZERO_ERROR;
int32_t realLength = u_strToLower(data16, length, m_data16, m_length, "", &status);
if (U_SUCCESS(status) && realLength == length)
return newImpl;
newImpl = createUninitialized(realLength, data16);
status = U_ZERO_ERROR;
u_strToLower(data16, realLength, m_data16, m_length, "", &status);
if (U_FAILURE(status))
return *this;
return newImpl;
}
Ref<StringImpl> StringImpl::convertToLowercaseWithoutLocaleStartingAtFailingIndex8Bit(unsigned failingIndex)
{
ASSERT(is8Bit());
LChar* data8;
auto newImpl = createUninitializedInternalNonEmpty(m_length, data8);
for (unsigned i = 0; i < failingIndex; ++i) {
ASSERT(!(m_data8[i] & ~0x7F) && !isASCIIUpper(m_data8[i]));
data8[i] = m_data8[i];
}
for (unsigned i = failingIndex; i < m_length; ++i) {
LChar character = m_data8[i];
if (!(character & ~0x7F))
data8[i] = toASCIILower(character);
else {
ASSERT(u_tolower(character) <= 0xFF);
data8[i] = static_cast<LChar>(u_tolower(character));
}
}
return newImpl;
}
Ref<StringImpl> StringImpl::convertToUppercaseWithoutLocale()
{
// This function could be optimized for no-op cases the way
// convertToLowercaseWithoutLocale() is, but in empirical testing,
// few actual calls to upper() are no-ops, so it wouldn't be worth
// the extra time for pre-scanning.
if (m_length > static_cast<unsigned>(std::numeric_limits<int32_t>::max()))
CRASH();
int32_t length = m_length;
if (is8Bit()) {
LChar* data8;
auto newImpl = createUninitialized(m_length, data8);
// Do a faster loop for the case where all the characters are ASCII.
unsigned ored = 0;
for (int i = 0; i < length; ++i) {
LChar c = m_data8[i];
ored |= c;
data8[i] = toASCIIUpper(c);
}
if (!(ored & ~0x7F))
return newImpl;
// Do a slower implementation for cases that include non-ASCII Latin-1 characters.
int numberSharpSCharacters = 0;
// There are two special cases.
// 1. Some Latin-1 characters when converted to upper case are 16 bit characters.
// 2. Lower case sharp-S converts to "SS" (two characters)
for (int32_t i = 0; i < length; ++i) {
LChar c = m_data8[i];
if (UNLIKELY(c == smallLetterSharpS))
++numberSharpSCharacters;
ASSERT(u_toupper(c) <= 0xFFFF);
UChar upper = u_toupper(c);
if (UNLIKELY(upper > 0xFF)) {
// Since this upper-cased character does not fit in an 8-bit string, we need to take the 16-bit path.
goto upconvert;
}
data8[i] = static_cast<LChar>(upper);
}
if (!numberSharpSCharacters)
return newImpl;
// We have numberSSCharacters sharp-s characters, but none of the other special characters.
newImpl = createUninitialized(m_length + numberSharpSCharacters, data8);
LChar* dest = data8;
for (int32_t i = 0; i < length; ++i) {
LChar c = m_data8[i];
if (c == smallLetterSharpS) {
*dest++ = 'S';
*dest++ = 'S';
} else {
ASSERT(u_toupper(c) <= 0xFF);
*dest++ = static_cast<LChar>(u_toupper(c));
}
}
return newImpl;
}
upconvert:
auto upconvertedCharacters = StringView(*this).upconvertedCharacters();
const UChar* source16 = upconvertedCharacters;
UChar* data16;
auto newImpl = createUninitialized(m_length, data16);
// Do a faster loop for the case where all the characters are ASCII.
unsigned ored = 0;
for (int i = 0; i < length; ++i) {
UChar c = source16[i];
ored |= c;
data16[i] = toASCIIUpper(c);
}
if (!(ored & ~0x7F))
return newImpl;
// Do a slower implementation for cases that include non-ASCII characters.
UErrorCode status = U_ZERO_ERROR;
int32_t realLength = u_strToUpper(data16, length, source16, m_length, "", &status);
if (U_SUCCESS(status) && realLength == length)
return newImpl;
newImpl = createUninitialized(realLength, data16);
status = U_ZERO_ERROR;
u_strToUpper(data16, realLength, source16, m_length, "", &status);
if (U_FAILURE(status))
return *this;
return newImpl;
}
static inline bool needsTurkishCasingRules(const AtomicString& localeIdentifier)
{
// Either "tr" or "az" locale, with case sensitive comparison and allowing for an ignored subtag.
UChar first = localeIdentifier[0];
UChar second = localeIdentifier[1];
return ((isASCIIAlphaCaselessEqual(first, 't') && isASCIIAlphaCaselessEqual(second, 'r'))
|| (isASCIIAlphaCaselessEqual(first, 'a') && isASCIIAlphaCaselessEqual(second, 'z')))
&& (localeIdentifier.length() == 2 || localeIdentifier[2] == '-');
}
Ref<StringImpl> StringImpl::convertToLowercaseWithLocale(const AtomicString& localeIdentifier)
{
// Use the more-optimized code path most of the time.
// Assuming here that the only locale-specific lowercasing is the Turkish casing rules.
// FIXME: Could possibly optimize further by looking for the specific sequences
// that have locale-specific lowercasing. There are only three of them.
if (!needsTurkishCasingRules(localeIdentifier))
return convertToLowercaseWithoutLocale();
// FIXME: Could share more code with the main StringImpl::lower by factoring out
// this last part into a shared function that takes a locale string, since this is
// just like the end of that function.
if (m_length > static_cast<unsigned>(std::numeric_limits<int32_t>::max()))
CRASH();
int length = m_length;
// Below, we pass in the hardcoded locale "tr". Passing that is more efficient than
// allocating memory just to turn localeIdentifier into a C string, and we assume
// there is no difference between the uppercasing for "tr" and "az" locales.
auto upconvertedCharacters = StringView(*this).upconvertedCharacters();
const UChar* source16 = upconvertedCharacters;
UChar* data16;
auto newString = createUninitialized(length, data16);
UErrorCode status = U_ZERO_ERROR;
int realLength = u_strToLower(data16, length, source16, length, "tr", &status);
if (U_SUCCESS(status) && realLength == length)
return newString;
newString = createUninitialized(realLength, data16);
status = U_ZERO_ERROR;
u_strToLower(data16, realLength, source16, length, "tr", &status);
if (U_FAILURE(status))
return *this;
return newString;
}
Ref<StringImpl> StringImpl::convertToUppercaseWithLocale(const AtomicString& localeIdentifier)
{
// Use the more-optimized code path most of the time.
// Assuming here that the only locale-specific lowercasing is the Turkish casing rules,
// and that the only affected character is lowercase "i".
if (!needsTurkishCasingRules(localeIdentifier) || find('i') == notFound)
return convertToUppercaseWithoutLocale();
if (m_length > static_cast<unsigned>(std::numeric_limits<int32_t>::max()))
CRASH();
int length = m_length;
// Below, we pass in the hardcoded locale "tr". Passing that is more efficient than
// allocating memory just to turn localeIdentifier into a C string, and we assume
// there is no difference between the uppercasing for "tr" and "az" locales.
auto upconvertedCharacters = StringView(*this).upconvertedCharacters();
const UChar* source16 = upconvertedCharacters;
UChar* data16;
auto newString = createUninitialized(length, data16);
UErrorCode status = U_ZERO_ERROR;
int realLength = u_strToUpper(data16, length, source16, length, "tr", &status);
if (U_SUCCESS(status) && realLength == length)
return newString;
newString = createUninitialized(realLength, data16);
status = U_ZERO_ERROR;
u_strToUpper(data16, realLength, source16, length, "tr", &status);
if (U_FAILURE(status))
return *this;
return newString;
}
Ref<StringImpl> StringImpl::foldCase()
{
if (is8Bit()) {
unsigned failingIndex;
for (unsigned i = 0; i < m_length; ++i) {
auto character = m_data8[i];
if (UNLIKELY(!isASCII(character) || isASCIIUpper(character))) {
failingIndex = i;
goto SlowPath;
}
}
// String was all ASCII and no uppercase, so just return as-is.
return *this;
SlowPath:
bool need16BitCharacters = false;
for (unsigned i = failingIndex; i < m_length; ++i) {
auto character = m_data8[i];
if (character == 0xB5 || character == 0xDF) {
need16BitCharacters = true;
break;
}
}
if (!need16BitCharacters) {
LChar* data8;
auto folded = createUninitializedInternalNonEmpty(m_length, data8);
for (unsigned i = 0; i < failingIndex; ++i)
data8[i] = m_data8[i];
for (unsigned i = failingIndex; i < m_length; ++i) {
auto character = m_data8[i];
if (isASCII(character))
data8[i] = toASCIILower(character);
else {
ASSERT(u_foldCase(character, U_FOLD_CASE_DEFAULT) <= 0xFF);
data8[i] = static_cast<LChar>(u_foldCase(character, U_FOLD_CASE_DEFAULT));
}
}
return folded;
}
} else {
// FIXME: Unclear why we use goto in the 8-bit case, and a different approach in the 16-bit case.
bool noUpper = true;
unsigned ored = 0;
for (unsigned i = 0; i < m_length; ++i) {
UChar character = m_data16[i];
if (UNLIKELY(isASCIIUpper(character)))
noUpper = false;
ored |= character;
}
if (!(ored & ~0x7F)) {
if (noUpper) {
// String was all ASCII and no uppercase, so just return as-is.
return *this;
}
UChar* data16;
auto folded = createUninitializedInternalNonEmpty(m_length, data16);
for (unsigned i = 0; i < m_length; ++i)
data16[i] = toASCIILower(m_data16[i]);
return folded;
}
}
if (m_length > static_cast<unsigned>(std::numeric_limits<int32_t>::max()))
CRASH();
auto upconvertedCharacters = StringView(*this).upconvertedCharacters();
UChar* data;
auto folded = createUninitializedInternalNonEmpty(m_length, data);
int32_t length = m_length;
UErrorCode status = U_ZERO_ERROR;
int32_t realLength = u_strFoldCase(data, length, upconvertedCharacters, length, U_FOLD_CASE_DEFAULT, &status);
if (U_SUCCESS(status) && realLength == length)
return folded;
ASSERT(realLength > length);
folded = createUninitializedInternalNonEmpty(realLength, data);
status = U_ZERO_ERROR;
u_strFoldCase(data, realLength, upconvertedCharacters, length, U_FOLD_CASE_DEFAULT, &status);
if (U_FAILURE(status))
return *this;
return folded;
}
template<StringImpl::CaseConvertType type, typename CharacterType>
ALWAYS_INLINE Ref<StringImpl> StringImpl::convertASCIICase(StringImpl& impl, const CharacterType* data, unsigned length)
{
unsigned failingIndex;
for (unsigned i = 0; i < length; ++i) {
CharacterType character = data[i];
if (type == CaseConvertType::Lower ? UNLIKELY(isASCIIUpper(character)) : LIKELY(isASCIILower(character))) {
failingIndex = i;
goto SlowPath;
}
}
return impl;
SlowPath:
CharacterType* newData;
auto newImpl = createUninitializedInternalNonEmpty(length, newData);
for (unsigned i = 0; i < failingIndex; ++i)
newData[i] = data[i];
for (unsigned i = failingIndex; i < length; ++i)
newData[i] = type == CaseConvertType::Lower ? toASCIILower(data[i]) : toASCIIUpper(data[i]);
return newImpl;
}
Ref<StringImpl> StringImpl::convertToASCIILowercase()
{
if (is8Bit())
return convertASCIICase<CaseConvertType::Lower>(*this, m_data8, m_length);
return convertASCIICase<CaseConvertType::Lower>(*this, m_data16, m_length);
}
Ref<StringImpl> StringImpl::convertToASCIIUppercase()
{
if (is8Bit())
return convertASCIICase<CaseConvertType::Upper>(*this, m_data8, m_length);
return convertASCIICase<CaseConvertType::Upper>(*this, m_data16, m_length);
}
template <class UCharPredicate>
inline Ref<StringImpl> StringImpl::stripMatchedCharacters(UCharPredicate predicate)
{
if (!m_length)
return *this;
unsigned start = 0;
unsigned end = m_length - 1;
// skip white space from start
while (start <= end && predicate(is8Bit() ? m_data8[start] : m_data16[start]))
++start;
// only white space
if (start > end)
return *empty();
// skip white space from end
while (end && predicate(is8Bit() ? m_data8[end] : m_data16[end]))
--end;
if (!start && end == m_length - 1)
return *this;
if (is8Bit())
return create(m_data8 + start, end + 1 - start);
return create(m_data16 + start, end + 1 - start);
}
class UCharPredicate {
public:
inline UCharPredicate(CharacterMatchFunctionPtr function): m_function(function) { }
inline bool operator()(UChar ch) const
{
return m_function(ch);
}
private:
const CharacterMatchFunctionPtr m_function;
};
class SpaceOrNewlinePredicate {
public:
inline bool operator()(UChar ch) const
{
return isSpaceOrNewline(ch);
}
};
Ref<StringImpl> StringImpl::stripWhiteSpace()
{
return stripMatchedCharacters(SpaceOrNewlinePredicate());
}
Ref<StringImpl> StringImpl::stripWhiteSpace(IsWhiteSpaceFunctionPtr isWhiteSpace)
{
return stripMatchedCharacters(UCharPredicate(isWhiteSpace));
}
template <typename CharType>
ALWAYS_INLINE Ref<StringImpl> StringImpl::removeCharacters(const CharType* characters, CharacterMatchFunctionPtr findMatch)
{
const CharType* from = characters;
const CharType* fromend = from + m_length;
// Assume the common case will not remove any characters
while (from != fromend && !findMatch(*from))
++from;
if (from == fromend)
return *this;
StringBuffer<CharType> data(m_length);
CharType* to = data.characters();
unsigned outc = from - characters;
if (outc)
memcpy(to, characters, outc * sizeof(CharType));
while (true) {
while (from != fromend && findMatch(*from))
++from;
while (from != fromend && !findMatch(*from))
to[outc++] = *from++;
if (from == fromend)
break;
}
data.shrink(outc);
return adopt(WTFMove(data));
}
Ref<StringImpl> StringImpl::removeCharacters(CharacterMatchFunctionPtr findMatch)
{
if (is8Bit())
return removeCharacters(characters8(), findMatch);
return removeCharacters(characters16(), findMatch);
}
template <typename CharType, class UCharPredicate>
inline Ref<StringImpl> StringImpl::simplifyMatchedCharactersToSpace(UCharPredicate predicate)
{
StringBuffer<CharType> data(m_length);
const CharType* from = characters<CharType>();
const CharType* fromend = from + m_length;
int outc = 0;
bool changedToSpace = false;
CharType* to = data.characters();
while (true) {
while (from != fromend && predicate(*from)) {
if (*from != ' ')
changedToSpace = true;
++from;
}
while (from != fromend && !predicate(*from))
to[outc++] = *from++;
if (from != fromend)
to[outc++] = ' ';
else
break;
}
if (outc > 0 && to[outc - 1] == ' ')
--outc;
if (static_cast<unsigned>(outc) == m_length && !changedToSpace)
return *this;
data.shrink(outc);
return adopt(WTFMove(data));
}
Ref<StringImpl> StringImpl::simplifyWhiteSpace()
{
if (is8Bit())
return StringImpl::simplifyMatchedCharactersToSpace<LChar>(SpaceOrNewlinePredicate());
return StringImpl::simplifyMatchedCharactersToSpace<UChar>(SpaceOrNewlinePredicate());
}
Ref<StringImpl> StringImpl::simplifyWhiteSpace(IsWhiteSpaceFunctionPtr isWhiteSpace)
{
if (is8Bit())
return StringImpl::simplifyMatchedCharactersToSpace<LChar>(UCharPredicate(isWhiteSpace));
return StringImpl::simplifyMatchedCharactersToSpace<UChar>(UCharPredicate(isWhiteSpace));
}
int StringImpl::toIntStrict(bool* ok, int base)
{
if (is8Bit())
return charactersToIntStrict(characters8(), m_length, ok, base);
return charactersToIntStrict(characters16(), m_length, ok, base);
}
unsigned StringImpl::toUIntStrict(bool* ok, int base)
{
if (is8Bit())
return charactersToUIntStrict(characters8(), m_length, ok, base);
return charactersToUIntStrict(characters16(), m_length, ok, base);
}
int64_t StringImpl::toInt64Strict(bool* ok, int base)
{
if (is8Bit())
return charactersToInt64Strict(characters8(), m_length, ok, base);
return charactersToInt64Strict(characters16(), m_length, ok, base);
}
uint64_t StringImpl::toUInt64Strict(bool* ok, int base)
{
if (is8Bit())
return charactersToUInt64Strict(characters8(), m_length, ok, base);
return charactersToUInt64Strict(characters16(), m_length, ok, base);
}
intptr_t StringImpl::toIntPtrStrict(bool* ok, int base)
{
if (is8Bit())
return charactersToIntPtrStrict(characters8(), m_length, ok, base);
return charactersToIntPtrStrict(characters16(), m_length, ok, base);
}
int StringImpl::toInt(bool* ok)
{
if (is8Bit())
return charactersToInt(characters8(), m_length, ok);
return charactersToInt(characters16(), m_length, ok);
}
unsigned StringImpl::toUInt(bool* ok)
{
if (is8Bit())
return charactersToUInt(characters8(), m_length, ok);
return charactersToUInt(characters16(), m_length, ok);
}
int64_t StringImpl::toInt64(bool* ok)
{
if (is8Bit())
return charactersToInt64(characters8(), m_length, ok);
return charactersToInt64(characters16(), m_length, ok);
}
uint64_t StringImpl::toUInt64(bool* ok)
{
if (is8Bit())
return charactersToUInt64(characters8(), m_length, ok);
return charactersToUInt64(characters16(), m_length, ok);
}
intptr_t StringImpl::toIntPtr(bool* ok)
{
if (is8Bit())
return charactersToIntPtr(characters8(), m_length, ok);
return charactersToIntPtr(characters16(), m_length, ok);
}
double StringImpl::toDouble(bool* ok)
{
if (is8Bit())
return charactersToDouble(characters8(), m_length, ok);
return charactersToDouble(characters16(), m_length, ok);
}
float StringImpl::toFloat(bool* ok)
{
if (is8Bit())
return charactersToFloat(characters8(), m_length, ok);
return charactersToFloat(characters16(), m_length, ok);
}
// Table is based on ftp://ftp.unicode.org/Public/UNIDATA/CaseFolding.txt
static const UChar latin1CaseFoldTable[256] = {
0x0000, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007, 0x0008, 0x0009, 0x000a, 0x000b, 0x000c, 0x000d, 0x000e, 0x000f,
0x0010, 0x0011, 0x0012, 0x0013, 0x0014, 0x0015, 0x0016, 0x0017, 0x0018, 0x0019, 0x001a, 0x001b, 0x001c, 0x001d, 0x001e, 0x001f,
0x0020, 0x0021, 0x0022, 0x0023, 0x0024, 0x0025, 0x0026, 0x0027, 0x0028, 0x0029, 0x002a, 0x002b, 0x002c, 0x002d, 0x002e, 0x002f,
0x0030, 0x0031, 0x0032, 0x0033, 0x0034, 0x0035, 0x0036, 0x0037, 0x0038, 0x0039, 0x003a, 0x003b, 0x003c, 0x003d, 0x003e, 0x003f,
0x0040, 0x0061, 0x0062, 0x0063, 0x0064, 0x0065, 0x0066, 0x0067, 0x0068, 0x0069, 0x006a, 0x006b, 0x006c, 0x006d, 0x006e, 0x006f,
0x0070, 0x0071, 0x0072, 0x0073, 0x0074, 0x0075, 0x0076, 0x0077, 0x0078, 0x0079, 0x007a, 0x005b, 0x005c, 0x005d, 0x005e, 0x005f,
0x0060, 0x0061, 0x0062, 0x0063, 0x0064, 0x0065, 0x0066, 0x0067, 0x0068, 0x0069, 0x006a, 0x006b, 0x006c, 0x006d, 0x006e, 0x006f,
0x0070, 0x0071, 0x0072, 0x0073, 0x0074, 0x0075, 0x0076, 0x0077, 0x0078, 0x0079, 0x007a, 0x007b, 0x007c, 0x007d, 0x007e, 0x007f,
0x0080, 0x0081, 0x0082, 0x0083, 0x0084, 0x0085, 0x0086, 0x0087, 0x0088, 0x0089, 0x008a, 0x008b, 0x008c, 0x008d, 0x008e, 0x008f,
0x0090, 0x0091, 0x0092, 0x0093, 0x0094, 0x0095, 0x0096, 0x0097, 0x0098, 0x0099, 0x009a, 0x009b, 0x009c, 0x009d, 0x009e, 0x009f,
0x00a0, 0x00a1, 0x00a2, 0x00a3, 0x00a4, 0x00a5, 0x00a6, 0x00a7, 0x00a8, 0x00a9, 0x00aa, 0x00ab, 0x00ac, 0x00ad, 0x00ae, 0x00af,
0x00b0, 0x00b1, 0x00b2, 0x00b3, 0x00b4, 0x03bc, 0x00b6, 0x00b7, 0x00b8, 0x00b9, 0x00ba, 0x00bb, 0x00bc, 0x00bd, 0x00be, 0x00bf,
0x00e0, 0x00e1, 0x00e2, 0x00e3, 0x00e4, 0x00e5, 0x00e6, 0x00e7, 0x00e8, 0x00e9, 0x00ea, 0x00eb, 0x00ec, 0x00ed, 0x00ee, 0x00ef,
0x00f0, 0x00f1, 0x00f2, 0x00f3, 0x00f4, 0x00f5, 0x00f6, 0x00d7, 0x00f8, 0x00f9, 0x00fa, 0x00fb, 0x00fc, 0x00fd, 0x00fe, 0x00df,
0x00e0, 0x00e1, 0x00e2, 0x00e3, 0x00e4, 0x00e5, 0x00e6, 0x00e7, 0x00e8, 0x00e9, 0x00ea, 0x00eb, 0x00ec, 0x00ed, 0x00ee, 0x00ef,
0x00f0, 0x00f1, 0x00f2, 0x00f3, 0x00f4, 0x00f5, 0x00f6, 0x00f7, 0x00f8, 0x00f9, 0x00fa, 0x00fb, 0x00fc, 0x00fd, 0x00fe, 0x00ff,
};
static inline bool equalCompatibilityCaseless(const LChar* a, const LChar* b, unsigned length)
{
while (length--) {
if (latin1CaseFoldTable[*a++] != latin1CaseFoldTable[*b++])
return false;
}
return true;
}
static inline bool equalCompatibilityCaseless(const UChar* a, const LChar* b, unsigned length)
{
while (length--) {
if (u_foldCase(*a++, U_FOLD_CASE_DEFAULT) != latin1CaseFoldTable[*b++])
return false;
}
return true;
}
static inline bool equalCompatibilityCaseless(const LChar* a, const UChar* b, unsigned length)
{
return equalCompatibilityCaseless(b, a, length);
}
static inline bool equalCompatibilityCaseless(const UChar* a, const UChar* b, unsigned length)
{
return !u_memcasecmp(a, b, length, U_FOLD_CASE_DEFAULT);
}
size_t StringImpl::find(CharacterMatchFunctionPtr matchFunction, unsigned start)
{
if (is8Bit())
return WTF::find(characters8(), m_length, matchFunction, start);
return WTF::find(characters16(), m_length, matchFunction, start);
}
size_t StringImpl::find(const LChar* matchString, unsigned index)
{
// Check for null or empty string to match against
if (!matchString)
return notFound;
size_t matchStringLength = strlen(reinterpret_cast<const char*>(matchString));
if (matchStringLength > std::numeric_limits<unsigned>::max())
CRASH();
unsigned matchLength = matchStringLength;
if (!matchLength)
return std::min(index, length());
// Optimization 1: fast case for strings of length 1.
if (matchLength == 1) {
if (is8Bit())
return WTF::find(characters8(), length(), matchString[0], index);
return WTF::find(characters16(), length(), *matchString, index);
}
// Check index & matchLength are in range.
if (index > length())
return notFound;
unsigned searchLength = length() - index;
if (matchLength > searchLength)
return notFound;
// delta is the number of additional times to test; delta == 0 means test only once.
unsigned delta = searchLength - matchLength;
// Optimization 2: keep a running hash of the strings,
// only call equal if the hashes match.
if (is8Bit()) {
const LChar* searchCharacters = characters8() + index;
unsigned searchHash = 0;
unsigned matchHash = 0;
for (unsigned i = 0; i < matchLength; ++i) {
searchHash += searchCharacters[i];
matchHash += matchString[i];
}
unsigned i = 0;
while (searchHash != matchHash || !equal(searchCharacters + i, matchString, matchLength)) {
if (i == delta)
return notFound;
searchHash += searchCharacters[i + matchLength];
searchHash -= searchCharacters[i];
++i;
}
return index + i;
}
const UChar* searchCharacters = characters16() + index;
unsigned searchHash = 0;
unsigned matchHash = 0;
for (unsigned i = 0; i < matchLength; ++i) {
searchHash += searchCharacters[i];
matchHash += matchString[i];
}
unsigned i = 0;
while (searchHash != matchHash || !equal(searchCharacters + i, matchString, matchLength)) {
if (i == delta)
return notFound;
searchHash += searchCharacters[i + matchLength];
searchHash -= searchCharacters[i];
++i;
}
return index + i;
}
size_t StringImpl::findIgnoringCase(const LChar* matchString, unsigned index)
{
// Check for null or empty string to match against
if (!matchString)
return notFound;
size_t matchStringLength = strlen(reinterpret_cast<const char*>(matchString));
if (matchStringLength > std::numeric_limits<unsigned>::max())
CRASH();
unsigned matchLength = matchStringLength;
if (!matchLength)
return std::min(index, length());
// Check index & matchLength are in range.
if (index > length())
return notFound;
unsigned searchLength = length() - index;
if (matchLength > searchLength)
return notFound;
// delta is the number of additional times to test; delta == 0 means test only once.
unsigned delta = searchLength - matchLength;
if (is8Bit()) {
const LChar* searchCharacters = characters8() + index;
unsigned i = 0;
while (!equalCompatibilityCaseless(searchCharacters + i, matchString, matchLength)) {
if (i == delta)
return notFound;
++i;
}
return index + i;
}
const UChar* searchCharacters = characters16() + index;
unsigned i = 0;
while (!equalCompatibilityCaseless(searchCharacters + i, matchString, matchLength)) {
if (i == delta)
return notFound;
++i;
}
return index + i;
}
size_t StringImpl::find(StringImpl* matchString)
{
// Check for null string to match against
if (UNLIKELY(!matchString))
return notFound;
unsigned matchLength = matchString->length();
// Optimization 1: fast case for strings of length 1.
if (matchLength == 1) {
if (is8Bit()) {
if (matchString->is8Bit())
return WTF::find(characters8(), length(), matchString->characters8()[0]);
return WTF::find(characters8(), length(), matchString->characters16()[0]);
}
if (matchString->is8Bit())
return WTF::find(characters16(), length(), matchString->characters8()[0]);
return WTF::find(characters16(), length(), matchString->characters16()[0]);
}
// Check matchLength is in range.
if (matchLength > length())
return notFound;
// Check for empty string to match against
if (UNLIKELY(!matchLength))
return 0;
if (is8Bit()) {
if (matchString->is8Bit())
return findInner(characters8(), matchString->characters8(), 0, length(), matchLength);
return findInner(characters8(), matchString->characters16(), 0, length(), matchLength);
}
if (matchString->is8Bit())
return findInner(characters16(), matchString->characters8(), 0, length(), matchLength);
return findInner(characters16(), matchString->characters16(), 0, length(), matchLength);
}
size_t StringImpl::find(StringImpl* matchString, unsigned index)
{
// Check for null or empty string to match against
if (UNLIKELY(!matchString))
return notFound;
return findCommon(*this, *matchString, index);
}
template <typename SearchCharacterType, typename MatchCharacterType>
ALWAYS_INLINE static size_t findIgnoringCaseInner(const SearchCharacterType* searchCharacters, const MatchCharacterType* matchCharacters, unsigned index, unsigned searchLength, unsigned matchLength)
{
// delta is the number of additional times to test; delta == 0 means test only once.
unsigned delta = searchLength - matchLength;
unsigned i = 0;
// keep looping until we match
while (!equalCompatibilityCaseless(searchCharacters + i, matchCharacters, matchLength)) {
if (i == delta)
return notFound;
++i;
}
return index + i;
}
size_t StringImpl::findIgnoringCase(StringImpl* matchString, unsigned index)
{
// Check for null or empty string to match against
if (!matchString)
return notFound;
unsigned matchLength = matchString->length();
if (!matchLength)
return std::min(index, length());
// Check index & matchLength are in range.
if (index > length())
return notFound;
unsigned searchLength = length() - index;
if (matchLength > searchLength)
return notFound;
if (is8Bit()) {
if (matchString->is8Bit())
return findIgnoringCaseInner(characters8() + index, matchString->characters8(), index, searchLength, matchLength);
return findIgnoringCaseInner(characters8() + index, matchString->characters16(), index, searchLength, matchLength);
}
if (matchString->is8Bit())
return findIgnoringCaseInner(characters16() + index, matchString->characters8(), index, searchLength, matchLength);
return findIgnoringCaseInner(characters16() + index, matchString->characters16(), index, searchLength, matchLength);
}
size_t StringImpl::findIgnoringASCIICase(const StringImpl& matchString) const
{
return ::WTF::findIgnoringASCIICase(*this, matchString, 0);
}
size_t StringImpl::findIgnoringASCIICase(const StringImpl& matchString, unsigned startOffset) const
{
return ::WTF::findIgnoringASCIICase(*this, matchString, startOffset);
}
size_t StringImpl::findIgnoringASCIICase(const StringImpl* matchString) const
{
if (!matchString)
return notFound;
return ::WTF::findIgnoringASCIICase(*this, *matchString, 0);
}
size_t StringImpl::findIgnoringASCIICase(const StringImpl* matchString, unsigned startOffset) const
{
if (!matchString)
return notFound;
return ::WTF::findIgnoringASCIICase(*this, *matchString, startOffset);
}
size_t StringImpl::reverseFind(UChar c, unsigned index)
{
if (is8Bit())
return WTF::reverseFind(characters8(), m_length, c, index);
return WTF::reverseFind(characters16(), m_length, c, index);
}
template <typename SearchCharacterType, typename MatchCharacterType>
ALWAYS_INLINE static size_t reverseFindInner(const SearchCharacterType* searchCharacters, const MatchCharacterType* matchCharacters, unsigned index, unsigned length, unsigned matchLength)
{
// Optimization: keep a running hash of the strings,
// only call equal if the hashes match.
// delta is the number of additional times to test; delta == 0 means test only once.
unsigned delta = std::min(index, length - matchLength);
unsigned searchHash = 0;
unsigned matchHash = 0;
for (unsigned i = 0; i < matchLength; ++i) {
searchHash += searchCharacters[delta + i];
matchHash += matchCharacters[i];
}
// keep looping until we match
while (searchHash != matchHash || !equal(searchCharacters + delta, matchCharacters, matchLength)) {
if (!delta)
return notFound;
--delta;
searchHash -= searchCharacters[delta + matchLength];
searchHash += searchCharacters[delta];
}
return delta;
}
size_t StringImpl::reverseFind(StringImpl* matchString, unsigned index)
{
// Check for null or empty string to match against
if (!matchString)
return notFound;
unsigned matchLength = matchString->length();
unsigned ourLength = length();
if (!matchLength)
return std::min(index, ourLength);
// Optimization 1: fast case for strings of length 1.
if (matchLength == 1) {
if (is8Bit())
return WTF::reverseFind(characters8(), ourLength, (*matchString)[0], index);
return WTF::reverseFind(characters16(), ourLength, (*matchString)[0], index);
}
// Check index & matchLength are in range.
if (matchLength > ourLength)
return notFound;
if (is8Bit()) {
if (matchString->is8Bit())
return reverseFindInner(characters8(), matchString->characters8(), index, ourLength, matchLength);
return reverseFindInner(characters8(), matchString->characters16(), index, ourLength, matchLength);
}
if (matchString->is8Bit())
return reverseFindInner(characters16(), matchString->characters8(), index, ourLength, matchLength);
return reverseFindInner(characters16(), matchString->characters16(), index, ourLength, matchLength);
}
template <typename SearchCharacterType, typename MatchCharacterType>
ALWAYS_INLINE static size_t reverseFindIgnoringCaseInner(const SearchCharacterType* searchCharacters, const MatchCharacterType* matchCharacters, unsigned index, unsigned length, unsigned matchLength)
{
// delta is the number of additional times to test; delta == 0 means test only once.
unsigned delta = std::min(index, length - matchLength);
// keep looping until we match
while (!equalCompatibilityCaseless(searchCharacters + delta, matchCharacters, matchLength)) {
if (!delta)
return notFound;
--delta;
}
return delta;
}
size_t StringImpl::reverseFindIgnoringCase(StringImpl* matchString, unsigned index)
{
// Check for null or empty string to match against
if (!matchString)
return notFound;
unsigned matchLength = matchString->length();
unsigned ourLength = length();
if (!matchLength)
return std::min(index, ourLength);
// Check index & matchLength are in range.
if (matchLength > ourLength)
return notFound;
if (is8Bit()) {
if (matchString->is8Bit())
return reverseFindIgnoringCaseInner(characters8(), matchString->characters8(), index, ourLength, matchLength);
return reverseFindIgnoringCaseInner(characters8(), matchString->characters16(), index, ourLength, matchLength);
}
if (matchString->is8Bit())
return reverseFindIgnoringCaseInner(characters16(), matchString->characters8(), index, ourLength, matchLength);
return reverseFindIgnoringCaseInner(characters16(), matchString->characters16(), index, ourLength, matchLength);
}
ALWAYS_INLINE static bool equalInner(const StringImpl* stringImpl, unsigned startOffset, const char* matchString, unsigned matchLength, bool caseSensitive)
{
ASSERT(stringImpl);
ASSERT(matchLength <= stringImpl->length());
ASSERT(startOffset + matchLength <= stringImpl->length());
if (caseSensitive) {
if (stringImpl->is8Bit())
return equal(stringImpl->characters8() + startOffset, reinterpret_cast<const LChar*>(matchString), matchLength);
return equal(stringImpl->characters16() + startOffset, reinterpret_cast<const LChar*>(matchString), matchLength);
}
if (stringImpl->is8Bit())
return equalCompatibilityCaseless(stringImpl->characters8() + startOffset, reinterpret_cast<const LChar*>(matchString), matchLength);
return equalCompatibilityCaseless(stringImpl->characters16() + startOffset, reinterpret_cast<const LChar*>(matchString), matchLength);
}
ALWAYS_INLINE static bool equalInner(const StringImpl& stringImpl, unsigned startOffset, const StringImpl& matchString)
{
if (startOffset > stringImpl.length())
return false;
if (matchString.length() > stringImpl.length())
return false;
if (matchString.length() + startOffset > stringImpl.length())
return false;
if (stringImpl.is8Bit()) {
if (matchString.is8Bit())
return equal(stringImpl.characters8() + startOffset, matchString.characters8(), matchString.length());
return equal(stringImpl.characters8() + startOffset, matchString.characters16(), matchString.length());
}
if (matchString.is8Bit())
return equal(stringImpl.characters16() + startOffset, matchString.characters8(), matchString.length());
return equal(stringImpl.characters16() + startOffset, matchString.characters16(), matchString.length());
}
bool StringImpl::startsWith(const StringImpl* str) const
{
if (!str)
return false;
return ::WTF::startsWith(*this, *str);
}
bool StringImpl::startsWith(const StringImpl& str) const
{
return ::WTF::startsWith(*this, str);
}
bool StringImpl::startsWithIgnoringASCIICase(const StringImpl* prefix) const
{
if (!prefix)
return false;
return ::WTF::startsWithIgnoringASCIICase(*this, *prefix);
}
bool StringImpl::startsWithIgnoringASCIICase(const StringImpl& prefix) const
{
return ::WTF::startsWithIgnoringASCIICase(*this, prefix);
}
bool StringImpl::startsWith(UChar character) const
{
return m_length && (*this)[0] == character;
}
bool StringImpl::startsWith(const char* matchString, unsigned matchLength, bool caseSensitive) const
{
ASSERT(matchLength);
if (matchLength > length())
return false;
return equalInner(this, 0, matchString, matchLength, caseSensitive);
}
bool StringImpl::hasInfixStartingAt(const StringImpl& matchString, unsigned startOffset) const
{
return equalInner(*this, startOffset, matchString);
}
bool StringImpl::endsWith(StringImpl* suffix)
{
if (!suffix)
return false;
return ::WTF::endsWith(*this, *suffix);
}
bool StringImpl::endsWith(StringImpl& suffix)
{
return ::WTF::endsWith(*this, suffix);
}
bool StringImpl::endsWith(StringImpl* matchString, bool caseSensitive)
{
ASSERT(matchString);
if (m_length >= matchString->m_length) {
unsigned start = m_length - matchString->m_length;
return (caseSensitive ? find(matchString, start) : findIgnoringCase(matchString, start)) == start;
}
return false;
}
bool StringImpl::endsWithIgnoringASCIICase(const StringImpl* suffix) const
{
if (!suffix)
return false;
return ::WTF::endsWithIgnoringASCIICase(*this, *suffix);
}
bool StringImpl::endsWithIgnoringASCIICase(const StringImpl& suffix) const
{
return ::WTF::endsWithIgnoringASCIICase(*this, suffix);
}
bool StringImpl::endsWith(UChar character) const
{
return m_length && (*this)[m_length - 1] == character;
}
bool StringImpl::endsWith(const char* matchString, unsigned matchLength, bool caseSensitive) const
{
ASSERT(matchLength);
if (matchLength > length())
return false;
unsigned startOffset = length() - matchLength;
return equalInner(this, startOffset, matchString, matchLength, caseSensitive);
}
bool StringImpl::hasInfixEndingAt(const StringImpl& matchString, unsigned endOffset) const
{
if (endOffset < matchString.length())
return false;
return equalInner(*this, endOffset - matchString.length(), matchString);
}
Ref<StringImpl> StringImpl::replace(UChar oldC, UChar newC)
{
if (oldC == newC)
return *this;
unsigned i;
for (i = 0; i != m_length; ++i) {
UChar c = is8Bit() ? m_data8[i] : m_data16[i];
if (c == oldC)
break;
}
if (i == m_length)
return *this;
if (is8Bit()) {
if (oldC > 0xff)
// Looking for a 16 bit char in an 8 bit string, we're done.
return *this;
if (newC <= 0xff) {
LChar* data;
LChar oldChar = static_cast<LChar>(oldC);
LChar newChar = static_cast<LChar>(newC);
auto newImpl = createUninitializedInternalNonEmpty(m_length, data);
for (i = 0; i != m_length; ++i) {
LChar ch = m_data8[i];
if (ch == oldChar)
ch = newChar;
data[i] = ch;
}
return newImpl;
}
// There is the possibility we need to up convert from 8 to 16 bit,
// create a 16 bit string for the result.
UChar* data;
auto newImpl = createUninitializedInternalNonEmpty(m_length, data);
for (i = 0; i != m_length; ++i) {
UChar ch = m_data8[i];
if (ch == oldC)
ch = newC;
data[i] = ch;
}
return newImpl;
}
UChar* data;
auto newImpl = createUninitializedInternalNonEmpty(m_length, data);
for (i = 0; i != m_length; ++i) {
UChar ch = m_data16[i];
if (ch == oldC)
ch = newC;
data[i] = ch;
}
return newImpl;
}
Ref<StringImpl> StringImpl::replace(unsigned position, unsigned lengthToReplace, StringImpl* str)
{
position = std::min(position, length());
lengthToReplace = std::min(lengthToReplace, length() - position);
unsigned lengthToInsert = str ? str->length() : 0;
if (!lengthToReplace && !lengthToInsert)
return *this;
if ((length() - lengthToReplace) >= (std::numeric_limits<unsigned>::max() - lengthToInsert))
CRASH();
if (is8Bit() && (!str || str->is8Bit())) {
LChar* data;
auto newImpl = createUninitialized(length() - lengthToReplace + lengthToInsert, data);
memcpy(data, m_data8, position * sizeof(LChar));
if (str)
memcpy(data + position, str->m_data8, lengthToInsert * sizeof(LChar));
memcpy(data + position + lengthToInsert, m_data8 + position + lengthToReplace,
(length() - position - lengthToReplace) * sizeof(LChar));
return newImpl;
}
UChar* data;
auto newImpl = createUninitialized(length() - lengthToReplace + lengthToInsert, data);
if (is8Bit())
for (unsigned i = 0; i < position; ++i)
data[i] = m_data8[i];
else
memcpy(data, m_data16, position * sizeof(UChar));
if (str) {
if (str->is8Bit())
for (unsigned i = 0; i < lengthToInsert; ++i)
data[i + position] = str->m_data8[i];
else
memcpy(data + position, str->m_data16, lengthToInsert * sizeof(UChar));
}
if (is8Bit()) {
for (unsigned i = 0; i < length() - position - lengthToReplace; ++i)
data[i + position + lengthToInsert] = m_data8[i + position + lengthToReplace];
} else {
memcpy(data + position + lengthToInsert, characters16() + position + lengthToReplace,
(length() - position - lengthToReplace) * sizeof(UChar));
}
return newImpl;
}
Ref<StringImpl> StringImpl::replace(UChar pattern, StringImpl* replacement)
{
if (!replacement)
return *this;
if (replacement->is8Bit())
return replace(pattern, replacement->m_data8, replacement->length());
return replace(pattern, replacement->m_data16, replacement->length());
}
Ref<StringImpl> StringImpl::replace(UChar pattern, const LChar* replacement, unsigned repStrLength)
{
ASSERT(replacement);
size_t srcSegmentStart = 0;
unsigned matchCount = 0;
// Count the matches.
while ((srcSegmentStart = find(pattern, srcSegmentStart)) != notFound) {
++matchCount;
++srcSegmentStart;
}
// If we have 0 matches then we don't have to do any more work.
if (!matchCount)
return *this;
if (repStrLength && matchCount > std::numeric_limits<unsigned>::max() / repStrLength)
CRASH();
unsigned replaceSize = matchCount * repStrLength;
unsigned newSize = m_length - matchCount;
if (newSize >= (std::numeric_limits<unsigned>::max() - replaceSize))
CRASH();
newSize += replaceSize;
// Construct the new data.
size_t srcSegmentEnd;
unsigned srcSegmentLength;
srcSegmentStart = 0;
unsigned dstOffset = 0;
if (is8Bit()) {
LChar* data;
auto newImpl = createUninitialized(newSize, data);
while ((srcSegmentEnd = find(pattern, srcSegmentStart)) != notFound) {
srcSegmentLength = srcSegmentEnd - srcSegmentStart;
memcpy(data + dstOffset, m_data8 + srcSegmentStart, srcSegmentLength * sizeof(LChar));
dstOffset += srcSegmentLength;
memcpy(data + dstOffset, replacement, repStrLength * sizeof(LChar));
dstOffset += repStrLength;
srcSegmentStart = srcSegmentEnd + 1;
}
srcSegmentLength = m_length - srcSegmentStart;
memcpy(data + dstOffset, m_data8 + srcSegmentStart, srcSegmentLength * sizeof(LChar));
ASSERT(dstOffset + srcSegmentLength == newImpl.get().length());
return newImpl;
}
UChar* data;
auto newImpl = createUninitialized(newSize, data);
while ((srcSegmentEnd = find(pattern, srcSegmentStart)) != notFound) {
srcSegmentLength = srcSegmentEnd - srcSegmentStart;
memcpy(data + dstOffset, m_data16 + srcSegmentStart, srcSegmentLength * sizeof(UChar));
dstOffset += srcSegmentLength;
for (unsigned i = 0; i < repStrLength; ++i)
data[i + dstOffset] = replacement[i];
dstOffset += repStrLength;
srcSegmentStart = srcSegmentEnd + 1;
}
srcSegmentLength = m_length - srcSegmentStart;
memcpy(data + dstOffset, m_data16 + srcSegmentStart, srcSegmentLength * sizeof(UChar));
ASSERT(dstOffset + srcSegmentLength == newImpl.get().length());
return newImpl;
}
Ref<StringImpl> StringImpl::replace(UChar pattern, const UChar* replacement, unsigned repStrLength)
{
ASSERT(replacement);
size_t srcSegmentStart = 0;
unsigned matchCount = 0;
// Count the matches.
while ((srcSegmentStart = find(pattern, srcSegmentStart)) != notFound) {
++matchCount;
++srcSegmentStart;
}
// If we have 0 matches then we don't have to do any more work.
if (!matchCount)
return *this;
if (repStrLength && matchCount > std::numeric_limits<unsigned>::max() / repStrLength)
CRASH();
unsigned replaceSize = matchCount * repStrLength;
unsigned newSize = m_length - matchCount;
if (newSize >= (std::numeric_limits<unsigned>::max() - replaceSize))
CRASH();
newSize += replaceSize;
// Construct the new data.
size_t srcSegmentEnd;
unsigned srcSegmentLength;
srcSegmentStart = 0;
unsigned dstOffset = 0;
if (is8Bit()) {
UChar* data;
auto newImpl = createUninitialized(newSize, data);
while ((srcSegmentEnd = find(pattern, srcSegmentStart)) != notFound) {
srcSegmentLength = srcSegmentEnd - srcSegmentStart;
for (unsigned i = 0; i < srcSegmentLength; ++i)
data[i + dstOffset] = m_data8[i + srcSegmentStart];
dstOffset += srcSegmentLength;
memcpy(data + dstOffset, replacement, repStrLength * sizeof(UChar));
dstOffset += repStrLength;
srcSegmentStart = srcSegmentEnd + 1;
}
srcSegmentLength = m_length - srcSegmentStart;
for (unsigned i = 0; i < srcSegmentLength; ++i)
data[i + dstOffset] = m_data8[i + srcSegmentStart];
ASSERT(dstOffset + srcSegmentLength == newImpl.get().length());
return newImpl;
}
UChar* data;
auto newImpl = createUninitialized(newSize, data);
while ((srcSegmentEnd = find(pattern, srcSegmentStart)) != notFound) {
srcSegmentLength = srcSegmentEnd - srcSegmentStart;
memcpy(data + dstOffset, m_data16 + srcSegmentStart, srcSegmentLength * sizeof(UChar));
dstOffset += srcSegmentLength;
memcpy(data + dstOffset, replacement, repStrLength * sizeof(UChar));
dstOffset += repStrLength;
srcSegmentStart = srcSegmentEnd + 1;
}
srcSegmentLength = m_length - srcSegmentStart;
memcpy(data + dstOffset, m_data16 + srcSegmentStart, srcSegmentLength * sizeof(UChar));
ASSERT(dstOffset + srcSegmentLength == newImpl.get().length());
return newImpl;
}
Ref<StringImpl> StringImpl::replace(StringImpl* pattern, StringImpl* replacement)
{
if (!pattern || !replacement)
return *this;
unsigned patternLength = pattern->length();
if (!patternLength)
return *this;
unsigned repStrLength = replacement->length();
size_t srcSegmentStart = 0;
unsigned matchCount = 0;
// Count the matches.
while ((srcSegmentStart = find(pattern, srcSegmentStart)) != notFound) {
++matchCount;
srcSegmentStart += patternLength;
}
// If we have 0 matches, we don't have to do any more work
if (!matchCount)
return *this;
unsigned newSize = m_length - matchCount * patternLength;
if (repStrLength && matchCount > std::numeric_limits<unsigned>::max() / repStrLength)
CRASH();
if (newSize > (std::numeric_limits<unsigned>::max() - matchCount * repStrLength))
CRASH();
newSize += matchCount * repStrLength;
// Construct the new data
size_t srcSegmentEnd;
unsigned srcSegmentLength;
srcSegmentStart = 0;
unsigned dstOffset = 0;
bool srcIs8Bit = is8Bit();
bool replacementIs8Bit = replacement->is8Bit();
// There are 4 cases:
// 1. This and replacement are both 8 bit.
// 2. This and replacement are both 16 bit.
// 3. This is 8 bit and replacement is 16 bit.
// 4. This is 16 bit and replacement is 8 bit.
if (srcIs8Bit && replacementIs8Bit) {
// Case 1
LChar* data;
auto newImpl = createUninitialized(newSize, data);
while ((srcSegmentEnd = find(pattern, srcSegmentStart)) != notFound) {
srcSegmentLength = srcSegmentEnd - srcSegmentStart;
memcpy(data + dstOffset, m_data8 + srcSegmentStart, srcSegmentLength * sizeof(LChar));
dstOffset += srcSegmentLength;
memcpy(data + dstOffset, replacement->m_data8, repStrLength * sizeof(LChar));
dstOffset += repStrLength;
srcSegmentStart = srcSegmentEnd + patternLength;
}
srcSegmentLength = m_length - srcSegmentStart;
memcpy(data + dstOffset, m_data8 + srcSegmentStart, srcSegmentLength * sizeof(LChar));
ASSERT(dstOffset + srcSegmentLength == newImpl.get().length());
return newImpl;
}
UChar* data;
auto newImpl = createUninitialized(newSize, data);
while ((srcSegmentEnd = find(pattern, srcSegmentStart)) != notFound) {
srcSegmentLength = srcSegmentEnd - srcSegmentStart;
if (srcIs8Bit) {
// Case 3.
for (unsigned i = 0; i < srcSegmentLength; ++i)
data[i + dstOffset] = m_data8[i + srcSegmentStart];
} else {
// Case 2 & 4.
memcpy(data + dstOffset, m_data16 + srcSegmentStart, srcSegmentLength * sizeof(UChar));
}
dstOffset += srcSegmentLength;
if (replacementIs8Bit) {
// Cases 2 & 3.
for (unsigned i = 0; i < repStrLength; ++i)
data[i + dstOffset] = replacement->m_data8[i];
} else {
// Case 4
memcpy(data + dstOffset, replacement->m_data16, repStrLength * sizeof(UChar));
}
dstOffset += repStrLength;
srcSegmentStart = srcSegmentEnd + patternLength;
}
srcSegmentLength = m_length - srcSegmentStart;
if (srcIs8Bit) {
// Case 3.
for (unsigned i = 0; i < srcSegmentLength; ++i)
data[i + dstOffset] = m_data8[i + srcSegmentStart];
} else {
// Cases 2 & 4.
memcpy(data + dstOffset, m_data16 + srcSegmentStart, srcSegmentLength * sizeof(UChar));
}
ASSERT(dstOffset + srcSegmentLength == newImpl.get().length());
return newImpl;
}
bool equal(const StringImpl* a, const StringImpl* b)
{
return equalCommon(a, b);
}
template <typename CharType>
inline bool equalInternal(const StringImpl* a, const CharType* b, unsigned length)
{
if (!a)
return !b;
if (!b)
return false;
if (a->length() != length)
return false;
if (a->is8Bit())
return equal(a->characters8(), b, length);
return equal(a->characters16(), b, length);
}
bool equal(const StringImpl* a, const LChar* b, unsigned length)
{
return equalInternal(a, b, length);
}
bool equal(const StringImpl* a, const UChar* b, unsigned length)
{
return equalInternal(a, b, length);
}
bool equal(const StringImpl* a, const LChar* b)
{
if (!a)
return !b;
if (!b)
return !a;
unsigned length = a->length();
if (a->is8Bit()) {
const LChar* aPtr = a->characters8();
for (unsigned i = 0; i != length; ++i) {
LChar bc = b[i];
LChar ac = aPtr[i];
if (!bc)
return false;
if (ac != bc)
return false;
}
return !b[length];
}
const UChar* aPtr = a->characters16();
for (unsigned i = 0; i != length; ++i) {
LChar bc = b[i];
if (!bc)
return false;
if (aPtr[i] != bc)
return false;
}
return !b[length];
}
bool equal(const StringImpl& a, const StringImpl& b)
{
return equalCommon(a, b);
}
bool equalIgnoringNullity(StringImpl* a, StringImpl* b)
{
if (!a && b && !b->length())
return true;
if (!b && a && !a->length())
return true;
return equal(a, b);
}
bool equalIgnoringASCIICase(const StringImpl* a, const StringImpl* b)
{
if (a == b)
return true;
if (!a || !b)
return false;
return equalIgnoringASCIICaseCommon(*a, *b);
}
bool equalIgnoringASCIICaseNonNull(const StringImpl* a, const StringImpl* b)
{
ASSERT(a);
ASSERT(b);
return equalIgnoringASCIICase(*a, *b);
}
UCharDirection StringImpl::defaultWritingDirection(bool* hasStrongDirectionality)
{
for (unsigned i = 0; i < m_length; ++i) {
UCharDirection charDirection = u_charDirection(is8Bit() ? m_data8[i] : m_data16[i]);
if (charDirection == U_LEFT_TO_RIGHT) {
if (hasStrongDirectionality)
*hasStrongDirectionality = true;
return U_LEFT_TO_RIGHT;
}
if (charDirection == U_RIGHT_TO_LEFT || charDirection == U_RIGHT_TO_LEFT_ARABIC) {
if (hasStrongDirectionality)
*hasStrongDirectionality = true;
return U_RIGHT_TO_LEFT;
}
}
if (hasStrongDirectionality)
*hasStrongDirectionality = false;
return U_LEFT_TO_RIGHT;
}
Ref<StringImpl> StringImpl::adopt(StringBuffer<LChar>&& buffer)
{
unsigned length = buffer.length();
if (!length)
return *empty();
return adoptRef(*new StringImpl(buffer.release(), length));
}
Ref<StringImpl> StringImpl::adopt(StringBuffer<UChar>&& buffer)
{
unsigned length = buffer.length();
if (!length)
return *empty();
return adoptRef(*new StringImpl(buffer.release(), length));
}
size_t StringImpl::sizeInBytes() const
{
// FIXME: support substrings
size_t size = length();
if (!is8Bit())
size *= 2;
return size + sizeof(*this);
}
// Helper to write a three-byte UTF-8 code point to the buffer, caller must check room is available.
static inline void putUTF8Triple(char*& buffer, UChar ch)
{
ASSERT(ch >= 0x0800);
*buffer++ = static_cast<char>(((ch >> 12) & 0x0F) | 0xE0);
*buffer++ = static_cast<char>(((ch >> 6) & 0x3F) | 0x80);
*buffer++ = static_cast<char>((ch & 0x3F) | 0x80);
}
bool StringImpl::utf8Impl(const UChar* characters, unsigned length, char*& buffer, size_t bufferSize, ConversionMode mode)
{
if (mode == StrictConversionReplacingUnpairedSurrogatesWithFFFD) {
const UChar* charactersEnd = characters + length;
char* bufferEnd = buffer + bufferSize;
while (characters < charactersEnd) {
// Use strict conversion to detect unpaired surrogates.
ConversionResult result = convertUTF16ToUTF8(&characters, charactersEnd, &buffer, bufferEnd, true);
ASSERT(result != targetExhausted);
// Conversion fails when there is an unpaired surrogate.
// Put replacement character (U+FFFD) instead of the unpaired surrogate.
if (result != conversionOK) {
ASSERT((0xD800 <= *characters && *characters <= 0xDFFF));
// There should be room left, since one UChar hasn't been converted.
ASSERT((buffer + 3) <= bufferEnd);
putUTF8Triple(buffer, replacementCharacter);
++characters;
}
}
} else {
bool strict = mode == StrictConversion;
const UChar* originalCharacters = characters;
ConversionResult result = convertUTF16ToUTF8(&characters, characters + length, &buffer, buffer + bufferSize, strict);
ASSERT(result != targetExhausted); // (length * 3) should be sufficient for any conversion
// Only produced from strict conversion.
if (result == sourceIllegal) {
ASSERT(strict);
return false;
}
// Check for an unconverted high surrogate.
if (result == sourceExhausted) {
if (strict)
return false;
// This should be one unpaired high surrogate. Treat it the same
// was as an unpaired high surrogate would have been handled in
// the middle of a string with non-strict conversion - which is
// to say, simply encode it to UTF-8.
ASSERT_UNUSED(
originalCharacters, (characters + 1) == (originalCharacters + length));
ASSERT((*characters >= 0xD800) && (*characters <= 0xDBFF));
// There should be room left, since one UChar hasn't been converted.
ASSERT((buffer + 3) <= (buffer + bufferSize));
putUTF8Triple(buffer, *characters);
}
}
return true;
}
CString StringImpl::utf8ForCharacters(const LChar* characters, unsigned length)
{
if (!length)
return CString("", 0);
if (length > std::numeric_limits<unsigned>::max() / 3)
return CString();
Vector<char, 1024> bufferVector(length * 3);
char* buffer = bufferVector.data();
const LChar* source = characters;
ConversionResult result = convertLatin1ToUTF8(&source, source + length, &buffer, buffer + bufferVector.size());
ASSERT_UNUSED(result, result != targetExhausted); // (length * 3) should be sufficient for any conversion
return CString(bufferVector.data(), buffer - bufferVector.data());
}
CString StringImpl::utf8ForCharacters(const UChar* characters, unsigned length, ConversionMode mode)
{
if (!length)
return CString("", 0);
if (length > std::numeric_limits<unsigned>::max() / 3)
return CString();
Vector<char, 1024> bufferVector(length * 3);
char* buffer = bufferVector.data();
if (!utf8Impl(characters, length, buffer, bufferVector.size(), mode))
return CString();
return CString(bufferVector.data(), buffer - bufferVector.data());
}
CString StringImpl::utf8ForRange(unsigned offset, unsigned length, ConversionMode mode) const
{
ASSERT(offset <= this->length());
ASSERT(offset + length <= this->length());
if (!length)
return CString("", 0);
// Allocate a buffer big enough to hold all the characters
// (an individual UTF-16 UChar can only expand to 3 UTF-8 bytes).
// Optimization ideas, if we find this function is hot:
// * We could speculatively create a CStringBuffer to contain 'length'
// characters, and resize if necessary (i.e. if the buffer contains
// non-ascii characters). (Alternatively, scan the buffer first for
// ascii characters, so we know this will be sufficient).
// * We could allocate a CStringBuffer with an appropriate size to
// have a good chance of being able to write the string into the
// buffer without reallocing (say, 1.5 x length).
if (length > std::numeric_limits<unsigned>::max() / 3)
return CString();
Vector<char, 1024> bufferVector(length * 3);
char* buffer = bufferVector.data();
if (is8Bit()) {
const LChar* characters = this->characters8() + offset;
ConversionResult result = convertLatin1ToUTF8(&characters, characters + length, &buffer, buffer + bufferVector.size());
ASSERT_UNUSED(result, result != targetExhausted); // (length * 3) should be sufficient for any conversion
} else {
if (!utf8Impl(this->characters16() + offset, length, buffer, bufferVector.size(), mode))
return CString();
}
return CString(bufferVector.data(), buffer - bufferVector.data());
}
CString StringImpl::utf8(ConversionMode mode) const
{
return utf8ForRange(0, length(), mode);
}
NEVER_INLINE unsigned StringImpl::hashSlowCase() const
{
if (is8Bit())
setHash(StringHasher::computeHashAndMaskTop8Bits(m_data8, m_length));
else
setHash(StringHasher::computeHashAndMaskTop8Bits(m_data16, m_length));
return existingHash();
}
unsigned StringImpl::concurrentHash() const
{
unsigned hash;
if (is8Bit())
hash = StringHasher::computeHashAndMaskTop8Bits(m_data8, m_length);
else
hash = StringHasher::computeHashAndMaskTop8Bits(m_data16, m_length);
ASSERT(((hash << s_flagCount) >> s_flagCount) == hash);
return hash;
}
bool equalIgnoringNullity(const UChar* a, size_t aLength, StringImpl* b)
{
if (!b)
return !aLength;
if (aLength != b->length())
return false;
if (b->is8Bit()) {
const LChar* bCharacters = b->characters8();
for (unsigned i = 0; i < aLength; ++i) {
if (a[i] != bCharacters[i])
return false;
}
return true;
}
return !memcmp(a, b->characters16(), b->length() * sizeof(UChar));
}
} // namespace WTF