| /* |
| * Copyright (C) 2008-2019 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #pragma once |
| |
| #if ENABLE(ASSEMBLER) && (CPU(X86) || CPU(X86_64)) |
| |
| #include "AssemblerBuffer.h" |
| #include "AssemblerCommon.h" |
| #include "JITCompilationEffort.h" |
| #include "RegisterInfo.h" |
| #include <limits.h> |
| #include <stdint.h> |
| #include <wtf/Assertions.h> |
| #include <wtf/Vector.h> |
| |
| namespace JSC { |
| |
| inline bool CAN_SIGN_EXTEND_8_32(int32_t value) { return value == (int32_t)(signed char)value; } |
| |
| namespace RegisterNames { |
| |
| #if COMPILER(MSVC) |
| #define JSC_X86_ASM_REGISTER_ID_ENUM_BASE_TYPE |
| #else |
| #define JSC_X86_ASM_REGISTER_ID_ENUM_BASE_TYPE : int8_t |
| #endif |
| |
| #define REGISTER_ID(id, name, res, cs) id, |
| |
| typedef enum JSC_X86_ASM_REGISTER_ID_ENUM_BASE_TYPE { |
| FOR_EACH_GP_REGISTER(REGISTER_ID) |
| InvalidGPRReg = -1, |
| } RegisterID; |
| |
| typedef enum JSC_X86_ASM_REGISTER_ID_ENUM_BASE_TYPE { |
| FOR_EACH_SP_REGISTER(REGISTER_ID) |
| } SPRegisterID; |
| |
| typedef enum JSC_X86_ASM_REGISTER_ID_ENUM_BASE_TYPE { |
| FOR_EACH_FP_REGISTER(REGISTER_ID) |
| InvalidFPRReg = -1, |
| } XMMRegisterID; |
| |
| #undef REGISTER_ID |
| |
| } // namespace X86Registers |
| |
| class X86Assembler { |
| public: |
| typedef X86Registers::RegisterID RegisterID; |
| |
| static constexpr RegisterID firstRegister() { return X86Registers::eax; } |
| static constexpr RegisterID lastRegister() |
| { |
| #if CPU(X86_64) |
| return X86Registers::r15; |
| #else |
| return X86Registers::edi; |
| #endif |
| } |
| static constexpr unsigned numberOfRegisters() { return lastRegister() - firstRegister() + 1; } |
| |
| typedef X86Registers::SPRegisterID SPRegisterID; |
| |
| static constexpr SPRegisterID firstSPRegister() { return X86Registers::eip; } |
| static constexpr SPRegisterID lastSPRegister() { return X86Registers::eflags; } |
| static constexpr unsigned numberOfSPRegisters() { return lastSPRegister() - firstSPRegister() + 1; } |
| |
| typedef X86Registers::XMMRegisterID XMMRegisterID; |
| typedef XMMRegisterID FPRegisterID; |
| |
| static constexpr FPRegisterID firstFPRegister() { return X86Registers::xmm0; } |
| static constexpr FPRegisterID lastFPRegister() |
| { |
| #if CPU(X86_64) |
| return X86Registers::xmm15; |
| #else |
| return X86Registers::xmm7; |
| #endif |
| } |
| static constexpr unsigned numberOfFPRegisters() { return lastFPRegister() - firstFPRegister() + 1; } |
| |
| static const char* gprName(RegisterID id) |
| { |
| ASSERT(id >= firstRegister() && id <= lastRegister()); |
| static const char* const nameForRegister[numberOfRegisters()] = { |
| #define REGISTER_NAME(id, name, res, cs) name, |
| FOR_EACH_GP_REGISTER(REGISTER_NAME) |
| #undef REGISTER_NAME |
| }; |
| return nameForRegister[id]; |
| } |
| |
| static const char* sprName(SPRegisterID id) |
| { |
| ASSERT(id >= firstSPRegister() && id <= lastSPRegister()); |
| static const char* const nameForRegister[numberOfSPRegisters()] = { |
| #define REGISTER_NAME(id, name, res, cs) name, |
| FOR_EACH_SP_REGISTER(REGISTER_NAME) |
| #undef REGISTER_NAME |
| }; |
| return nameForRegister[id]; |
| } |
| |
| static const char* fprName(FPRegisterID reg) |
| { |
| ASSERT(reg >= firstFPRegister() && reg <= lastFPRegister()); |
| static const char* const nameForRegister[numberOfFPRegisters()] = { |
| #define REGISTER_NAME(id, name, res, cs) name, |
| FOR_EACH_FP_REGISTER(REGISTER_NAME) |
| #undef REGISTER_NAME |
| }; |
| return nameForRegister[reg]; |
| } |
| |
| typedef enum { |
| ConditionO, |
| ConditionNO, |
| ConditionB, |
| ConditionAE, |
| ConditionE, |
| ConditionNE, |
| ConditionBE, |
| ConditionA, |
| ConditionS, |
| ConditionNS, |
| ConditionP, |
| ConditionNP, |
| ConditionL, |
| ConditionGE, |
| ConditionLE, |
| ConditionG, |
| |
| ConditionC = ConditionB, |
| ConditionNC = ConditionAE, |
| } Condition; |
| |
| private: |
| // OneByteOpcodeID defines the bytecode for 1 byte instruction. It also contains the prefixes |
| // for two bytes instructions. |
| // TwoByteOpcodeID, ThreeByteOpcodeID define the opcodes for the multibytes instructions. |
| // |
| // The encoding for each instruction can be found in the Intel Architecture Manual in the appendix |
| // "Opcode Map." |
| // |
| // Each opcode can have a suffix describing the type of argument. The full list of suffixes is |
| // in the "Key to Abbreviations" section of the "Opcode Map". |
| // The most common argument types are: |
| // -E: The argument is either a GPR or a memory address. |
| // -G: The argument is a GPR. |
| // -I: The argument is an immediate. |
| // The most common sizes are: |
| // -v: 32 or 64bit depending on the operand-size attribute. |
| // -z: 32bit in both 32bit and 64bit mode. Common for immediate values. |
| typedef enum { |
| OP_ADD_EbGb = 0x00, |
| OP_ADD_EvGv = 0x01, |
| OP_ADD_GvEv = 0x03, |
| OP_ADD_EAXIv = 0x05, |
| OP_OR_EvGb = 0x08, |
| OP_OR_EvGv = 0x09, |
| OP_OR_GvEv = 0x0B, |
| OP_OR_EAXIv = 0x0D, |
| OP_2BYTE_ESCAPE = 0x0F, |
| OP_AND_EvGb = 0x20, |
| OP_AND_EvGv = 0x21, |
| OP_AND_GvEv = 0x23, |
| OP_SUB_EvGb = 0x28, |
| OP_SUB_EvGv = 0x29, |
| OP_SUB_GvEv = 0x2B, |
| OP_SUB_EAXIv = 0x2D, |
| PRE_PREDICT_BRANCH_NOT_TAKEN = 0x2E, |
| OP_XOR_EvGb = 0x30, |
| OP_XOR_EvGv = 0x31, |
| OP_XOR_GvEv = 0x33, |
| OP_XOR_EAXIv = 0x35, |
| OP_CMP_EvGv = 0x39, |
| OP_CMP_GvEv = 0x3B, |
| OP_CMP_EAXIv = 0x3D, |
| #if CPU(X86_64) |
| PRE_REX = 0x40, |
| #endif |
| OP_PUSH_EAX = 0x50, |
| OP_POP_EAX = 0x58, |
| #if CPU(X86_64) |
| OP_MOVSXD_GvEv = 0x63, |
| #endif |
| PRE_GS = 0x65, |
| PRE_OPERAND_SIZE = 0x66, |
| PRE_SSE_66 = 0x66, |
| OP_PUSH_Iz = 0x68, |
| OP_IMUL_GvEvIz = 0x69, |
| OP_GROUP1_EbIb = 0x80, |
| OP_GROUP1_EvIz = 0x81, |
| OP_GROUP1_EvIb = 0x83, |
| OP_TEST_EbGb = 0x84, |
| OP_TEST_EvGv = 0x85, |
| OP_XCHG_EvGb = 0x86, |
| OP_XCHG_EvGv = 0x87, |
| OP_MOV_EbGb = 0x88, |
| OP_MOV_EvGv = 0x89, |
| OP_MOV_GvEv = 0x8B, |
| OP_LEA = 0x8D, |
| OP_GROUP1A_Ev = 0x8F, |
| OP_NOP = 0x90, |
| OP_XCHG_EAX = 0x90, |
| OP_PAUSE = 0x90, |
| OP_CDQ = 0x99, |
| OP_MOV_EAXOv = 0xA1, |
| OP_MOV_OvEAX = 0xA3, |
| OP_TEST_ALIb = 0xA8, |
| OP_TEST_EAXIv = 0xA9, |
| OP_MOV_EAXIv = 0xB8, |
| OP_GROUP2_EvIb = 0xC1, |
| OP_RET = 0xC3, |
| OP_GROUP11_EvIb = 0xC6, |
| OP_GROUP11_EvIz = 0xC7, |
| OP_INT3 = 0xCC, |
| OP_GROUP2_Ev1 = 0xD1, |
| OP_GROUP2_EvCL = 0xD3, |
| OP_ESCAPE_D9 = 0xD9, |
| OP_ESCAPE_DD = 0xDD, |
| OP_CALL_rel32 = 0xE8, |
| OP_JMP_rel32 = 0xE9, |
| PRE_LOCK = 0xF0, |
| PRE_SSE_F2 = 0xF2, |
| PRE_SSE_F3 = 0xF3, |
| OP_HLT = 0xF4, |
| OP_GROUP3_Eb = 0xF6, |
| OP_GROUP3_EbIb = 0xF6, |
| OP_GROUP3_Ev = 0xF7, |
| OP_GROUP3_EvIz = 0xF7, // OP_GROUP3_Ev has an immediate, when instruction is a test. |
| OP_GROUP5_Ev = 0xFF, |
| } OneByteOpcodeID; |
| |
| typedef enum { |
| OP2_UD2 = 0xB, |
| OP2_MOVSD_VsdWsd = 0x10, |
| OP2_MOVSD_WsdVsd = 0x11, |
| OP2_MOVSS_VsdWsd = 0x10, |
| OP2_MOVSS_WsdVsd = 0x11, |
| OP2_MOVAPD_VpdWpd = 0x28, |
| OP2_MOVAPS_VpdWpd = 0x28, |
| OP2_CVTSI2SD_VsdEd = 0x2A, |
| OP2_CVTTSD2SI_GdWsd = 0x2C, |
| OP2_CVTTSS2SI_GdWsd = 0x2C, |
| OP2_UCOMISD_VsdWsd = 0x2E, |
| OP2_RDTSC = 0x31, |
| OP2_3BYTE_ESCAPE_3A = 0x3A, |
| OP2_CMOVCC = 0x40, |
| OP2_ADDSD_VsdWsd = 0x58, |
| OP2_MULSD_VsdWsd = 0x59, |
| OP2_CVTSD2SS_VsdWsd = 0x5A, |
| OP2_CVTSS2SD_VsdWsd = 0x5A, |
| OP2_SUBSD_VsdWsd = 0x5C, |
| OP2_DIVSD_VsdWsd = 0x5E, |
| OP2_MOVMSKPD_VdEd = 0x50, |
| OP2_SQRTSD_VsdWsd = 0x51, |
| OP2_ANDPS_VpdWpd = 0x54, |
| OP2_ANDNPD_VpdWpd = 0x55, |
| OP2_ORPS_VpdWpd = 0x56, |
| OP2_XORPD_VpdWpd = 0x57, |
| OP2_MOVD_VdEd = 0x6E, |
| OP2_MOVD_EdVd = 0x7E, |
| OP2_JCC_rel32 = 0x80, |
| OP_SETCC = 0x90, |
| OP2_CPUID = 0xA2, |
| OP2_3BYTE_ESCAPE_AE = 0xAE, |
| OP2_IMUL_GvEv = 0xAF, |
| OP2_CMPXCHGb = 0xB0, |
| OP2_CMPXCHG = 0xB1, |
| OP2_MOVZX_GvEb = 0xB6, |
| OP2_POPCNT = 0xB8, |
| OP2_GROUP_BT_EvIb = 0xBA, |
| OP2_BT_EvEv = 0xA3, |
| OP2_BSF = 0xBC, |
| OP2_TZCNT = 0xBC, |
| OP2_BSR = 0xBD, |
| OP2_LZCNT = 0xBD, |
| OP2_MOVSX_GvEb = 0xBE, |
| OP2_MOVZX_GvEw = 0xB7, |
| OP2_MOVSX_GvEw = 0xBF, |
| OP2_XADDb = 0xC0, |
| OP2_XADD = 0xC1, |
| OP2_PEXTRW_GdUdIb = 0xC5, |
| OP2_BSWAP = 0xC8, |
| OP2_PSLLQ_UdqIb = 0x73, |
| OP2_PSRLQ_UdqIb = 0x73, |
| OP2_POR_VdqWdq = 0XEB, |
| } TwoByteOpcodeID; |
| |
| typedef enum { |
| OP3_ROUNDSS_VssWssIb = 0x0A, |
| OP3_ROUNDSD_VsdWsdIb = 0x0B, |
| OP3_LFENCE = 0xE8, |
| OP3_MFENCE = 0xF0, |
| OP3_SFENCE = 0xF8, |
| } ThreeByteOpcodeID; |
| |
| struct VexPrefix { |
| enum : uint8_t { |
| TwoBytes = 0xC5, |
| ThreeBytes = 0xC4 |
| }; |
| }; |
| enum class VexImpliedBytes : uint8_t { |
| TwoBytesOp = 1, |
| ThreeBytesOp38 = 2, |
| ThreeBytesOp3A = 3 |
| }; |
| |
| TwoByteOpcodeID cmovcc(Condition cond) |
| { |
| return (TwoByteOpcodeID)(OP2_CMOVCC + cond); |
| } |
| |
| TwoByteOpcodeID jccRel32(Condition cond) |
| { |
| return (TwoByteOpcodeID)(OP2_JCC_rel32 + cond); |
| } |
| |
| TwoByteOpcodeID setccOpcode(Condition cond) |
| { |
| return (TwoByteOpcodeID)(OP_SETCC + cond); |
| } |
| |
| typedef enum { |
| GROUP1_OP_ADD = 0, |
| GROUP1_OP_OR = 1, |
| GROUP1_OP_ADC = 2, |
| GROUP1_OP_AND = 4, |
| GROUP1_OP_SUB = 5, |
| GROUP1_OP_XOR = 6, |
| GROUP1_OP_CMP = 7, |
| |
| GROUP1A_OP_POP = 0, |
| |
| GROUP2_OP_ROL = 0, |
| GROUP2_OP_ROR = 1, |
| GROUP2_OP_RCL = 2, |
| GROUP2_OP_RCR = 3, |
| |
| GROUP2_OP_SHL = 4, |
| GROUP2_OP_SHR = 5, |
| GROUP2_OP_SAR = 7, |
| |
| GROUP3_OP_TEST = 0, |
| GROUP3_OP_NOT = 2, |
| GROUP3_OP_NEG = 3, |
| GROUP3_OP_DIV = 6, |
| GROUP3_OP_IDIV = 7, |
| |
| GROUP5_OP_CALLN = 2, |
| GROUP5_OP_JMPN = 4, |
| GROUP5_OP_PUSH = 6, |
| |
| GROUP11_MOV = 0, |
| |
| GROUP14_OP_PSLLQ = 6, |
| GROUP14_OP_PSRLQ = 2, |
| |
| ESCAPE_D9_FSTP_singleReal = 3, |
| ESCAPE_DD_FSTP_doubleReal = 3, |
| |
| GROUP_BT_OP_BT = 4, |
| } GroupOpcodeID; |
| |
| class X86InstructionFormatter; |
| public: |
| |
| X86Assembler() |
| : m_indexOfLastWatchpoint(INT_MIN) |
| , m_indexOfTailOfLastWatchpoint(INT_MIN) |
| { |
| } |
| |
| AssemblerBuffer& buffer() { return m_formatter.m_buffer; } |
| |
| // Stack operations: |
| |
| void push_r(RegisterID reg) |
| { |
| m_formatter.oneByteOp(OP_PUSH_EAX, reg); |
| } |
| |
| void pop_r(RegisterID reg) |
| { |
| m_formatter.oneByteOp(OP_POP_EAX, reg); |
| } |
| |
| void push_i32(int imm) |
| { |
| m_formatter.oneByteOp(OP_PUSH_Iz); |
| m_formatter.immediate32(imm); |
| } |
| |
| void push_m(int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_PUSH, base, offset); |
| } |
| |
| void pop_m(int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp(OP_GROUP1A_Ev, GROUP1A_OP_POP, base, offset); |
| } |
| |
| // Arithmetic operations: |
| |
| #if !CPU(X86_64) |
| void adcl_im(int imm, const void* addr) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOpAddr(OP_GROUP1_EvIb, GROUP1_OP_ADC, bitwise_cast<uint32_t>(addr)); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOpAddr(OP_GROUP1_EvIz, GROUP1_OP_ADC, bitwise_cast<uint32_t>(addr)); |
| m_formatter.immediate32(imm); |
| } |
| } |
| #endif |
| |
| void addl_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_ADD_EvGv, src, dst); |
| } |
| |
| void addl_mr(int offset, RegisterID base, RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_ADD_GvEv, dst, base, offset); |
| } |
| |
| void addl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_ADD_GvEv, dst, base, index, scale, offset); |
| } |
| |
| #if !CPU(X86_64) |
| void addl_mr(const void* addr, RegisterID dst) |
| { |
| m_formatter.oneByteOpAddr(OP_ADD_GvEv, dst, bitwise_cast<uint32_t>(addr)); |
| } |
| #endif |
| |
| void addl_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp(OP_ADD_EvGv, src, base, offset); |
| } |
| |
| void addl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp(OP_ADD_EvGv, src, base, index, scale, offset); |
| } |
| |
| void addb_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp8(OP_ADD_EbGb, src, base, offset); |
| } |
| |
| void addb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp8(OP_ADD_EbGb, src, base, index, scale, offset); |
| } |
| |
| void addw_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| m_formatter.oneByteOp8(OP_ADD_EvGv, src, base, offset); |
| } |
| |
| void addw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| m_formatter.oneByteOp8(OP_ADD_EvGv, src, base, index, scale, offset); |
| } |
| |
| void addl_ir(int imm, RegisterID dst) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_ADD, dst); |
| m_formatter.immediate8(imm); |
| } else { |
| if (dst == X86Registers::eax) |
| m_formatter.oneByteOp(OP_ADD_EAXIv); |
| else |
| m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_ADD, dst); |
| m_formatter.immediate32(imm); |
| } |
| } |
| |
| void addl_im(int imm, int offset, RegisterID base) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, offset); |
| m_formatter.immediate32(imm); |
| } |
| } |
| |
| void addl_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, index, scale, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, index, scale, offset); |
| m_formatter.immediate32(imm); |
| } |
| } |
| |
| void addb_im(int imm, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp8(OP_GROUP1_EbIb, GROUP1_OP_ADD, base, offset); |
| m_formatter.immediate8(imm); |
| } |
| |
| void addb_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp8(OP_GROUP1_EbIb, GROUP1_OP_ADD, base, index, scale, offset); |
| m_formatter.immediate8(imm); |
| } |
| |
| void addw_im(int imm, int offset, RegisterID base) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp8(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp8(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, offset); |
| m_formatter.immediate16(imm); |
| } |
| } |
| |
| void addw_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp8(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, index, scale, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp8(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, index, scale, offset); |
| m_formatter.immediate16(imm); |
| } |
| } |
| |
| #if CPU(X86_64) |
| void addq_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_ADD_EvGv, src, dst); |
| } |
| |
| void addq_mr(int offset, RegisterID base, RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_ADD_GvEv, dst, base, offset); |
| } |
| |
| void addq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_ADD_GvEv, dst, base, index, scale, offset); |
| } |
| |
| void addq_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp64(OP_ADD_EvGv, src, base, offset); |
| } |
| |
| void addq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp64(OP_ADD_EvGv, src, base, index, scale, offset); |
| } |
| |
| void addq_ir(int imm, RegisterID dst) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_ADD, dst); |
| m_formatter.immediate8(imm); |
| } else { |
| if (dst == X86Registers::eax) |
| m_formatter.oneByteOp64(OP_ADD_EAXIv); |
| else |
| m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_ADD, dst); |
| m_formatter.immediate32(imm); |
| } |
| } |
| |
| void addq_im(int imm, int offset, RegisterID base) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, offset); |
| m_formatter.immediate32(imm); |
| } |
| } |
| |
| void addq_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, index, scale, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, index, scale, offset); |
| m_formatter.immediate32(imm); |
| } |
| } |
| #else |
| void addl_im(int imm, const void* addr) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOpAddr(OP_GROUP1_EvIb, GROUP1_OP_ADD, bitwise_cast<uint32_t>(addr)); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOpAddr(OP_GROUP1_EvIz, GROUP1_OP_ADD, bitwise_cast<uint32_t>(addr)); |
| m_formatter.immediate32(imm); |
| } |
| } |
| #endif |
| |
| void andl_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_AND_EvGv, src, dst); |
| } |
| |
| void andl_mr(int offset, RegisterID base, RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_AND_GvEv, dst, base, offset); |
| } |
| |
| void andl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_AND_GvEv, dst, base, index, scale, offset); |
| } |
| |
| void andw_mr(int offset, RegisterID base, RegisterID dst) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| andl_mr(offset, base, dst); |
| } |
| |
| void andw_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| andl_mr(offset, base, index, scale, dst); |
| } |
| |
| void andl_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp(OP_AND_EvGv, src, base, offset); |
| } |
| |
| void andl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp(OP_AND_EvGv, src, base, index, scale, offset); |
| } |
| |
| void andw_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| andl_rm(src, offset, base); |
| } |
| |
| void andw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| andl_rm(src, offset, base, index, scale); |
| } |
| |
| void andb_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp(OP_AND_EvGb, src, base, offset); |
| } |
| |
| void andb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp(OP_AND_EvGb, src, base, index, scale, offset); |
| } |
| |
| void andl_ir(int imm, RegisterID dst) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, dst); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, dst); |
| m_formatter.immediate32(imm); |
| } |
| } |
| |
| void andl_im(int imm, int offset, RegisterID base) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, base, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, base, offset); |
| m_formatter.immediate32(imm); |
| } |
| } |
| |
| void andl_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, base, index, scale, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, base, index, scale, offset); |
| m_formatter.immediate32(imm); |
| } |
| } |
| |
| void andw_im(int imm, int offset, RegisterID base) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, base, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, base, offset); |
| m_formatter.immediate16(imm); |
| } |
| } |
| |
| void andw_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, base, index, scale, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, base, index, scale, offset); |
| m_formatter.immediate16(imm); |
| } |
| } |
| |
| void andb_im(int imm, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_AND, base, offset); |
| m_formatter.immediate8(imm); |
| } |
| |
| void andb_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_AND, base, index, scale, offset); |
| m_formatter.immediate8(imm); |
| } |
| |
| #if CPU(X86_64) |
| void andq_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_AND_EvGv, src, dst); |
| } |
| |
| void andq_ir(int imm, RegisterID dst) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_AND, dst); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_AND, dst); |
| m_formatter.immediate32(imm); |
| } |
| } |
| |
| void andq_mr(int offset, RegisterID base, RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_AND_GvEv, dst, base, offset); |
| } |
| |
| void andq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_AND_GvEv, dst, base, index, scale, offset); |
| } |
| |
| void andq_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp64(OP_AND_EvGv, src, base, offset); |
| } |
| |
| void andq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp64(OP_AND_EvGv, src, base, index, scale, offset); |
| } |
| |
| void andq_im(int imm, int offset, RegisterID base) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_AND, base, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_AND, base, offset); |
| m_formatter.immediate32(imm); |
| } |
| } |
| |
| void andq_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_AND, base, index, scale, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_AND, base, index, scale, offset); |
| m_formatter.immediate32(imm); |
| } |
| } |
| #else |
| void andl_im(int imm, const void* addr) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOpAddr(OP_GROUP1_EvIb, GROUP1_OP_AND, bitwise_cast<uint32_t>(addr)); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOpAddr(OP_GROUP1_EvIz, GROUP1_OP_AND, bitwise_cast<uint32_t>(addr)); |
| m_formatter.immediate32(imm); |
| } |
| } |
| #endif |
| |
| void dec_r(RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP1_OP_OR, dst); |
| } |
| |
| #if CPU(X86_64) |
| void decq_r(RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_GROUP5_Ev, GROUP1_OP_OR, dst); |
| } |
| #endif // CPU(X86_64) |
| |
| // Only used for testing purposes. |
| void illegalInstruction() |
| { |
| m_formatter.twoByteOp(OP2_UD2); |
| } |
| |
| void inc_r(RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP1_OP_ADD, dst); |
| } |
| |
| #if CPU(X86_64) |
| void incq_r(RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_GROUP5_Ev, GROUP1_OP_ADD, dst); |
| } |
| |
| void incq_m(int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp64(OP_GROUP5_Ev, GROUP1_OP_ADD, base, offset); |
| } |
| |
| void incq_m(int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp64(OP_GROUP5_Ev, GROUP1_OP_ADD, base, index, scale, offset); |
| } |
| #endif // CPU(X86_64) |
| |
| void negl_r(RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NEG, dst); |
| } |
| |
| #if CPU(X86_64) |
| void negq_r(RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_NEG, dst); |
| } |
| |
| void negq_m(int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_NEG, base, offset); |
| } |
| |
| void negq_m(int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_NEG, base, index, scale, offset); |
| } |
| #endif |
| |
| void negl_m(int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NEG, base, offset); |
| } |
| |
| void negl_m(int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NEG, base, index, scale, offset); |
| } |
| |
| void negw_m(int offset, RegisterID base) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| negl_m(offset, base); |
| } |
| |
| void negw_m(int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| negl_m(offset, base, index, scale); |
| } |
| |
| void negb_m(int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp(OP_GROUP3_Eb, GROUP3_OP_NEG, base, offset); |
| } |
| |
| void negb_m(int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp(OP_GROUP3_Eb, GROUP3_OP_NEG, base, index, scale, offset); |
| } |
| |
| void notl_r(RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NOT, dst); |
| } |
| |
| void notl_m(int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NOT, base, offset); |
| } |
| |
| void notl_m(int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NOT, base, index, scale, offset); |
| } |
| |
| void notw_m(int offset, RegisterID base) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| notl_m(offset, base); |
| } |
| |
| void notw_m(int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| notl_m(offset, base, index, scale); |
| } |
| |
| void notb_m(int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp(OP_GROUP3_Eb, GROUP3_OP_NOT, base, offset); |
| } |
| |
| void notb_m(int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp(OP_GROUP3_Eb, GROUP3_OP_NOT, base, index, scale, offset); |
| } |
| |
| #if CPU(X86_64) |
| void notq_r(RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_NOT, dst); |
| } |
| |
| void notq_m(int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_NOT, base, offset); |
| } |
| |
| void notq_m(int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_NOT, base, index, scale, offset); |
| } |
| #endif |
| |
| void orl_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_OR_EvGv, src, dst); |
| } |
| |
| void orl_mr(int offset, RegisterID base, RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_OR_GvEv, dst, base, offset); |
| } |
| |
| void orl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_OR_GvEv, dst, base, index, scale, offset); |
| } |
| |
| void orl_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp(OP_OR_EvGv, src, base, offset); |
| } |
| |
| void orl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp(OP_OR_EvGv, src, base, index, scale, offset); |
| } |
| |
| void orw_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| orl_rm(src, offset, base); |
| } |
| |
| void orw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| orl_rm(src, offset, base, index, scale); |
| } |
| |
| void orb_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp(OP_OR_EvGb, src, base, offset); |
| } |
| |
| void orb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp(OP_OR_EvGb, src, base, index, scale, offset); |
| } |
| |
| void orl_ir(int imm, RegisterID dst) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, dst); |
| m_formatter.immediate8(imm); |
| } else { |
| if (dst == X86Registers::eax) |
| m_formatter.oneByteOp(OP_OR_EAXIv); |
| else |
| m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, dst); |
| m_formatter.immediate32(imm); |
| } |
| } |
| |
| void orl_im(int imm, int offset, RegisterID base) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, base, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, base, offset); |
| m_formatter.immediate32(imm); |
| } |
| } |
| |
| void orl_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, base, index, scale, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, base, index, scale, offset); |
| m_formatter.immediate32(imm); |
| } |
| } |
| |
| void orw_im(int imm, int offset, RegisterID base) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, base, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, base, offset); |
| m_formatter.immediate16(imm); |
| } |
| } |
| |
| void orw_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, base, index, scale, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, base, index, scale, offset); |
| m_formatter.immediate16(imm); |
| } |
| } |
| |
| void orb_im(int imm, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_OR, base, offset); |
| m_formatter.immediate8(imm); |
| } |
| |
| void orb_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_OR, base, index, scale, offset); |
| m_formatter.immediate8(imm); |
| } |
| |
| #if CPU(X86_64) |
| void orq_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_OR_EvGv, src, dst); |
| } |
| |
| void orq_mr(int offset, RegisterID base, RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_OR_GvEv, dst, base, offset); |
| } |
| |
| void orq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_OR_GvEv, dst, base, index, scale, offset); |
| } |
| |
| void orq_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp64(OP_OR_EvGv, src, base, offset); |
| } |
| |
| void orq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp64(OP_OR_EvGv, src, base, index, scale, offset); |
| } |
| |
| void orq_im(int imm, int offset, RegisterID base) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_OR, base, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_OR, base, offset); |
| m_formatter.immediate32(imm); |
| } |
| } |
| |
| void orq_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_OR, base, index, scale, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_OR, base, index, scale, offset); |
| m_formatter.immediate32(imm); |
| } |
| } |
| |
| void orq_ir(int imm, RegisterID dst) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_OR, dst); |
| m_formatter.immediate8(imm); |
| } else { |
| if (dst == X86Registers::eax) |
| m_formatter.oneByteOp64(OP_OR_EAXIv); |
| else |
| m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_OR, dst); |
| m_formatter.immediate32(imm); |
| } |
| } |
| #else |
| void orl_im(int imm, const void* addr) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOpAddr(OP_GROUP1_EvIb, GROUP1_OP_OR, bitwise_cast<uint32_t>(addr)); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOpAddr(OP_GROUP1_EvIz, GROUP1_OP_OR, bitwise_cast<uint32_t>(addr)); |
| m_formatter.immediate32(imm); |
| } |
| } |
| |
| void orl_rm(RegisterID src, const void* addr) |
| { |
| m_formatter.oneByteOpAddr(OP_OR_EvGv, src, bitwise_cast<uint32_t>(addr)); |
| } |
| #endif |
| |
| void subl_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_SUB_EvGv, src, dst); |
| } |
| |
| void subl_mr(int offset, RegisterID base, RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_SUB_GvEv, dst, base, offset); |
| } |
| |
| void subl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_SUB_GvEv, dst, base, index, scale, offset); |
| } |
| |
| void subl_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp(OP_SUB_EvGv, src, base, offset); |
| } |
| |
| void subl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp(OP_SUB_EvGv, src, base, index, scale, offset); |
| } |
| |
| void subw_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| m_formatter.oneByteOp(OP_SUB_EvGv, src, base, offset); |
| } |
| |
| void subw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| m_formatter.oneByteOp(OP_SUB_EvGv, src, base, index, scale, offset); |
| } |
| |
| void subb_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp(OP_SUB_EvGb, src, base, offset); |
| } |
| |
| void subb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp(OP_SUB_EvGb, src, base, index, scale, offset); |
| } |
| |
| void subl_ir(int imm, RegisterID dst) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, dst); |
| m_formatter.immediate8(imm); |
| } else { |
| if (dst == X86Registers::eax) |
| m_formatter.oneByteOp(OP_SUB_EAXIv); |
| else |
| m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, dst); |
| m_formatter.immediate32(imm); |
| } |
| } |
| |
| void subl_im(int imm, int offset, RegisterID base) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, offset); |
| m_formatter.immediate32(imm); |
| } |
| } |
| |
| void subl_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, index, scale, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, index, scale, offset); |
| m_formatter.immediate32(imm); |
| } |
| } |
| |
| void subw_im(int imm, int offset, RegisterID base) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, offset); |
| m_formatter.immediate16(imm); |
| } |
| } |
| |
| void subw_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, index, scale, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, index, scale, offset); |
| m_formatter.immediate16(imm); |
| } |
| } |
| |
| void subb_im(int imm, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_SUB, base, offset); |
| m_formatter.immediate8(imm); |
| } |
| |
| void subb_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_SUB, base, index, scale, offset); |
| m_formatter.immediate8(imm); |
| } |
| |
| #if CPU(X86_64) |
| void subq_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_SUB_EvGv, src, dst); |
| } |
| |
| void subq_mr(int offset, RegisterID base, RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_SUB_GvEv, dst, base, offset); |
| } |
| |
| void subq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_SUB_GvEv, dst, base, index, scale, offset); |
| } |
| |
| void subq_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp64(OP_SUB_EvGv, src, base, offset); |
| } |
| |
| void subq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp64(OP_SUB_EvGv, src, base, index, scale, offset); |
| } |
| |
| void subq_ir(int imm, RegisterID dst) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_SUB, dst); |
| m_formatter.immediate8(imm); |
| } else { |
| if (dst == X86Registers::eax) |
| m_formatter.oneByteOp64(OP_SUB_EAXIv); |
| else |
| m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_SUB, dst); |
| m_formatter.immediate32(imm); |
| } |
| } |
| |
| void subq_im(int imm, int offset, RegisterID base) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, offset); |
| m_formatter.immediate32(imm); |
| } |
| } |
| |
| void subq_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, index, scale, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, index, scale, offset); |
| m_formatter.immediate32(imm); |
| } |
| } |
| #else |
| void subl_im(int imm, const void* addr) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOpAddr(OP_GROUP1_EvIb, GROUP1_OP_SUB, bitwise_cast<uint32_t>(addr)); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOpAddr(OP_GROUP1_EvIz, GROUP1_OP_SUB, bitwise_cast<uint32_t>(addr)); |
| m_formatter.immediate32(imm); |
| } |
| } |
| #endif |
| |
| void xorl_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_XOR_EvGv, src, dst); |
| } |
| |
| void xorl_mr(int offset, RegisterID base, RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_XOR_GvEv, dst, base, offset); |
| } |
| |
| void xorl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_XOR_GvEv, dst, base, index, scale, offset); |
| } |
| |
| void xorl_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp(OP_XOR_EvGv, src, base, offset); |
| } |
| |
| void xorl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp(OP_XOR_EvGv, src, base, index, scale, offset); |
| } |
| |
| void xorl_im(int imm, int offset, RegisterID base) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, offset); |
| m_formatter.immediate32(imm); |
| } |
| } |
| |
| void xorl_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, index, scale, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, index, scale, offset); |
| m_formatter.immediate32(imm); |
| } |
| } |
| |
| void xorw_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| xorl_rm(src, offset, base); |
| } |
| |
| void xorw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| xorl_rm(src, offset, base, index, scale); |
| } |
| |
| void xorw_im(int imm, int offset, RegisterID base) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, offset); |
| m_formatter.immediate16(imm); |
| } |
| } |
| |
| void xorw_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, index, scale, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, index, scale, offset); |
| m_formatter.immediate16(imm); |
| } |
| } |
| |
| void xorb_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp(OP_XOR_EvGb, src, base, offset); |
| } |
| |
| void xorb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp(OP_XOR_EvGb, src, base, index, scale, offset); |
| } |
| |
| void xorb_im(int imm, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_XOR, base, offset); |
| m_formatter.immediate8(imm); |
| } |
| |
| void xorb_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_XOR, base, index, scale, offset); |
| m_formatter.immediate8(imm); |
| } |
| |
| void xorl_ir(int imm, RegisterID dst) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_XOR, dst); |
| m_formatter.immediate8(imm); |
| } else { |
| if (dst == X86Registers::eax) |
| m_formatter.oneByteOp(OP_XOR_EAXIv); |
| else |
| m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_XOR, dst); |
| m_formatter.immediate32(imm); |
| } |
| } |
| |
| #if CPU(X86_64) |
| void xorq_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_XOR_EvGv, src, dst); |
| } |
| |
| void xorq_ir(int imm, RegisterID dst) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_XOR, dst); |
| m_formatter.immediate8(imm); |
| } else { |
| if (dst == X86Registers::eax) |
| m_formatter.oneByteOp64(OP_XOR_EAXIv); |
| else |
| m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_XOR, dst); |
| m_formatter.immediate32(imm); |
| } |
| } |
| |
| void xorq_im(int imm, int offset, RegisterID base) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, offset); |
| m_formatter.immediate32(imm); |
| } |
| } |
| |
| void xorq_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, index, scale, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, index, scale, offset); |
| m_formatter.immediate32(imm); |
| } |
| } |
| |
| void xorq_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp64(OP_XOR_EvGv, src, base, offset); |
| } |
| |
| void xorq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp64(OP_XOR_EvGv, src, base, index, scale, offset); |
| } |
| |
| void xorq_mr(int offset, RegisterID base, RegisterID dest) |
| { |
| m_formatter.oneByteOp64(OP_XOR_GvEv, dest, base, offset); |
| } |
| |
| void xorq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dest) |
| { |
| m_formatter.oneByteOp64(OP_XOR_GvEv, dest, base, index, scale, offset); |
| } |
| #endif |
| |
| void lzcnt_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp(OP2_LZCNT, dst, src); |
| } |
| |
| void lzcnt_mr(int offset, RegisterID base, RegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp(OP2_LZCNT, dst, base, offset); |
| } |
| |
| #if CPU(X86_64) |
| void lzcntq_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp64(OP2_LZCNT, dst, src); |
| } |
| |
| void lzcntq_mr(int offset, RegisterID base, RegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp64(OP2_LZCNT, dst, base, offset); |
| } |
| #endif |
| |
| void bsr_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.twoByteOp(OP2_BSR, dst, src); |
| } |
| |
| void bsr_mr(int offset, RegisterID base, RegisterID dst) |
| { |
| m_formatter.twoByteOp(OP2_BSR, dst, base, offset); |
| } |
| |
| #if CPU(X86_64) |
| void bsrq_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.twoByteOp64(OP2_BSR, dst, src); |
| } |
| |
| void bsrq_mr(int offset, RegisterID base, RegisterID dst) |
| { |
| m_formatter.twoByteOp64(OP2_BSR, dst, base, offset); |
| } |
| #endif |
| |
| void bswapl_r(RegisterID dst) |
| { |
| m_formatter.twoByteOp(OP2_BSWAP, dst); |
| } |
| |
| #if CPU(X86_64) |
| void bswapq_r(RegisterID dst) |
| { |
| m_formatter.twoByteOp64(OP2_BSWAP, dst); |
| } |
| #endif |
| |
| void tzcnt_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp(OP2_TZCNT, dst, src); |
| } |
| |
| #if CPU(X86_64) |
| void tzcntq_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp64(OP2_TZCNT, dst, src); |
| } |
| #endif |
| |
| void bsf_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.twoByteOp(OP2_BSF, dst, src); |
| } |
| |
| #if CPU(X86_64) |
| void bsfq_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.twoByteOp64(OP2_BSF, dst, src); |
| } |
| #endif |
| |
| void popcnt_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp(OP2_POPCNT, dst, src); |
| } |
| |
| void popcnt_mr(int offset, RegisterID base, RegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp(OP2_POPCNT, dst, base, offset); |
| } |
| |
| #if CPU(X86_64) |
| void popcntq_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp64(OP2_POPCNT, dst, src); |
| } |
| |
| void popcntq_mr(int offset, RegisterID base, RegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp64(OP2_POPCNT, dst, base, offset); |
| } |
| #endif |
| |
| private: |
| template<GroupOpcodeID op> |
| void shiftInstruction32(int imm, RegisterID dst) |
| { |
| if (imm == 1) |
| m_formatter.oneByteOp(OP_GROUP2_Ev1, op, dst); |
| else { |
| m_formatter.oneByteOp(OP_GROUP2_EvIb, op, dst); |
| m_formatter.immediate8(imm); |
| } |
| } |
| |
| template<GroupOpcodeID op> |
| void shiftInstruction16(int imm, RegisterID dst) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| if (imm == 1) |
| m_formatter.oneByteOp(OP_GROUP2_Ev1, op, dst); |
| else { |
| m_formatter.oneByteOp(OP_GROUP2_EvIb, op, dst); |
| m_formatter.immediate8(imm); |
| } |
| } |
| public: |
| |
| void sarl_i8r(int imm, RegisterID dst) |
| { |
| shiftInstruction32<GROUP2_OP_SAR>(imm, dst); |
| } |
| |
| void sarl_CLr(RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_SAR, dst); |
| } |
| |
| void shrl_i8r(int imm, RegisterID dst) |
| { |
| shiftInstruction32<GROUP2_OP_SHR>(imm, dst); |
| } |
| |
| void shrl_CLr(RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_SHR, dst); |
| } |
| |
| void shll_i8r(int imm, RegisterID dst) |
| { |
| shiftInstruction32<GROUP2_OP_SHL>(imm, dst); |
| } |
| |
| void shll_CLr(RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_SHL, dst); |
| } |
| |
| void rorl_i8r(int imm, RegisterID dst) |
| { |
| shiftInstruction32<GROUP2_OP_ROR>(imm, dst); |
| } |
| |
| void rorl_CLr(RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_ROR, dst); |
| } |
| |
| void roll_i8r(int imm, RegisterID dst) |
| { |
| shiftInstruction32<GROUP2_OP_ROL>(imm, dst); |
| } |
| |
| void roll_CLr(RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_ROL, dst); |
| } |
| |
| void rolw_i8r(int imm, RegisterID dst) |
| { |
| shiftInstruction16<GROUP2_OP_ROL>(imm, dst); |
| } |
| |
| #if CPU(X86_64) |
| private: |
| template<GroupOpcodeID op> |
| void shiftInstruction64(int imm, RegisterID dst) |
| { |
| if (imm == 1) |
| m_formatter.oneByteOp64(OP_GROUP2_Ev1, op, dst); |
| else { |
| m_formatter.oneByteOp64(OP_GROUP2_EvIb, op, dst); |
| m_formatter.immediate8(imm); |
| } |
| } |
| public: |
| void sarq_CLr(RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_GROUP2_EvCL, GROUP2_OP_SAR, dst); |
| } |
| |
| void sarq_i8r(int imm, RegisterID dst) |
| { |
| shiftInstruction64<GROUP2_OP_SAR>(imm, dst); |
| } |
| |
| void shrq_i8r(int imm, RegisterID dst) |
| { |
| shiftInstruction64<GROUP2_OP_SHR>(imm, dst); |
| } |
| |
| void shrq_CLr(RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_GROUP2_EvCL, GROUP2_OP_SHR, dst); |
| } |
| |
| void shlq_i8r(int imm, RegisterID dst) |
| { |
| shiftInstruction64<GROUP2_OP_SHL>(imm, dst); |
| } |
| |
| void shlq_CLr(RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_GROUP2_EvCL, GROUP2_OP_SHL, dst); |
| } |
| |
| void rorq_i8r(int imm, RegisterID dst) |
| { |
| shiftInstruction64<GROUP2_OP_ROR>(imm, dst); |
| } |
| |
| void rorq_CLr(RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_GROUP2_EvCL, GROUP2_OP_ROR, dst); |
| } |
| |
| void rolq_i8r(int imm, RegisterID dst) |
| { |
| shiftInstruction64<GROUP2_OP_ROL>(imm, dst); |
| } |
| |
| void rolq_CLr(RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_GROUP2_EvCL, GROUP2_OP_ROL, dst); |
| } |
| #endif // CPU(X86_64) |
| |
| void imull_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.twoByteOp(OP2_IMUL_GvEv, dst, src); |
| } |
| |
| #if CPU(X86_64) |
| void imulq_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.twoByteOp64(OP2_IMUL_GvEv, dst, src); |
| } |
| #endif // CPU(X86_64) |
| |
| void imull_mr(int offset, RegisterID base, RegisterID dst) |
| { |
| m_formatter.twoByteOp(OP2_IMUL_GvEv, dst, base, offset); |
| } |
| |
| void imull_i32r(RegisterID src, int32_t value, RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_IMUL_GvEvIz, dst, src); |
| m_formatter.immediate32(value); |
| } |
| |
| void divl_r(RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_DIV, dst); |
| } |
| |
| void idivl_r(RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_IDIV, dst); |
| } |
| |
| #if CPU(X86_64) |
| void divq_r(RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_DIV, dst); |
| } |
| |
| void idivq_r(RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_IDIV, dst); |
| } |
| #endif // CPU(X86_64) |
| |
| // Comparisons: |
| |
| void cmpl_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_CMP_EvGv, src, dst); |
| } |
| |
| void cmpl_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp(OP_CMP_EvGv, src, base, offset); |
| } |
| |
| void cmpl_mr(int offset, RegisterID base, RegisterID src) |
| { |
| m_formatter.oneByteOp(OP_CMP_GvEv, src, base, offset); |
| } |
| |
| void cmpl_ir(int imm, RegisterID dst) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, dst); |
| m_formatter.immediate8(imm); |
| } else { |
| if (dst == X86Registers::eax) |
| m_formatter.oneByteOp(OP_CMP_EAXIv); |
| else |
| m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, dst); |
| m_formatter.immediate32(imm); |
| } |
| } |
| |
| void cmpl_ir_force32(int imm, RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, dst); |
| m_formatter.immediate32(imm); |
| } |
| |
| void cmpl_im(int imm, int offset, RegisterID base) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, offset); |
| m_formatter.immediate32(imm); |
| } |
| } |
| |
| void cmpb_im(int imm, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_CMP, base, offset); |
| m_formatter.immediate8(imm); |
| } |
| |
| void cmpb_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_CMP, base, index, scale, offset); |
| m_formatter.immediate8(imm); |
| } |
| |
| #if CPU(X86) |
| void cmpb_im(int imm, const void* addr) |
| { |
| m_formatter.oneByteOpAddr(OP_GROUP1_EbIb, GROUP1_OP_CMP, bitwise_cast<uint32_t>(addr)); |
| m_formatter.immediate8(imm); |
| } |
| #endif |
| |
| void cmpl_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, index, scale, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, index, scale, offset); |
| m_formatter.immediate32(imm); |
| } |
| } |
| |
| void cmpl_im_force32(int imm, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, offset); |
| m_formatter.immediate32(imm); |
| } |
| |
| #if CPU(X86_64) |
| void cmpq_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_CMP_EvGv, src, dst); |
| } |
| |
| void cmpq_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp64(OP_CMP_EvGv, src, base, offset); |
| } |
| |
| void cmpq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp64(OP_CMP_EvGv, src, base, index, scale, offset); |
| } |
| |
| void cmpq_mr(int offset, RegisterID base, RegisterID src) |
| { |
| m_formatter.oneByteOp64(OP_CMP_GvEv, src, base, offset); |
| } |
| |
| void cmpq_ir(int imm, RegisterID dst) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_CMP, dst); |
| m_formatter.immediate8(imm); |
| } else { |
| if (dst == X86Registers::eax) |
| m_formatter.oneByteOp64(OP_CMP_EAXIv); |
| else |
| m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_CMP, dst); |
| m_formatter.immediate32(imm); |
| } |
| } |
| |
| void cmpq_im(int imm, int offset, RegisterID base) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, offset); |
| m_formatter.immediate32(imm); |
| } |
| } |
| |
| void cmpq_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, index, scale, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, index, scale, offset); |
| m_formatter.immediate32(imm); |
| } |
| } |
| #else |
| void cmpl_rm(RegisterID reg, const void* addr) |
| { |
| m_formatter.oneByteOpAddr(OP_CMP_EvGv, reg, bitwise_cast<uint32_t>(addr)); |
| } |
| |
| void cmpl_im(int imm, const void* addr) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.oneByteOpAddr(OP_GROUP1_EvIb, GROUP1_OP_CMP, bitwise_cast<uint32_t>(addr)); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.oneByteOpAddr(OP_GROUP1_EvIz, GROUP1_OP_CMP, bitwise_cast<uint32_t>(addr)); |
| m_formatter.immediate32(imm); |
| } |
| } |
| #endif |
| |
| void cmpw_ir(int imm, RegisterID dst) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, dst); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, dst); |
| m_formatter.immediate16(imm); |
| } |
| } |
| |
| void cmpw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| m_formatter.oneByteOp(OP_CMP_EvGv, src, base, index, scale, offset); |
| } |
| |
| void cmpw_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| if (CAN_SIGN_EXTEND_8_32(imm)) { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, index, scale, offset); |
| m_formatter.immediate8(imm); |
| } else { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, index, scale, offset); |
| m_formatter.immediate16(imm); |
| } |
| } |
| |
| void testl_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_TEST_EvGv, src, dst); |
| } |
| |
| void testl_i32r(int imm, RegisterID dst) |
| { |
| if (dst == X86Registers::eax) |
| m_formatter.oneByteOp(OP_TEST_EAXIv); |
| else |
| m_formatter.oneByteOp(OP_GROUP3_EvIz, GROUP3_OP_TEST, dst); |
| m_formatter.immediate32(imm); |
| } |
| |
| void testl_i32m(int imm, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, offset); |
| m_formatter.immediate32(imm); |
| } |
| |
| void testb_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.oneByteOp8(OP_TEST_EbGb, src, dst); |
| } |
| |
| void testb_im(int imm, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp(OP_GROUP3_EbIb, GROUP3_OP_TEST, base, offset); |
| m_formatter.immediate8(imm); |
| } |
| |
| void testb_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp(OP_GROUP3_EbIb, GROUP3_OP_TEST, base, index, scale, offset); |
| m_formatter.immediate8(imm); |
| } |
| |
| #if CPU(X86) |
| void testb_im(int imm, const void* addr) |
| { |
| m_formatter.oneByteOpAddr(OP_GROUP3_EbIb, GROUP3_OP_TEST, bitwise_cast<uint32_t>(addr)); |
| m_formatter.immediate8(imm); |
| } |
| #endif |
| |
| void testl_i32m(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, index, scale, offset); |
| m_formatter.immediate32(imm); |
| } |
| |
| #if CPU(X86_64) |
| void testq_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_TEST_EvGv, src, dst); |
| } |
| |
| void testq_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp64(OP_TEST_EvGv, src, base, offset); |
| } |
| |
| void testq_i32r(int imm, RegisterID dst) |
| { |
| if (dst == X86Registers::eax) |
| m_formatter.oneByteOp64(OP_TEST_EAXIv); |
| else |
| m_formatter.oneByteOp64(OP_GROUP3_EvIz, GROUP3_OP_TEST, dst); |
| m_formatter.immediate32(imm); |
| } |
| |
| void testq_i32m(int imm, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp64(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, offset); |
| m_formatter.immediate32(imm); |
| } |
| |
| void testq_i32m(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp64(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, index, scale, offset); |
| m_formatter.immediate32(imm); |
| } |
| #endif |
| |
| void testw_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| m_formatter.oneByteOp(OP_TEST_EvGv, src, dst); |
| } |
| |
| void testb_i8r(int imm, RegisterID dst) |
| { |
| if (dst == X86Registers::eax) |
| m_formatter.oneByteOp(OP_TEST_ALIb); |
| else |
| m_formatter.oneByteOp8(OP_GROUP3_EbIb, GROUP3_OP_TEST, dst); |
| m_formatter.immediate8(imm); |
| } |
| |
| void bt_ir(int bitOffset, RegisterID testValue) |
| { |
| ASSERT(-128 <= bitOffset && bitOffset < 128); |
| m_formatter.twoByteOp(OP2_GROUP_BT_EvIb, GROUP_BT_OP_BT, testValue); |
| m_formatter.immediate8(bitOffset); |
| } |
| |
| void bt_im(int bitOffset, int offset, RegisterID base) |
| { |
| ASSERT(-128 <= bitOffset && bitOffset < 128); |
| m_formatter.twoByteOp(OP2_GROUP_BT_EvIb, GROUP_BT_OP_BT, base, offset); |
| m_formatter.immediate8(bitOffset); |
| } |
| |
| void bt_ir(RegisterID bitOffset, RegisterID testValue) |
| { |
| m_formatter.twoByteOp(OP2_BT_EvEv, bitOffset, testValue); |
| } |
| |
| void bt_im(RegisterID bitOffset, int offset, RegisterID base) |
| { |
| m_formatter.twoByteOp(OP2_BT_EvEv, bitOffset, base, offset); |
| } |
| |
| #if CPU(X86_64) |
| void btw_ir(int bitOffset, RegisterID testValue) |
| { |
| ASSERT(-128 <= bitOffset && bitOffset < 128); |
| m_formatter.twoByteOp64(OP2_GROUP_BT_EvIb, GROUP_BT_OP_BT, testValue); |
| m_formatter.immediate8(bitOffset); |
| } |
| |
| void btw_im(int bitOffset, int offset, RegisterID base) |
| { |
| ASSERT(-128 <= bitOffset && bitOffset < 128); |
| m_formatter.twoByteOp64(OP2_GROUP_BT_EvIb, GROUP_BT_OP_BT, base, offset); |
| m_formatter.immediate8(bitOffset); |
| } |
| |
| void btw_ir(RegisterID bitOffset, RegisterID testValue) |
| { |
| m_formatter.twoByteOp64(OP2_BT_EvEv, bitOffset, testValue); |
| } |
| |
| void btw_im(RegisterID bitOffset, int offset, RegisterID base) |
| { |
| m_formatter.twoByteOp64(OP2_BT_EvEv, bitOffset, base, offset); |
| } |
| #endif |
| |
| void setCC_r(Condition cond, RegisterID dst) |
| { |
| m_formatter.twoByteOp8(setccOpcode(cond), (GroupOpcodeID)0, dst); |
| } |
| |
| void sete_r(RegisterID dst) |
| { |
| m_formatter.twoByteOp8(setccOpcode(ConditionE), (GroupOpcodeID)0, dst); |
| } |
| |
| void setz_r(RegisterID dst) |
| { |
| sete_r(dst); |
| } |
| |
| void setne_r(RegisterID dst) |
| { |
| m_formatter.twoByteOp8(setccOpcode(ConditionNE), (GroupOpcodeID)0, dst); |
| } |
| |
| void setnz_r(RegisterID dst) |
| { |
| setne_r(dst); |
| } |
| |
| void setnp_r(RegisterID dst) |
| { |
| m_formatter.twoByteOp8(setccOpcode(ConditionNP), (GroupOpcodeID)0, dst); |
| } |
| |
| void setp_r(RegisterID dst) |
| { |
| m_formatter.twoByteOp8(setccOpcode(ConditionP), (GroupOpcodeID)0, dst); |
| } |
| |
| // Various move ops: |
| |
| void cdq() |
| { |
| m_formatter.oneByteOp(OP_CDQ); |
| } |
| |
| #if CPU(X86_64) |
| void cqo() |
| { |
| m_formatter.oneByteOp64(OP_CDQ); |
| } |
| #endif |
| |
| void fstps(int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp(OP_ESCAPE_D9, ESCAPE_D9_FSTP_singleReal, base, offset); |
| } |
| |
| void fstpl(int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp(OP_ESCAPE_DD, ESCAPE_DD_FSTP_doubleReal, base, offset); |
| } |
| |
| void xchgl_rr(RegisterID src, RegisterID dst) |
| { |
| if (src == X86Registers::eax) |
| m_formatter.oneByteOp(OP_XCHG_EAX, dst); |
| else if (dst == X86Registers::eax) |
| m_formatter.oneByteOp(OP_XCHG_EAX, src); |
| else |
| m_formatter.oneByteOp(OP_XCHG_EvGv, src, dst); |
| } |
| |
| void xchgb_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp8(OP_XCHG_EvGb, src, base, offset); |
| } |
| |
| void xchgb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp8(OP_XCHG_EvGb, src, base, index, scale, offset); |
| } |
| |
| void xchgw_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| m_formatter.oneByteOp(OP_XCHG_EvGv, src, base, offset); |
| } |
| |
| void xchgw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| m_formatter.oneByteOp(OP_XCHG_EvGv, src, base, index, scale, offset); |
| } |
| |
| void xchgl_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp(OP_XCHG_EvGv, src, base, offset); |
| } |
| |
| void xchgl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp(OP_XCHG_EvGv, src, base, index, scale, offset); |
| } |
| |
| #if CPU(X86_64) |
| void xchgq_rr(RegisterID src, RegisterID dst) |
| { |
| if (src == X86Registers::eax) |
| m_formatter.oneByteOp64(OP_XCHG_EAX, dst); |
| else if (dst == X86Registers::eax) |
| m_formatter.oneByteOp64(OP_XCHG_EAX, src); |
| else |
| m_formatter.oneByteOp64(OP_XCHG_EvGv, src, dst); |
| } |
| |
| void xchgq_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp64(OP_XCHG_EvGv, src, base, offset); |
| } |
| |
| void xchgq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp64(OP_XCHG_EvGv, src, base, index, scale, offset); |
| } |
| #endif |
| |
| void movl_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_MOV_EvGv, src, dst); |
| } |
| |
| void movl_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp(OP_MOV_EvGv, src, base, offset); |
| } |
| |
| void movl_rm_disp32(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp_disp32(OP_MOV_EvGv, src, base, offset); |
| } |
| |
| void movl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp(OP_MOV_EvGv, src, base, index, scale, offset); |
| } |
| |
| void movl_mEAX(const void* addr) |
| { |
| m_formatter.oneByteOp(OP_MOV_EAXOv); |
| #if CPU(X86_64) |
| m_formatter.immediate64(reinterpret_cast<int64_t>(addr)); |
| #else |
| m_formatter.immediate32(reinterpret_cast<int>(addr)); |
| #endif |
| } |
| |
| void movl_mr(int offset, RegisterID base, RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_MOV_GvEv, dst, base, offset); |
| } |
| |
| void movl_mr_disp32(int offset, RegisterID base, RegisterID dst) |
| { |
| m_formatter.oneByteOp_disp32(OP_MOV_GvEv, dst, base, offset); |
| } |
| |
| void movl_mr_disp8(int offset, RegisterID base, RegisterID dst) |
| { |
| m_formatter.oneByteOp_disp8(OP_MOV_GvEv, dst, base, offset); |
| } |
| |
| void movl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_MOV_GvEv, dst, base, index, scale, offset); |
| } |
| |
| void movl_i32r(int imm, RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_MOV_EAXIv, dst); |
| m_formatter.immediate32(imm); |
| } |
| |
| void movl_i32m(int imm, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp(OP_GROUP11_EvIz, GROUP11_MOV, base, offset); |
| m_formatter.immediate32(imm); |
| } |
| |
| void movl_i32m(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp(OP_GROUP11_EvIz, GROUP11_MOV, base, index, scale, offset); |
| m_formatter.immediate32(imm); |
| } |
| |
| #if !CPU(X86_64) |
| void movb_i8m(int imm, const void* addr) |
| { |
| ASSERT(-128 <= imm && imm < 128); |
| m_formatter.oneByteOpAddr(OP_GROUP11_EvIb, GROUP11_MOV, bitwise_cast<uint32_t>(addr)); |
| m_formatter.immediate8(imm); |
| } |
| #endif |
| |
| void movb_i8m(int imm, int offset, RegisterID base) |
| { |
| ASSERT(-128 <= imm && imm < 128); |
| m_formatter.oneByteOp(OP_GROUP11_EvIb, GROUP11_MOV, base, offset); |
| m_formatter.immediate8(imm); |
| } |
| |
| void movb_i8m(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| ASSERT(-128 <= imm && imm < 128); |
| m_formatter.oneByteOp(OP_GROUP11_EvIb, GROUP11_MOV, base, index, scale, offset); |
| m_formatter.immediate8(imm); |
| } |
| |
| #if !CPU(X86_64) |
| void movb_rm(RegisterID src, const void* addr) |
| { |
| m_formatter.oneByteOpAddr(OP_MOV_EbGb, src, bitwise_cast<uint32_t>(addr)); |
| } |
| #endif |
| |
| void movb_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp8(OP_MOV_EbGb, src, base, offset); |
| } |
| |
| void movb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp8(OP_MOV_EbGb, src, base, index, scale, offset); |
| } |
| |
| void movw_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| |
| // FIXME: We often use oneByteOp8 for 16-bit operations. It's not clear that this is |
| // necessary. https://bugs.webkit.org/show_bug.cgi?id=153433 |
| m_formatter.oneByteOp8(OP_MOV_EvGv, src, base, offset); |
| } |
| |
| void movw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| m_formatter.oneByteOp8(OP_MOV_EvGv, src, base, index, scale, offset); |
| } |
| |
| void movw_im(int imm, int offset, RegisterID base) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| m_formatter.oneByteOp(OP_GROUP11_EvIz, GROUP11_MOV, base, offset); |
| m_formatter.immediate16(imm); |
| } |
| |
| void movw_im(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| m_formatter.oneByteOp(OP_GROUP11_EvIz, GROUP11_MOV, base, index, scale, offset); |
| m_formatter.immediate16(imm); |
| } |
| |
| void movl_EAXm(const void* addr) |
| { |
| m_formatter.oneByteOp(OP_MOV_OvEAX); |
| #if CPU(X86_64) |
| m_formatter.immediate64(reinterpret_cast<int64_t>(addr)); |
| #else |
| m_formatter.immediate32(reinterpret_cast<int>(addr)); |
| #endif |
| } |
| |
| void movl_mr(uint32_t addr, RegisterID dst) |
| { |
| m_formatter.oneByteOpAddr(OP_MOV_GvEv, dst, addr); |
| } |
| |
| void movl_rm(RegisterID src, uint32_t addr) |
| { |
| m_formatter.oneByteOpAddr(OP_MOV_EvGv, src, addr); |
| } |
| |
| #if CPU(X86_64) |
| void movq_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_MOV_EvGv, src, dst); |
| } |
| |
| void movq_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp64(OP_MOV_EvGv, src, base, offset); |
| } |
| |
| void movq_rm_disp32(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp64_disp32(OP_MOV_EvGv, src, base, offset); |
| } |
| |
| void movq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp64(OP_MOV_EvGv, src, base, index, scale, offset); |
| } |
| |
| void movq_rm(RegisterID src, int offset) |
| { |
| m_formatter.oneByteOp64Addr(OP_MOV_EvGv, src, offset); |
| } |
| |
| void movq_mEAX(const void* addr) |
| { |
| m_formatter.oneByteOp64(OP_MOV_EAXOv); |
| m_formatter.immediate64(reinterpret_cast<int64_t>(addr)); |
| } |
| |
| void movq_EAXm(const void* addr) |
| { |
| m_formatter.oneByteOp64(OP_MOV_OvEAX); |
| m_formatter.immediate64(reinterpret_cast<int64_t>(addr)); |
| } |
| |
| void movq_mr(int offset, RegisterID base, RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_MOV_GvEv, dst, base, offset); |
| } |
| |
| void movq_mr_disp32(int offset, RegisterID base, RegisterID dst) |
| { |
| m_formatter.oneByteOp64_disp32(OP_MOV_GvEv, dst, base, offset); |
| } |
| |
| void movq_mr_disp8(int offset, RegisterID base, RegisterID dst) |
| { |
| m_formatter.oneByteOp64_disp8(OP_MOV_GvEv, dst, base, offset); |
| } |
| |
| void movq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_MOV_GvEv, dst, base, index, scale, offset); |
| } |
| |
| void movq_mr(uint32_t addr, RegisterID dst) |
| { |
| m_formatter.oneByteOp64Addr(OP_MOV_GvEv, dst, addr); |
| } |
| |
| void movq_i32m(int imm, int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp64(OP_GROUP11_EvIz, GROUP11_MOV, base, offset); |
| m_formatter.immediate32(imm); |
| } |
| |
| void movq_i32m(int imm, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp64(OP_GROUP11_EvIz, GROUP11_MOV, base, index, scale, offset); |
| m_formatter.immediate32(imm); |
| } |
| |
| void movq_i64r(int64_t imm, RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_MOV_EAXIv, dst); |
| m_formatter.immediate64(imm); |
| } |
| |
| void mov_i32r(int32_t imm, RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_GROUP11_EvIz, GROUP11_MOV, dst); |
| m_formatter.immediate32(imm); |
| } |
| |
| void movsxd_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_MOVSXD_GvEv, dst, src); |
| } |
| #else |
| void movl_mr(const void* addr, RegisterID dst) |
| { |
| if (dst == X86Registers::eax) |
| movl_mEAX(addr); |
| else |
| m_formatter.oneByteOpAddr(OP_MOV_GvEv, dst, bitwise_cast<uint32_t>(addr)); |
| } |
| |
| void movl_rm(RegisterID src, const void* addr) |
| { |
| if (src == X86Registers::eax) |
| movl_EAXm(addr); |
| else |
| m_formatter.oneByteOpAddr(OP_MOV_EvGv, src, bitwise_cast<uint32_t>(addr)); |
| } |
| |
| void movl_i32m(int imm, const void* addr) |
| { |
| m_formatter.oneByteOpAddr(OP_GROUP11_EvIz, GROUP11_MOV, bitwise_cast<uint32_t>(addr)); |
| m_formatter.immediate32(imm); |
| } |
| #endif |
| |
| void movzwl_mr(int offset, RegisterID base, RegisterID dst) |
| { |
| m_formatter.twoByteOp(OP2_MOVZX_GvEw, dst, base, offset); |
| } |
| |
| void movzwl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| { |
| m_formatter.twoByteOp(OP2_MOVZX_GvEw, dst, base, index, scale, offset); |
| } |
| |
| void movswl_mr(int offset, RegisterID base, RegisterID dst) |
| { |
| m_formatter.twoByteOp(OP2_MOVSX_GvEw, dst, base, offset); |
| } |
| |
| void movswl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| { |
| m_formatter.twoByteOp(OP2_MOVSX_GvEw, dst, base, index, scale, offset); |
| } |
| |
| void movzbl_mr(int offset, RegisterID base, RegisterID dst) |
| { |
| m_formatter.twoByteOp(OP2_MOVZX_GvEb, dst, base, offset); |
| } |
| |
| void movzbl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| { |
| m_formatter.twoByteOp(OP2_MOVZX_GvEb, dst, base, index, scale, offset); |
| } |
| |
| #if !CPU(X86_64) |
| void movzbl_mr(const void* address, RegisterID dst) |
| { |
| m_formatter.twoByteOpAddr(OP2_MOVZX_GvEb, dst, bitwise_cast<uint32_t>(address)); |
| } |
| #endif |
| |
| void movsbl_mr(int offset, RegisterID base, RegisterID dst) |
| { |
| m_formatter.twoByteOp(OP2_MOVSX_GvEb, dst, base, offset); |
| } |
| |
| void movsbl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| { |
| m_formatter.twoByteOp(OP2_MOVSX_GvEb, dst, base, index, scale, offset); |
| } |
| |
| void movzbl_rr(RegisterID src, RegisterID dst) |
| { |
| // In 64-bit, this may cause an unnecessary REX to be planted (if the dst register |
| // is in the range ESP-EDI, and the src would not have required a REX). Unneeded |
| // REX prefixes are defined to be silently ignored by the processor. |
| m_formatter.twoByteOp8(OP2_MOVZX_GvEb, dst, src); |
| } |
| |
| void movsbl_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.twoByteOp8(OP2_MOVSX_GvEb, dst, src); |
| } |
| |
| void movzwl_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.twoByteOp8(OP2_MOVZX_GvEw, dst, src); |
| } |
| |
| void movswl_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.twoByteOp8(OP2_MOVSX_GvEw, dst, src); |
| } |
| |
| void cmovl_rr(Condition cond, RegisterID src, RegisterID dst) |
| { |
| m_formatter.twoByteOp(cmovcc(cond), dst, src); |
| } |
| |
| void cmovl_mr(Condition cond, int offset, RegisterID base, RegisterID dst) |
| { |
| m_formatter.twoByteOp(cmovcc(cond), dst, base, offset); |
| } |
| |
| void cmovl_mr(Condition cond, int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| { |
| m_formatter.twoByteOp(cmovcc(cond), dst, base, index, scale, offset); |
| } |
| |
| void cmovel_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.twoByteOp(cmovcc(ConditionE), dst, src); |
| } |
| |
| void cmovnel_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.twoByteOp(cmovcc(ConditionNE), dst, src); |
| } |
| |
| void cmovpl_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.twoByteOp(cmovcc(ConditionP), dst, src); |
| } |
| |
| void cmovnpl_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.twoByteOp(cmovcc(ConditionNP), dst, src); |
| } |
| |
| #if CPU(X86_64) |
| void cmovq_rr(Condition cond, RegisterID src, RegisterID dst) |
| { |
| m_formatter.twoByteOp64(cmovcc(cond), dst, src); |
| } |
| |
| void cmovq_mr(Condition cond, int offset, RegisterID base, RegisterID dst) |
| { |
| m_formatter.twoByteOp64(cmovcc(cond), dst, base, offset); |
| } |
| |
| void cmovq_mr(Condition cond, int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| { |
| m_formatter.twoByteOp64(cmovcc(cond), dst, base, index, scale, offset); |
| } |
| |
| void cmoveq_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.twoByteOp64(cmovcc(ConditionE), dst, src); |
| } |
| |
| void cmovneq_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.twoByteOp64(cmovcc(ConditionNE), dst, src); |
| } |
| |
| void cmovpq_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.twoByteOp64(cmovcc(ConditionP), dst, src); |
| } |
| |
| void cmovnpq_rr(RegisterID src, RegisterID dst) |
| { |
| m_formatter.twoByteOp64(cmovcc(ConditionNP), dst, src); |
| } |
| #else |
| void cmovl_mr(Condition cond, const void* addr, RegisterID dst) |
| { |
| m_formatter.twoByteOpAddr(cmovcc(cond), dst, bitwise_cast<uint32_t>(addr)); |
| } |
| #endif |
| |
| void leal_mr(int offset, RegisterID base, RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_LEA, dst, base, offset); |
| } |
| |
| void leal_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_LEA, dst, base, index, scale, offset); |
| } |
| |
| #if CPU(X86_64) |
| void leaq_mr(int offset, RegisterID base, RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_LEA, dst, base, offset); |
| } |
| |
| void leaq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst) |
| { |
| m_formatter.oneByteOp64(OP_LEA, dst, base, index, scale, offset); |
| } |
| #endif |
| |
| // Flow control: |
| |
| AssemblerLabel call() |
| { |
| m_formatter.oneByteOp(OP_CALL_rel32); |
| return m_formatter.immediateRel32(); |
| } |
| |
| AssemblerLabel call(RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_CALLN, dst); |
| return m_formatter.label(); |
| } |
| |
| void call_m(int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_CALLN, base, offset); |
| } |
| |
| AssemblerLabel jmp() |
| { |
| m_formatter.oneByteOp(OP_JMP_rel32); |
| return m_formatter.immediateRel32(); |
| } |
| |
| // Return a AssemblerLabel so we have a label to the jump, so we can use this |
| // To make a tail recursive call on x86-64. The MacroAssembler |
| // really shouldn't wrap this as a Jump, since it can't be linked. :-/ |
| AssemblerLabel jmp_r(RegisterID dst) |
| { |
| m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_JMPN, dst); |
| return m_formatter.label(); |
| } |
| |
| void jmp_m(int offset, RegisterID base) |
| { |
| m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_JMPN, base, offset); |
| } |
| |
| void jmp_m(int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_JMPN, base, index, scale, offset); |
| } |
| |
| #if !CPU(X86_64) |
| void jmp_m(const void* address) |
| { |
| m_formatter.oneByteOpAddr(OP_GROUP5_Ev, GROUP5_OP_JMPN, bitwise_cast<uint32_t>(address)); |
| } |
| #endif |
| |
| AssemblerLabel jne() |
| { |
| m_formatter.twoByteOp(jccRel32(ConditionNE)); |
| return m_formatter.immediateRel32(); |
| } |
| |
| AssemblerLabel jnz() |
| { |
| return jne(); |
| } |
| |
| AssemblerLabel je() |
| { |
| m_formatter.twoByteOp(jccRel32(ConditionE)); |
| return m_formatter.immediateRel32(); |
| } |
| |
| AssemblerLabel jz() |
| { |
| return je(); |
| } |
| |
| AssemblerLabel jl() |
| { |
| m_formatter.twoByteOp(jccRel32(ConditionL)); |
| return m_formatter.immediateRel32(); |
| } |
| |
| AssemblerLabel jb() |
| { |
| m_formatter.twoByteOp(jccRel32(ConditionB)); |
| return m_formatter.immediateRel32(); |
| } |
| |
| AssemblerLabel jle() |
| { |
| m_formatter.twoByteOp(jccRel32(ConditionLE)); |
| return m_formatter.immediateRel32(); |
| } |
| |
| AssemblerLabel jbe() |
| { |
| m_formatter.twoByteOp(jccRel32(ConditionBE)); |
| return m_formatter.immediateRel32(); |
| } |
| |
| AssemblerLabel jge() |
| { |
| m_formatter.twoByteOp(jccRel32(ConditionGE)); |
| return m_formatter.immediateRel32(); |
| } |
| |
| AssemblerLabel jg() |
| { |
| m_formatter.twoByteOp(jccRel32(ConditionG)); |
| return m_formatter.immediateRel32(); |
| } |
| |
| AssemblerLabel ja() |
| { |
| m_formatter.twoByteOp(jccRel32(ConditionA)); |
| return m_formatter.immediateRel32(); |
| } |
| |
| AssemblerLabel jae() |
| { |
| m_formatter.twoByteOp(jccRel32(ConditionAE)); |
| return m_formatter.immediateRel32(); |
| } |
| |
| AssemblerLabel jo() |
| { |
| m_formatter.twoByteOp(jccRel32(ConditionO)); |
| return m_formatter.immediateRel32(); |
| } |
| |
| AssemblerLabel jnp() |
| { |
| m_formatter.twoByteOp(jccRel32(ConditionNP)); |
| return m_formatter.immediateRel32(); |
| } |
| |
| AssemblerLabel jp() |
| { |
| m_formatter.twoByteOp(jccRel32(ConditionP)); |
| return m_formatter.immediateRel32(); |
| } |
| |
| AssemblerLabel js() |
| { |
| m_formatter.twoByteOp(jccRel32(ConditionS)); |
| return m_formatter.immediateRel32(); |
| } |
| |
| AssemblerLabel jCC(Condition cond) |
| { |
| m_formatter.twoByteOp(jccRel32(cond)); |
| return m_formatter.immediateRel32(); |
| } |
| |
| // SSE operations: |
| |
| void addsd_rr(XMMRegisterID src, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F2); |
| m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)src); |
| } |
| |
| void vaddsd_rr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dst) |
| { |
| m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_F2, OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)a, (RegisterID)b); |
| } |
| |
| void addsd_mr(int offset, RegisterID base, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F2); |
| m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, (RegisterID)dst, base, offset); |
| } |
| |
| void addsd_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F2); |
| m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, dst, base, index, scale, offset); |
| } |
| |
| void vaddsd_mr(int offset, RegisterID base, XMMRegisterID b, XMMRegisterID dst) |
| { |
| m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)b, base, offset); |
| } |
| |
| void vaddsd_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID b, XMMRegisterID dst) |
| { |
| m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)b, offset, base, index, scale); |
| } |
| |
| void addss_rr(XMMRegisterID src, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)src); |
| } |
| |
| void vaddss_rr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dst) |
| { |
| m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_F3, OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)a, (RegisterID)b); |
| } |
| |
| void addss_mr(int offset, RegisterID base, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, (RegisterID)dst, base, offset); |
| } |
| |
| void addss_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, dst, base, index, scale, offset); |
| } |
| |
| void vaddss_mr(int offset, RegisterID base, XMMRegisterID b, XMMRegisterID dst) |
| { |
| m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)b, base, offset); |
| } |
| |
| void vaddss_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID b, XMMRegisterID dst) |
| { |
| m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)b, offset, base, index, scale); |
| } |
| |
| #if !CPU(X86_64) |
| void addsd_mr(const void* address, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F2); |
| m_formatter.twoByteOpAddr(OP2_ADDSD_VsdWsd, (RegisterID)dst, bitwise_cast<uint32_t>(address)); |
| } |
| #endif |
| |
| void cvtsi2sd_rr(RegisterID src, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F2); |
| m_formatter.twoByteOp(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, src); |
| } |
| |
| void cvtsi2ss_rr(RegisterID src, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, src); |
| } |
| |
| #if CPU(X86_64) |
| void cvtsi2sdq_rr(RegisterID src, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F2); |
| m_formatter.twoByteOp64(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, src); |
| } |
| |
| void cvtsi2ssq_rr(RegisterID src, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp64(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, src); |
| } |
| |
| void cvtsi2sdq_mr(int offset, RegisterID base, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F2); |
| m_formatter.twoByteOp64(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, base, offset); |
| } |
| |
| void cvtsi2ssq_mr(int offset, RegisterID base, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp64(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, base, offset); |
| } |
| #endif |
| |
| void cvtsi2sd_mr(int offset, RegisterID base, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F2); |
| m_formatter.twoByteOp(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, base, offset); |
| } |
| |
| void cvtsi2ss_mr(int offset, RegisterID base, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, base, offset); |
| } |
| |
| #if !CPU(X86_64) |
| void cvtsi2sd_mr(const void* address, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F2); |
| m_formatter.twoByteOpAddr(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, bitwise_cast<uint32_t>(address)); |
| } |
| #endif |
| |
| void cvttsd2si_rr(XMMRegisterID src, RegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F2); |
| m_formatter.twoByteOp(OP2_CVTTSD2SI_GdWsd, dst, (RegisterID)src); |
| } |
| |
| void cvttss2si_rr(XMMRegisterID src, RegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp(OP2_CVTTSS2SI_GdWsd, dst, (RegisterID)src); |
| } |
| |
| #if CPU(X86_64) |
| void cvttss2siq_rr(XMMRegisterID src, RegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp64(OP2_CVTTSS2SI_GdWsd, dst, (RegisterID)src); |
| } |
| #endif |
| |
| void cvtsd2ss_rr(XMMRegisterID src, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F2); |
| m_formatter.twoByteOp(OP2_CVTSD2SS_VsdWsd, dst, (RegisterID)src); |
| } |
| |
| void cvtsd2ss_mr(int offset, RegisterID base, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F2); |
| m_formatter.twoByteOp(OP2_CVTSD2SS_VsdWsd, dst, base, offset); |
| } |
| |
| void cvtss2sd_rr(XMMRegisterID src, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp(OP2_CVTSS2SD_VsdWsd, dst, (RegisterID)src); |
| } |
| |
| void cvtss2sd_mr(int offset, RegisterID base, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp(OP2_CVTSS2SD_VsdWsd, dst, base, offset); |
| } |
| |
| #if CPU(X86_64) |
| void cvttsd2siq_rr(XMMRegisterID src, RegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F2); |
| m_formatter.twoByteOp64(OP2_CVTTSD2SI_GdWsd, dst, (RegisterID)src); |
| } |
| #endif |
| |
| void movd_rr(XMMRegisterID src, RegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_66); |
| m_formatter.twoByteOp(OP2_MOVD_EdVd, (RegisterID)src, dst); |
| } |
| |
| void movd_rr(RegisterID src, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_66); |
| m_formatter.twoByteOp(OP2_MOVD_VdEd, (RegisterID)dst, src); |
| } |
| |
| #if CPU(X86_64) |
| void movmskpd_rr(XMMRegisterID src, RegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_66); |
| m_formatter.twoByteOp64(OP2_MOVMSKPD_VdEd, dst, (RegisterID)src); |
| } |
| |
| void movq_rr(XMMRegisterID src, RegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_66); |
| m_formatter.twoByteOp64(OP2_MOVD_EdVd, (RegisterID)src, dst); |
| } |
| |
| void movq_rr(RegisterID src, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_66); |
| m_formatter.twoByteOp64(OP2_MOVD_VdEd, (RegisterID)dst, src); |
| } |
| #endif |
| |
| void movapd_rr(XMMRegisterID src, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_66); |
| m_formatter.twoByteOp(OP2_MOVAPD_VpdWpd, (RegisterID)dst, (RegisterID)src); |
| } |
| |
| void movaps_rr(XMMRegisterID src, XMMRegisterID dst) |
| { |
| m_formatter.twoByteOp(OP2_MOVAPS_VpdWpd, (RegisterID)dst, (RegisterID)src); |
| } |
| |
| void movsd_rr(XMMRegisterID src, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F2); |
| m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, (RegisterID)dst, (RegisterID)src); |
| } |
| |
| void movsd_rm(XMMRegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.prefix(PRE_SSE_F2); |
| m_formatter.twoByteOp(OP2_MOVSD_WsdVsd, (RegisterID)src, base, offset); |
| } |
| |
| void movsd_rm(XMMRegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.prefix(PRE_SSE_F2); |
| m_formatter.twoByteOp(OP2_MOVSD_WsdVsd, (RegisterID)src, base, index, scale, offset); |
| } |
| |
| void movss_rm(XMMRegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp(OP2_MOVSD_WsdVsd, (RegisterID)src, base, offset); |
| } |
| |
| void movss_rm(XMMRegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp(OP2_MOVSD_WsdVsd, (RegisterID)src, base, index, scale, offset); |
| } |
| |
| void movsd_mr(int offset, RegisterID base, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F2); |
| m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, (RegisterID)dst, base, offset); |
| } |
| |
| void movsd_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F2); |
| m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, dst, base, index, scale, offset); |
| } |
| |
| void movss_mr(int offset, RegisterID base, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, (RegisterID)dst, base, offset); |
| } |
| |
| void movss_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, dst, base, index, scale, offset); |
| } |
| |
| #if !CPU(X86_64) |
| void movsd_mr(const void* address, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F2); |
| m_formatter.twoByteOpAddr(OP2_MOVSD_VsdWsd, (RegisterID)dst, bitwise_cast<uint32_t>(address)); |
| } |
| void movsd_rm(XMMRegisterID src, const void* address) |
| { |
| m_formatter.prefix(PRE_SSE_F2); |
| m_formatter.twoByteOpAddr(OP2_MOVSD_WsdVsd, (RegisterID)src, bitwise_cast<uint32_t>(address)); |
| } |
| void movss_mr(const void* address, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOpAddr(OP2_MOVSD_VsdWsd, (RegisterID)dst, bitwise_cast<uint32_t>(address)); |
| } |
| void movss_rm(XMMRegisterID src, const void* address) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOpAddr(OP2_MOVSD_WsdVsd, (RegisterID)src, bitwise_cast<uint32_t>(address)); |
| } |
| #endif |
| |
| void mulsd_rr(XMMRegisterID src, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F2); |
| m_formatter.twoByteOp(OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)src); |
| } |
| |
| void vmulsd_rr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dst) |
| { |
| m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_F2, OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)a, (RegisterID)b); |
| } |
| |
| void mulsd_mr(int offset, RegisterID base, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F2); |
| m_formatter.twoByteOp(OP2_MULSD_VsdWsd, (RegisterID)dst, base, offset); |
| } |
| |
| void mulsd_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F2); |
| m_formatter.twoByteOp(OP2_MULSD_VsdWsd, dst, base, index, scale, offset); |
| } |
| |
| void vmulsd_mr(int offset, RegisterID base, XMMRegisterID b, XMMRegisterID dst) |
| { |
| m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)b, base, offset); |
| } |
| |
| void vmulsd_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID b, XMMRegisterID dst) |
| { |
| m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)b, offset, base, index, scale); |
| } |
| |
| void mulss_rr(XMMRegisterID src, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp(OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)src); |
| } |
| |
| void vmulss_rr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dst) |
| { |
| m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_F3, OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)a, (RegisterID)b); |
| } |
| |
| void mulss_mr(int offset, RegisterID base, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp(OP2_MULSD_VsdWsd, (RegisterID)dst, base, offset); |
| } |
| |
| void mulss_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp(OP2_MULSD_VsdWsd, dst, base, index, scale, offset); |
| } |
| |
| void vmulss_mr(int offset, RegisterID base, XMMRegisterID b, XMMRegisterID dst) |
| { |
| m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)b, base, offset); |
| } |
| |
| void vmulss_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID b, XMMRegisterID dst) |
| { |
| m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)b, offset, base, index, scale); |
| } |
| |
| void pextrw_irr(int whichWord, XMMRegisterID src, RegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_66); |
| m_formatter.twoByteOp(OP2_PEXTRW_GdUdIb, (RegisterID)dst, (RegisterID)src); |
| m_formatter.immediate8(whichWord); |
| } |
| |
| void psllq_i8r(int imm, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_66); |
| m_formatter.twoByteOp8(OP2_PSLLQ_UdqIb, GROUP14_OP_PSLLQ, (RegisterID)dst); |
| m_formatter.immediate8(imm); |
| } |
| |
| void psrlq_i8r(int imm, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_66); |
| m_formatter.twoByteOp8(OP2_PSRLQ_UdqIb, GROUP14_OP_PSRLQ, (RegisterID)dst); |
| m_formatter.immediate8(imm); |
| } |
| |
| void por_rr(XMMRegisterID src, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_66); |
| m_formatter.twoByteOp(OP2_POR_VdqWdq, (RegisterID)dst, (RegisterID)src); |
| } |
| |
| void subsd_rr(XMMRegisterID src, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F2); |
| m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)src); |
| } |
| |
| void vsubsd_rr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dst) |
| { |
| m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)a, (RegisterID)b); |
| } |
| |
| void subsd_mr(int offset, RegisterID base, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F2); |
| m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, (RegisterID)dst, base, offset); |
| } |
| |
| void subsd_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F2); |
| m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, dst, base, index, scale, offset); |
| } |
| |
| void vsubsd_mr(XMMRegisterID b, int offset, RegisterID base, XMMRegisterID dst) |
| { |
| m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)b, base, offset); |
| } |
| |
| void vsubsd_mr(XMMRegisterID b, int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst) |
| { |
| m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)b, offset, base, index, scale); |
| } |
| |
| void subss_rr(XMMRegisterID src, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)src); |
| } |
| |
| void vsubss_rr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dst) |
| { |
| m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)a, (RegisterID)b); |
| } |
| |
| void subss_mr(int offset, RegisterID base, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, (RegisterID)dst, base, offset); |
| } |
| |
| void subss_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, dst, base, index, scale, offset); |
| } |
| |
| void vsubss_mr(XMMRegisterID b, int offset, RegisterID base, XMMRegisterID dst) |
| { |
| m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)b, base, offset); |
| } |
| |
| void vsubss_mr(XMMRegisterID b, int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst) |
| { |
| m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)b, offset, base, index, scale); |
| } |
| |
| void ucomisd_rr(XMMRegisterID src, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_66); |
| m_formatter.twoByteOp(OP2_UCOMISD_VsdWsd, (RegisterID)dst, (RegisterID)src); |
| } |
| |
| void ucomisd_mr(int offset, RegisterID base, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_66); |
| m_formatter.twoByteOp(OP2_UCOMISD_VsdWsd, (RegisterID)dst, base, offset); |
| } |
| |
| void ucomiss_rr(XMMRegisterID src, XMMRegisterID dst) |
| { |
| m_formatter.twoByteOp(OP2_UCOMISD_VsdWsd, (RegisterID)dst, (RegisterID)src); |
| } |
| |
| void ucomiss_mr(int offset, RegisterID base, XMMRegisterID dst) |
| { |
| m_formatter.twoByteOp(OP2_UCOMISD_VsdWsd, (RegisterID)dst, base, offset); |
| } |
| |
| void divsd_rr(XMMRegisterID src, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F2); |
| m_formatter.twoByteOp(OP2_DIVSD_VsdWsd, (RegisterID)dst, (RegisterID)src); |
| } |
| |
| void divsd_mr(int offset, RegisterID base, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F2); |
| m_formatter.twoByteOp(OP2_DIVSD_VsdWsd, (RegisterID)dst, base, offset); |
| } |
| |
| void divss_rr(XMMRegisterID src, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp(OP2_DIVSD_VsdWsd, (RegisterID)dst, (RegisterID)src); |
| } |
| |
| void divss_mr(int offset, RegisterID base, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp(OP2_DIVSD_VsdWsd, (RegisterID)dst, base, offset); |
| } |
| |
| void andps_rr(XMMRegisterID src, XMMRegisterID dst) |
| { |
| m_formatter.twoByteOp(OP2_ANDPS_VpdWpd, (RegisterID)dst, (RegisterID)src); |
| } |
| |
| void orps_rr(XMMRegisterID src, XMMRegisterID dst) |
| { |
| m_formatter.twoByteOp(OP2_ORPS_VpdWpd, (RegisterID)dst, (RegisterID)src); |
| } |
| |
| void xorps_rr(XMMRegisterID src, XMMRegisterID dst) |
| { |
| m_formatter.twoByteOp(OP2_XORPD_VpdWpd, (RegisterID)dst, (RegisterID)src); |
| } |
| |
| void xorpd_rr(XMMRegisterID src, XMMRegisterID dst) |
| { |
| if (src == dst) { |
| xorps_rr(src, dst); |
| return; |
| } |
| m_formatter.prefix(PRE_SSE_66); |
| m_formatter.twoByteOp(OP2_XORPD_VpdWpd, (RegisterID)dst, (RegisterID)src); |
| } |
| |
| void andnpd_rr(XMMRegisterID src, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_66); |
| m_formatter.twoByteOp(OP2_ANDNPD_VpdWpd, (RegisterID)dst, (RegisterID)src); |
| } |
| |
| void sqrtsd_rr(XMMRegisterID src, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F2); |
| m_formatter.twoByteOp(OP2_SQRTSD_VsdWsd, (RegisterID)dst, (RegisterID)src); |
| } |
| |
| void sqrtsd_mr(int offset, RegisterID base, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F2); |
| m_formatter.twoByteOp(OP2_SQRTSD_VsdWsd, (RegisterID)dst, base, offset); |
| } |
| |
| void sqrtss_rr(XMMRegisterID src, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp(OP2_SQRTSD_VsdWsd, (RegisterID)dst, (RegisterID)src); |
| } |
| |
| void sqrtss_mr(int offset, RegisterID base, XMMRegisterID dst) |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.twoByteOp(OP2_SQRTSD_VsdWsd, (RegisterID)dst, base, offset); |
| } |
| |
| enum class RoundingType : uint8_t { |
| ToNearestWithTiesToEven = 0, |
| TowardNegativeInfiniti = 1, |
| TowardInfiniti = 2, |
| TowardZero = 3 |
| }; |
| |
| void roundss_rr(XMMRegisterID src, XMMRegisterID dst, RoundingType rounding) |
| { |
| m_formatter.prefix(PRE_SSE_66); |
| m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_3A, OP3_ROUNDSS_VssWssIb, (RegisterID)dst, (RegisterID)src); |
| m_formatter.immediate8(static_cast<uint8_t>(rounding)); |
| } |
| |
| void roundss_mr(int offset, RegisterID base, XMMRegisterID dst, RoundingType rounding) |
| { |
| m_formatter.prefix(PRE_SSE_66); |
| m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_3A, OP3_ROUNDSS_VssWssIb, (RegisterID)dst, base, offset); |
| m_formatter.immediate8(static_cast<uint8_t>(rounding)); |
| } |
| |
| void roundsd_rr(XMMRegisterID src, XMMRegisterID dst, RoundingType rounding) |
| { |
| m_formatter.prefix(PRE_SSE_66); |
| m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_3A, OP3_ROUNDSD_VsdWsdIb, (RegisterID)dst, (RegisterID)src); |
| m_formatter.immediate8(static_cast<uint8_t>(rounding)); |
| } |
| |
| void roundsd_mr(int offset, RegisterID base, XMMRegisterID dst, RoundingType rounding) |
| { |
| m_formatter.prefix(PRE_SSE_66); |
| m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_3A, OP3_ROUNDSD_VsdWsdIb, (RegisterID)dst, base, offset); |
| m_formatter.immediate8(static_cast<uint8_t>(rounding)); |
| } |
| |
| // Misc instructions: |
| |
| void int3() |
| { |
| m_formatter.oneByteOp(OP_INT3); |
| } |
| |
| static bool isInt3(void* address) |
| { |
| uint8_t candidateInstruction = *reinterpret_cast<uint8_t*>(address); |
| return candidateInstruction == OP_INT3; |
| } |
| |
| void ret() |
| { |
| m_formatter.oneByteOp(OP_RET); |
| } |
| |
| void predictNotTaken() |
| { |
| m_formatter.prefix(PRE_PREDICT_BRANCH_NOT_TAKEN); |
| } |
| |
| void lock() |
| { |
| m_formatter.prefix(PRE_LOCK); |
| } |
| |
| // Causes the memory access in the next instruction to be offset by %gs. Usually you use |
| // this with a 32-bit absolute address load. That "address" ends up being the offset to |
| // %gs. This prefix is ignored by lea. Getting the value of %gs is hard - you can pretty |
| // much just use it as a secret offset. |
| void gs() |
| { |
| m_formatter.prefix(PRE_GS); |
| } |
| |
| void cmpxchgb_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.twoByteOp8(OP2_CMPXCHGb, src, base, offset); |
| } |
| |
| void cmpxchgb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.twoByteOp8(OP2_CMPXCHGb, src, base, index, scale, offset); |
| } |
| |
| void cmpxchgw_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| m_formatter.twoByteOp(OP2_CMPXCHG, src, base, offset); |
| } |
| |
| void cmpxchgw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| m_formatter.twoByteOp(OP2_CMPXCHG, src, base, index, scale, offset); |
| } |
| |
| void cmpxchgl_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.twoByteOp(OP2_CMPXCHG, src, base, offset); |
| } |
| |
| void cmpxchgl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.twoByteOp(OP2_CMPXCHG, src, base, index, scale, offset); |
| } |
| |
| #if CPU(X86_64) |
| void cmpxchgq_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.twoByteOp64(OP2_CMPXCHG, src, base, offset); |
| } |
| |
| void cmpxchgq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.twoByteOp64(OP2_CMPXCHG, src, base, index, scale, offset); |
| } |
| #endif // CPU(X86_64) |
| |
| void xaddb_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.twoByteOp8(OP2_XADDb, src, base, offset); |
| } |
| |
| void xaddb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.twoByteOp8(OP2_XADDb, src, base, index, scale, offset); |
| } |
| |
| void xaddw_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| m_formatter.twoByteOp(OP2_XADD, src, base, offset); |
| } |
| |
| void xaddw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.prefix(PRE_OPERAND_SIZE); |
| m_formatter.twoByteOp(OP2_XADD, src, base, index, scale, offset); |
| } |
| |
| void xaddl_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.twoByteOp(OP2_XADD, src, base, offset); |
| } |
| |
| void xaddl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.twoByteOp(OP2_XADD, src, base, index, scale, offset); |
| } |
| |
| #if CPU(X86_64) |
| void xaddq_rm(RegisterID src, int offset, RegisterID base) |
| { |
| m_formatter.twoByteOp64(OP2_XADD, src, base, offset); |
| } |
| |
| void xaddq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| m_formatter.twoByteOp64(OP2_XADD, src, base, index, scale, offset); |
| } |
| #endif // CPU(X86_64) |
| |
| void lfence() |
| { |
| m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_AE, OP3_LFENCE); |
| } |
| |
| void mfence() |
| { |
| m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_AE, OP3_MFENCE); |
| } |
| |
| void sfence() |
| { |
| m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_AE, OP3_SFENCE); |
| } |
| |
| void rdtsc() |
| { |
| m_formatter.twoByteOp(OP2_RDTSC); |
| } |
| |
| void pause() |
| { |
| m_formatter.prefix(PRE_SSE_F3); |
| m_formatter.oneByteOp(OP_PAUSE); |
| } |
| |
| void cpuid() |
| { |
| m_formatter.twoByteOp(OP2_CPUID); |
| } |
| |
| // Assembler admin methods: |
| |
| size_t codeSize() const |
| { |
| return m_formatter.codeSize(); |
| } |
| |
| AssemblerLabel labelForWatchpoint() |
| { |
| AssemblerLabel result = m_formatter.label(); |
| if (static_cast<int>(result.m_offset) != m_indexOfLastWatchpoint) |
| result = label(); |
| m_indexOfLastWatchpoint = result.m_offset; |
| m_indexOfTailOfLastWatchpoint = result.m_offset + maxJumpReplacementSize(); |
| return result; |
| } |
| |
| AssemblerLabel labelIgnoringWatchpoints() |
| { |
| return m_formatter.label(); |
| } |
| |
| AssemblerLabel label() |
| { |
| AssemblerLabel result = m_formatter.label(); |
| while (UNLIKELY(static_cast<int>(result.m_offset) < m_indexOfTailOfLastWatchpoint)) { |
| nop(); |
| result = m_formatter.label(); |
| } |
| return result; |
| } |
| |
| AssemblerLabel align(int alignment) |
| { |
| while (!m_formatter.isAligned(alignment)) |
| m_formatter.oneByteOp(OP_HLT); |
| |
| return label(); |
| } |
| |
| // Linking & patching: |
| // |
| // 'link' and 'patch' methods are for use on unprotected code - such as the code |
| // within the AssemblerBuffer, and code being patched by the patch buffer. Once |
| // code has been finalized it is (platform support permitting) within a non- |
| // writable region of memory; to modify the code in an execute-only execuable |
| // pool the 'repatch' and 'relink' methods should be used. |
| |
| void linkJump(AssemblerLabel from, AssemblerLabel to) |
| { |
| ASSERT(from.isSet()); |
| ASSERT(to.isSet()); |
| |
| char* code = reinterpret_cast<char*>(m_formatter.data()); |
| ASSERT(!WTF::unalignedLoad<int32_t>(bitwise_cast<int32_t*>(code + from.m_offset) - 1)); |
| setRel32(code + from.m_offset, code + to.m_offset); |
| } |
| |
| static void linkJump(void* code, AssemblerLabel from, void* to) |
| { |
| ASSERT(from.isSet()); |
| |
| setRel32(reinterpret_cast<char*>(code) + from.m_offset, to); |
| } |
| |
| static void linkCall(void* code, AssemblerLabel from, void* to) |
| { |
| ASSERT(from.isSet()); |
| |
| setRel32(reinterpret_cast<char*>(code) + from.m_offset, to); |
| } |
| |
| static void linkPointer(void* code, AssemblerLabel where, void* value) |
| { |
| ASSERT(where.isSet()); |
| |
| setPointer(reinterpret_cast<char*>(code) + where.m_offset, value); |
| } |
| |
| static void relinkJump(void* from, void* to) |
| { |
| setRel32(from, to); |
| } |
| |
| static void relinkJumpToNop(void* from) |
| { |
| setInt32(from, 0); |
| } |
| |
| static void relinkCall(void* from, void* to) |
| { |
| setRel32(from, to); |
| } |
| |
| static void repatchCompact(void* where, int32_t value) |
| { |
| ASSERT(value >= std::numeric_limits<int8_t>::min()); |
| ASSERT(value <= std::numeric_limits<int8_t>::max()); |
| setInt8(where, value); |
| } |
| |
| static void repatchInt32(void* where, int32_t value) |
| { |
| setInt32(where, value); |
| } |
| |
| static void repatchPointer(void* where, void* value) |
| { |
| setPointer(where, value); |
| } |
| |
| static void* readPointer(void* where) |
| { |
| return WTF::unalignedLoad<void*>(bitwise_cast<void**>(where) - 1); |
| } |
| |
| static void replaceWithHlt(void* instructionStart) |
| { |
| WTF::unalignedStore<uint8_t>(instructionStart, static_cast<uint8_t>(OP_HLT)); |
| } |
| |
| static void replaceWithJump(void* instructionStart, void* to) |
| { |
| uint8_t* ptr = bitwise_cast<uint8_t*>(instructionStart); |
| uint8_t* dstPtr = bitwise_cast<uint8_t*>(to); |
| intptr_t distance = (intptr_t)(dstPtr - (ptr + 5)); |
| WTF::unalignedStore<uint8_t>(ptr, static_cast<uint8_t>(OP_JMP_rel32)); |
| WTF::unalignedStore<int32_t>(ptr + 1, static_cast<int32_t>(distance)); |
| } |
| |
| static ptrdiff_t maxJumpReplacementSize() |
| { |
| return 5; |
| } |
| |
| static constexpr ptrdiff_t patchableJumpSize() |
| { |
| return 5; |
| } |
| |
| #if CPU(X86_64) |
| static void revertJumpTo_movq_i64r(void* instructionStart, int64_t imm, RegisterID dst) |
| { |
| const unsigned instructionSize = 10; // REX.W MOV IMM64 |
| const int rexBytes = 1; |
| const int opcodeBytes = 1; |
| uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart); |
| ptr[0] = PRE_REX | (1 << 3) | (dst >> 3); |
| ptr[1] = OP_MOV_EAXIv | (dst & 7); |
| |
| union { |
| uint64_t asWord; |
| uint8_t asBytes[8]; |
| } u; |
| u.asWord = imm; |
| for (unsigned i = rexBytes + opcodeBytes; i < instructionSize; ++i) |
| ptr[i] = u.asBytes[i - rexBytes - opcodeBytes]; |
| } |
| |
| static void revertJumpTo_movl_i32r(void* instructionStart, int32_t imm, RegisterID dst) |
| { |
| // We only revert jumps on inline caches, and inline caches always use the scratch register (r11). |
| // FIXME: If the above is ever false then we need to make this smarter with respect to emitting |
| // the REX byte. |
| ASSERT(dst == X86Registers::r11); |
| const unsigned instructionSize = 6; // REX MOV IMM32 |
| const int rexBytes = 1; |
| const int opcodeBytes = 1; |
| uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart); |
| ptr[0] = PRE_REX | (dst >> 3); |
| ptr[1] = OP_MOV_EAXIv | (dst & 7); |
| |
| union { |
| uint32_t asWord; |
| uint8_t asBytes[4]; |
| } u; |
| u.asWord = imm; |
| for (unsigned i = rexBytes + opcodeBytes; i < instructionSize; ++i) |
| ptr[i] = u.asBytes[i - rexBytes - opcodeBytes]; |
| } |
| #endif |
| |
| static void revertJumpTo_cmpl_ir_force32(void* instructionStart, int32_t imm, RegisterID dst) |
| { |
| const int opcodeBytes = 1; |
| const int modRMBytes = 1; |
| ASSERT(opcodeBytes + modRMBytes <= maxJumpReplacementSize()); |
| uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart); |
| ptr[0] = OP_GROUP1_EvIz; |
| ptr[1] = (X86InstructionFormatter::ModRmRegister << 6) | (GROUP1_OP_CMP << 3) | dst; |
| union { |
| uint32_t asWord; |
| uint8_t asBytes[4]; |
| } u; |
| u.asWord = imm; |
| for (unsigned i = opcodeBytes + modRMBytes; i < static_cast<unsigned>(maxJumpReplacementSize()); ++i) |
| ptr[i] = u.asBytes[i - opcodeBytes - modRMBytes]; |
| } |
| |
| static void revertJumpTo_cmpl_im_force32(void* instructionStart, int32_t imm, int offset, RegisterID dst) |
| { |
| ASSERT_UNUSED(offset, !offset); |
| const int opcodeBytes = 1; |
| const int modRMBytes = 1; |
| ASSERT(opcodeBytes + modRMBytes <= maxJumpReplacementSize()); |
| uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart); |
| ptr[0] = OP_GROUP1_EvIz; |
| ptr[1] = (X86InstructionFormatter::ModRmMemoryNoDisp << 6) | (GROUP1_OP_CMP << 3) | dst; |
| union { |
| uint32_t asWord; |
| uint8_t asBytes[4]; |
| } u; |
| u.asWord = imm; |
| for (unsigned i = opcodeBytes + modRMBytes; i < static_cast<unsigned>(maxJumpReplacementSize()); ++i) |
| ptr[i] = u.asBytes[i - opcodeBytes - modRMBytes]; |
| } |
| |
| static void replaceWithLoad(void* instructionStart) |
| { |
| uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart); |
| #if CPU(X86_64) |
| if ((*ptr & ~15) == PRE_REX) |
| ptr++; |
| #endif |
| switch (*ptr) { |
| case OP_MOV_GvEv: |
| break; |
| case OP_LEA: |
| *ptr = OP_MOV_GvEv; |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| } |
| |
| static void replaceWithAddressComputation(void* instructionStart) |
| { |
| uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart); |
| #if CPU(X86_64) |
| if ((*ptr & ~15) == PRE_REX) |
| ptr++; |
| #endif |
| switch (*ptr) { |
| case OP_MOV_GvEv: |
| *ptr = OP_LEA; |
| break; |
| case OP_LEA: |
| break; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| } |
| |
| static unsigned getCallReturnOffset(AssemblerLabel call) |
| { |
| ASSERT(call.isSet()); |
| return call.m_offset; |
| } |
| |
| static void* getRelocatedAddress(void* code, AssemblerLabel label) |
| { |
| ASSERT(label.isSet()); |
| return reinterpret_cast<void*>(reinterpret_cast<ptrdiff_t>(code) + label.m_offset); |
| } |
| |
| static int getDifferenceBetweenLabels(AssemblerLabel a, AssemblerLabel b) |
| { |
| return b.m_offset - a.m_offset; |
| } |
| |
| unsigned debugOffset() { return m_formatter.debugOffset(); } |
| |
| void nop() |
| { |
| m_formatter.oneByteOp(OP_NOP); |
| } |
| |
| using CopyFunction = void*(&)(void*, const void*, size_t); |
| |
| template <CopyFunction copy> |
| static void fillNops(void* base, size_t size) |
| { |
| UNUSED_PARAM(copy); |
| #if CPU(X86_64) |
| static const uint8_t nops[10][10] = { |
| // nop |
| {0x90}, |
| // xchg %ax,%ax |
| {0x66, 0x90}, |
| // nopl (%[re]ax) |
| {0x0f, 0x1f, 0x00}, |
| // nopl 8(%[re]ax) |
| {0x0f, 0x1f, 0x40, 0x08}, |
| // nopl 8(%[re]ax,%[re]ax,1) |
| {0x0f, 0x1f, 0x44, 0x00, 0x08}, |
| // nopw 8(%[re]ax,%[re]ax,1) |
| {0x66, 0x0f, 0x1f, 0x44, 0x00, 0x08}, |
| // nopl 512(%[re]ax) |
| {0x0f, 0x1f, 0x80, 0x00, 0x02, 0x00, 0x00}, |
| // nopl 512(%[re]ax,%[re]ax,1) |
| {0x0f, 0x1f, 0x84, 0x00, 0x00, 0x02, 0x00, 0x00}, |
| // nopw 512(%[re]ax,%[re]ax,1) |
| {0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x02, 0x00, 0x00}, |
| // nopw %cs:512(%[re]ax,%[re]ax,1) |
| {0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x02, 0x00, 0x00} |
| }; |
| |
| uint8_t* where = reinterpret_cast<uint8_t*>(base); |
| while (size) { |
| unsigned nopSize = static_cast<unsigned>(std::min<size_t>(size, 15)); |
| unsigned numPrefixes = nopSize <= 10 ? 0 : nopSize - 10; |
| for (unsigned i = 0; i != numPrefixes; ++i) |
| *where++ = 0x66; |
| |
| unsigned nopRest = nopSize - numPrefixes; |
| for (unsigned i = 0; i != nopRest; ++i) |
| *where++ = nops[nopRest-1][i]; |
| |
| size -= nopSize; |
| } |
| #else |
| memset(base, OP_NOP, size); |
| #endif |
| } |
| |
| // This is a no-op on x86 |
| ALWAYS_INLINE static void cacheFlush(void*, size_t) { } |
| |
| private: |
| |
| static void setPointer(void* where, void* value) |
| { |
| WTF::unalignedStore<void*>(bitwise_cast<void**>(where) - 1, value); |
| } |
| |
| static void setInt32(void* where, int32_t value) |
| { |
| WTF::unalignedStore<int32_t>(bitwise_cast<int32_t*>(where) - 1, value); |
| } |
| |
| static void setInt8(void* where, int8_t value) |
| { |
| WTF::unalignedStore<int8_t>(bitwise_cast<int8_t*>(where) - 1, value); |
| } |
| |
| static void setRel32(void* from, void* to) |
| { |
| intptr_t offset = reinterpret_cast<intptr_t>(to) - reinterpret_cast<intptr_t>(from); |
| ASSERT(offset == static_cast<int32_t>(offset)); |
| |
| setInt32(from, offset); |
| } |
| |
| class X86InstructionFormatter { |
| static constexpr int maxInstructionSize = 16; |
| |
| public: |
| enum ModRmMode { |
| ModRmMemoryNoDisp = 0, |
| ModRmMemoryDisp8 = 1 << 6, |
| ModRmMemoryDisp32 = 2 << 6, |
| ModRmRegister = 3 << 6, |
| }; |
| |
| // Legacy prefix bytes: |
| // |
| // These are emmitted prior to the instruction. |
| |
| void prefix(OneByteOpcodeID pre) |
| { |
| m_buffer.putByte(pre); |
| } |
| |
| #if CPU(X86_64) |
| // Byte operand register spl & above require a REX prefix (to prevent the 'H' registers be accessed). |
| static bool byteRegRequiresRex(int reg) |
| { |
| static_assert(X86Registers::esp == 4, "Necessary condition for OR-masking"); |
| return (reg >= X86Registers::esp); |
| } |
| static bool byteRegRequiresRex(int a, int b) |
| { |
| return byteRegRequiresRex(a | b); |
| } |
| |
| // Registers r8 & above require a REX prefixe. |
| static bool regRequiresRex(int reg) |
| { |
| static_assert(X86Registers::r8 == 8, "Necessary condition for OR-masking"); |
| return (reg >= X86Registers::r8); |
| } |
| static bool regRequiresRex(int a, int b) |
| { |
| return regRequiresRex(a | b); |
| } |
| static bool regRequiresRex(int a, int b, int c) |
| { |
| return regRequiresRex(a | b | c); |
| } |
| #else |
| static bool byteRegRequiresRex(int) { return false; } |
| static bool byteRegRequiresRex(int, int) { return false; } |
| static bool regRequiresRex(int) { return false; } |
| static bool regRequiresRex(int, int) { return false; } |
| static bool regRequiresRex(int, int, int) { return false; } |
| #endif |
| |
| class SingleInstructionBufferWriter : public AssemblerBuffer::LocalWriter { |
| public: |
| SingleInstructionBufferWriter(AssemblerBuffer& buffer) |
| : AssemblerBuffer::LocalWriter(buffer, maxInstructionSize) |
| { |
| } |
| |
| // Internals; ModRm and REX formatters. |
| |
| static constexpr RegisterID noBase = X86Registers::ebp; |
| static constexpr RegisterID hasSib = X86Registers::esp; |
| static constexpr RegisterID noIndex = X86Registers::esp; |
| |
| #if CPU(X86_64) |
| static constexpr RegisterID noBase2 = X86Registers::r13; |
| static constexpr RegisterID hasSib2 = X86Registers::r12; |
| |
| // Format a REX prefix byte. |
| ALWAYS_INLINE void emitRex(bool w, int r, int x, int b) |
| { |
| ASSERT(r >= 0); |
| ASSERT(x >= 0); |
| ASSERT(b >= 0); |
| putByteUnchecked(PRE_REX | ((int)w << 3) | ((r>>3)<<2) | ((x>>3)<<1) | (b>>3)); |
| } |
| |
| // Used to plant a REX byte with REX.w set (for 64-bit operations). |
| ALWAYS_INLINE void emitRexW(int r, int x, int b) |
| { |
| emitRex(true, r, x, b); |
| } |
| |
| // Used for operations with byte operands - use byteRegRequiresRex() to check register operands, |
| // regRequiresRex() to check other registers (i.e. address base & index). |
| ALWAYS_INLINE void emitRexIf(bool condition, int r, int x, int b) |
| { |
| if (condition) |
| emitRex(false, r, x, b); |
| } |
| |
| // Used for word sized operations, will plant a REX prefix if necessary (if any register is r8 or above). |
| ALWAYS_INLINE void emitRexIfNeeded(int r, int x, int b) |
| { |
| emitRexIf(regRequiresRex(r, x, b), r, x, b); |
| } |
| #else |
| // No REX prefix bytes on 32-bit x86. |
| ALWAYS_INLINE void emitRexIf(bool, int, int, int) { } |
| ALWAYS_INLINE void emitRexIfNeeded(int, int, int) { } |
| #endif |
| |
| ALWAYS_INLINE void putModRm(ModRmMode mode, int reg, RegisterID rm) |
| { |
| putByteUnchecked(mode | ((reg & 7) << 3) | (rm & 7)); |
| } |
| |
| ALWAYS_INLINE void putModRmSib(ModRmMode mode, int reg, RegisterID base, RegisterID index, int scale) |
| { |
| ASSERT(mode != ModRmRegister); |
| |
| putModRm(mode, reg, hasSib); |
| putByteUnchecked((scale << 6) | ((index & 7) << 3) | (base & 7)); |
| } |
| |
| ALWAYS_INLINE void registerModRM(int reg, RegisterID rm) |
| { |
| putModRm(ModRmRegister, reg, rm); |
| } |
| |
| ALWAYS_INLINE void memoryModRM(int reg, RegisterID base, int offset) |
| { |
| // A base of esp or r12 would be interpreted as a sib, so force a sib with no index & put the base in there. |
| #if CPU(X86_64) |
| if ((base == hasSib) || (base == hasSib2)) { |
| #else |
| if (base == hasSib) { |
| #endif |
| if (!offset) // No need to check if the base is noBase, since we know it is hasSib! |
| putModRmSib(ModRmMemoryNoDisp, reg, base, noIndex, 0); |
| else if (CAN_SIGN_EXTEND_8_32(offset)) { |
| putModRmSib(ModRmMemoryDisp8, reg, base, noIndex, 0); |
| putByteUnchecked(offset); |
| } else { |
| putModRmSib(ModRmMemoryDisp32, reg, base, noIndex, 0); |
| putIntUnchecked(offset); |
| } |
| } else { |
| #if CPU(X86_64) |
| if (!offset && (base != noBase) && (base != noBase2)) |
| #else |
| if (!offset && (base != noBase)) |
| #endif |
| putModRm(ModRmMemoryNoDisp, reg, base); |
| else if (CAN_SIGN_EXTEND_8_32(offset)) { |
| putModRm(ModRmMemoryDisp8, reg, base); |
| putByteUnchecked(offset); |
| } else { |
| putModRm(ModRmMemoryDisp32, reg, base); |
| putIntUnchecked(offset); |
| } |
| } |
| } |
| |
| ALWAYS_INLINE void memoryModRM_disp8(int reg, RegisterID base, int offset) |
| { |
| // A base of esp or r12 would be interpreted as a sib, so force a sib with no index & put the base in there. |
| ASSERT(CAN_SIGN_EXTEND_8_32(offset)); |
| #if CPU(X86_64) |
| if ((base == hasSib) || (base == hasSib2)) { |
| #else |
| if (base == hasSib) { |
| #endif |
| putModRmSib(ModRmMemoryDisp8, reg, base, noIndex, 0); |
| putByteUnchecked(offset); |
| } else { |
| putModRm(ModRmMemoryDisp8, reg, base); |
| putByteUnchecked(offset); |
| } |
| } |
| |
| ALWAYS_INLINE void memoryModRM_disp32(int reg, RegisterID base, int offset) |
| { |
| // A base of esp or r12 would be interpreted as a sib, so force a sib with no index & put the base in there. |
| #if CPU(X86_64) |
| if ((base == hasSib) || (base == hasSib2)) { |
| #else |
| if (base == hasSib) { |
| #endif |
| putModRmSib(ModRmMemoryDisp32, reg, base, noIndex, 0); |
| putIntUnchecked(offset); |
| } else { |
| putModRm(ModRmMemoryDisp32, reg, base); |
| putIntUnchecked(offset); |
| } |
| } |
| |
| ALWAYS_INLINE void memoryModRM(int reg, RegisterID base, RegisterID index, int scale, int offset) |
| { |
| ASSERT(index != noIndex); |
| |
| #if CPU(X86_64) |
| if (!offset && (base != noBase) && (base != noBase2)) |
| #else |
| if (!offset && (base != noBase)) |
| #endif |
| putModRmSib(ModRmMemoryNoDisp, reg, base, index, scale); |
| else if (CAN_SIGN_EXTEND_8_32(offset)) { |
| putModRmSib(ModRmMemoryDisp8, reg, base, index, scale); |
| putByteUnchecked(offset); |
| } else { |
| putModRmSib(ModRmMemoryDisp32, reg, base, index, scale); |
| putIntUnchecked(offset); |
| } |
| } |
| |
| ALWAYS_INLINE void memoryModRMAddr(int reg, uint32_t address) |
| { |
| #if CPU(X86_64) |
| putModRmSib(ModRmMemoryNoDisp, reg, noBase, noIndex, 0); |
| #else |
| // noBase + ModRmMemoryNoDisp means noBase + ModRmMemoryDisp32! |
| putModRm(ModRmMemoryNoDisp, reg, noBase); |
| #endif |
| putIntUnchecked(address); |
| } |
| |
| ALWAYS_INLINE void twoBytesVex(OneByteOpcodeID simdPrefix, RegisterID inOpReg, RegisterID r) |
| { |
| putByteUnchecked(VexPrefix::TwoBytes); |
| |
| uint8_t secondByte = vexEncodeSimdPrefix(simdPrefix); |
| secondByte |= (~inOpReg & 0xf) << 3; |
| secondByte |= !regRequiresRex(r) << 7; |
| putByteUnchecked(secondByte); |
| } |
| |
| ALWAYS_INLINE void threeBytesVexNds(OneByteOpcodeID simdPrefix, VexImpliedBytes impliedBytes, RegisterID r, RegisterID inOpReg, RegisterID x, RegisterID b) |
| { |
| putByteUnchecked(VexPrefix::ThreeBytes); |
| |
| uint8_t secondByte = static_cast<uint8_t>(impliedBytes); |
| secondByte |= !regRequiresRex(r) << 7; |
| secondByte |= !regRequiresRex(x) << 6; |
| secondByte |= !regRequiresRex(b) << 5; |
| putByteUnchecked(secondByte); |
| |
| uint8_t thirdByte = vexEncodeSimdPrefix(simdPrefix); |
| thirdByte |= (~inOpReg & 0xf) << 3; |
| putByteUnchecked(thirdByte); |
| } |
| |
| ALWAYS_INLINE void threeBytesVexNds(OneByteOpcodeID simdPrefix, VexImpliedBytes impliedBytes, RegisterID r, RegisterID inOpReg, RegisterID b) |
| { |
| putByteUnchecked(VexPrefix::ThreeBytes); |
| |
| uint8_t secondByte = static_cast<uint8_t>(impliedBytes); |
| secondByte |= !regRequiresRex(r) << 7; |
| secondByte |= 1 << 6; // REX.X |
| secondByte |= !regRequiresRex(b) << 5; |
| putByteUnchecked(secondByte); |
| |
| uint8_t thirdByte = vexEncodeSimdPrefix(simdPrefix); |
| thirdByte |= (~inOpReg & 0xf) << 3; |
| putByteUnchecked(thirdByte); |
| } |
| private: |
| uint8_t vexEncodeSimdPrefix(OneByteOpcodeID simdPrefix) |
| { |
| switch (simdPrefix) { |
| case 0x66: |
| return 1; |
| case 0xF3: |
| return 2; |
| case 0xF2: |
| return 3; |
| default: |
| RELEASE_ASSERT_NOT_REACHED(); |
| } |
| return 0; |
| } |
| |
| }; |
| |
| // Word-sized operands / no operand instruction formatters. |
| // |
| // In addition to the opcode, the following operand permutations are supported: |
| // * None - instruction takes no operands. |
| // * One register - the low three bits of the RegisterID are added into the opcode. |
| // * Two registers - encode a register form ModRm (for all ModRm formats, the reg field is passed first, and a GroupOpcodeID may be passed in its place). |
| // * Three argument ModRM - a register, and a register and an offset describing a memory operand. |
| // * Five argument ModRM - a register, and a base register, an index, scale, and offset describing a memory operand. |
| // |
| // For 32-bit x86 targets, the address operand may also be provided as a void*. |
| // On 64-bit targets REX prefixes will be planted as necessary, where high numbered registers are used. |
| // |
| // The twoByteOp methods plant two-byte Intel instructions sequences (first opcode byte 0x0F). |
| |
| void oneByteOp(OneByteOpcodeID opcode) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.putByteUnchecked(opcode); |
| } |
| |
| void oneByteOp(OneByteOpcodeID opcode, RegisterID reg) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.emitRexIfNeeded(0, 0, reg); |
| writer.putByteUnchecked(opcode + (reg & 7)); |
| } |
| |
| void oneByteOp(OneByteOpcodeID opcode, int reg, RegisterID rm) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.emitRexIfNeeded(reg, 0, rm); |
| writer.putByteUnchecked(opcode); |
| writer.registerModRM(reg, rm); |
| } |
| |
| void oneByteOp(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.emitRexIfNeeded(reg, 0, base); |
| writer.putByteUnchecked(opcode); |
| writer.memoryModRM(reg, base, offset); |
| } |
| |
| void oneByteOp_disp32(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.emitRexIfNeeded(reg, 0, base); |
| writer.putByteUnchecked(opcode); |
| writer.memoryModRM_disp32(reg, base, offset); |
| } |
| |
| void oneByteOp_disp8(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.emitRexIfNeeded(reg, 0, base); |
| writer.putByteUnchecked(opcode); |
| writer.memoryModRM_disp8(reg, base, offset); |
| } |
| |
| void oneByteOp(OneByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.emitRexIfNeeded(reg, index, base); |
| writer.putByteUnchecked(opcode); |
| writer.memoryModRM(reg, base, index, scale, offset); |
| } |
| |
| void oneByteOpAddr(OneByteOpcodeID opcode, int reg, uint32_t address) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.putByteUnchecked(opcode); |
| writer.memoryModRMAddr(reg, address); |
| } |
| |
| void twoByteOp(TwoByteOpcodeID opcode) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| writer.putByteUnchecked(opcode); |
| } |
| |
| void twoByteOp(TwoByteOpcodeID opcode, int reg) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.emitRexIfNeeded(0, 0, reg); |
| writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| writer.putByteUnchecked(opcode + (reg & 7)); |
| } |
| |
| void twoByteOp(TwoByteOpcodeID opcode, int reg, RegisterID rm) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.emitRexIfNeeded(reg, 0, rm); |
| writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| writer.putByteUnchecked(opcode); |
| writer.registerModRM(reg, rm); |
| } |
| |
| void twoByteOp(TwoByteOpcodeID opcode, int reg, RegisterID base, int offset) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.emitRexIfNeeded(reg, 0, base); |
| writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| writer.putByteUnchecked(opcode); |
| writer.memoryModRM(reg, base, offset); |
| } |
| |
| void twoByteOp(TwoByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.emitRexIfNeeded(reg, index, base); |
| writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| writer.putByteUnchecked(opcode); |
| writer.memoryModRM(reg, base, index, scale, offset); |
| } |
| |
| void twoByteOpAddr(TwoByteOpcodeID opcode, int reg, uint32_t address) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| writer.putByteUnchecked(opcode); |
| writer.memoryModRMAddr(reg, address); |
| } |
| |
| void vexNdsLigWigTwoByteOp(OneByteOpcodeID simdPrefix, TwoByteOpcodeID opcode, RegisterID dest, RegisterID a, RegisterID b) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| if (regRequiresRex(b)) |
| writer.threeBytesVexNds(simdPrefix, VexImpliedBytes::TwoBytesOp, dest, a, b); |
| else |
| writer.twoBytesVex(simdPrefix, a, dest); |
| writer.putByteUnchecked(opcode); |
| writer.registerModRM(dest, b); |
| } |
| |
| void vexNdsLigWigCommutativeTwoByteOp(OneByteOpcodeID simdPrefix, TwoByteOpcodeID opcode, RegisterID dest, RegisterID a, RegisterID b) |
| { |
| // Since this is a commutative operation, we can try switching the arguments. |
| if (regRequiresRex(b)) |
| std::swap(a, b); |
| vexNdsLigWigTwoByteOp(simdPrefix, opcode, dest, a, b); |
| } |
| |
| void vexNdsLigWigTwoByteOp(OneByteOpcodeID simdPrefix, TwoByteOpcodeID opcode, RegisterID dest, RegisterID a, RegisterID base, int offset) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| if (regRequiresRex(base)) |
| writer.threeBytesVexNds(simdPrefix, VexImpliedBytes::TwoBytesOp, dest, a, base); |
| else |
| writer.twoBytesVex(simdPrefix, a, dest); |
| writer.putByteUnchecked(opcode); |
| writer.memoryModRM(dest, base, offset); |
| } |
| |
| void vexNdsLigWigTwoByteOp(OneByteOpcodeID simdPrefix, TwoByteOpcodeID opcode, RegisterID dest, RegisterID a, int offset, RegisterID base, RegisterID index, int scale) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| if (regRequiresRex(base, index)) |
| writer.threeBytesVexNds(simdPrefix, VexImpliedBytes::TwoBytesOp, dest, a, index, base); |
| else |
| writer.twoBytesVex(simdPrefix, a, dest); |
| writer.putByteUnchecked(opcode); |
| writer.memoryModRM(dest, base, index, scale, offset); |
| } |
| |
| void threeByteOp(TwoByteOpcodeID twoBytePrefix, ThreeByteOpcodeID opcode) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| writer.putByteUnchecked(twoBytePrefix); |
| writer.putByteUnchecked(opcode); |
| } |
| |
| void threeByteOp(TwoByteOpcodeID twoBytePrefix, ThreeByteOpcodeID opcode, int reg, RegisterID rm) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.emitRexIfNeeded(reg, 0, rm); |
| writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| writer.putByteUnchecked(twoBytePrefix); |
| writer.putByteUnchecked(opcode); |
| writer.registerModRM(reg, rm); |
| } |
| |
| void threeByteOp(TwoByteOpcodeID twoBytePrefix, ThreeByteOpcodeID opcode, int reg, RegisterID base, int displacement) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.emitRexIfNeeded(reg, 0, base); |
| writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| writer.putByteUnchecked(twoBytePrefix); |
| writer.putByteUnchecked(opcode); |
| writer.memoryModRM(reg, base, displacement); |
| } |
| |
| #if CPU(X86_64) |
| // Quad-word-sized operands: |
| // |
| // Used to format 64-bit operantions, planting a REX.w prefix. |
| // When planting d64 or f64 instructions, not requiring a REX.w prefix, |
| // the normal (non-'64'-postfixed) formatters should be used. |
| |
| void oneByteOp64(OneByteOpcodeID opcode) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.emitRexW(0, 0, 0); |
| writer.putByteUnchecked(opcode); |
| } |
| |
| void oneByteOp64(OneByteOpcodeID opcode, RegisterID reg) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.emitRexW(0, 0, reg); |
| writer.putByteUnchecked(opcode + (reg & 7)); |
| } |
| |
| void oneByteOp64(OneByteOpcodeID opcode, int reg, RegisterID rm) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.emitRexW(reg, 0, rm); |
| writer.putByteUnchecked(opcode); |
| writer.registerModRM(reg, rm); |
| } |
| |
| void oneByteOp64(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.emitRexW(reg, 0, base); |
| writer.putByteUnchecked(opcode); |
| writer.memoryModRM(reg, base, offset); |
| } |
| |
| void oneByteOp64_disp32(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.emitRexW(reg, 0, base); |
| writer.putByteUnchecked(opcode); |
| writer.memoryModRM_disp32(reg, base, offset); |
| } |
| |
| void oneByteOp64_disp8(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.emitRexW(reg, 0, base); |
| writer.putByteUnchecked(opcode); |
| writer.memoryModRM_disp8(reg, base, offset); |
| } |
| |
| void oneByteOp64(OneByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.emitRexW(reg, index, base); |
| writer.putByteUnchecked(opcode); |
| writer.memoryModRM(reg, base, index, scale, offset); |
| } |
| |
| void oneByteOp64Addr(OneByteOpcodeID opcode, int reg, uint32_t address) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.emitRexW(reg, 0, 0); |
| writer.putByteUnchecked(opcode); |
| writer.memoryModRMAddr(reg, address); |
| } |
| |
| void twoByteOp64(TwoByteOpcodeID opcode, int reg) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.emitRexW(0, 0, reg); |
| writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| writer.putByteUnchecked(opcode + (reg & 7)); |
| } |
| |
| void twoByteOp64(TwoByteOpcodeID opcode, int reg, RegisterID rm) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.emitRexW(reg, 0, rm); |
| writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| writer.putByteUnchecked(opcode); |
| writer.registerModRM(reg, rm); |
| } |
| |
| void twoByteOp64(TwoByteOpcodeID opcode, int reg, RegisterID base, int offset) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.emitRexW(reg, 0, base); |
| writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| writer.putByteUnchecked(opcode); |
| writer.memoryModRM(reg, base, offset); |
| } |
| |
| void twoByteOp64(TwoByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.emitRexW(reg, index, base); |
| writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| writer.putByteUnchecked(opcode); |
| writer.memoryModRM(reg, base, index, scale, offset); |
| } |
| #endif |
| |
| // Byte-operands: |
| // |
| // These methods format byte operations. Byte operations differ from the normal |
| // formatters in the circumstances under which they will decide to emit REX prefixes. |
| // These should be used where any register operand signifies a byte register. |
| // |
| // The disctinction is due to the handling of register numbers in the range 4..7 on |
| // x86-64. These register numbers may either represent the second byte of the first |
| // four registers (ah..bh) or the first byte of the second four registers (spl..dil). |
| // |
| // Since ah..bh cannot be used in all permutations of operands (specifically cannot |
| // be accessed where a REX prefix is present), these are likely best treated as |
| // deprecated. In order to ensure the correct registers spl..dil are selected a |
| // REX prefix will be emitted for any byte register operand in the range 4..15. |
| // |
| // These formatters may be used in instructions where a mix of operand sizes, in which |
| // case an unnecessary REX will be emitted, for example: |
| // movzbl %al, %edi |
| // In this case a REX will be planted since edi is 7 (and were this a byte operand |
| // a REX would be required to specify dil instead of bh). Unneeded REX prefixes will |
| // be silently ignored by the processor. |
| // |
| // Address operands should still be checked using regRequiresRex(), while byteRegRequiresRex() |
| // is provided to check byte register operands. |
| |
| void oneByteOp8(OneByteOpcodeID opcode, GroupOpcodeID groupOp, RegisterID rm) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.emitRexIf(byteRegRequiresRex(rm), 0, 0, rm); |
| writer.putByteUnchecked(opcode); |
| writer.registerModRM(groupOp, rm); |
| } |
| |
| void oneByteOp8(OneByteOpcodeID opcode, int reg, RegisterID rm) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.emitRexIf(byteRegRequiresRex(reg, rm), reg, 0, rm); |
| writer.putByteUnchecked(opcode); |
| writer.registerModRM(reg, rm); |
| } |
| |
| void oneByteOp8(OneByteOpcodeID opcode, int reg, RegisterID base, int offset) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.emitRexIf(byteRegRequiresRex(reg, base), reg, 0, base); |
| writer.putByteUnchecked(opcode); |
| writer.memoryModRM(reg, base, offset); |
| } |
| |
| void oneByteOp8(OneByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.emitRexIf(byteRegRequiresRex(reg) || regRequiresRex(index, base), reg, index, base); |
| writer.putByteUnchecked(opcode); |
| writer.memoryModRM(reg, base, index, scale, offset); |
| } |
| |
| void twoByteOp8(TwoByteOpcodeID opcode, RegisterID reg, RegisterID rm) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.emitRexIf(byteRegRequiresRex(reg, rm), reg, 0, rm); |
| writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| writer.putByteUnchecked(opcode); |
| writer.registerModRM(reg, rm); |
| } |
| |
| void twoByteOp8(TwoByteOpcodeID opcode, GroupOpcodeID groupOp, RegisterID rm) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.emitRexIf(byteRegRequiresRex(rm), 0, 0, rm); |
| writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| writer.putByteUnchecked(opcode); |
| writer.registerModRM(groupOp, rm); |
| } |
| |
| void twoByteOp8(TwoByteOpcodeID opcode, int reg, RegisterID base, int offset) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.emitRexIf(byteRegRequiresRex(reg, base), reg, 0, base); |
| writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| writer.putByteUnchecked(opcode); |
| writer.memoryModRM(reg, base, offset); |
| } |
| |
| void twoByteOp8(TwoByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset) |
| { |
| SingleInstructionBufferWriter writer(m_buffer); |
| writer.emitRexIf(byteRegRequiresRex(reg) || regRequiresRex(index, base), reg, index, base); |
| writer.putByteUnchecked(OP_2BYTE_ESCAPE); |
| writer.putByteUnchecked(opcode); |
| writer.memoryModRM(reg, base, index, scale, offset); |
| } |
| |
| // Immediates: |
| // |
| // An immedaite should be appended where appropriate after an op has been emitted. |
| // The writes are unchecked since the opcode formatters above will have ensured space. |
| |
| void immediate8(int imm) |
| { |
| m_buffer.putByteUnchecked(imm); |
| } |
| |
| void immediate16(int imm) |
| { |
| m_buffer.putShortUnchecked(imm); |
| } |
| |
| void immediate32(int imm) |
| { |
| m_buffer.putIntUnchecked(imm); |
| } |
| |
| void immediate64(int64_t imm) |
| { |
| m_buffer.putInt64Unchecked(imm); |
| } |
| |
| AssemblerLabel immediateRel32() |
| { |
| m_buffer.putIntUnchecked(0); |
| return label(); |
| } |
| |
| // Administrative methods: |
| |
| size_t codeSize() const { return m_buffer.codeSize(); } |
| AssemblerLabel label() const { return m_buffer.label(); } |
| bool isAligned(int alignment) const { return m_buffer.isAligned(alignment); } |
| void* data() const { return m_buffer.data(); } |
| |
| unsigned debugOffset() { return m_buffer.debugOffset(); } |
| |
| public: |
| AssemblerBuffer m_buffer; |
| } m_formatter; |
| int m_indexOfLastWatchpoint; |
| int m_indexOfTailOfLastWatchpoint; |
| }; |
| |
| } // namespace JSC |
| |
| #endif // ENABLE(ASSEMBLER) && CPU(X86) |