blob: a5dd8d8fbb518a19731e5057835f3fe2e96df3ec [file] [log] [blame]
/*
* Copyright (C) 2005-2017 Apple Inc. All rights reserved.
* Copyright (C) 2010 Patrick Gansterer <paroga@paroga.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#pragma once
#include <unicode/utypes.h>
#include <wtf/text/LChar.h>
namespace WTF {
// Paul Hsieh's SuperFastHash
// http://www.azillionmonkeys.com/qed/hash.html
// LChar data is interpreted as Latin-1-encoded (zero-extended to 16 bits).
// NOTE: The hash computation here must stay in sync with the create_hash_table script in
// JavaScriptCore and the CodeGeneratorJS.pm script in WebCore.
// Golden ratio. Arbitrary start value to avoid mapping all zeros to a hash value of zero.
static constexpr const unsigned stringHashingStartValue = 0x9E3779B9U;
class StringHasher {
WTF_MAKE_FAST_ALLOCATED;
public:
static constexpr const unsigned flagCount = 8; // Save 8 bits for StringImpl to use as flags.
static constexpr const unsigned maskHash = (1U << (sizeof(unsigned) * 8 - flagCount)) - 1;
struct DefaultConverter {
template<typename CharType>
static constexpr UChar convert(CharType character)
{
return static_cast<std::make_unsigned_t<CharType>>((character));
}
};
StringHasher() = default;
// The hasher hashes two characters at a time, and thus an "aligned" hasher is one
// where an even number of characters have been added. Callers that always add
// characters two at a time can use the "assuming aligned" functions.
void addCharactersAssumingAligned(UChar a, UChar b)
{
ASSERT(!m_hasPendingCharacter);
m_hash = calculateWithTwoCharacters(m_hash, a, b);
}
void addCharacter(UChar character)
{
if (m_hasPendingCharacter) {
m_hasPendingCharacter = false;
addCharactersAssumingAligned(m_pendingCharacter, character);
return;
}
m_pendingCharacter = character;
m_hasPendingCharacter = true;
}
void addCharacters(UChar a, UChar b)
{
if (m_hasPendingCharacter) {
#if ASSERT_ENABLED
m_hasPendingCharacter = false;
#endif
addCharactersAssumingAligned(m_pendingCharacter, a);
m_pendingCharacter = b;
#if ASSERT_ENABLED
m_hasPendingCharacter = true;
#endif
return;
}
addCharactersAssumingAligned(a, b);
}
template<typename T, typename Converter> void addCharactersAssumingAligned(const T* data, unsigned length)
{
ASSERT(!m_hasPendingCharacter);
bool remainder = length & 1;
length >>= 1;
while (length--) {
addCharactersAssumingAligned(Converter::convert(data[0]), Converter::convert(data[1]));
data += 2;
}
if (remainder)
addCharacter(Converter::convert(*data));
}
template<typename T> void addCharactersAssumingAligned(const T* data, unsigned length)
{
addCharactersAssumingAligned<T, DefaultConverter>(data, length);
}
template<typename T, typename Converter> void addCharactersAssumingAligned(const T* data)
{
ASSERT(!m_hasPendingCharacter);
while (T a = *data++) {
T b = *data++;
if (!b) {
addCharacter(Converter::convert(a));
break;
}
addCharactersAssumingAligned(Converter::convert(a), Converter::convert(b));
}
}
template<typename T> void addCharactersAssumingAligned(const T* data)
{
addCharactersAssumingAligned<T, DefaultConverter>(data);
}
template<typename T, typename Converter> void addCharacters(const T* data, unsigned length)
{
if (!length)
return;
if (m_hasPendingCharacter) {
m_hasPendingCharacter = false;
addCharactersAssumingAligned(m_pendingCharacter, Converter::convert(*data++));
--length;
}
addCharactersAssumingAligned<T, Converter>(data, length);
}
template<typename T> void addCharacters(const T* data, unsigned length)
{
addCharacters<T, DefaultConverter>(data, length);
}
template<typename T, typename Converter> void addCharacters(const T* data)
{
if (m_hasPendingCharacter && *data) {
m_hasPendingCharacter = false;
addCharactersAssumingAligned(m_pendingCharacter, Converter::convert(*data++));
}
addCharactersAssumingAligned<T, Converter>(data);
}
template<typename T> void addCharacters(const T* data)
{
addCharacters<T, DefaultConverter>(data);
}
unsigned hashWithTop8BitsMasked() const
{
return finalizeAndMaskTop8Bits(processPendingCharacter());
}
unsigned hash() const
{
return finalize(processPendingCharacter());
}
template<typename T, typename Converter> static constexpr unsigned computeHashAndMaskTop8Bits(const T* data, unsigned length)
{
return finalizeAndMaskTop8Bits(computeHashImpl<T, Converter>(data, length));
}
template<typename T, typename Converter> static constexpr unsigned computeHashAndMaskTop8Bits(const T* data)
{
return finalizeAndMaskTop8Bits(computeHashImpl<T, Converter>(data));
}
template<typename T> static constexpr unsigned computeHashAndMaskTop8Bits(const T* data, unsigned length)
{
return computeHashAndMaskTop8Bits<T, DefaultConverter>(data, length);
}
template<typename T> static constexpr unsigned computeHashAndMaskTop8Bits(const T* data)
{
return computeHashAndMaskTop8Bits<T, DefaultConverter>(data);
}
template<typename T, typename Converter> static constexpr unsigned computeHash(const T* data, unsigned length)
{
return finalize(computeHashImpl<T, Converter>(data, length));
}
template<typename T, typename Converter> static constexpr unsigned computeHash(const T* data)
{
return finalize(computeHashImpl<T, Converter>(data));
}
template<typename T> static constexpr unsigned computeHash(const T* data, unsigned length)
{
return computeHash<T, DefaultConverter>(data, length);
}
template<typename T> static constexpr unsigned computeHash(const T* data)
{
return computeHash<T, DefaultConverter>(data);
}
template<typename T, unsigned charactersCount>
static constexpr unsigned computeLiteralHash(const T (&characters)[charactersCount])
{
return computeHash<T, DefaultConverter>(characters, charactersCount - 1);
}
template<typename T, unsigned charactersCount>
static constexpr unsigned computeLiteralHashAndMaskTop8Bits(const T (&characters)[charactersCount])
{
return computeHashAndMaskTop8Bits<T, DefaultConverter>(characters, charactersCount - 1);
}
static unsigned hashMemory(const void* data, unsigned length)
{
size_t lengthInUChar = length / sizeof(UChar);
StringHasher hasher;
hasher.addCharactersAssumingAligned(static_cast<const UChar*>(data), lengthInUChar);
for (size_t i = 0; i < length % sizeof(UChar); ++i)
hasher.addCharacter(static_cast<const char*>(data)[lengthInUChar * sizeof(UChar) + i]);
return hasher.hash();
}
template<size_t length> static unsigned hashMemory(const void* data)
{
return hashMemory(data, length);
}
private:
ALWAYS_INLINE static constexpr unsigned avalancheBits(unsigned hash)
{
unsigned result = hash;
result ^= result << 3;
result += result >> 5;
result ^= result << 2;
result += result >> 15;
result ^= result << 10;
return result;
}
static constexpr unsigned finalize(unsigned hash)
{
return avoidZero(avalancheBits(hash));
}
static constexpr unsigned finalizeAndMaskTop8Bits(unsigned hash)
{
// Reserving space from the high bits for flags preserves most of the hash's
// value, since hash lookup typically masks out the high bits anyway.
return avoidZero(avalancheBits(hash) & StringHasher::maskHash);
}
// This avoids ever returning a hash code of 0, since that is used to
// signal "hash not computed yet". Setting the high bit maintains
// reasonable fidelity to a hash code of 0 because it is likely to yield
// exactly 0 when hash lookup masks out the high bits.
ALWAYS_INLINE static constexpr unsigned avoidZero(unsigned hash)
{
if (hash)
return hash;
return 0x80000000 >> flagCount;
}
static constexpr unsigned calculateWithRemainingLastCharacter(unsigned hash, unsigned character)
{
unsigned result = hash;
result += character;
result ^= result << 11;
result += result >> 17;
return result;
}
ALWAYS_INLINE static constexpr unsigned calculateWithTwoCharacters(unsigned hash, unsigned firstCharacter, unsigned secondCharacter)
{
unsigned result = hash;
result += firstCharacter;
result = (result << 16) ^ ((secondCharacter << 11) ^ result);
result += result >> 11;
return result;
}
template<typename T, typename Converter>
static constexpr unsigned computeHashImpl(const T* characters, unsigned length)
{
unsigned result = stringHashingStartValue;
bool remainder = length & 1;
length >>= 1;
while (length--) {
result = calculateWithTwoCharacters(result, Converter::convert(characters[0]), Converter::convert(characters[1]));
characters += 2;
}
if (remainder)
return calculateWithRemainingLastCharacter(result, Converter::convert(characters[0]));
return result;
}
template<typename T, typename Converter>
static constexpr unsigned computeHashImpl(const T* characters)
{
unsigned result = stringHashingStartValue;
while (T a = *characters++) {
T b = *characters++;
if (!b)
return calculateWithRemainingLastCharacter(result, Converter::convert(a));
result = calculateWithTwoCharacters(result, Converter::convert(a), Converter::convert(b));
}
return result;
}
unsigned processPendingCharacter() const
{
unsigned result = m_hash;
// Handle end case.
if (m_hasPendingCharacter)
return calculateWithRemainingLastCharacter(result, m_pendingCharacter);
return result;
}
unsigned m_hash { stringHashingStartValue };
UChar m_pendingCharacter { 0 };
bool m_hasPendingCharacter { false };
};
} // namespace WTF
using WTF::StringHasher;