| // The original file was copied from sqlite, and was in the public domain. |
| // Modifications Copyright 2006 Google Inc. All Rights Reserved |
| /* |
| * Copyright (C) 2010 Google Inc. All rights reserved. |
| * Copyright (C) 2015 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: |
| * |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following disclaimer |
| * in the documentation and/or other materials provided with the |
| * distribution. |
| * * Neither the name of Google Inc. nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| /* |
| * This code implements the MD5 message-digest algorithm. |
| * The algorithm is due to Ron Rivest. This code was |
| * written by Colin Plumb in 1993, no copyright is claimed. |
| * This code is in the public domain; do with it what you wish. |
| * |
| * Equivalent code is available from RSA Data Security, Inc. |
| * This code has been tested against that, and is equivalent, |
| * except that you don't need to include two pages of legalese |
| * with every copy. |
| * |
| * To compute the message digest of a chunk of bytes, construct an |
| * MD5 instance, call addBytes as needed on buffers full of bytes, |
| * and then call checksum, which will fill a supplied 16-byte array |
| * with the digest. |
| */ |
| |
| #include "config.h" |
| #include <wtf/MD5.h> |
| |
| #include <wtf/Assertions.h> |
| #include <wtf/StdLibExtras.h> |
| |
| namespace WTF { |
| |
| #if PLATFORM(COCOA) |
| |
| MD5::MD5() |
| { |
| ALLOW_DEPRECATED_DECLARATIONS_BEGIN |
| CC_MD5_Init(&m_context); |
| ALLOW_DEPRECATED_DECLARATIONS_END |
| } |
| |
| void MD5::addBytes(const uint8_t* input, size_t length) |
| { |
| ALLOW_DEPRECATED_DECLARATIONS_BEGIN |
| CC_MD5_Update(&m_context, input, length); |
| ALLOW_DEPRECATED_DECLARATIONS_END |
| } |
| |
| void MD5::checksum(Digest& hash) |
| { |
| ALLOW_DEPRECATED_DECLARATIONS_BEGIN |
| CC_MD5_Final(hash.data(), &m_context); |
| ALLOW_DEPRECATED_DECLARATIONS_END |
| } |
| |
| #else |
| |
| // Note: this code is harmless on little-endian machines. |
| |
| static void toLittleEndian(uint8_t* buf, unsigned longs) |
| { |
| ASSERT(longs > 0); |
| do { |
| uint32_t t = static_cast<uint32_t>(buf[3] << 8 | buf[2]) << 16 | buf[1] << 8 | buf[0]; |
| ASSERT_WITH_MESSAGE(!(reinterpret_cast<uintptr_t>(buf) % sizeof(t)), "alignment error of buf"); |
| memcpy(buf, &t, sizeof(t)); |
| buf += sizeof(t); |
| } while (--longs); |
| } |
| |
| // The four core functions. |
| // F1 is originally defined as (x & y | ~x & z), but optimized somewhat: 4 bit ops -> 3 bit ops. |
| #define F1(x, y, z) (z ^ (x & (y ^ z))) |
| #define F2(x, y, z) F1(z, x, y) |
| #define F3(x, y, z) (x ^ y ^ z) |
| #define F4(x, y, z) (y ^ (x | ~z)) |
| |
| // This is the central step in the MD5 algorithm. |
| #define MD5STEP(f, w, x, y, z, data, s) \ |
| (w += f(x, y, z) + data, w = w << s | w >> (32 - s), w += x) |
| |
| static void MD5Transform(uint32_t buf[4], const uint32_t in[16]) |
| { |
| uint32_t a = buf[0]; |
| uint32_t b = buf[1]; |
| uint32_t c = buf[2]; |
| uint32_t d = buf[3]; |
| |
| MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7); |
| MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12); |
| MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17); |
| MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22); |
| MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7); |
| MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12); |
| MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17); |
| MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22); |
| MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7); |
| MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12); |
| MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17); |
| MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22); |
| MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7); |
| MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12); |
| MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17); |
| MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22); |
| |
| MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5); |
| MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9); |
| MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14); |
| MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20); |
| MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5); |
| MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9); |
| MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14); |
| MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20); |
| MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5); |
| MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9); |
| MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14); |
| MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20); |
| MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5); |
| MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9); |
| MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14); |
| MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20); |
| |
| MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4); |
| MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11); |
| MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16); |
| MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23); |
| MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4); |
| MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11); |
| MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16); |
| MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23); |
| MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4); |
| MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11); |
| MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16); |
| MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23); |
| MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4); |
| MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11); |
| MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16); |
| MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23); |
| |
| MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6); |
| MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10); |
| MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15); |
| MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21); |
| MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6); |
| MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10); |
| MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15); |
| MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21); |
| MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6); |
| MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10); |
| MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15); |
| MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21); |
| MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6); |
| MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10); |
| MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15); |
| MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21); |
| |
| buf[0] += a; |
| buf[1] += b; |
| buf[2] += c; |
| buf[3] += d; |
| } |
| |
| MD5::MD5() |
| { |
| m_buf[0] = 0x67452301; |
| m_buf[1] = 0xefcdab89; |
| m_buf[2] = 0x98badcfe; |
| m_buf[3] = 0x10325476; |
| m_bits[0] = 0; |
| m_bits[1] = 0; |
| memset(m_in, 0, sizeof(m_in)); |
| ASSERT_WITH_MESSAGE(!(reinterpret_cast<uintptr_t>(m_in) % sizeof(uint32_t)), "alignment error of m_in"); |
| } |
| |
| void MD5::addBytes(const uint8_t* input, size_t length) |
| { |
| const uint8_t* buf = input; |
| |
| // Update bitcount |
| uint32_t t = m_bits[0]; |
| m_bits[0] = t + (length << 3); |
| if (m_bits[0] < t) |
| m_bits[1]++; // Carry from low to high |
| m_bits[1] += length >> 29; |
| |
| t = (t >> 3) & 0x3f; // Bytes already in shsInfo->data |
| |
| // Handle any leading odd-sized chunks |
| |
| if (t) { |
| uint8_t* p = m_in + t; |
| |
| t = 64 - t; |
| if (length < t) { |
| memcpy(p, buf, length); |
| return; |
| } |
| memcpy(p, buf, t); |
| toLittleEndian(m_in, 16); |
| MD5Transform(m_buf, reinterpret_cast_ptr<uint32_t*>(m_in)); // m_in is 4-byte aligned. |
| buf += t; |
| length -= t; |
| } |
| |
| // Process data in 64-byte chunks |
| |
| while (length >= 64) { |
| memcpy(m_in, buf, 64); |
| toLittleEndian(m_in, 16); |
| MD5Transform(m_buf, reinterpret_cast_ptr<uint32_t*>(m_in)); // m_in is 4-byte aligned. |
| buf += 64; |
| length -= 64; |
| } |
| |
| // Handle any remaining bytes of data. |
| memcpy(m_in, buf, length); |
| } |
| |
| void MD5::checksum(Digest& digest) |
| { |
| // Compute number of bytes mod 64 |
| unsigned count = (m_bits[0] >> 3) & 0x3F; |
| |
| // Set the first char of padding to 0x80. This is safe since there is |
| // always at least one byte free |
| uint8_t* p = m_in + count; |
| *p++ = 0x80; |
| |
| // Bytes of padding needed to make 64 bytes |
| count = 64 - 1 - count; |
| |
| // Pad out to 56 mod 64 |
| if (count < 8) { |
| // Two lots of padding: Pad the first block to 64 bytes |
| memset(p, 0, count); |
| toLittleEndian(m_in, 16); |
| MD5Transform(m_buf, reinterpret_cast_ptr<uint32_t *>(m_in)); // m_in is 4-byte aligned. |
| |
| // Now fill the next block with 56 bytes |
| memset(m_in, 0, 56); |
| } else { |
| // Pad block to 56 bytes |
| memset(p, 0, count - 8); |
| } |
| toLittleEndian(m_in, 14); |
| |
| // Append length in bits and transform |
| memcpy(m_in + 56, m_bits, sizeof(m_bits)); |
| |
| MD5Transform(m_buf, reinterpret_cast_ptr<uint32_t*>(m_in)); |
| toLittleEndian(reinterpret_cast<uint8_t*>(m_buf), 4); |
| |
| // Now, m_buf contains checksum result. |
| uint8_t* mBufUInt8 = reinterpret_cast<uint8_t*>(m_buf); |
| for (size_t i = 0; i < hashSize; ++i) |
| digest[i] = mBufUInt8[i]; |
| |
| // In case it's sensitive |
| memset(m_buf, 0, sizeof(m_buf)); |
| memset(m_bits, 0, sizeof(m_bits)); |
| memset(m_in, 0, sizeof(m_in)); |
| } |
| |
| #endif |
| |
| } // namespace WTF |