| /* |
| * Copyright (C) 2006, 2007, 2008, 2009, 2010, 2013, 2016 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #ifndef WTF_MathExtras_h |
| #define WTF_MathExtras_h |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <float.h> |
| #include <limits> |
| #include <stdint.h> |
| #include <stdlib.h> |
| #include <wtf/StdLibExtras.h> |
| |
| #if OS(SOLARIS) |
| #include <ieeefp.h> |
| #endif |
| |
| #if OS(OPENBSD) |
| #include <sys/types.h> |
| #include <machine/ieee.h> |
| #endif |
| |
| #ifndef M_PI |
| const double piDouble = 3.14159265358979323846; |
| const float piFloat = 3.14159265358979323846f; |
| #else |
| const double piDouble = M_PI; |
| const float piFloat = static_cast<float>(M_PI); |
| #endif |
| |
| #ifndef M_PI_2 |
| const double piOverTwoDouble = 1.57079632679489661923; |
| const float piOverTwoFloat = 1.57079632679489661923f; |
| #else |
| const double piOverTwoDouble = M_PI_2; |
| const float piOverTwoFloat = static_cast<float>(M_PI_2); |
| #endif |
| |
| #ifndef M_PI_4 |
| const double piOverFourDouble = 0.785398163397448309616; |
| const float piOverFourFloat = 0.785398163397448309616f; |
| #else |
| const double piOverFourDouble = M_PI_4; |
| const float piOverFourFloat = static_cast<float>(M_PI_4); |
| #endif |
| |
| #ifndef M_SQRT2 |
| const double sqrtOfTwoDouble = 1.41421356237309504880; |
| const float sqrtOfTwoFloat = 1.41421356237309504880f; |
| #else |
| const double sqrtOfTwoDouble = M_SQRT2; |
| const float sqrtOfTwoFloat = static_cast<float>(M_SQRT2); |
| #endif |
| |
| #if OS(SOLARIS) |
| |
| namespace std { |
| |
| #ifndef isfinite |
| inline bool isfinite(double x) { return finite(x) && !isnand(x); } |
| #endif |
| #ifndef signbit |
| inline bool signbit(double x) { return copysign(1.0, x) < 0; } |
| #endif |
| #ifndef isinf |
| inline bool isinf(double x) { return !finite(x) && !isnand(x); } |
| #endif |
| |
| } // namespace std |
| |
| #endif |
| |
| #if COMPILER(MSVC) |
| |
| // Work around a bug in Win, where atan2(+-infinity, +-infinity) yields NaN instead of specific values. |
| extern "C" inline double wtf_atan2(double x, double y) |
| { |
| double posInf = std::numeric_limits<double>::infinity(); |
| double negInf = -std::numeric_limits<double>::infinity(); |
| double nan = std::numeric_limits<double>::quiet_NaN(); |
| |
| double result = nan; |
| |
| if (x == posInf && y == posInf) |
| result = piOverFourDouble; |
| else if (x == posInf && y == negInf) |
| result = 3 * piOverFourDouble; |
| else if (x == negInf && y == posInf) |
| result = -piOverFourDouble; |
| else if (x == negInf && y == negInf) |
| result = -3 * piOverFourDouble; |
| else |
| result = ::atan2(x, y); |
| |
| return result; |
| } |
| |
| #define atan2(x, y) wtf_atan2(x, y) |
| |
| #endif // COMPILER(MSVC) |
| |
| inline double deg2rad(double d) { return d * piDouble / 180.0; } |
| inline double rad2deg(double r) { return r * 180.0 / piDouble; } |
| inline double deg2grad(double d) { return d * 400.0 / 360.0; } |
| inline double grad2deg(double g) { return g * 360.0 / 400.0; } |
| inline double turn2deg(double t) { return t * 360.0; } |
| inline double deg2turn(double d) { return d / 360.0; } |
| inline double rad2grad(double r) { return r * 200.0 / piDouble; } |
| inline double grad2rad(double g) { return g * piDouble / 200.0; } |
| |
| inline float deg2rad(float d) { return d * piFloat / 180.0f; } |
| inline float rad2deg(float r) { return r * 180.0f / piFloat; } |
| inline float deg2grad(float d) { return d * 400.0f / 360.0f; } |
| inline float grad2deg(float g) { return g * 360.0f / 400.0f; } |
| inline float turn2deg(float t) { return t * 360.0f; } |
| inline float deg2turn(float d) { return d / 360.0f; } |
| inline float rad2grad(float r) { return r * 200.0f / piFloat; } |
| inline float grad2rad(float g) { return g * piFloat / 200.0f; } |
| |
| // std::numeric_limits<T>::min() returns the smallest positive value for floating point types |
| template<typename T> constexpr inline T defaultMinimumForClamp() { return std::numeric_limits<T>::min(); } |
| template<> constexpr inline float defaultMinimumForClamp() { return -std::numeric_limits<float>::max(); } |
| template<> constexpr inline double defaultMinimumForClamp() { return -std::numeric_limits<double>::max(); } |
| template<typename T> constexpr inline T defaultMaximumForClamp() { return std::numeric_limits<T>::max(); } |
| |
| template<typename T> inline T clampTo(double value, T min = defaultMinimumForClamp<T>(), T max = defaultMaximumForClamp<T>()) |
| { |
| if (value >= static_cast<double>(max)) |
| return max; |
| if (value <= static_cast<double>(min)) |
| return min; |
| return static_cast<T>(value); |
| } |
| template<> inline long long int clampTo(double, long long int, long long int); // clampTo does not support long long ints. |
| |
| inline int clampToInteger(double value) |
| { |
| return clampTo<int>(value); |
| } |
| |
| inline unsigned clampToUnsigned(double value) |
| { |
| return clampTo<unsigned>(value); |
| } |
| |
| inline float clampToFloat(double value) |
| { |
| return clampTo<float>(value); |
| } |
| |
| inline int clampToPositiveInteger(double value) |
| { |
| return clampTo<int>(value, 0); |
| } |
| |
| inline int clampToInteger(float value) |
| { |
| return clampTo<int>(value); |
| } |
| |
| template<typename T> |
| inline int clampToInteger(T x) |
| { |
| static_assert(std::numeric_limits<T>::is_integer, "T must be an integer."); |
| |
| const T intMax = static_cast<unsigned>(std::numeric_limits<int>::max()); |
| |
| if (x >= intMax) |
| return std::numeric_limits<int>::max(); |
| return static_cast<int>(x); |
| } |
| |
| // Explicitly accept 64bit result when clamping double value. |
| // Keep in mind that double can only represent 53bit integer precisely. |
| template<typename T> constexpr inline T clampToAccepting64(double value, T min = defaultMinimumForClamp<T>(), T max = defaultMaximumForClamp<T>()) |
| { |
| return (value >= static_cast<double>(max)) ? max : ((value <= static_cast<double>(min)) ? min : static_cast<T>(value)); |
| } |
| |
| inline bool isWithinIntRange(float x) |
| { |
| return x > static_cast<float>(std::numeric_limits<int>::min()) && x < static_cast<float>(std::numeric_limits<int>::max()); |
| } |
| |
| inline float normalizedFloat(float value) |
| { |
| if (value > 0 && value < std::numeric_limits<float>::min()) |
| return std::numeric_limits<float>::min(); |
| if (value < 0 && value > -std::numeric_limits<float>::min()) |
| return -std::numeric_limits<float>::min(); |
| return value; |
| } |
| |
| template<typename T> inline bool hasOneBitSet(T value) |
| { |
| return !((value - 1) & value) && value; |
| } |
| |
| template<typename T> inline bool hasZeroOrOneBitsSet(T value) |
| { |
| return !((value - 1) & value); |
| } |
| |
| template<typename T> inline bool hasTwoOrMoreBitsSet(T value) |
| { |
| return !hasZeroOrOneBitsSet(value); |
| } |
| |
| template <typename T> inline unsigned getLSBSet(T value) |
| { |
| typedef typename std::make_unsigned<T>::type UnsignedT; |
| unsigned result = 0; |
| |
| UnsignedT unsignedValue = static_cast<UnsignedT>(value); |
| while (unsignedValue >>= 1) |
| ++result; |
| |
| return result; |
| } |
| |
| template<typename T> inline T divideRoundedUp(T a, T b) |
| { |
| return (a + b - 1) / b; |
| } |
| |
| template<typename T> inline T timesThreePlusOneDividedByTwo(T value) |
| { |
| // Mathematically equivalent to: |
| // (value * 3 + 1) / 2; |
| // or: |
| // (unsigned)ceil(value * 1.5)); |
| // This form is not prone to internal overflow. |
| return value + (value >> 1) + (value & 1); |
| } |
| |
| template<typename T> inline bool isNotZeroAndOrdered(T value) |
| { |
| return value > 0.0 || value < 0.0; |
| } |
| |
| template<typename T> inline bool isZeroOrUnordered(T value) |
| { |
| return !isNotZeroAndOrdered(value); |
| } |
| |
| template<typename T> inline bool isGreaterThanNonZeroPowerOfTwo(T value, unsigned power) |
| { |
| // The crazy way of testing of index >= 2 ** power |
| // (where I use ** to denote pow()). |
| return !!((value >> 1) >> (power - 1)); |
| } |
| |
| template<typename T> constexpr inline bool isLessThan(const T& a, const T& b) { return a < b; } |
| template<typename T> constexpr inline bool isLessThanEqual(const T& a, const T& b) { return a <= b; } |
| template<typename T> constexpr inline bool isGreaterThan(const T& a, const T& b) { return a > b; } |
| template<typename T> constexpr inline bool isGreaterThanEqual(const T& a, const T& b) { return a >= b; } |
| |
| #ifndef UINT64_C |
| #if COMPILER(MSVC) |
| #define UINT64_C(c) c ## ui64 |
| #else |
| #define UINT64_C(c) c ## ull |
| #endif |
| #endif |
| |
| #if COMPILER(MINGW64) && (!defined(__MINGW64_VERSION_RC) || __MINGW64_VERSION_RC < 1) |
| inline double wtf_pow(double x, double y) |
| { |
| // MinGW-w64 has a custom implementation for pow. |
| // This handles certain special cases that are different. |
| if ((x == 0.0 || std::isinf(x)) && std::isfinite(y)) { |
| double f; |
| if (modf(y, &f) != 0.0) |
| return ((x == 0.0) ^ (y > 0.0)) ? std::numeric_limits<double>::infinity() : 0.0; |
| } |
| |
| if (x == 2.0) { |
| int yInt = static_cast<int>(y); |
| if (y == yInt) |
| return ldexp(1.0, yInt); |
| } |
| |
| return pow(x, y); |
| } |
| #define pow(x, y) wtf_pow(x, y) |
| #endif // COMPILER(MINGW64) && (!defined(__MINGW64_VERSION_RC) || __MINGW64_VERSION_RC < 1) |
| |
| |
| // decompose 'number' to its sign, exponent, and mantissa components. |
| // The result is interpreted as: |
| // (sign ? -1 : 1) * pow(2, exponent) * (mantissa / (1 << 52)) |
| inline void decomposeDouble(double number, bool& sign, int32_t& exponent, uint64_t& mantissa) |
| { |
| ASSERT(std::isfinite(number)); |
| |
| sign = std::signbit(number); |
| |
| uint64_t bits = WTF::bitwise_cast<uint64_t>(number); |
| exponent = (static_cast<int32_t>(bits >> 52) & 0x7ff) - 0x3ff; |
| mantissa = bits & 0xFFFFFFFFFFFFFull; |
| |
| // Check for zero/denormal values; if so, adjust the exponent, |
| // if not insert the implicit, omitted leading 1 bit. |
| if (exponent == -0x3ff) |
| exponent = mantissa ? -0x3fe : 0; |
| else |
| mantissa |= 0x10000000000000ull; |
| } |
| |
| // Calculate d % 2^{64}. |
| inline void doubleToInteger(double d, unsigned long long& value) |
| { |
| if (std::isnan(d) || std::isinf(d)) |
| value = 0; |
| else { |
| // -2^{64} < fmodValue < 2^{64}. |
| double fmodValue = fmod(trunc(d), std::numeric_limits<unsigned long long>::max() + 1.0); |
| if (fmodValue >= 0) { |
| // 0 <= fmodValue < 2^{64}. |
| // 0 <= value < 2^{64}. This cast causes no loss. |
| value = static_cast<unsigned long long>(fmodValue); |
| } else { |
| // -2^{64} < fmodValue < 0. |
| // 0 < fmodValueInUnsignedLongLong < 2^{64}. This cast causes no loss. |
| unsigned long long fmodValueInUnsignedLongLong = static_cast<unsigned long long>(-fmodValue); |
| // -1 < (std::numeric_limits<unsigned long long>::max() - fmodValueInUnsignedLongLong) < 2^{64} - 1. |
| // 0 < value < 2^{64}. |
| value = std::numeric_limits<unsigned long long>::max() - fmodValueInUnsignedLongLong + 1; |
| } |
| } |
| } |
| |
| namespace WTF { |
| |
| // From http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2 |
| inline uint32_t roundUpToPowerOfTwo(uint32_t v) |
| { |
| v--; |
| v |= v >> 1; |
| v |= v >> 2; |
| v |= v >> 4; |
| v |= v >> 8; |
| v |= v >> 16; |
| v++; |
| return v; |
| } |
| |
| inline unsigned fastLog2(unsigned i) |
| { |
| unsigned log2 = 0; |
| if (i & (i - 1)) |
| log2 += 1; |
| if (i >> 16) |
| log2 += 16, i >>= 16; |
| if (i >> 8) |
| log2 += 8, i >>= 8; |
| if (i >> 4) |
| log2 += 4, i >>= 4; |
| if (i >> 2) |
| log2 += 2, i >>= 2; |
| if (i >> 1) |
| log2 += 1; |
| return log2; |
| } |
| |
| inline unsigned fastLog2(uint64_t value) |
| { |
| unsigned high = static_cast<unsigned>(value >> 32); |
| if (high) |
| return fastLog2(high) + 32; |
| return fastLog2(static_cast<unsigned>(value)); |
| } |
| |
| template <typename T> |
| inline typename std::enable_if<std::is_floating_point<T>::value, T>::type safeFPDivision(T u, T v) |
| { |
| // Protect against overflow / underflow. |
| if (v < 1 && u > v * std::numeric_limits<T>::max()) |
| return std::numeric_limits<T>::max(); |
| if (v > 1 && u < v * std::numeric_limits<T>::min()) |
| return 0; |
| return u / v; |
| } |
| |
| // Floating point numbers comparison: |
| // u is "essentially equal" [1][2] to v if: | u - v | / |u| <= e and | u - v | / |v| <= e |
| // |
| // [1] Knuth, D. E. "Accuracy of Floating Point Arithmetic." The Art of Computer Programming. 3rd ed. Vol. 2. |
| // Boston: Addison-Wesley, 1998. 229-45. |
| // [2] http://www.boost.org/doc/libs/1_34_0/libs/test/doc/components/test_tools/floating_point_comparison.html |
| template <typename T> |
| inline typename std::enable_if<std::is_floating_point<T>::value, bool>::type areEssentiallyEqual(T u, T v, T epsilon = std::numeric_limits<T>::epsilon()) |
| { |
| if (u == v) |
| return true; |
| |
| const T delta = std::abs(u - v); |
| return safeFPDivision(delta, std::abs(u)) <= epsilon && safeFPDivision(delta, std::abs(v)) <= epsilon; |
| } |
| |
| // Match behavior of Math.min, where NaN is returned if either argument is NaN. |
| template <typename T> |
| inline typename std::enable_if<std::is_floating_point<T>::value, T>::type nanPropagatingMin(T a, T b) |
| { |
| return std::isnan(a) || std::isnan(b) ? std::numeric_limits<T>::quiet_NaN() : std::min(a, b); |
| } |
| |
| // Match behavior of Math.max, where NaN is returned if either argument is NaN. |
| template <typename T> |
| inline typename std::enable_if<std::is_floating_point<T>::value, T>::type nanPropagatingMax(T a, T b) |
| { |
| return std::isnan(a) || std::isnan(b) ? std::numeric_limits<T>::quiet_NaN() : std::max(a, b); |
| } |
| |
| inline bool isIntegral(float value) |
| { |
| return static_cast<int>(value) == value; |
| } |
| |
| template<typename T> |
| inline void incrementWithSaturation(T& value) |
| { |
| if (value != std::numeric_limits<T>::max()) |
| value++; |
| } |
| |
| template<typename T> |
| inline T leftShiftWithSaturation(T value, unsigned shiftAmount, T max = std::numeric_limits<T>::max()) |
| { |
| T result = value << shiftAmount; |
| // We will have saturated if shifting right doesn't recover the original value. |
| if (result >> shiftAmount != value) |
| return max; |
| if (result > max) |
| return max; |
| return result; |
| } |
| |
| // Check if two ranges overlap assuming that neither range is empty. |
| template<typename T> |
| inline bool nonEmptyRangesOverlap(T leftMin, T leftMax, T rightMin, T rightMax) |
| { |
| ASSERT(leftMin < leftMax); |
| ASSERT(rightMin < rightMax); |
| |
| return leftMax > rightMin && rightMax > leftMin; |
| } |
| |
| // Pass ranges with the min being inclusive and the max being exclusive. For example, this should |
| // return false: |
| // |
| // rangesOverlap(0, 8, 8, 16) |
| template<typename T> |
| inline bool rangesOverlap(T leftMin, T leftMax, T rightMin, T rightMax) |
| { |
| ASSERT(leftMin <= leftMax); |
| ASSERT(rightMin <= rightMax); |
| |
| // Empty ranges interfere with nothing. |
| if (leftMin == leftMax) |
| return false; |
| if (rightMin == rightMax) |
| return false; |
| |
| return nonEmptyRangesOverlap(leftMin, leftMax, rightMin, rightMax); |
| } |
| |
| } // namespace WTF |
| |
| #endif // #ifndef WTF_MathExtras_h |