blob: 0b2638323b9696f5de71d80faa54baf4c16a9c8d [file] [log] [blame]
/*
* (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 2000 Gunnstein Lye (gunnstein@netcom.no)
* (C) 2000 Frederik Holljen (frederik.holljen@hig.no)
* (C) 2001 Peter Kelly (pmk@post.com)
* Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Apple Inc. All rights reserved.
* Copyright (C) 2011 Motorola Mobility. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "config.h"
#include "Range.h"
#include "ClientRect.h"
#include "ClientRectList.h"
#include "DocumentFragment.h"
#include "Frame.h"
#include "FrameView.h"
#include "HTMLElement.h"
#include "HTMLNames.h"
#include "NodeTraversal.h"
#include "NodeWithIndex.h"
#include "Page.h"
#include "ProcessingInstruction.h"
#include "RangeException.h"
#include "RenderBoxModelObject.h"
#include "RenderText.h"
#include "ScopedEventQueue.h"
#include "TextIterator.h"
#include "VisiblePosition.h"
#include "VisibleUnits.h"
#include "htmlediting.h"
#include "markup.h"
#include <stdio.h>
#include <wtf/RefCountedLeakCounter.h>
#include <wtf/text/CString.h>
#include <wtf/text/StringBuilder.h>
#if PLATFORM(IOS)
#include "SelectionRect.h"
#endif
namespace WebCore {
using namespace HTMLNames;
DEFINE_DEBUG_ONLY_GLOBAL(WTF::RefCountedLeakCounter, rangeCounter, ("Range"));
inline Range::Range(Document& ownerDocument)
: m_ownerDocument(ownerDocument)
, m_start(&ownerDocument)
, m_end(&ownerDocument)
{
#ifndef NDEBUG
rangeCounter.increment();
#endif
m_ownerDocument->attachRange(this);
}
PassRefPtr<Range> Range::create(Document& ownerDocument)
{
return adoptRef(new Range(ownerDocument));
}
inline Range::Range(Document& ownerDocument, PassRefPtr<Node> startContainer, int startOffset, PassRefPtr<Node> endContainer, int endOffset)
: m_ownerDocument(ownerDocument)
, m_start(&ownerDocument)
, m_end(&ownerDocument)
{
#ifndef NDEBUG
rangeCounter.increment();
#endif
m_ownerDocument->attachRange(this);
// Simply setting the containers and offsets directly would not do any of the checking
// that setStart and setEnd do, so we call those functions.
setStart(startContainer, startOffset);
setEnd(endContainer, endOffset);
}
PassRefPtr<Range> Range::create(Document& ownerDocument, PassRefPtr<Node> startContainer, int startOffset, PassRefPtr<Node> endContainer, int endOffset)
{
return adoptRef(new Range(ownerDocument, startContainer, startOffset, endContainer, endOffset));
}
PassRefPtr<Range> Range::create(Document& ownerDocument, const Position& start, const Position& end)
{
return adoptRef(new Range(ownerDocument, start.containerNode(), start.computeOffsetInContainerNode(), end.containerNode(), end.computeOffsetInContainerNode()));
}
PassRefPtr<Range> Range::create(ScriptExecutionContext& context)
{
return adoptRef(new Range(toDocument(context)));
}
#if PLATFORM(IOS)
PassRefPtr<Range> Range::create(Document& ownerDocument, const VisiblePosition& visibleStart, const VisiblePosition& visibleEnd)
{
Position start = visibleStart.deepEquivalent().parentAnchoredEquivalent();
Position end = visibleEnd.deepEquivalent().parentAnchoredEquivalent();
return adoptRef(new Range(ownerDocument, start.anchorNode(), start.deprecatedEditingOffset(), end.anchorNode(), end.deprecatedEditingOffset()));
}
#endif
Range::~Range()
{
// Always detach (even if we've already detached) to fix https://bugs.webkit.org/show_bug.cgi?id=26044
m_ownerDocument->detachRange(this);
#ifndef NDEBUG
rangeCounter.decrement();
#endif
}
void Range::setDocument(Document& document)
{
ASSERT(&m_ownerDocument.get() != &document);
m_ownerDocument->detachRange(this);
m_ownerDocument = document;
m_start.setToStartOfNode(&document);
m_end.setToStartOfNode(&document);
m_ownerDocument->attachRange(this);
}
Node* Range::startContainer(ExceptionCode& ec) const
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return 0;
}
return m_start.container();
}
int Range::startOffset(ExceptionCode& ec) const
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return 0;
}
return m_start.offset();
}
Node* Range::endContainer(ExceptionCode& ec) const
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return 0;
}
return m_end.container();
}
int Range::endOffset(ExceptionCode& ec) const
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return 0;
}
return m_end.offset();
}
Node* Range::commonAncestorContainer(ExceptionCode& ec) const
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return 0;
}
return commonAncestorContainer(m_start.container(), m_end.container());
}
Node* Range::commonAncestorContainer(Node* containerA, Node* containerB)
{
for (Node* parentA = containerA; parentA; parentA = parentA->parentNode()) {
for (Node* parentB = containerB; parentB; parentB = parentB->parentNode()) {
if (parentA == parentB)
return parentA;
}
}
return 0;
}
bool Range::collapsed(ExceptionCode& ec) const
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return 0;
}
return m_start == m_end;
}
static inline bool checkForDifferentRootContainer(const RangeBoundaryPoint& start, const RangeBoundaryPoint& end)
{
Node* endRootContainer = end.container();
while (endRootContainer->parentNode())
endRootContainer = endRootContainer->parentNode();
Node* startRootContainer = start.container();
while (startRootContainer->parentNode())
startRootContainer = startRootContainer->parentNode();
return startRootContainer != endRootContainer || (Range::compareBoundaryPoints(start, end, ASSERT_NO_EXCEPTION) > 0);
}
void Range::setStart(PassRefPtr<Node> refNode, int offset, ExceptionCode& ec)
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return;
}
if (!refNode) {
ec = NOT_FOUND_ERR;
return;
}
bool didMoveDocument = false;
if (&refNode->document() != &ownerDocument()) {
setDocument(refNode->document());
didMoveDocument = true;
}
ec = 0;
Node* childNode = checkNodeWOffset(refNode.get(), offset, ec);
if (ec)
return;
m_start.set(refNode, offset, childNode);
if (didMoveDocument || checkForDifferentRootContainer(m_start, m_end))
collapse(true, ec);
}
void Range::setEnd(PassRefPtr<Node> refNode, int offset, ExceptionCode& ec)
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return;
}
if (!refNode) {
ec = NOT_FOUND_ERR;
return;
}
bool didMoveDocument = false;
if (&refNode->document() != &ownerDocument()) {
setDocument(refNode->document());
didMoveDocument = true;
}
ec = 0;
Node* childNode = checkNodeWOffset(refNode.get(), offset, ec);
if (ec)
return;
m_end.set(refNode, offset, childNode);
if (didMoveDocument || checkForDifferentRootContainer(m_start, m_end))
collapse(false, ec);
}
void Range::setStart(const Position& start, ExceptionCode& ec)
{
Position parentAnchored = start.parentAnchoredEquivalent();
setStart(parentAnchored.containerNode(), parentAnchored.offsetInContainerNode(), ec);
}
void Range::setEnd(const Position& end, ExceptionCode& ec)
{
Position parentAnchored = end.parentAnchoredEquivalent();
setEnd(parentAnchored.containerNode(), parentAnchored.offsetInContainerNode(), ec);
}
void Range::collapse(bool toStart, ExceptionCode& ec)
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return;
}
if (toStart)
m_end = m_start;
else
m_start = m_end;
}
bool Range::isPointInRange(Node* refNode, int offset, ExceptionCode& ec)
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return false;
}
if (!refNode) {
ec = HIERARCHY_REQUEST_ERR;
return false;
}
if (!refNode->inDocument() || &refNode->document() != &ownerDocument()) {
return false;
}
ec = 0;
checkNodeWOffset(refNode, offset, ec);
if (ec)
return false;
return compareBoundaryPoints(refNode, offset, m_start.container(), m_start.offset(), ec) >= 0 && !ec
&& compareBoundaryPoints(refNode, offset, m_end.container(), m_end.offset(), ec) <= 0 && !ec;
}
short Range::comparePoint(Node* refNode, int offset, ExceptionCode& ec) const
{
// http://developer.mozilla.org/en/docs/DOM:range.comparePoint
// This method returns -1, 0 or 1 depending on if the point described by the
// refNode node and an offset within the node is before, same as, or after the range respectively.
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return 0;
}
if (!refNode) {
ec = HIERARCHY_REQUEST_ERR;
return 0;
}
if (!refNode->inDocument() || &refNode->document() != &ownerDocument()) {
ec = WRONG_DOCUMENT_ERR;
return 0;
}
ec = 0;
checkNodeWOffset(refNode, offset, ec);
if (ec)
return 0;
// compare to start, and point comes before
if (compareBoundaryPoints(refNode, offset, m_start.container(), m_start.offset(), ec) < 0)
return -1;
if (ec)
return 0;
// compare to end, and point comes after
if (compareBoundaryPoints(refNode, offset, m_end.container(), m_end.offset(), ec) > 0 && !ec)
return 1;
// point is in the middle of this range, or on the boundary points
return 0;
}
Range::CompareResults Range::compareNode(Node* refNode, ExceptionCode& ec) const
{
// http://developer.mozilla.org/en/docs/DOM:range.compareNode
// This method returns 0, 1, 2, or 3 based on if the node is before, after,
// before and after(surrounds), or inside the range, respectively
if (!refNode) {
ec = NOT_FOUND_ERR;
return NODE_BEFORE;
}
if (!m_start.container() && refNode->inDocument()) {
ec = INVALID_STATE_ERR;
return NODE_BEFORE;
}
if (m_start.container() && !refNode->inDocument()) {
// Firefox doesn't throw an exception for this case; it returns 0.
return NODE_BEFORE;
}
if (&refNode->document() != &ownerDocument()) {
// Firefox doesn't throw an exception for this case; it returns 0.
return NODE_BEFORE;
}
ContainerNode* parentNode = refNode->parentNode();
int nodeIndex = refNode->nodeIndex();
if (!parentNode) {
// if the node is the top document we should return NODE_BEFORE_AND_AFTER
// but we throw to match firefox behavior
ec = NOT_FOUND_ERR;
return NODE_BEFORE;
}
if (comparePoint(parentNode, nodeIndex, ec) < 0) { // starts before
if (comparePoint(parentNode, nodeIndex + 1, ec) > 0) // ends after the range
return NODE_BEFORE_AND_AFTER;
return NODE_BEFORE; // ends before or in the range
} else { // starts at or after the range start
if (comparePoint(parentNode, nodeIndex + 1, ec) > 0) // ends after the range
return NODE_AFTER;
return NODE_INSIDE; // ends inside the range
}
}
short Range::compareBoundaryPoints(CompareHow how, const Range* sourceRange, ExceptionCode& ec) const
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return 0;
}
if (!sourceRange) {
ec = NOT_FOUND_ERR;
return 0;
}
ec = 0;
Node* thisCont = commonAncestorContainer(ec);
if (ec)
return 0;
Node* sourceCont = sourceRange->commonAncestorContainer(ec);
if (ec)
return 0;
if (&thisCont->document() != &sourceCont->document()) {
ec = WRONG_DOCUMENT_ERR;
return 0;
}
Node* thisTop = thisCont;
Node* sourceTop = sourceCont;
while (thisTop->parentNode())
thisTop = thisTop->parentNode();
while (sourceTop->parentNode())
sourceTop = sourceTop->parentNode();
if (thisTop != sourceTop) { // in different DocumentFragments
ec = WRONG_DOCUMENT_ERR;
return 0;
}
switch (how) {
case START_TO_START:
return compareBoundaryPoints(m_start, sourceRange->m_start, ec);
case START_TO_END:
return compareBoundaryPoints(m_end, sourceRange->m_start, ec);
case END_TO_END:
return compareBoundaryPoints(m_end, sourceRange->m_end, ec);
case END_TO_START:
return compareBoundaryPoints(m_start, sourceRange->m_end, ec);
}
ec = SYNTAX_ERR;
return 0;
}
short Range::compareBoundaryPoints(Node* containerA, int offsetA, Node* containerB, int offsetB, ExceptionCode& ec)
{
ASSERT(containerA);
ASSERT(containerB);
if (!containerA)
return -1;
if (!containerB)
return 1;
// see DOM2 traversal & range section 2.5
// case 1: both points have the same container
if (containerA == containerB) {
if (offsetA == offsetB)
return 0; // A is equal to B
if (offsetA < offsetB)
return -1; // A is before B
else
return 1; // A is after B
}
// case 2: node C (container B or an ancestor) is a child node of A
Node* c = containerB;
while (c && c->parentNode() != containerA)
c = c->parentNode();
if (c) {
int offsetC = 0;
Node* n = containerA->firstChild();
while (n != c && offsetC < offsetA) {
offsetC++;
n = n->nextSibling();
}
if (offsetA <= offsetC)
return -1; // A is before B
else
return 1; // A is after B
}
// case 3: node C (container A or an ancestor) is a child node of B
c = containerA;
while (c && c->parentNode() != containerB)
c = c->parentNode();
if (c) {
int offsetC = 0;
Node* n = containerB->firstChild();
while (n != c && offsetC < offsetB) {
offsetC++;
n = n->nextSibling();
}
if (offsetC < offsetB)
return -1; // A is before B
else
return 1; // A is after B
}
// case 4: containers A & B are siblings, or children of siblings
// ### we need to do a traversal here instead
Node* commonAncestor = commonAncestorContainer(containerA, containerB);
if (!commonAncestor) {
ec = WRONG_DOCUMENT_ERR;
return 0;
}
Node* childA = containerA;
while (childA && childA->parentNode() != commonAncestor)
childA = childA->parentNode();
if (!childA)
childA = commonAncestor;
Node* childB = containerB;
while (childB && childB->parentNode() != commonAncestor)
childB = childB->parentNode();
if (!childB)
childB = commonAncestor;
if (childA == childB)
return 0; // A is equal to B
Node* n = commonAncestor->firstChild();
while (n) {
if (n == childA)
return -1; // A is before B
if (n == childB)
return 1; // A is after B
n = n->nextSibling();
}
// Should never reach this point.
ASSERT_NOT_REACHED();
return 0;
}
short Range::compareBoundaryPoints(const RangeBoundaryPoint& boundaryA, const RangeBoundaryPoint& boundaryB, ExceptionCode& ec)
{
return compareBoundaryPoints(boundaryA.container(), boundaryA.offset(), boundaryB.container(), boundaryB.offset(), ec);
}
bool Range::boundaryPointsValid() const
{
ExceptionCode ec = 0;
return m_start.container() && compareBoundaryPoints(m_start, m_end, ec) <= 0 && !ec;
}
void Range::deleteContents(ExceptionCode& ec)
{
checkDeleteExtract(ec);
if (ec)
return;
processContents(Delete, ec);
}
bool Range::intersectsNode(Node* refNode, ExceptionCode& ec)
{
// http://developer.mozilla.org/en/docs/DOM:range.intersectsNode
// Returns a bool if the node intersects the range.
// Throw exception if the range is already detached.
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return false;
}
if (!refNode) {
ec = NOT_FOUND_ERR;
return false;
}
if (!refNode->inDocument() || &refNode->document() != &ownerDocument()) {
// Firefox doesn't throw an exception for these cases; it returns false.
return false;
}
ContainerNode* parentNode = refNode->parentNode();
int nodeIndex = refNode->nodeIndex();
if (!parentNode) {
// if the node is the top document we should return NODE_BEFORE_AND_AFTER
// but we throw to match firefox behavior
ec = NOT_FOUND_ERR;
return false;
}
if (comparePoint(parentNode, nodeIndex, ec) < 0 && // starts before start
comparePoint(parentNode, nodeIndex + 1, ec) < 0) { // ends before start
return false;
} else if (comparePoint(parentNode, nodeIndex, ec) > 0 && // starts after end
comparePoint(parentNode, nodeIndex + 1, ec) > 0) { // ends after end
return false;
}
return true; // all other cases
}
static inline Node* highestAncestorUnderCommonRoot(Node* node, Node* commonRoot)
{
if (node == commonRoot)
return 0;
ASSERT(commonRoot->contains(node));
while (node->parentNode() != commonRoot)
node = node->parentNode();
return node;
}
static inline Node* childOfCommonRootBeforeOffset(Node* container, unsigned offset, Node* commonRoot)
{
ASSERT(container);
ASSERT(commonRoot);
if (!commonRoot->contains(container))
return 0;
if (container == commonRoot) {
container = container->firstChild();
for (unsigned i = 0; container && i < offset; i++)
container = container->nextSibling();
} else {
while (container->parentNode() != commonRoot)
container = container->parentNode();
}
return container;
}
static inline unsigned lengthOfContentsInNode(Node* node)
{
// This switch statement must be consistent with that of Range::processContentsBetweenOffsets.
switch (node->nodeType()) {
case Node::TEXT_NODE:
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
return toCharacterData(node)->length();
case Node::PROCESSING_INSTRUCTION_NODE:
return toProcessingInstruction(node)->data().length();
case Node::ELEMENT_NODE:
case Node::ATTRIBUTE_NODE:
case Node::ENTITY_REFERENCE_NODE:
case Node::ENTITY_NODE:
case Node::DOCUMENT_NODE:
case Node::DOCUMENT_TYPE_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
case Node::NOTATION_NODE:
case Node::XPATH_NAMESPACE_NODE:
return node->childNodeCount();
}
ASSERT_NOT_REACHED();
return 0;
}
PassRefPtr<DocumentFragment> Range::processContents(ActionType action, ExceptionCode& ec)
{
typedef Vector<RefPtr<Node>> NodeVector;
RefPtr<DocumentFragment> fragment;
if (action == Extract || action == Clone)
fragment = DocumentFragment::create(ownerDocument());
ec = 0;
if (collapsed(ec))
return fragment.release();
if (ec)
return 0;
RefPtr<Node> commonRoot = commonAncestorContainer(ec);
if (ec)
return 0;
ASSERT(commonRoot);
if (m_start.container() == m_end.container()) {
processContentsBetweenOffsets(action, fragment, m_start.container(), m_start.offset(), m_end.offset(), ec);
return fragment;
}
// Since mutation events can modify the range during the process, the boundary points need to be saved.
RangeBoundaryPoint originalStart(m_start);
RangeBoundaryPoint originalEnd(m_end);
// what is the highest node that partially selects the start / end of the range?
RefPtr<Node> partialStart = highestAncestorUnderCommonRoot(originalStart.container(), commonRoot.get());
RefPtr<Node> partialEnd = highestAncestorUnderCommonRoot(originalEnd.container(), commonRoot.get());
// Start and end containers are different.
// There are three possibilities here:
// 1. Start container == commonRoot (End container must be a descendant)
// 2. End container == commonRoot (Start container must be a descendant)
// 3. Neither is commonRoot, they are both descendants
//
// In case 3, we grab everything after the start (up until a direct child
// of commonRoot) into leftContents, and everything before the end (up until
// a direct child of commonRoot) into rightContents. Then we process all
// commonRoot children between leftContents and rightContents
//
// In case 1 or 2, we skip either processing of leftContents or rightContents,
// in which case the last lot of nodes either goes from the first or last
// child of commonRoot.
//
// These are deleted, cloned, or extracted (i.e. both) depending on action.
// Note that we are verifying that our common root hierarchy is still intact
// after any DOM mutation event, at various stages below. See webkit bug 60350.
RefPtr<Node> leftContents;
if (originalStart.container() != commonRoot && commonRoot->contains(originalStart.container())) {
leftContents = processContentsBetweenOffsets(action, 0, originalStart.container(), originalStart.offset(), lengthOfContentsInNode(originalStart.container()), ec);
leftContents = processAncestorsAndTheirSiblings(action, originalStart.container(), ProcessContentsForward, leftContents, commonRoot.get(), ec);
}
RefPtr<Node> rightContents;
if (m_end.container() != commonRoot && commonRoot->contains(originalEnd.container())) {
rightContents = processContentsBetweenOffsets(action, 0, originalEnd.container(), 0, originalEnd.offset(), ec);
rightContents = processAncestorsAndTheirSiblings(action, originalEnd.container(), ProcessContentsBackward, rightContents, commonRoot.get(), ec);
}
// delete all children of commonRoot between the start and end container
RefPtr<Node> processStart = childOfCommonRootBeforeOffset(originalStart.container(), originalStart.offset(), commonRoot.get());
if (processStart && originalStart.container() != commonRoot) // processStart contains nodes before m_start.
processStart = processStart->nextSibling();
RefPtr<Node> processEnd = childOfCommonRootBeforeOffset(originalEnd.container(), originalEnd.offset(), commonRoot.get());
// Collapse the range, making sure that the result is not within a node that was partially selected.
if (action == Extract || action == Delete) {
if (partialStart && commonRoot->contains(partialStart.get()))
setStart(partialStart->parentNode(), partialStart->nodeIndex() + 1, ec);
else if (partialEnd && commonRoot->contains(partialEnd.get()))
setStart(partialEnd->parentNode(), partialEnd->nodeIndex(), ec);
if (ec)
return 0;
m_end = m_start;
}
// Now add leftContents, stuff in between, and rightContents to the fragment
// (or just delete the stuff in between)
if ((action == Extract || action == Clone) && leftContents)
fragment->appendChild(leftContents, ec);
if (processStart) {
NodeVector nodes;
for (Node* n = processStart.get(); n && n != processEnd; n = n->nextSibling())
nodes.append(n);
processNodes(action, nodes, commonRoot, fragment, ec);
}
if ((action == Extract || action == Clone) && rightContents)
fragment->appendChild(rightContents, ec);
return fragment.release();
}
static inline void deleteCharacterData(PassRefPtr<CharacterData> data, unsigned startOffset, unsigned endOffset, ExceptionCode& ec)
{
if (data->length() - endOffset)
data->deleteData(endOffset, data->length() - endOffset, ec);
if (startOffset)
data->deleteData(0, startOffset, ec);
}
PassRefPtr<Node> Range::processContentsBetweenOffsets(ActionType action, PassRefPtr<DocumentFragment> fragment, Node* container, unsigned startOffset, unsigned endOffset, ExceptionCode& ec)
{
ASSERT(container);
ASSERT(startOffset <= endOffset);
// This switch statement must be consistent with that of lengthOfContentsInNode.
RefPtr<Node> result;
switch (container->nodeType()) {
case Node::TEXT_NODE:
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
endOffset = std::min(endOffset, static_cast<CharacterData*>(container)->length());
startOffset = std::min(startOffset, endOffset);
if (action == Extract || action == Clone) {
RefPtr<CharacterData> c = static_pointer_cast<CharacterData>(container->cloneNode(true));
deleteCharacterData(c, startOffset, endOffset, ec);
if (fragment) {
result = fragment;
result->appendChild(c.release(), ec);
} else
result = c.release();
}
if (action == Extract || action == Delete)
toCharacterData(container)->deleteData(startOffset, endOffset - startOffset, ec);
break;
case Node::PROCESSING_INSTRUCTION_NODE:
endOffset = std::min(endOffset, static_cast<ProcessingInstruction*>(container)->data().length());
startOffset = std::min(startOffset, endOffset);
if (action == Extract || action == Clone) {
RefPtr<ProcessingInstruction> c = static_pointer_cast<ProcessingInstruction>(container->cloneNode(true));
c->setData(c->data().substring(startOffset, endOffset - startOffset), ec);
if (fragment) {
result = fragment;
result->appendChild(c.release(), ec);
} else
result = c.release();
}
if (action == Extract || action == Delete) {
ProcessingInstruction* pi = toProcessingInstruction(container);
String data(pi->data());
data.remove(startOffset, endOffset - startOffset);
pi->setData(data, ec);
}
break;
case Node::ELEMENT_NODE:
case Node::ATTRIBUTE_NODE:
case Node::ENTITY_REFERENCE_NODE:
case Node::ENTITY_NODE:
case Node::DOCUMENT_NODE:
case Node::DOCUMENT_TYPE_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
case Node::NOTATION_NODE:
case Node::XPATH_NAMESPACE_NODE:
// FIXME: Should we assert that some nodes never appear here?
if (action == Extract || action == Clone) {
if (fragment)
result = fragment;
else
result = container->cloneNode(false);
}
Node* n = container->firstChild();
Vector<RefPtr<Node>> nodes;
for (unsigned i = startOffset; n && i; i--)
n = n->nextSibling();
for (unsigned i = startOffset; n && i < endOffset; i++, n = n->nextSibling())
nodes.append(n);
processNodes(action, nodes, container, result, ec);
break;
}
return result.release();
}
void Range::processNodes(ActionType action, Vector<RefPtr<Node>>& nodes, PassRefPtr<Node> oldContainer, PassRefPtr<Node> newContainer, ExceptionCode& ec)
{
for (unsigned i = 0; i < nodes.size(); i++) {
switch (action) {
case Delete:
oldContainer->removeChild(nodes[i].get(), ec);
break;
case Extract:
newContainer->appendChild(nodes[i].release(), ec); // will remove n from its parent
break;
case Clone:
newContainer->appendChild(nodes[i]->cloneNode(true), ec);
break;
}
}
}
PassRefPtr<Node> Range::processAncestorsAndTheirSiblings(ActionType action, Node* container, ContentsProcessDirection direction, PassRefPtr<Node> passedClonedContainer, Node* commonRoot, ExceptionCode& ec)
{
typedef Vector<RefPtr<Node>> NodeVector;
RefPtr<Node> clonedContainer = passedClonedContainer;
Vector<RefPtr<Node>> ancestors;
for (ContainerNode* n = container->parentNode(); n && n != commonRoot; n = n->parentNode())
ancestors.append(n);
RefPtr<Node> firstChildInAncestorToProcess = direction == ProcessContentsForward ? container->nextSibling() : container->previousSibling();
for (Vector<RefPtr<Node>>::const_iterator it = ancestors.begin(); it != ancestors.end(); ++it) {
RefPtr<Node> ancestor = *it;
if (action == Extract || action == Clone) {
if (RefPtr<Node> clonedAncestor = ancestor->cloneNode(false)) { // Might have been removed already during mutation event.
clonedAncestor->appendChild(clonedContainer, ec);
clonedContainer = clonedAncestor;
}
}
// Copy siblings of an ancestor of start/end containers
// FIXME: This assertion may fail if DOM is modified during mutation event
// FIXME: Share code with Range::processNodes
ASSERT(!firstChildInAncestorToProcess || firstChildInAncestorToProcess->parentNode() == ancestor);
NodeVector nodes;
for (Node* child = firstChildInAncestorToProcess.get(); child;
child = (direction == ProcessContentsForward) ? child->nextSibling() : child->previousSibling())
nodes.append(child);
for (NodeVector::const_iterator it = nodes.begin(); it != nodes.end(); ++it) {
Node* child = it->get();
switch (action) {
case Delete:
ancestor->removeChild(child, ec);
break;
case Extract: // will remove child from ancestor
if (direction == ProcessContentsForward)
clonedContainer->appendChild(child, ec);
else
clonedContainer->insertBefore(child, clonedContainer->firstChild(), ec);
break;
case Clone:
if (direction == ProcessContentsForward)
clonedContainer->appendChild(child->cloneNode(true), ec);
else
clonedContainer->insertBefore(child->cloneNode(true), clonedContainer->firstChild(), ec);
break;
}
}
firstChildInAncestorToProcess = direction == ProcessContentsForward ? ancestor->nextSibling() : ancestor->previousSibling();
}
return clonedContainer.release();
}
PassRefPtr<DocumentFragment> Range::extractContents(ExceptionCode& ec)
{
checkDeleteExtract(ec);
if (ec)
return 0;
return processContents(Extract, ec);
}
PassRefPtr<DocumentFragment> Range::cloneContents(ExceptionCode& ec)
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return 0;
}
return processContents(Clone, ec);
}
void Range::insertNode(PassRefPtr<Node> prpNewNode, ExceptionCode& ec)
{
RefPtr<Node> newNode = prpNewNode;
ec = 0;
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return;
}
if (!newNode) {
ec = NOT_FOUND_ERR;
return;
}
// NO_MODIFICATION_ALLOWED_ERR: Raised if an ancestor container of either boundary-point of
// the Range is read-only.
if (containedByReadOnly()) {
ec = NO_MODIFICATION_ALLOWED_ERR;
return;
}
// HIERARCHY_REQUEST_ERR: Raised if the container of the start of the Range is of a type that
// does not allow children of the type of newNode or if newNode is an ancestor of the container.
// an extra one here - if a text node is going to split, it must have a parent to insert into
bool startIsText = m_start.container()->isTextNode();
if (startIsText && !m_start.container()->parentNode()) {
ec = HIERARCHY_REQUEST_ERR;
return;
}
// In the case where the container is a text node, we check against the container's parent, because
// text nodes get split up upon insertion.
Node* checkAgainst;
if (startIsText)
checkAgainst = m_start.container()->parentNode();
else
checkAgainst = m_start.container();
Node::NodeType newNodeType = newNode->nodeType();
int numNewChildren;
if (newNodeType == Node::DOCUMENT_FRAGMENT_NODE && !newNode->isShadowRoot()) {
// check each child node, not the DocumentFragment itself
numNewChildren = 0;
for (Node* c = newNode->firstChild(); c; c = c->nextSibling()) {
if (!checkAgainst->childTypeAllowed(c->nodeType())) {
ec = HIERARCHY_REQUEST_ERR;
return;
}
++numNewChildren;
}
} else {
numNewChildren = 1;
if (!checkAgainst->childTypeAllowed(newNodeType)) {
ec = HIERARCHY_REQUEST_ERR;
return;
}
}
for (Node* n = m_start.container(); n; n = n->parentNode()) {
if (n == newNode) {
ec = HIERARCHY_REQUEST_ERR;
return;
}
}
// INVALID_NODE_TYPE_ERR: Raised if newNode is an Attr, Entity, Notation, ShadowRoot or Document node.
switch (newNodeType) {
case Node::ATTRIBUTE_NODE:
case Node::ENTITY_NODE:
case Node::NOTATION_NODE:
case Node::DOCUMENT_NODE:
ec = RangeException::INVALID_NODE_TYPE_ERR;
return;
default:
if (newNode->isShadowRoot()) {
ec = RangeException::INVALID_NODE_TYPE_ERR;
return;
}
break;
}
EventQueueScope scope;
bool collapsed = m_start == m_end;
RefPtr<Node> container;
if (startIsText) {
container = m_start.container();
RefPtr<Text> newText = toText(container.get())->splitText(m_start.offset(), ec);
if (ec)
return;
container = m_start.container();
container->parentNode()->insertBefore(newNode.release(), newText.get(), ec);
if (ec)
return;
if (collapsed && newText->parentNode() == container && &container->document() == &ownerDocument())
m_end.setToBeforeChild(newText.get());
} else {
container = m_start.container();
RefPtr<Node> firstInsertedChild = newNodeType == Node::DOCUMENT_FRAGMENT_NODE ? newNode->firstChild() : newNode;
RefPtr<Node> lastInsertedChild = newNodeType == Node::DOCUMENT_FRAGMENT_NODE ? newNode->lastChild() : newNode;
RefPtr<Node> childAfterInsertedContent = container->childNode(m_start.offset());
container->insertBefore(newNode.release(), childAfterInsertedContent.get(), ec);
if (ec)
return;
if (collapsed && numNewChildren && &container->document() == &ownerDocument()) {
if (firstInsertedChild->parentNode() == container)
m_start.setToBeforeChild(firstInsertedChild.get());
if (lastInsertedChild->parentNode() == container)
m_end.set(container, lastInsertedChild->nodeIndex() + 1, lastInsertedChild.get());
}
}
}
String Range::toString(ExceptionCode& ec) const
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return String();
}
StringBuilder builder;
Node* pastLast = pastLastNode();
for (Node* n = firstNode(); n != pastLast; n = NodeTraversal::next(n)) {
if (n->nodeType() == Node::TEXT_NODE || n->nodeType() == Node::CDATA_SECTION_NODE) {
const String& data = static_cast<CharacterData*>(n)->data();
int length = data.length();
int start = (n == m_start.container()) ? std::min(std::max(0, m_start.offset()), length) : 0;
int end = (n == m_end.container()) ? std::min(std::max(start, m_end.offset()), length) : length;
builder.append(data, start, end - start);
}
}
return builder.toString();
}
String Range::toHTML() const
{
return createMarkup(*this);
}
String Range::text() const
{
if (!m_start.container())
return String();
// We need to update layout, since plainText uses line boxes in the render tree.
// FIXME: As with innerText, we'd like this to work even if there are no render objects.
m_start.container()->document().updateLayout();
return plainText(this);
}
PassRefPtr<DocumentFragment> Range::createContextualFragment(const String& markup, ExceptionCode& ec)
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return 0;
}
Node* element = m_start.container()->isElementNode() ? m_start.container() : m_start.container()->parentNode();
if (!element || !element->isHTMLElement()) {
ec = NOT_SUPPORTED_ERR;
return 0;
}
RefPtr<DocumentFragment> fragment = WebCore::createContextualFragment(markup, toHTMLElement(element), AllowScriptingContentAndDoNotMarkAlreadyStarted, ec);
if (!fragment)
return 0;
return fragment.release();
}
void Range::detach(ExceptionCode& ec)
{
// Check first to see if we've already detached:
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return;
}
m_ownerDocument->detachRange(this);
m_start.clear();
m_end.clear();
}
Node* Range::checkNodeWOffset(Node* n, int offset, ExceptionCode& ec) const
{
switch (n->nodeType()) {
case Node::DOCUMENT_TYPE_NODE:
case Node::ENTITY_NODE:
case Node::NOTATION_NODE:
ec = RangeException::INVALID_NODE_TYPE_ERR;
return 0;
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
case Node::TEXT_NODE:
if (static_cast<unsigned>(offset) > toCharacterData(n)->length())
ec = INDEX_SIZE_ERR;
return 0;
case Node::PROCESSING_INSTRUCTION_NODE:
if (static_cast<unsigned>(offset) > toProcessingInstruction(n)->data().length())
ec = INDEX_SIZE_ERR;
return 0;
case Node::ATTRIBUTE_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
case Node::DOCUMENT_NODE:
case Node::ELEMENT_NODE:
case Node::ENTITY_REFERENCE_NODE:
case Node::XPATH_NAMESPACE_NODE: {
if (!offset)
return 0;
Node* childBefore = n->childNode(offset - 1);
if (!childBefore)
ec = INDEX_SIZE_ERR;
return childBefore;
}
}
ASSERT_NOT_REACHED();
return 0;
}
void Range::checkNodeBA(Node* n, ExceptionCode& ec) const
{
// INVALID_NODE_TYPE_ERR: Raised if the root container of refNode is not an
// Attr, Document, DocumentFragment or ShadowRoot node, or part of a SVG shadow DOM tree,
// or if refNode is a Document, DocumentFragment, ShadowRoot, Attr, Entity, or Notation node.
switch (n->nodeType()) {
case Node::ATTRIBUTE_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
case Node::DOCUMENT_NODE:
case Node::ENTITY_NODE:
case Node::NOTATION_NODE:
ec = RangeException::INVALID_NODE_TYPE_ERR;
return;
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
case Node::DOCUMENT_TYPE_NODE:
case Node::ELEMENT_NODE:
case Node::ENTITY_REFERENCE_NODE:
case Node::PROCESSING_INSTRUCTION_NODE:
case Node::TEXT_NODE:
case Node::XPATH_NAMESPACE_NODE:
break;
}
Node* root = n;
while (ContainerNode* parent = root->parentNode())
root = parent;
switch (root->nodeType()) {
case Node::ATTRIBUTE_NODE:
case Node::DOCUMENT_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
break;
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
case Node::DOCUMENT_TYPE_NODE:
case Node::ELEMENT_NODE:
case Node::ENTITY_NODE:
case Node::ENTITY_REFERENCE_NODE:
case Node::NOTATION_NODE:
case Node::PROCESSING_INSTRUCTION_NODE:
case Node::TEXT_NODE:
case Node::XPATH_NAMESPACE_NODE:
ec = RangeException::INVALID_NODE_TYPE_ERR;
return;
}
}
PassRefPtr<Range> Range::cloneRange(ExceptionCode& ec) const
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return 0;
}
return Range::create(ownerDocument(), m_start.container(), m_start.offset(), m_end.container(), m_end.offset());
}
void Range::setStartAfter(Node* refNode, ExceptionCode& ec)
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return;
}
if (!refNode) {
ec = NOT_FOUND_ERR;
return;
}
ec = 0;
checkNodeBA(refNode, ec);
if (ec)
return;
setStart(refNode->parentNode(), refNode->nodeIndex() + 1, ec);
}
void Range::setEndBefore(Node* refNode, ExceptionCode& ec)
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return;
}
if (!refNode) {
ec = NOT_FOUND_ERR;
return;
}
ec = 0;
checkNodeBA(refNode, ec);
if (ec)
return;
setEnd(refNode->parentNode(), refNode->nodeIndex(), ec);
}
void Range::setEndAfter(Node* refNode, ExceptionCode& ec)
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return;
}
if (!refNode) {
ec = NOT_FOUND_ERR;
return;
}
ec = 0;
checkNodeBA(refNode, ec);
if (ec)
return;
setEnd(refNode->parentNode(), refNode->nodeIndex() + 1, ec);
}
void Range::selectNode(Node* refNode, ExceptionCode& ec)
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return;
}
if (!refNode) {
ec = NOT_FOUND_ERR;
return;
}
// INVALID_NODE_TYPE_ERR: Raised if an ancestor of refNode is an Entity, Notation or
// DocumentType node or if refNode is a Document, DocumentFragment, ShadowRoot, Attr, Entity, or Notation
// node.
for (ContainerNode* anc = refNode->parentNode(); anc; anc = anc->parentNode()) {
switch (anc->nodeType()) {
case Node::ATTRIBUTE_NODE:
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
case Node::DOCUMENT_NODE:
case Node::ELEMENT_NODE:
case Node::ENTITY_REFERENCE_NODE:
case Node::PROCESSING_INSTRUCTION_NODE:
case Node::TEXT_NODE:
case Node::XPATH_NAMESPACE_NODE:
break;
case Node::DOCUMENT_TYPE_NODE:
case Node::ENTITY_NODE:
case Node::NOTATION_NODE:
ec = RangeException::INVALID_NODE_TYPE_ERR;
return;
}
}
switch (refNode->nodeType()) {
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
case Node::DOCUMENT_TYPE_NODE:
case Node::ELEMENT_NODE:
case Node::ENTITY_REFERENCE_NODE:
case Node::PROCESSING_INSTRUCTION_NODE:
case Node::TEXT_NODE:
case Node::XPATH_NAMESPACE_NODE:
break;
case Node::ATTRIBUTE_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
case Node::DOCUMENT_NODE:
case Node::ENTITY_NODE:
case Node::NOTATION_NODE:
ec = RangeException::INVALID_NODE_TYPE_ERR;
return;
}
if (&ownerDocument() != &refNode->document())
setDocument(refNode->document());
ec = 0;
setStartBefore(refNode, ec);
if (ec)
return;
setEndAfter(refNode, ec);
}
void Range::selectNodeContents(Node* refNode, ExceptionCode& ec)
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return;
}
if (!refNode) {
ec = NOT_FOUND_ERR;
return;
}
// INVALID_NODE_TYPE_ERR: Raised if refNode or an ancestor of refNode is an Entity, Notation
// or DocumentType node.
for (Node* n = refNode; n; n = n->parentNode()) {
switch (n->nodeType()) {
case Node::ATTRIBUTE_NODE:
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
case Node::DOCUMENT_NODE:
case Node::ELEMENT_NODE:
case Node::ENTITY_REFERENCE_NODE:
case Node::PROCESSING_INSTRUCTION_NODE:
case Node::TEXT_NODE:
case Node::XPATH_NAMESPACE_NODE:
break;
case Node::DOCUMENT_TYPE_NODE:
case Node::ENTITY_NODE:
case Node::NOTATION_NODE:
ec = RangeException::INVALID_NODE_TYPE_ERR;
return;
}
}
if (&ownerDocument() != &refNode->document())
setDocument(refNode->document());
m_start.setToStartOfNode(refNode);
m_end.setToEndOfNode(refNode);
}
void Range::surroundContents(PassRefPtr<Node> passNewParent, ExceptionCode& ec)
{
RefPtr<Node> newParent = passNewParent;
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return;
}
if (!newParent) {
ec = NOT_FOUND_ERR;
return;
}
// INVALID_NODE_TYPE_ERR: Raised if node is an Attr, Entity, DocumentType, Notation,
// Document, or DocumentFragment node.
switch (newParent->nodeType()) {
case Node::ATTRIBUTE_NODE:
case Node::DOCUMENT_FRAGMENT_NODE:
case Node::DOCUMENT_NODE:
case Node::DOCUMENT_TYPE_NODE:
case Node::ENTITY_NODE:
case Node::NOTATION_NODE:
ec = RangeException::INVALID_NODE_TYPE_ERR;
return;
case Node::CDATA_SECTION_NODE:
case Node::COMMENT_NODE:
case Node::ELEMENT_NODE:
case Node::ENTITY_REFERENCE_NODE:
case Node::PROCESSING_INSTRUCTION_NODE:
case Node::TEXT_NODE:
case Node::XPATH_NAMESPACE_NODE:
break;
}
// NO_MODIFICATION_ALLOWED_ERR: Raised if an ancestor container of either boundary-point of
// the Range is read-only.
if (containedByReadOnly()) {
ec = NO_MODIFICATION_ALLOWED_ERR;
return;
}
// Raise a HIERARCHY_REQUEST_ERR if m_start.container() doesn't accept children like newParent.
Node* parentOfNewParent = m_start.container();
// If m_start.container() is a character data node, it will be split and it will be its parent that will
// need to accept newParent (or in the case of a comment, it logically "would" be inserted into the parent,
// although this will fail below for another reason).
if (parentOfNewParent->isCharacterDataNode())
parentOfNewParent = parentOfNewParent->parentNode();
if (!parentOfNewParent || !parentOfNewParent->childTypeAllowed(newParent->nodeType())) {
ec = HIERARCHY_REQUEST_ERR;
return;
}
if (newParent->contains(m_start.container())) {
ec = HIERARCHY_REQUEST_ERR;
return;
}
// FIXME: Do we need a check if the node would end up with a child node of a type not
// allowed by the type of node?
// BAD_BOUNDARYPOINTS_ERR: Raised if the Range partially selects a non-Text node.
Node* startNonTextContainer = m_start.container();
if (startNonTextContainer->nodeType() == Node::TEXT_NODE)
startNonTextContainer = startNonTextContainer->parentNode();
Node* endNonTextContainer = m_end.container();
if (endNonTextContainer->nodeType() == Node::TEXT_NODE)
endNonTextContainer = endNonTextContainer->parentNode();
if (startNonTextContainer != endNonTextContainer) {
ec = RangeException::BAD_BOUNDARYPOINTS_ERR;
return;
}
ec = 0;
while (Node* n = newParent->firstChild()) {
toContainerNode(newParent.get())->removeChild(n, ec);
if (ec)
return;
}
RefPtr<DocumentFragment> fragment = extractContents(ec);
if (ec)
return;
insertNode(newParent, ec);
if (ec)
return;
newParent->appendChild(fragment.release(), ec);
if (ec)
return;
selectNode(newParent.get(), ec);
}
void Range::setStartBefore(Node* refNode, ExceptionCode& ec)
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return;
}
if (!refNode) {
ec = NOT_FOUND_ERR;
return;
}
ec = 0;
checkNodeBA(refNode, ec);
if (ec)
return;
setStart(refNode->parentNode(), refNode->nodeIndex(), ec);
}
void Range::checkDeleteExtract(ExceptionCode& ec)
{
if (!m_start.container()) {
ec = INVALID_STATE_ERR;
return;
}
ec = 0;
if (!commonAncestorContainer(ec) || ec)
return;
Node* pastLast = pastLastNode();
for (Node* n = firstNode(); n != pastLast; n = NodeTraversal::next(n)) {
if (n->isReadOnlyNode()) {
ec = NO_MODIFICATION_ALLOWED_ERR;
return;
}
if (n->nodeType() == Node::DOCUMENT_TYPE_NODE) {
ec = HIERARCHY_REQUEST_ERR;
return;
}
}
if (containedByReadOnly()) {
ec = NO_MODIFICATION_ALLOWED_ERR;
return;
}
}
bool Range::containedByReadOnly() const
{
for (Node* n = m_start.container(); n; n = n->parentNode()) {
if (n->isReadOnlyNode())
return true;
}
for (Node* n = m_end.container(); n; n = n->parentNode()) {
if (n->isReadOnlyNode())
return true;
}
return false;
}
Node* Range::firstNode() const
{
if (!m_start.container())
return 0;
if (m_start.container()->offsetInCharacters())
return m_start.container();
if (Node* child = m_start.container()->childNode(m_start.offset()))
return child;
if (!m_start.offset())
return m_start.container();
return NodeTraversal::nextSkippingChildren(m_start.container());
}
ShadowRoot* Range::shadowRoot() const
{
return startContainer() ? startContainer()->containingShadowRoot() : 0;
}
Node* Range::pastLastNode() const
{
if (!m_start.container() || !m_end.container())
return 0;
if (m_end.container()->offsetInCharacters())
return NodeTraversal::nextSkippingChildren(m_end.container());
if (Node* child = m_end.container()->childNode(m_end.offset()))
return child;
return NodeTraversal::nextSkippingChildren(m_end.container());
}
IntRect Range::boundingBox() const
{
IntRect result;
Vector<IntRect> rects;
textRects(rects);
const size_t n = rects.size();
for (size_t i = 0; i < n; ++i)
result.unite(rects[i]);
return result;
}
void Range::textRects(Vector<IntRect>& rects, bool useSelectionHeight, RangeInFixedPosition* inFixed) const
{
Node* startContainer = m_start.container();
Node* endContainer = m_end.container();
if (!startContainer || !endContainer) {
if (inFixed)
*inFixed = NotFixedPosition;
return;
}
bool allFixed = true;
bool someFixed = false;
Node* stopNode = pastLastNode();
for (Node* node = firstNode(); node != stopNode; node = NodeTraversal::next(node)) {
RenderObject* r = node->renderer();
if (!r)
continue;
bool isFixed = false;
if (r->isBR())
r->absoluteRects(rects, flooredLayoutPoint(r->localToAbsolute()));
else if (r->isText()) {
int startOffset = node == startContainer ? m_start.offset() : 0;
int endOffset = node == endContainer ? m_end.offset() : std::numeric_limits<int>::max();
rects.appendVector(toRenderText(r)->absoluteRectsForRange(startOffset, endOffset, useSelectionHeight, &isFixed));
} else
continue;
allFixed &= isFixed;
someFixed |= isFixed;
}
if (inFixed)
*inFixed = allFixed ? EntirelyFixedPosition : (someFixed ? PartiallyFixedPosition : NotFixedPosition);
}
void Range::textQuads(Vector<FloatQuad>& quads, bool useSelectionHeight, RangeInFixedPosition* inFixed) const
{
Node* startContainer = m_start.container();
Node* endContainer = m_end.container();
if (!startContainer || !endContainer) {
if (inFixed)
*inFixed = NotFixedPosition;
return;
}
bool allFixed = true;
bool someFixed = false;
Node* stopNode = pastLastNode();
for (Node* node = firstNode(); node != stopNode; node = NodeTraversal::next(node)) {
RenderObject* r = node->renderer();
if (!r)
continue;
bool isFixed = false;
if (r->isBR())
r->absoluteQuads(quads, &isFixed);
else if (r->isText()) {
int startOffset = node == startContainer ? m_start.offset() : 0;
int endOffset = node == endContainer ? m_end.offset() : std::numeric_limits<int>::max();
quads.appendVector(toRenderText(r)->absoluteQuadsForRange(startOffset, endOffset, useSelectionHeight, &isFixed));
} else
continue;
allFixed &= isFixed;
someFixed |= isFixed;
}
if (inFixed)
*inFixed = allFixed ? EntirelyFixedPosition : (someFixed ? PartiallyFixedPosition : NotFixedPosition);
}
#if PLATFORM(IOS)
static bool intervalsSufficientlyOverlap(int startA, int endA, int startB, int endB)
{
if (endA <= startA || endB <= startB)
return false;
const float sufficientOverlap = .75;
int lengthA = endA - startA;
int lengthB = endB - startB;
int maxStart = std::max(startA, startB);
int minEnd = std::min(endA, endB);
if (maxStart > minEnd)
return false;
return minEnd - maxStart >= sufficientOverlap * std::min(lengthA, lengthB);
}
static inline void adjustLineHeightOfSelectionRects(Vector<SelectionRect>& rects, size_t numberOfRects, int lineNumber, int lineTop, int lineHeight)
{
ASSERT(rects.size() >= numberOfRects);
for (size_t i = numberOfRects; i; ) {
--i;
if (rects[i].lineNumber())
break;
rects[i].setLineNumber(lineNumber);
rects[i].setLogicalTop(lineTop);
rects[i].setLogicalHeight(lineHeight);
}
}
static SelectionRect coalesceSelectionRects(const SelectionRect& original, const SelectionRect& previous)
{
SelectionRect result(unionRect(previous.rect(), original.rect()), original.isHorizontal(), original.pageNumber());
result.setDirection(original.containsStart() || original.containsEnd() ? original.direction() : previous.direction());
result.setContainsStart(previous.containsStart() || original.containsStart());
result.setContainsEnd(previous.containsEnd() || original.containsEnd());
result.setIsFirstOnLine(previous.isFirstOnLine() || original.isFirstOnLine());
result.setIsLastOnLine(previous.isLastOnLine() || original.isLastOnLine());
return result;
}
// This function is similar in spirit to addLineBoxRects, but annotates the returned rectangles
// with additional state which helps iOS draw selections in its unique way.
void Range::collectSelectionRects(Vector<SelectionRect>& rects)
{
if (!m_start.container() || !m_end.container())
return;
Node* startContainer = m_start.container();
Node* endContainer = m_end.container();
int startOffset = m_start.offset();
int endOffset = m_end.offset();
Vector<SelectionRect> newRects;
Node* stopNode = pastLastNode();
bool hasFlippedWritingMode = startContainer->renderer() && startContainer->renderer()->style().isFlippedBlocksWritingMode();
bool containsDifferentWritingModes = false;
for (Node* node = firstNode(); node && node != stopNode; node = NodeTraversal::next(node)) {
RenderObject* renderer = node->renderer();
// Only ask leaf render objects for their line box rects.
if (renderer && !renderer->firstChildSlow() && renderer->style().userSelect() != SELECT_NONE) {
bool isStartNode = renderer->node() == startContainer;
bool isEndNode = renderer->node() == endContainer;
if (hasFlippedWritingMode != renderer->style().isFlippedBlocksWritingMode())
containsDifferentWritingModes = true;
// FIXME: Sending 0 for the startOffset is a weird way of telling the renderer that the selection
// doesn't start inside it, since we'll also send 0 if the selection *does* start in it, at offset 0.
//
// FIXME: Selection endpoints aren't always inside leaves, and we only build SelectionRects for leaves,
// so we can't accurately determine which SelectionRects contain the selection start and end using
// only the offsets of the start and end. We need to pass the whole Range.
int beginSelectionOffset = isStartNode ? startOffset : 0;
int endSelectionOffset = isEndNode ? endOffset : std::numeric_limits<int>::max();
renderer->collectSelectionRects(newRects, beginSelectionOffset, endSelectionOffset);
size_t numberOfNewRects = newRects.size();
for (size_t i = 0; i < numberOfNewRects; ++i) {
SelectionRect& selectionRect = newRects[i];
if (selectionRect.containsStart() && !isStartNode)
selectionRect.setContainsStart(false);
if (selectionRect.containsEnd() && !isEndNode)
selectionRect.setContainsEnd(false);
if (selectionRect.logicalWidth() || selectionRect.logicalHeight())
rects.append(newRects[i]);
}
newRects.shrink(0);
}
}
// The range could span over nodes with different writing modes.
// If this is the case, we use the writing mode of the common ancestor.
if (containsDifferentWritingModes) {
if (Node* ancestor = commonAncestorContainer(startContainer, endContainer))
hasFlippedWritingMode = ancestor->renderer()->style().isFlippedBlocksWritingMode();
}
const size_t numberOfRects = rects.size();
// If the selection ends in a BR, then add the line break bit to the last
// rect we have. This will cause its selection rect to extend to the
// end of the line.
if (stopNode && stopNode->hasTagName(HTMLNames::brTag) && numberOfRects) {
// Only set the line break bit if the end of the range actually
// extends all the way to include the <br>. VisiblePosition helps to
// figure this out.
VisiblePosition endPosition(createLegacyEditingPosition(endContainer, endOffset), VP_DEFAULT_AFFINITY);
VisiblePosition brPosition(createLegacyEditingPosition(stopNode, 0), VP_DEFAULT_AFFINITY);
if (endPosition == brPosition)
rects.last().setIsLineBreak(true);
}
int lineTop = std::numeric_limits<int>::max();
int lineBottom = std::numeric_limits<int>::min();
int lastLineTop = lineTop;
int lastLineBottom = lineBottom;
int lineNumber = 0;
for (size_t i = 0; i < numberOfRects; ++i) {
int currentRectTop = rects[i].logicalTop();
int currentRectBottom = currentRectTop + rects[i].logicalHeight();
// We don't want to count the ruby text as a separate line.
if (intervalsSufficientlyOverlap(currentRectTop, currentRectBottom, lineTop, lineBottom) || (i && rects[i].isRubyText())) {
// Grow the current line bounds.
lineTop = std::min(lineTop, currentRectTop);
lineBottom = std::max(lineBottom, currentRectBottom);
// Avoid overlap with the previous line.
if (!hasFlippedWritingMode)
lineTop = std::max(lastLineBottom, lineTop);
else
lineBottom = std::min(lastLineTop, lineBottom);
} else {
adjustLineHeightOfSelectionRects(rects, i, lineNumber, lineTop, lineBottom - lineTop);
if (!hasFlippedWritingMode) {
lastLineTop = lineTop;
if (currentRectBottom >= lastLineTop) {
lastLineBottom = lineBottom;
lineTop = lastLineBottom;
} else {
lineTop = currentRectTop;
lastLineBottom = std::numeric_limits<int>::min();
}
lineBottom = currentRectBottom;
} else {
lastLineBottom = lineBottom;
if (currentRectTop <= lastLineBottom && i && rects[i].pageNumber() == rects[i - 1].pageNumber()) {
lastLineTop = lineTop;
lineBottom = lastLineTop;
} else {
lastLineTop = std::numeric_limits<int>::max();
lineBottom = currentRectBottom;
}
lineTop = currentRectTop;
}
++lineNumber;
}
}
// Adjust line height.
adjustLineHeightOfSelectionRects(rects, numberOfRects, lineNumber, lineTop, lineBottom - lineTop);
// Sort the rectangles and make sure there are no gaps. The rectangles could be unsorted when
// there is ruby text and we could have gaps on the line when adjacent elements on the line
// have a different orientation.
size_t firstRectWithCurrentLineNumber = 0;
for (size_t currentRect = 1; currentRect < numberOfRects; ++currentRect) {
if (rects[currentRect].lineNumber() != rects[currentRect - 1].lineNumber()) {
firstRectWithCurrentLineNumber = currentRect;
continue;
}
if (rects[currentRect].logicalLeft() >= rects[currentRect - 1].logicalLeft())
continue;
SelectionRect selectionRect = rects[currentRect];
size_t i;
for (i = currentRect; i > firstRectWithCurrentLineNumber && selectionRect.logicalLeft() < rects[i - 1].logicalLeft(); --i)
rects[i] = rects[i - 1];
rects[i] = selectionRect;
}
for (size_t j = 1; j < numberOfRects; ++j) {
if (rects[j].lineNumber() != rects[j - 1].lineNumber())
continue;
SelectionRect& previousRect = rects[j - 1];
bool previousRectMayNotReachRightEdge = (previousRect.direction() == LTR && previousRect.containsEnd()) || (previousRect.direction() == RTL && previousRect.containsStart());
if (previousRectMayNotReachRightEdge)
continue;
int adjustedWidth = rects[j].logicalLeft() - previousRect.logicalLeft();
if (adjustedWidth > previousRect.logicalWidth())
previousRect.setLogicalWidth(adjustedWidth);
}
int maxLineNumber = lineNumber;
// Extend rects out to edges as needed.
for (size_t i = 0; i < numberOfRects; ++i) {
SelectionRect& selectionRect = rects[i];
if (!selectionRect.isLineBreak() && selectionRect.lineNumber() >= maxLineNumber)
continue;
if (selectionRect.direction() == RTL && selectionRect.isFirstOnLine()) {
selectionRect.setLogicalWidth(selectionRect.logicalWidth() + selectionRect.logicalLeft() - selectionRect.minX());
selectionRect.setLogicalLeft(selectionRect.minX());
} else if (selectionRect.direction() == LTR && selectionRect.isLastOnLine())
selectionRect.setLogicalWidth(selectionRect.maxX() - selectionRect.logicalLeft());
}
// Union all the rectangles on interior lines (i.e. not first or last).
// On first and last lines, just avoid having overlaps by merging intersecting rectangles.
Vector<SelectionRect> unionedRects;
IntRect interiorUnionRect;
for (size_t i = 0; i < numberOfRects; ++i) {
SelectionRect& currentRect = rects[i];
if (currentRect.lineNumber() == 1) {
ASSERT(interiorUnionRect.isEmpty());
if (!unionedRects.isEmpty()) {
SelectionRect& previousRect = unionedRects.last();
if (previousRect.rect().intersects(currentRect.rect())) {
previousRect = coalesceSelectionRects(currentRect, previousRect);
continue;
}
}
// Couldn't merge with previous rect, so just appending.
unionedRects.append(currentRect);
} else if (currentRect.lineNumber() < maxLineNumber) {
if (interiorUnionRect.isEmpty()) {
// Start collecting interior rects.
interiorUnionRect = currentRect.rect();
} else if (interiorUnionRect.intersects(currentRect.rect())
|| interiorUnionRect.maxX() == currentRect.rect().x()
|| interiorUnionRect.maxY() == currentRect.rect().y()
|| interiorUnionRect.x() == currentRect.rect().maxX()
|| interiorUnionRect.y() == currentRect.rect().maxY()) {
// Only union the lines that are attached.
// For iBooks, the interior lines may cross multiple horizontal pages.
interiorUnionRect.unite(currentRect.rect());
} else {
unionedRects.append(SelectionRect(interiorUnionRect, currentRect.isHorizontal(), currentRect.pageNumber()));
interiorUnionRect = currentRect.rect();
}
} else {
// Processing last line.
if (!interiorUnionRect.isEmpty()) {
unionedRects.append(SelectionRect(interiorUnionRect, currentRect.isHorizontal(), currentRect.pageNumber()));
interiorUnionRect = IntRect();
}
ASSERT(!unionedRects.isEmpty());
SelectionRect& previousRect = unionedRects.last();
if (previousRect.logicalTop() == currentRect.logicalTop() && previousRect.rect().intersects(currentRect.rect())) {
// previousRect is also on the last line, and intersects the current one.
previousRect = coalesceSelectionRects(currentRect, previousRect);
continue;
}
// Couldn't merge with previous rect, so just appending.
unionedRects.append(currentRect);
}
}
rects.swap(unionedRects);
}
#endif
#ifndef NDEBUG
void Range::formatForDebugger(char* buffer, unsigned length) const
{
StringBuilder result;
String s;
if (!m_start.container() || !m_end.container())
result.appendLiteral("<empty>");
else {
const int FormatBufferSize = 1024;
char s[FormatBufferSize];
result.appendLiteral("from offset ");
result.appendNumber(m_start.offset());
result.appendLiteral(" of ");
m_start.container()->formatForDebugger(s, FormatBufferSize);
result.append(s);
result.appendLiteral(" to offset ");
result.appendNumber(m_end.offset());
result.appendLiteral(" of ");
m_end.container()->formatForDebugger(s, FormatBufferSize);
result.append(s);
}
strncpy(buffer, result.toString().utf8().data(), length - 1);
}
#endif
bool Range::contains(const Range& other) const
{
if (commonAncestorContainer(ASSERT_NO_EXCEPTION)->ownerDocument() != other.commonAncestorContainer(ASSERT_NO_EXCEPTION)->ownerDocument())
return false;
short startToStart = compareBoundaryPoints(Range::START_TO_START, &other, ASSERT_NO_EXCEPTION);
if (startToStart > 0)
return false;
short endToEnd = compareBoundaryPoints(Range::END_TO_END, &other, ASSERT_NO_EXCEPTION);
return endToEnd >= 0;
}
bool areRangesEqual(const Range* a, const Range* b)
{
if (a == b)
return true;
if (!a || !b)
return false;
return a->startPosition() == b->startPosition() && a->endPosition() == b->endPosition();
}
bool rangesOverlap(const Range* a, const Range* b)
{
if (!a || !b)
return false;
if (a == b)
return true;
if (a->commonAncestorContainer(ASSERT_NO_EXCEPTION)->ownerDocument() != b->commonAncestorContainer(ASSERT_NO_EXCEPTION)->ownerDocument())
return false;
short startToStart = a->compareBoundaryPoints(Range::START_TO_START, b, ASSERT_NO_EXCEPTION);
short endToEnd = a->compareBoundaryPoints(Range::END_TO_END, b, ASSERT_NO_EXCEPTION);
// First range contains the second range.
if (startToStart <= 0 && endToEnd >= 0)
return true;
// End of first range is inside second range.
if (a->compareBoundaryPoints(Range::START_TO_END, b, ASSERT_NO_EXCEPTION) >= 0 && endToEnd <= 0)
return true;
// Start of first range is inside second range.
if (startToStart >= 0 && a->compareBoundaryPoints(Range::END_TO_START, b, ASSERT_NO_EXCEPTION) <= 0)
return true;
return false;
}
PassRefPtr<Range> rangeOfContents(Node& node)
{
RefPtr<Range> range = Range::create(node.document());
int exception = 0;
range->selectNodeContents(&node, exception);
return range.release();
}
static inline void boundaryNodeChildrenChanged(RangeBoundaryPoint& boundary, ContainerNode& container)
{
if (!boundary.childBefore())
return;
if (boundary.container() != &container)
return;
boundary.invalidateOffset();
}
void Range::nodeChildrenChanged(ContainerNode& container)
{
ASSERT(&container.document() == &ownerDocument());
boundaryNodeChildrenChanged(m_start, container);
boundaryNodeChildrenChanged(m_end, container);
}
static inline void boundaryNodeChildrenWillBeRemoved(RangeBoundaryPoint& boundary, ContainerNode& container)
{
for (Node* nodeToBeRemoved = container.firstChild(); nodeToBeRemoved; nodeToBeRemoved = nodeToBeRemoved->nextSibling()) {
if (boundary.childBefore() == nodeToBeRemoved) {
boundary.setToStartOfNode(&container);
return;
}
for (Node* n = boundary.container(); n; n = n->parentNode()) {
if (n == nodeToBeRemoved) {
boundary.setToStartOfNode(&container);
return;
}
}
}
}
void Range::nodeChildrenWillBeRemoved(ContainerNode& container)
{
ASSERT(&container.document() == &ownerDocument());
boundaryNodeChildrenWillBeRemoved(m_start, container);
boundaryNodeChildrenWillBeRemoved(m_end, container);
}
static inline void boundaryNodeWillBeRemoved(RangeBoundaryPoint& boundary, Node* nodeToBeRemoved)
{
if (boundary.childBefore() == nodeToBeRemoved) {
boundary.childBeforeWillBeRemoved();
return;
}
for (Node* n = boundary.container(); n; n = n->parentNode()) {
if (n == nodeToBeRemoved) {
boundary.setToBeforeChild(nodeToBeRemoved);
return;
}
}
}
void Range::nodeWillBeRemoved(Node* node)
{
ASSERT(node);
ASSERT(&node->document() == &ownerDocument());
ASSERT(node != &ownerDocument());
ASSERT(node->parentNode());
boundaryNodeWillBeRemoved(m_start, node);
boundaryNodeWillBeRemoved(m_end, node);
}
static inline void boundaryTextInserted(RangeBoundaryPoint& boundary, Node* text, unsigned offset, unsigned length)
{
if (boundary.container() != text)
return;
unsigned boundaryOffset = boundary.offset();
if (offset >= boundaryOffset)
return;
boundary.setOffset(boundaryOffset + length);
}
void Range::textInserted(Node* text, unsigned offset, unsigned length)
{
ASSERT(text);
ASSERT(&text->document() == &ownerDocument());
boundaryTextInserted(m_start, text, offset, length);
boundaryTextInserted(m_end, text, offset, length);
}
static inline void boundaryTextRemoved(RangeBoundaryPoint& boundary, Node* text, unsigned offset, unsigned length)
{
if (boundary.container() != text)
return;
unsigned boundaryOffset = boundary.offset();
if (offset >= boundaryOffset)
return;
if (offset + length >= boundaryOffset)
boundary.setOffset(offset);
else
boundary.setOffset(boundaryOffset - length);
}
void Range::textRemoved(Node* text, unsigned offset, unsigned length)
{
ASSERT(text);
ASSERT(&text->document() == &ownerDocument());
boundaryTextRemoved(m_start, text, offset, length);
boundaryTextRemoved(m_end, text, offset, length);
}
static inline void boundaryTextNodesMerged(RangeBoundaryPoint& boundary, NodeWithIndex& oldNode, unsigned offset)
{
if (boundary.container() == oldNode.node())
boundary.set(oldNode.node()->previousSibling(), boundary.offset() + offset, 0);
else if (boundary.container() == oldNode.node()->parentNode() && boundary.offset() == oldNode.index())
boundary.set(oldNode.node()->previousSibling(), offset, 0);
}
void Range::textNodesMerged(NodeWithIndex& oldNode, unsigned offset)
{
ASSERT(oldNode.node());
ASSERT(&oldNode.node()->document() == &ownerDocument());
ASSERT(oldNode.node()->parentNode());
ASSERT(oldNode.node()->isTextNode());
ASSERT(oldNode.node()->previousSibling());
ASSERT(oldNode.node()->previousSibling()->isTextNode());
boundaryTextNodesMerged(m_start, oldNode, offset);
boundaryTextNodesMerged(m_end, oldNode, offset);
}
static inline void boundaryTextNodesSplit(RangeBoundaryPoint& boundary, Text* oldNode)
{
if (boundary.container() != oldNode)
return;
unsigned boundaryOffset = boundary.offset();
if (boundaryOffset <= oldNode->length())
return;
boundary.set(oldNode->nextSibling(), boundaryOffset - oldNode->length(), 0);
}
void Range::textNodeSplit(Text* oldNode)
{
ASSERT(oldNode);
ASSERT(&oldNode->document() == &ownerDocument());
ASSERT(oldNode->parentNode());
ASSERT(oldNode->isTextNode());
ASSERT(oldNode->nextSibling());
ASSERT(oldNode->nextSibling()->isTextNode());
boundaryTextNodesSplit(m_start, oldNode);
boundaryTextNodesSplit(m_end, oldNode);
}
void Range::expand(const String& unit, ExceptionCode& ec)
{
VisiblePosition start(startPosition());
VisiblePosition end(endPosition());
if (unit == "word") {
start = startOfWord(start);
end = endOfWord(end);
} else if (unit == "sentence") {
start = startOfSentence(start);
end = endOfSentence(end);
} else if (unit == "block") {
start = startOfParagraph(start);
end = endOfParagraph(end);
} else if (unit == "document") {
start = startOfDocument(start);
end = endOfDocument(end);
} else
return;
setStart(start.deepEquivalent().containerNode(), start.deepEquivalent().computeOffsetInContainerNode(), ec);
setEnd(end.deepEquivalent().containerNode(), end.deepEquivalent().computeOffsetInContainerNode(), ec);
}
PassRefPtr<ClientRectList> Range::getClientRects() const
{
if (!m_start.container())
return ClientRectList::create();
ownerDocument().updateLayoutIgnorePendingStylesheets();
Vector<FloatQuad> quads;
getBorderAndTextQuads(quads);
return ClientRectList::create(quads);
}
PassRefPtr<ClientRect> Range::getBoundingClientRect() const
{
return ClientRect::create(boundingRect());
}
void Range::getBorderAndTextQuads(Vector<FloatQuad>& quads) const
{
Node* startContainer = m_start.container();
Node* endContainer = m_end.container();
Node* stopNode = pastLastNode();
HashSet<Node*> selectedElementsSet;
for (Node* node = firstNode(); node != stopNode; node = NodeTraversal::next(node)) {
if (node->isElementNode())
selectedElementsSet.add(node);
}
// Don't include elements that are only partially selected.
Node* lastNode = m_end.childBefore() ? m_end.childBefore() : endContainer;
for (Node* parent = lastNode->parentNode(); parent; parent = parent->parentNode())
selectedElementsSet.remove(parent);
for (Node* node = firstNode(); node != stopNode; node = NodeTraversal::next(node)) {
if (node->isElementNode() && selectedElementsSet.contains(node) && !selectedElementsSet.contains(node->parentNode())) {
if (RenderBoxModelObject* renderBoxModelObject = toElement(node)->renderBoxModelObject()) {
Vector<FloatQuad> elementQuads;
renderBoxModelObject->absoluteQuads(elementQuads);
ownerDocument().adjustFloatQuadsForScrollAndAbsoluteZoomAndFrameScale(elementQuads, renderBoxModelObject->style());
quads.appendVector(elementQuads);
}
} else if (node->isTextNode()) {
if (RenderObject* renderer = toText(node)->renderer()) {
const RenderText& renderText = toRenderText(*renderer);
int startOffset = (node == startContainer) ? m_start.offset() : 0;
int endOffset = (node == endContainer) ? m_end.offset() : INT_MAX;
auto textQuads = renderText.absoluteQuadsForRange(startOffset, endOffset);
ownerDocument().adjustFloatQuadsForScrollAndAbsoluteZoomAndFrameScale(textQuads, renderText.style());
quads.appendVector(textQuads);
}
}
}
}
FloatRect Range::boundingRect() const
{
if (!m_start.container())
return FloatRect();
ownerDocument().updateLayoutIgnorePendingStylesheets();
Vector<FloatQuad> quads;
getBorderAndTextQuads(quads);
if (quads.isEmpty())
return FloatRect();
FloatRect result;
for (size_t i = 0; i < quads.size(); ++i)
result.unite(quads[i].boundingBox());
return result;
}
} // namespace WebCore
#ifndef NDEBUG
void showTree(const WebCore::Range* range)
{
if (range && range->boundaryPointsValid()) {
range->startContainer()->showTreeAndMark(range->startContainer(), "S", range->endContainer(), "E");
fprintf(stderr, "start offset: %d, end offset: %d\n", range->startOffset(), range->endOffset());
}
}
#endif