blob: c1002404ef6c071a30954bcfd5674d8e6a80848b [file] [log] [blame]
/*
* Copyright (C) 2008-2019 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#if ENABLE(ASSEMBLER) && (CPU(X86) || CPU(X86_64))
#include "AssemblerBuffer.h"
#include "AssemblerCommon.h"
#include "JITCompilationEffort.h"
#include "RegisterInfo.h"
#include <limits.h>
#include <stdint.h>
#include <wtf/Assertions.h>
#include <wtf/Vector.h>
namespace JSC {
inline bool CAN_SIGN_EXTEND_8_32(int32_t value) { return value == (int32_t)(signed char)value; }
namespace RegisterNames {
#if COMPILER(MSVC)
#define JSC_X86_ASM_REGISTER_ID_ENUM_BASE_TYPE
#else
#define JSC_X86_ASM_REGISTER_ID_ENUM_BASE_TYPE : int8_t
#endif
#define REGISTER_ID(id, name, res, cs) id,
typedef enum JSC_X86_ASM_REGISTER_ID_ENUM_BASE_TYPE {
FOR_EACH_GP_REGISTER(REGISTER_ID)
InvalidGPRReg = -1,
} RegisterID;
typedef enum JSC_X86_ASM_REGISTER_ID_ENUM_BASE_TYPE {
FOR_EACH_SP_REGISTER(REGISTER_ID)
} SPRegisterID;
typedef enum JSC_X86_ASM_REGISTER_ID_ENUM_BASE_TYPE {
FOR_EACH_FP_REGISTER(REGISTER_ID)
InvalidFPRReg = -1,
} XMMRegisterID;
#undef REGISTER_ID
} // namespace X86Registers
class X86Assembler {
public:
typedef X86Registers::RegisterID RegisterID;
static constexpr RegisterID firstRegister() { return X86Registers::eax; }
static constexpr RegisterID lastRegister()
{
#if CPU(X86_64)
return X86Registers::r15;
#else
return X86Registers::edi;
#endif
}
static constexpr unsigned numberOfRegisters() { return lastRegister() - firstRegister() + 1; }
typedef X86Registers::SPRegisterID SPRegisterID;
static constexpr SPRegisterID firstSPRegister() { return X86Registers::eip; }
static constexpr SPRegisterID lastSPRegister() { return X86Registers::eflags; }
static constexpr unsigned numberOfSPRegisters() { return lastSPRegister() - firstSPRegister() + 1; }
typedef X86Registers::XMMRegisterID XMMRegisterID;
typedef XMMRegisterID FPRegisterID;
static constexpr FPRegisterID firstFPRegister() { return X86Registers::xmm0; }
static constexpr FPRegisterID lastFPRegister()
{
#if CPU(X86_64)
return X86Registers::xmm15;
#else
return X86Registers::xmm7;
#endif
}
static constexpr unsigned numberOfFPRegisters() { return lastFPRegister() - firstFPRegister() + 1; }
static const char* gprName(RegisterID id)
{
ASSERT(id >= firstRegister() && id <= lastRegister());
static const char* const nameForRegister[numberOfRegisters()] = {
#define REGISTER_NAME(id, name, res, cs) name,
FOR_EACH_GP_REGISTER(REGISTER_NAME)
#undef REGISTER_NAME
};
return nameForRegister[id];
}
static const char* sprName(SPRegisterID id)
{
ASSERT(id >= firstSPRegister() && id <= lastSPRegister());
static const char* const nameForRegister[numberOfSPRegisters()] = {
#define REGISTER_NAME(id, name, res, cs) name,
FOR_EACH_SP_REGISTER(REGISTER_NAME)
#undef REGISTER_NAME
};
return nameForRegister[id];
}
static const char* fprName(FPRegisterID reg)
{
ASSERT(reg >= firstFPRegister() && reg <= lastFPRegister());
static const char* const nameForRegister[numberOfFPRegisters()] = {
#define REGISTER_NAME(id, name, res, cs) name,
FOR_EACH_FP_REGISTER(REGISTER_NAME)
#undef REGISTER_NAME
};
return nameForRegister[reg];
}
typedef enum {
ConditionO,
ConditionNO,
ConditionB,
ConditionAE,
ConditionE,
ConditionNE,
ConditionBE,
ConditionA,
ConditionS,
ConditionNS,
ConditionP,
ConditionNP,
ConditionL,
ConditionGE,
ConditionLE,
ConditionG,
ConditionC = ConditionB,
ConditionNC = ConditionAE,
} Condition;
private:
// OneByteOpcodeID defines the bytecode for 1 byte instruction. It also contains the prefixes
// for two bytes instructions.
// TwoByteOpcodeID, ThreeByteOpcodeID define the opcodes for the multibytes instructions.
//
// The encoding for each instruction can be found in the Intel Architecture Manual in the appendix
// "Opcode Map."
//
// Each opcode can have a suffix describing the type of argument. The full list of suffixes is
// in the "Key to Abbreviations" section of the "Opcode Map".
// The most common argument types are:
// -E: The argument is either a GPR or a memory address.
// -G: The argument is a GPR.
// -I: The argument is an immediate.
// The most common sizes are:
// -v: 32 or 64bit depending on the operand-size attribute.
// -z: 32bit in both 32bit and 64bit mode. Common for immediate values.
typedef enum {
OP_ADD_EbGb = 0x00,
OP_ADD_EvGv = 0x01,
OP_ADD_GvEv = 0x03,
OP_ADD_EAXIv = 0x05,
OP_OR_EvGb = 0x08,
OP_OR_EvGv = 0x09,
OP_OR_GvEv = 0x0B,
OP_OR_EAXIv = 0x0D,
OP_2BYTE_ESCAPE = 0x0F,
OP_AND_EvGb = 0x20,
OP_AND_EvGv = 0x21,
OP_AND_GvEv = 0x23,
OP_SUB_EvGb = 0x28,
OP_SUB_EvGv = 0x29,
OP_SUB_GvEv = 0x2B,
OP_SUB_EAXIv = 0x2D,
PRE_PREDICT_BRANCH_NOT_TAKEN = 0x2E,
OP_XOR_EvGb = 0x30,
OP_XOR_EvGv = 0x31,
OP_XOR_GvEv = 0x33,
OP_XOR_EAXIv = 0x35,
OP_CMP_EvGv = 0x39,
OP_CMP_GvEv = 0x3B,
OP_CMP_EAXIv = 0x3D,
#if CPU(X86_64)
PRE_REX = 0x40,
#endif
OP_PUSH_EAX = 0x50,
OP_POP_EAX = 0x58,
#if CPU(X86_64)
OP_MOVSXD_GvEv = 0x63,
#endif
PRE_GS = 0x65,
PRE_OPERAND_SIZE = 0x66,
PRE_SSE_66 = 0x66,
OP_PUSH_Iz = 0x68,
OP_IMUL_GvEvIz = 0x69,
OP_GROUP1_EbIb = 0x80,
OP_GROUP1_EvIz = 0x81,
OP_GROUP1_EvIb = 0x83,
OP_TEST_EbGb = 0x84,
OP_TEST_EvGv = 0x85,
OP_XCHG_EvGb = 0x86,
OP_XCHG_EvGv = 0x87,
OP_MOV_EbGb = 0x88,
OP_MOV_EvGv = 0x89,
OP_MOV_GvEv = 0x8B,
OP_LEA = 0x8D,
OP_GROUP1A_Ev = 0x8F,
OP_NOP = 0x90,
OP_XCHG_EAX = 0x90,
OP_PAUSE = 0x90,
OP_CDQ = 0x99,
OP_MOV_EAXOv = 0xA1,
OP_MOV_OvEAX = 0xA3,
OP_TEST_ALIb = 0xA8,
OP_TEST_EAXIv = 0xA9,
OP_MOV_EAXIv = 0xB8,
OP_GROUP2_EvIb = 0xC1,
OP_RET = 0xC3,
OP_GROUP11_EvIb = 0xC6,
OP_GROUP11_EvIz = 0xC7,
OP_INT3 = 0xCC,
OP_GROUP2_Ev1 = 0xD1,
OP_GROUP2_EvCL = 0xD3,
OP_ESCAPE_D9 = 0xD9,
OP_ESCAPE_DD = 0xDD,
OP_CALL_rel32 = 0xE8,
OP_JMP_rel32 = 0xE9,
PRE_LOCK = 0xF0,
PRE_SSE_F2 = 0xF2,
PRE_SSE_F3 = 0xF3,
OP_HLT = 0xF4,
OP_GROUP3_Eb = 0xF6,
OP_GROUP3_EbIb = 0xF6,
OP_GROUP3_Ev = 0xF7,
OP_GROUP3_EvIz = 0xF7, // OP_GROUP3_Ev has an immediate, when instruction is a test.
OP_GROUP5_Ev = 0xFF,
} OneByteOpcodeID;
typedef enum {
OP2_UD2 = 0xB,
OP2_MOVSD_VsdWsd = 0x10,
OP2_MOVSD_WsdVsd = 0x11,
OP2_MOVSS_VsdWsd = 0x10,
OP2_MOVSS_WsdVsd = 0x11,
OP2_MOVAPD_VpdWpd = 0x28,
OP2_MOVAPS_VpdWpd = 0x28,
OP2_CVTSI2SD_VsdEd = 0x2A,
OP2_CVTTSD2SI_GdWsd = 0x2C,
OP2_CVTTSS2SI_GdWsd = 0x2C,
OP2_UCOMISD_VsdWsd = 0x2E,
OP2_RDTSC = 0x31,
OP2_3BYTE_ESCAPE_3A = 0x3A,
OP2_CMOVCC = 0x40,
OP2_ADDSD_VsdWsd = 0x58,
OP2_MULSD_VsdWsd = 0x59,
OP2_CVTSD2SS_VsdWsd = 0x5A,
OP2_CVTSS2SD_VsdWsd = 0x5A,
OP2_SUBSD_VsdWsd = 0x5C,
OP2_DIVSD_VsdWsd = 0x5E,
OP2_MOVMSKPD_VdEd = 0x50,
OP2_SQRTSD_VsdWsd = 0x51,
OP2_ANDPS_VpdWpd = 0x54,
OP2_ANDNPD_VpdWpd = 0x55,
OP2_ORPS_VpdWpd = 0x56,
OP2_XORPD_VpdWpd = 0x57,
OP2_MOVD_VdEd = 0x6E,
OP2_MOVD_EdVd = 0x7E,
OP2_JCC_rel32 = 0x80,
OP_SETCC = 0x90,
OP2_CPUID = 0xA2,
OP2_3BYTE_ESCAPE_AE = 0xAE,
OP2_IMUL_GvEv = 0xAF,
OP2_CMPXCHGb = 0xB0,
OP2_CMPXCHG = 0xB1,
OP2_MOVZX_GvEb = 0xB6,
OP2_POPCNT = 0xB8,
OP2_GROUP_BT_EvIb = 0xBA,
OP2_BT_EvEv = 0xA3,
OP2_BSF = 0xBC,
OP2_TZCNT = 0xBC,
OP2_BSR = 0xBD,
OP2_LZCNT = 0xBD,
OP2_MOVSX_GvEb = 0xBE,
OP2_MOVZX_GvEw = 0xB7,
OP2_MOVSX_GvEw = 0xBF,
OP2_XADDb = 0xC0,
OP2_XADD = 0xC1,
OP2_PEXTRW_GdUdIb = 0xC5,
OP2_BSWAP = 0xC8,
OP2_PSLLQ_UdqIb = 0x73,
OP2_PSRLQ_UdqIb = 0x73,
OP2_POR_VdqWdq = 0XEB,
} TwoByteOpcodeID;
typedef enum {
OP3_ROUNDSS_VssWssIb = 0x0A,
OP3_ROUNDSD_VsdWsdIb = 0x0B,
OP3_LFENCE = 0xE8,
OP3_MFENCE = 0xF0,
OP3_SFENCE = 0xF8,
} ThreeByteOpcodeID;
struct VexPrefix {
enum : uint8_t {
TwoBytes = 0xC5,
ThreeBytes = 0xC4
};
};
enum class VexImpliedBytes : uint8_t {
TwoBytesOp = 1,
ThreeBytesOp38 = 2,
ThreeBytesOp3A = 3
};
TwoByteOpcodeID cmovcc(Condition cond)
{
return (TwoByteOpcodeID)(OP2_CMOVCC + cond);
}
TwoByteOpcodeID jccRel32(Condition cond)
{
return (TwoByteOpcodeID)(OP2_JCC_rel32 + cond);
}
TwoByteOpcodeID setccOpcode(Condition cond)
{
return (TwoByteOpcodeID)(OP_SETCC + cond);
}
typedef enum {
GROUP1_OP_ADD = 0,
GROUP1_OP_OR = 1,
GROUP1_OP_ADC = 2,
GROUP1_OP_AND = 4,
GROUP1_OP_SUB = 5,
GROUP1_OP_XOR = 6,
GROUP1_OP_CMP = 7,
GROUP1A_OP_POP = 0,
GROUP2_OP_ROL = 0,
GROUP2_OP_ROR = 1,
GROUP2_OP_RCL = 2,
GROUP2_OP_RCR = 3,
GROUP2_OP_SHL = 4,
GROUP2_OP_SHR = 5,
GROUP2_OP_SAR = 7,
GROUP3_OP_TEST = 0,
GROUP3_OP_NOT = 2,
GROUP3_OP_NEG = 3,
GROUP3_OP_DIV = 6,
GROUP3_OP_IDIV = 7,
GROUP5_OP_CALLN = 2,
GROUP5_OP_JMPN = 4,
GROUP5_OP_PUSH = 6,
GROUP11_MOV = 0,
GROUP14_OP_PSLLQ = 6,
GROUP14_OP_PSRLQ = 2,
ESCAPE_D9_FSTP_singleReal = 3,
ESCAPE_DD_FSTP_doubleReal = 3,
GROUP_BT_OP_BT = 4,
} GroupOpcodeID;
class X86InstructionFormatter;
public:
X86Assembler()
: m_indexOfLastWatchpoint(INT_MIN)
, m_indexOfTailOfLastWatchpoint(INT_MIN)
{
}
AssemblerBuffer& buffer() { return m_formatter.m_buffer; }
// Stack operations:
void push_r(RegisterID reg)
{
m_formatter.oneByteOp(OP_PUSH_EAX, reg);
}
void pop_r(RegisterID reg)
{
m_formatter.oneByteOp(OP_POP_EAX, reg);
}
void push_i32(int imm)
{
m_formatter.oneByteOp(OP_PUSH_Iz);
m_formatter.immediate32(imm);
}
void push_m(int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_PUSH, base, offset);
}
void pop_m(int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP1A_Ev, GROUP1A_OP_POP, base, offset);
}
// Arithmetic operations:
#if !CPU(X86_64)
void adcl_im(int imm, const void* addr)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOpAddr(OP_GROUP1_EvIb, GROUP1_OP_ADC, bitwise_cast<uint32_t>(addr));
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOpAddr(OP_GROUP1_EvIz, GROUP1_OP_ADC, bitwise_cast<uint32_t>(addr));
m_formatter.immediate32(imm);
}
}
#endif
void addl_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp(OP_ADD_EvGv, src, dst);
}
void addl_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp(OP_ADD_GvEv, dst, base, offset);
}
void addl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.oneByteOp(OP_ADD_GvEv, dst, base, index, scale, offset);
}
#if !CPU(X86_64)
void addl_mr(const void* addr, RegisterID dst)
{
m_formatter.oneByteOpAddr(OP_ADD_GvEv, dst, bitwise_cast<uint32_t>(addr));
}
#endif
void addl_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_ADD_EvGv, src, base, offset);
}
void addl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_ADD_EvGv, src, base, index, scale, offset);
}
void addb_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp8(OP_ADD_EbGb, src, base, offset);
}
void addb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp8(OP_ADD_EbGb, src, base, index, scale, offset);
}
void addw_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp8(OP_ADD_EvGv, src, base, offset);
}
void addw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp8(OP_ADD_EvGv, src, base, index, scale, offset);
}
void addl_ir(int imm, RegisterID dst)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_ADD, dst);
m_formatter.immediate8(imm);
} else {
if (dst == X86Registers::eax)
m_formatter.oneByteOp(OP_ADD_EAXIv);
else
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_ADD, dst);
m_formatter.immediate32(imm);
}
}
void addl_im(int imm, int offset, RegisterID base)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, offset);
m_formatter.immediate32(imm);
}
}
void addl_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, index, scale, offset);
m_formatter.immediate32(imm);
}
}
void addb_im(int imm, int offset, RegisterID base)
{
m_formatter.oneByteOp8(OP_GROUP1_EbIb, GROUP1_OP_ADD, base, offset);
m_formatter.immediate8(imm);
}
void addb_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp8(OP_GROUP1_EbIb, GROUP1_OP_ADD, base, index, scale, offset);
m_formatter.immediate8(imm);
}
void addw_im(int imm, int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp8(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp8(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, offset);
m_formatter.immediate16(imm);
}
}
void addw_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp8(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp8(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, index, scale, offset);
m_formatter.immediate16(imm);
}
}
#if CPU(X86_64)
void addq_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp64(OP_ADD_EvGv, src, dst);
}
void addq_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp64(OP_ADD_GvEv, dst, base, offset);
}
void addq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.oneByteOp64(OP_ADD_GvEv, dst, base, index, scale, offset);
}
void addq_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp64(OP_ADD_EvGv, src, base, offset);
}
void addq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp64(OP_ADD_EvGv, src, base, index, scale, offset);
}
void addq_ir(int imm, RegisterID dst)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_ADD, dst);
m_formatter.immediate8(imm);
} else {
if (dst == X86Registers::eax)
m_formatter.oneByteOp64(OP_ADD_EAXIv);
else
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_ADD, dst);
m_formatter.immediate32(imm);
}
}
void addq_im(int imm, int offset, RegisterID base)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, offset);
m_formatter.immediate32(imm);
}
}
void addq_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_ADD, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_ADD, base, index, scale, offset);
m_formatter.immediate32(imm);
}
}
#else
void addl_im(int imm, const void* addr)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOpAddr(OP_GROUP1_EvIb, GROUP1_OP_ADD, bitwise_cast<uint32_t>(addr));
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOpAddr(OP_GROUP1_EvIz, GROUP1_OP_ADD, bitwise_cast<uint32_t>(addr));
m_formatter.immediate32(imm);
}
}
#endif
void andl_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp(OP_AND_EvGv, src, dst);
}
void andl_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp(OP_AND_GvEv, dst, base, offset);
}
void andl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.oneByteOp(OP_AND_GvEv, dst, base, index, scale, offset);
}
void andw_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
andl_mr(offset, base, dst);
}
void andw_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
andl_mr(offset, base, index, scale, dst);
}
void andl_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_AND_EvGv, src, base, offset);
}
void andl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_AND_EvGv, src, base, index, scale, offset);
}
void andw_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
andl_rm(src, offset, base);
}
void andw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
andl_rm(src, offset, base, index, scale);
}
void andb_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_AND_EvGb, src, base, offset);
}
void andb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_AND_EvGb, src, base, index, scale, offset);
}
void andl_ir(int imm, RegisterID dst)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, dst);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, dst);
m_formatter.immediate32(imm);
}
}
void andl_im(int imm, int offset, RegisterID base)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, base, offset);
m_formatter.immediate32(imm);
}
}
void andl_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, base, index, scale, offset);
m_formatter.immediate32(imm);
}
}
void andw_im(int imm, int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, base, offset);
m_formatter.immediate16(imm);
}
}
void andw_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_AND, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_AND, base, index, scale, offset);
m_formatter.immediate16(imm);
}
}
void andb_im(int imm, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_AND, base, offset);
m_formatter.immediate8(imm);
}
void andb_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_AND, base, index, scale, offset);
m_formatter.immediate8(imm);
}
#if CPU(X86_64)
void andq_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp64(OP_AND_EvGv, src, dst);
}
void andq_ir(int imm, RegisterID dst)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_AND, dst);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_AND, dst);
m_formatter.immediate32(imm);
}
}
void andq_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp64(OP_AND_GvEv, dst, base, offset);
}
void andq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.oneByteOp64(OP_AND_GvEv, dst, base, index, scale, offset);
}
void andq_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp64(OP_AND_EvGv, src, base, offset);
}
void andq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp64(OP_AND_EvGv, src, base, index, scale, offset);
}
void andq_im(int imm, int offset, RegisterID base)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_AND, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_AND, base, offset);
m_formatter.immediate32(imm);
}
}
void andq_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_AND, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_AND, base, index, scale, offset);
m_formatter.immediate32(imm);
}
}
#else
void andl_im(int imm, const void* addr)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOpAddr(OP_GROUP1_EvIb, GROUP1_OP_AND, bitwise_cast<uint32_t>(addr));
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOpAddr(OP_GROUP1_EvIz, GROUP1_OP_AND, bitwise_cast<uint32_t>(addr));
m_formatter.immediate32(imm);
}
}
#endif
void dec_r(RegisterID dst)
{
m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP1_OP_OR, dst);
}
#if CPU(X86_64)
void decq_r(RegisterID dst)
{
m_formatter.oneByteOp64(OP_GROUP5_Ev, GROUP1_OP_OR, dst);
}
#endif // CPU(X86_64)
// Only used for testing purposes.
void illegalInstruction()
{
m_formatter.twoByteOp(OP2_UD2);
}
void inc_r(RegisterID dst)
{
m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP1_OP_ADD, dst);
}
#if CPU(X86_64)
void incq_r(RegisterID dst)
{
m_formatter.oneByteOp64(OP_GROUP5_Ev, GROUP1_OP_ADD, dst);
}
void incq_m(int offset, RegisterID base)
{
m_formatter.oneByteOp64(OP_GROUP5_Ev, GROUP1_OP_ADD, base, offset);
}
void incq_m(int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp64(OP_GROUP5_Ev, GROUP1_OP_ADD, base, index, scale, offset);
}
#endif // CPU(X86_64)
void negl_r(RegisterID dst)
{
m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NEG, dst);
}
#if CPU(X86_64)
void negq_r(RegisterID dst)
{
m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_NEG, dst);
}
void negq_m(int offset, RegisterID base)
{
m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_NEG, base, offset);
}
void negq_m(int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_NEG, base, index, scale, offset);
}
#endif
void negl_m(int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NEG, base, offset);
}
void negl_m(int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NEG, base, index, scale, offset);
}
void negw_m(int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
negl_m(offset, base);
}
void negw_m(int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
negl_m(offset, base, index, scale);
}
void negb_m(int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP3_Eb, GROUP3_OP_NEG, base, offset);
}
void negb_m(int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_GROUP3_Eb, GROUP3_OP_NEG, base, index, scale, offset);
}
void notl_r(RegisterID dst)
{
m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NOT, dst);
}
void notl_m(int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NOT, base, offset);
}
void notl_m(int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_NOT, base, index, scale, offset);
}
void notw_m(int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
notl_m(offset, base);
}
void notw_m(int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
notl_m(offset, base, index, scale);
}
void notb_m(int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP3_Eb, GROUP3_OP_NOT, base, offset);
}
void notb_m(int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_GROUP3_Eb, GROUP3_OP_NOT, base, index, scale, offset);
}
#if CPU(X86_64)
void notq_r(RegisterID dst)
{
m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_NOT, dst);
}
void notq_m(int offset, RegisterID base)
{
m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_NOT, base, offset);
}
void notq_m(int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_NOT, base, index, scale, offset);
}
#endif
void orl_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp(OP_OR_EvGv, src, dst);
}
void orl_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp(OP_OR_GvEv, dst, base, offset);
}
void orl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.oneByteOp(OP_OR_GvEv, dst, base, index, scale, offset);
}
void orl_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_OR_EvGv, src, base, offset);
}
void orl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_OR_EvGv, src, base, index, scale, offset);
}
void orw_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
orl_rm(src, offset, base);
}
void orw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
orl_rm(src, offset, base, index, scale);
}
void orb_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_OR_EvGb, src, base, offset);
}
void orb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_OR_EvGb, src, base, index, scale, offset);
}
void orl_ir(int imm, RegisterID dst)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, dst);
m_formatter.immediate8(imm);
} else {
if (dst == X86Registers::eax)
m_formatter.oneByteOp(OP_OR_EAXIv);
else
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, dst);
m_formatter.immediate32(imm);
}
}
void orl_im(int imm, int offset, RegisterID base)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, base, offset);
m_formatter.immediate32(imm);
}
}
void orl_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, base, index, scale, offset);
m_formatter.immediate32(imm);
}
}
void orw_im(int imm, int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, base, offset);
m_formatter.immediate16(imm);
}
}
void orw_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_OR, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_OR, base, index, scale, offset);
m_formatter.immediate16(imm);
}
}
void orb_im(int imm, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_OR, base, offset);
m_formatter.immediate8(imm);
}
void orb_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_OR, base, index, scale, offset);
m_formatter.immediate8(imm);
}
#if CPU(X86_64)
void orq_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp64(OP_OR_EvGv, src, dst);
}
void orq_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp64(OP_OR_GvEv, dst, base, offset);
}
void orq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.oneByteOp64(OP_OR_GvEv, dst, base, index, scale, offset);
}
void orq_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp64(OP_OR_EvGv, src, base, offset);
}
void orq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp64(OP_OR_EvGv, src, base, index, scale, offset);
}
void orq_im(int imm, int offset, RegisterID base)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_OR, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_OR, base, offset);
m_formatter.immediate32(imm);
}
}
void orq_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_OR, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_OR, base, index, scale, offset);
m_formatter.immediate32(imm);
}
}
void orq_ir(int imm, RegisterID dst)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_OR, dst);
m_formatter.immediate8(imm);
} else {
if (dst == X86Registers::eax)
m_formatter.oneByteOp64(OP_OR_EAXIv);
else
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_OR, dst);
m_formatter.immediate32(imm);
}
}
#else
void orl_im(int imm, const void* addr)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOpAddr(OP_GROUP1_EvIb, GROUP1_OP_OR, bitwise_cast<uint32_t>(addr));
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOpAddr(OP_GROUP1_EvIz, GROUP1_OP_OR, bitwise_cast<uint32_t>(addr));
m_formatter.immediate32(imm);
}
}
void orl_rm(RegisterID src, const void* addr)
{
m_formatter.oneByteOpAddr(OP_OR_EvGv, src, bitwise_cast<uint32_t>(addr));
}
#endif
void subl_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp(OP_SUB_EvGv, src, dst);
}
void subl_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp(OP_SUB_GvEv, dst, base, offset);
}
void subl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.oneByteOp(OP_SUB_GvEv, dst, base, index, scale, offset);
}
void subl_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_SUB_EvGv, src, base, offset);
}
void subl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_SUB_EvGv, src, base, index, scale, offset);
}
void subw_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp(OP_SUB_EvGv, src, base, offset);
}
void subw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp(OP_SUB_EvGv, src, base, index, scale, offset);
}
void subb_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_SUB_EvGb, src, base, offset);
}
void subb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_SUB_EvGb, src, base, index, scale, offset);
}
void subl_ir(int imm, RegisterID dst)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, dst);
m_formatter.immediate8(imm);
} else {
if (dst == X86Registers::eax)
m_formatter.oneByteOp(OP_SUB_EAXIv);
else
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, dst);
m_formatter.immediate32(imm);
}
}
void subl_im(int imm, int offset, RegisterID base)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, offset);
m_formatter.immediate32(imm);
}
}
void subl_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, index, scale, offset);
m_formatter.immediate32(imm);
}
}
void subw_im(int imm, int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, offset);
m_formatter.immediate16(imm);
}
}
void subw_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, index, scale, offset);
m_formatter.immediate16(imm);
}
}
void subb_im(int imm, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_SUB, base, offset);
m_formatter.immediate8(imm);
}
void subb_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_SUB, base, index, scale, offset);
m_formatter.immediate8(imm);
}
#if CPU(X86_64)
void subq_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp64(OP_SUB_EvGv, src, dst);
}
void subq_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp64(OP_SUB_GvEv, dst, base, offset);
}
void subq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.oneByteOp64(OP_SUB_GvEv, dst, base, index, scale, offset);
}
void subq_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp64(OP_SUB_EvGv, src, base, offset);
}
void subq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp64(OP_SUB_EvGv, src, base, index, scale, offset);
}
void subq_ir(int imm, RegisterID dst)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_SUB, dst);
m_formatter.immediate8(imm);
} else {
if (dst == X86Registers::eax)
m_formatter.oneByteOp64(OP_SUB_EAXIv);
else
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_SUB, dst);
m_formatter.immediate32(imm);
}
}
void subq_im(int imm, int offset, RegisterID base)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, offset);
m_formatter.immediate32(imm);
}
}
void subq_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_SUB, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_SUB, base, index, scale, offset);
m_formatter.immediate32(imm);
}
}
#else
void subl_im(int imm, const void* addr)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOpAddr(OP_GROUP1_EvIb, GROUP1_OP_SUB, bitwise_cast<uint32_t>(addr));
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOpAddr(OP_GROUP1_EvIz, GROUP1_OP_SUB, bitwise_cast<uint32_t>(addr));
m_formatter.immediate32(imm);
}
}
#endif
void xorl_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp(OP_XOR_EvGv, src, dst);
}
void xorl_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp(OP_XOR_GvEv, dst, base, offset);
}
void xorl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.oneByteOp(OP_XOR_GvEv, dst, base, index, scale, offset);
}
void xorl_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_XOR_EvGv, src, base, offset);
}
void xorl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_XOR_EvGv, src, base, index, scale, offset);
}
void xorl_im(int imm, int offset, RegisterID base)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, offset);
m_formatter.immediate32(imm);
}
}
void xorl_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, index, scale, offset);
m_formatter.immediate32(imm);
}
}
void xorw_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
xorl_rm(src, offset, base);
}
void xorw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
xorl_rm(src, offset, base, index, scale);
}
void xorw_im(int imm, int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, offset);
m_formatter.immediate16(imm);
}
}
void xorw_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, index, scale, offset);
m_formatter.immediate16(imm);
}
}
void xorb_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_XOR_EvGb, src, base, offset);
}
void xorb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_XOR_EvGb, src, base, index, scale, offset);
}
void xorb_im(int imm, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_XOR, base, offset);
m_formatter.immediate8(imm);
}
void xorb_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_XOR, base, index, scale, offset);
m_formatter.immediate8(imm);
}
void xorl_ir(int imm, RegisterID dst)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_XOR, dst);
m_formatter.immediate8(imm);
} else {
if (dst == X86Registers::eax)
m_formatter.oneByteOp(OP_XOR_EAXIv);
else
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_XOR, dst);
m_formatter.immediate32(imm);
}
}
#if CPU(X86_64)
void xorq_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp64(OP_XOR_EvGv, src, dst);
}
void xorq_ir(int imm, RegisterID dst)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_XOR, dst);
m_formatter.immediate8(imm);
} else {
if (dst == X86Registers::eax)
m_formatter.oneByteOp64(OP_XOR_EAXIv);
else
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_XOR, dst);
m_formatter.immediate32(imm);
}
}
void xorq_im(int imm, int offset, RegisterID base)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, offset);
m_formatter.immediate32(imm);
}
}
void xorq_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_XOR, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_XOR, base, index, scale, offset);
m_formatter.immediate32(imm);
}
}
void xorq_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp64(OP_XOR_EvGv, src, base, offset);
}
void xorq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp64(OP_XOR_EvGv, src, base, index, scale, offset);
}
void xorq_mr(int offset, RegisterID base, RegisterID dest)
{
m_formatter.oneByteOp64(OP_XOR_GvEv, dest, base, offset);
}
void xorq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dest)
{
m_formatter.oneByteOp64(OP_XOR_GvEv, dest, base, index, scale, offset);
}
#endif
void lzcnt_rr(RegisterID src, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_LZCNT, dst, src);
}
void lzcnt_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_LZCNT, dst, base, offset);
}
#if CPU(X86_64)
void lzcntq_rr(RegisterID src, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp64(OP2_LZCNT, dst, src);
}
void lzcntq_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp64(OP2_LZCNT, dst, base, offset);
}
#endif
void bsr_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp(OP2_BSR, dst, src);
}
void bsr_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.twoByteOp(OP2_BSR, dst, base, offset);
}
#if CPU(X86_64)
void bsrq_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp64(OP2_BSR, dst, src);
}
void bsrq_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.twoByteOp64(OP2_BSR, dst, base, offset);
}
#endif
void bswapl_r(RegisterID dst)
{
m_formatter.twoByteOp(OP2_BSWAP, dst);
}
#if CPU(X86_64)
void bswapq_r(RegisterID dst)
{
m_formatter.twoByteOp64(OP2_BSWAP, dst);
}
#endif
void tzcnt_rr(RegisterID src, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_TZCNT, dst, src);
}
#if CPU(X86_64)
void tzcntq_rr(RegisterID src, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp64(OP2_TZCNT, dst, src);
}
#endif
void bsf_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp(OP2_BSF, dst, src);
}
#if CPU(X86_64)
void bsfq_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp64(OP2_BSF, dst, src);
}
#endif
void popcnt_rr(RegisterID src, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_POPCNT, dst, src);
}
void popcnt_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_POPCNT, dst, base, offset);
}
#if CPU(X86_64)
void popcntq_rr(RegisterID src, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp64(OP2_POPCNT, dst, src);
}
void popcntq_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp64(OP2_POPCNT, dst, base, offset);
}
#endif
private:
template<GroupOpcodeID op>
void shiftInstruction32(int imm, RegisterID dst)
{
if (imm == 1)
m_formatter.oneByteOp(OP_GROUP2_Ev1, op, dst);
else {
m_formatter.oneByteOp(OP_GROUP2_EvIb, op, dst);
m_formatter.immediate8(imm);
}
}
template<GroupOpcodeID op>
void shiftInstruction16(int imm, RegisterID dst)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
if (imm == 1)
m_formatter.oneByteOp(OP_GROUP2_Ev1, op, dst);
else {
m_formatter.oneByteOp(OP_GROUP2_EvIb, op, dst);
m_formatter.immediate8(imm);
}
}
public:
void sarl_i8r(int imm, RegisterID dst)
{
shiftInstruction32<GROUP2_OP_SAR>(imm, dst);
}
void sarl_CLr(RegisterID dst)
{
m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_SAR, dst);
}
void shrl_i8r(int imm, RegisterID dst)
{
shiftInstruction32<GROUP2_OP_SHR>(imm, dst);
}
void shrl_CLr(RegisterID dst)
{
m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_SHR, dst);
}
void shll_i8r(int imm, RegisterID dst)
{
shiftInstruction32<GROUP2_OP_SHL>(imm, dst);
}
void shll_CLr(RegisterID dst)
{
m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_SHL, dst);
}
void rorl_i8r(int imm, RegisterID dst)
{
shiftInstruction32<GROUP2_OP_ROR>(imm, dst);
}
void rorl_CLr(RegisterID dst)
{
m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_ROR, dst);
}
void roll_i8r(int imm, RegisterID dst)
{
shiftInstruction32<GROUP2_OP_ROL>(imm, dst);
}
void roll_CLr(RegisterID dst)
{
m_formatter.oneByteOp(OP_GROUP2_EvCL, GROUP2_OP_ROL, dst);
}
void rolw_i8r(int imm, RegisterID dst)
{
shiftInstruction16<GROUP2_OP_ROL>(imm, dst);
}
#if CPU(X86_64)
private:
template<GroupOpcodeID op>
void shiftInstruction64(int imm, RegisterID dst)
{
if (imm == 1)
m_formatter.oneByteOp64(OP_GROUP2_Ev1, op, dst);
else {
m_formatter.oneByteOp64(OP_GROUP2_EvIb, op, dst);
m_formatter.immediate8(imm);
}
}
public:
void sarq_CLr(RegisterID dst)
{
m_formatter.oneByteOp64(OP_GROUP2_EvCL, GROUP2_OP_SAR, dst);
}
void sarq_i8r(int imm, RegisterID dst)
{
shiftInstruction64<GROUP2_OP_SAR>(imm, dst);
}
void shrq_i8r(int imm, RegisterID dst)
{
shiftInstruction64<GROUP2_OP_SHR>(imm, dst);
}
void shrq_CLr(RegisterID dst)
{
m_formatter.oneByteOp64(OP_GROUP2_EvCL, GROUP2_OP_SHR, dst);
}
void shlq_i8r(int imm, RegisterID dst)
{
shiftInstruction64<GROUP2_OP_SHL>(imm, dst);
}
void shlq_CLr(RegisterID dst)
{
m_formatter.oneByteOp64(OP_GROUP2_EvCL, GROUP2_OP_SHL, dst);
}
void rorq_i8r(int imm, RegisterID dst)
{
shiftInstruction64<GROUP2_OP_ROR>(imm, dst);
}
void rorq_CLr(RegisterID dst)
{
m_formatter.oneByteOp64(OP_GROUP2_EvCL, GROUP2_OP_ROR, dst);
}
void rolq_i8r(int imm, RegisterID dst)
{
shiftInstruction64<GROUP2_OP_ROL>(imm, dst);
}
void rolq_CLr(RegisterID dst)
{
m_formatter.oneByteOp64(OP_GROUP2_EvCL, GROUP2_OP_ROL, dst);
}
#endif // CPU(X86_64)
void imull_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp(OP2_IMUL_GvEv, dst, src);
}
#if CPU(X86_64)
void imulq_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp64(OP2_IMUL_GvEv, dst, src);
}
#endif // CPU(X86_64)
void imull_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.twoByteOp(OP2_IMUL_GvEv, dst, base, offset);
}
void imull_i32r(RegisterID src, int32_t value, RegisterID dst)
{
m_formatter.oneByteOp(OP_IMUL_GvEvIz, dst, src);
m_formatter.immediate32(value);
}
void divl_r(RegisterID dst)
{
m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_DIV, dst);
}
void idivl_r(RegisterID dst)
{
m_formatter.oneByteOp(OP_GROUP3_Ev, GROUP3_OP_IDIV, dst);
}
#if CPU(X86_64)
void divq_r(RegisterID dst)
{
m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_DIV, dst);
}
void idivq_r(RegisterID dst)
{
m_formatter.oneByteOp64(OP_GROUP3_Ev, GROUP3_OP_IDIV, dst);
}
#endif // CPU(X86_64)
// Comparisons:
void cmpl_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp(OP_CMP_EvGv, src, dst);
}
void cmpl_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_CMP_EvGv, src, base, offset);
}
void cmpl_mr(int offset, RegisterID base, RegisterID src)
{
m_formatter.oneByteOp(OP_CMP_GvEv, src, base, offset);
}
void cmpl_ir(int imm, RegisterID dst)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, dst);
m_formatter.immediate8(imm);
} else {
if (dst == X86Registers::eax)
m_formatter.oneByteOp(OP_CMP_EAXIv);
else
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, dst);
m_formatter.immediate32(imm);
}
}
void cmpl_ir_force32(int imm, RegisterID dst)
{
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, dst);
m_formatter.immediate32(imm);
}
void cmpl_im(int imm, int offset, RegisterID base)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, offset);
m_formatter.immediate32(imm);
}
}
void cmpb_im(int imm, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_CMP, base, offset);
m_formatter.immediate8(imm);
}
void cmpb_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_GROUP1_EbIb, GROUP1_OP_CMP, base, index, scale, offset);
m_formatter.immediate8(imm);
}
#if CPU(X86)
void cmpb_im(int imm, const void* addr)
{
m_formatter.oneByteOpAddr(OP_GROUP1_EbIb, GROUP1_OP_CMP, bitwise_cast<uint32_t>(addr));
m_formatter.immediate8(imm);
}
#endif
void cmpl_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, index, scale, offset);
m_formatter.immediate32(imm);
}
}
void cmpl_im_force32(int imm, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, offset);
m_formatter.immediate32(imm);
}
#if CPU(X86_64)
void cmpq_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp64(OP_CMP_EvGv, src, dst);
}
void cmpq_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp64(OP_CMP_EvGv, src, base, offset);
}
void cmpq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp64(OP_CMP_EvGv, src, base, index, scale, offset);
}
void cmpq_mr(int offset, RegisterID base, RegisterID src)
{
m_formatter.oneByteOp64(OP_CMP_GvEv, src, base, offset);
}
void cmpq_ir(int imm, RegisterID dst)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_CMP, dst);
m_formatter.immediate8(imm);
} else {
if (dst == X86Registers::eax)
m_formatter.oneByteOp64(OP_CMP_EAXIv);
else
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_CMP, dst);
m_formatter.immediate32(imm);
}
}
void cmpq_im(int imm, int offset, RegisterID base)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, offset);
m_formatter.immediate32(imm);
}
}
void cmpq_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOp64(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOp64(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, index, scale, offset);
m_formatter.immediate32(imm);
}
}
#else
void cmpl_rm(RegisterID reg, const void* addr)
{
m_formatter.oneByteOpAddr(OP_CMP_EvGv, reg, bitwise_cast<uint32_t>(addr));
}
void cmpl_im(int imm, const void* addr)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.oneByteOpAddr(OP_GROUP1_EvIb, GROUP1_OP_CMP, bitwise_cast<uint32_t>(addr));
m_formatter.immediate8(imm);
} else {
m_formatter.oneByteOpAddr(OP_GROUP1_EvIz, GROUP1_OP_CMP, bitwise_cast<uint32_t>(addr));
m_formatter.immediate32(imm);
}
}
#endif
void cmpw_ir(int imm, RegisterID dst)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, dst);
m_formatter.immediate8(imm);
} else {
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, dst);
m_formatter.immediate16(imm);
}
}
void cmpw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp(OP_CMP_EvGv, src, base, index, scale, offset);
}
void cmpw_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
if (CAN_SIGN_EXTEND_8_32(imm)) {
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp(OP_GROUP1_EvIb, GROUP1_OP_CMP, base, index, scale, offset);
m_formatter.immediate8(imm);
} else {
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp(OP_GROUP1_EvIz, GROUP1_OP_CMP, base, index, scale, offset);
m_formatter.immediate16(imm);
}
}
void testl_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp(OP_TEST_EvGv, src, dst);
}
void testl_i32r(int imm, RegisterID dst)
{
if (dst == X86Registers::eax)
m_formatter.oneByteOp(OP_TEST_EAXIv);
else
m_formatter.oneByteOp(OP_GROUP3_EvIz, GROUP3_OP_TEST, dst);
m_formatter.immediate32(imm);
}
void testl_i32m(int imm, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, offset);
m_formatter.immediate32(imm);
}
void testb_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp8(OP_TEST_EbGb, src, dst);
}
void testb_im(int imm, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP3_EbIb, GROUP3_OP_TEST, base, offset);
m_formatter.immediate8(imm);
}
void testb_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_GROUP3_EbIb, GROUP3_OP_TEST, base, index, scale, offset);
m_formatter.immediate8(imm);
}
#if CPU(X86)
void testb_im(int imm, const void* addr)
{
m_formatter.oneByteOpAddr(OP_GROUP3_EbIb, GROUP3_OP_TEST, bitwise_cast<uint32_t>(addr));
m_formatter.immediate8(imm);
}
#endif
void testl_i32m(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, index, scale, offset);
m_formatter.immediate32(imm);
}
#if CPU(X86_64)
void testq_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp64(OP_TEST_EvGv, src, dst);
}
void testq_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp64(OP_TEST_EvGv, src, base, offset);
}
void testq_i32r(int imm, RegisterID dst)
{
if (dst == X86Registers::eax)
m_formatter.oneByteOp64(OP_TEST_EAXIv);
else
m_formatter.oneByteOp64(OP_GROUP3_EvIz, GROUP3_OP_TEST, dst);
m_formatter.immediate32(imm);
}
void testq_i32m(int imm, int offset, RegisterID base)
{
m_formatter.oneByteOp64(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, offset);
m_formatter.immediate32(imm);
}
void testq_i32m(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp64(OP_GROUP3_EvIz, GROUP3_OP_TEST, base, index, scale, offset);
m_formatter.immediate32(imm);
}
#endif
void testw_rr(RegisterID src, RegisterID dst)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp(OP_TEST_EvGv, src, dst);
}
void testb_i8r(int imm, RegisterID dst)
{
if (dst == X86Registers::eax)
m_formatter.oneByteOp(OP_TEST_ALIb);
else
m_formatter.oneByteOp8(OP_GROUP3_EbIb, GROUP3_OP_TEST, dst);
m_formatter.immediate8(imm);
}
void bt_ir(int bitOffset, RegisterID testValue)
{
ASSERT(-128 <= bitOffset && bitOffset < 128);
m_formatter.twoByteOp(OP2_GROUP_BT_EvIb, GROUP_BT_OP_BT, testValue);
m_formatter.immediate8(bitOffset);
}
void bt_im(int bitOffset, int offset, RegisterID base)
{
ASSERT(-128 <= bitOffset && bitOffset < 128);
m_formatter.twoByteOp(OP2_GROUP_BT_EvIb, GROUP_BT_OP_BT, base, offset);
m_formatter.immediate8(bitOffset);
}
void bt_ir(RegisterID bitOffset, RegisterID testValue)
{
m_formatter.twoByteOp(OP2_BT_EvEv, bitOffset, testValue);
}
void bt_im(RegisterID bitOffset, int offset, RegisterID base)
{
m_formatter.twoByteOp(OP2_BT_EvEv, bitOffset, base, offset);
}
#if CPU(X86_64)
void btw_ir(int bitOffset, RegisterID testValue)
{
ASSERT(-128 <= bitOffset && bitOffset < 128);
m_formatter.twoByteOp64(OP2_GROUP_BT_EvIb, GROUP_BT_OP_BT, testValue);
m_formatter.immediate8(bitOffset);
}
void btw_im(int bitOffset, int offset, RegisterID base)
{
ASSERT(-128 <= bitOffset && bitOffset < 128);
m_formatter.twoByteOp64(OP2_GROUP_BT_EvIb, GROUP_BT_OP_BT, base, offset);
m_formatter.immediate8(bitOffset);
}
void btw_ir(RegisterID bitOffset, RegisterID testValue)
{
m_formatter.twoByteOp64(OP2_BT_EvEv, bitOffset, testValue);
}
void btw_im(RegisterID bitOffset, int offset, RegisterID base)
{
m_formatter.twoByteOp64(OP2_BT_EvEv, bitOffset, base, offset);
}
#endif
void setCC_r(Condition cond, RegisterID dst)
{
m_formatter.twoByteOp8(setccOpcode(cond), (GroupOpcodeID)0, dst);
}
void sete_r(RegisterID dst)
{
m_formatter.twoByteOp8(setccOpcode(ConditionE), (GroupOpcodeID)0, dst);
}
void setz_r(RegisterID dst)
{
sete_r(dst);
}
void setne_r(RegisterID dst)
{
m_formatter.twoByteOp8(setccOpcode(ConditionNE), (GroupOpcodeID)0, dst);
}
void setnz_r(RegisterID dst)
{
setne_r(dst);
}
void setnp_r(RegisterID dst)
{
m_formatter.twoByteOp8(setccOpcode(ConditionNP), (GroupOpcodeID)0, dst);
}
void setp_r(RegisterID dst)
{
m_formatter.twoByteOp8(setccOpcode(ConditionP), (GroupOpcodeID)0, dst);
}
// Various move ops:
void cdq()
{
m_formatter.oneByteOp(OP_CDQ);
}
#if CPU(X86_64)
void cqo()
{
m_formatter.oneByteOp64(OP_CDQ);
}
#endif
void fstps(int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_ESCAPE_D9, ESCAPE_D9_FSTP_singleReal, base, offset);
}
void fstpl(int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_ESCAPE_DD, ESCAPE_DD_FSTP_doubleReal, base, offset);
}
void xchgl_rr(RegisterID src, RegisterID dst)
{
if (src == X86Registers::eax)
m_formatter.oneByteOp(OP_XCHG_EAX, dst);
else if (dst == X86Registers::eax)
m_formatter.oneByteOp(OP_XCHG_EAX, src);
else
m_formatter.oneByteOp(OP_XCHG_EvGv, src, dst);
}
void xchgb_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp8(OP_XCHG_EvGb, src, base, offset);
}
void xchgb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp8(OP_XCHG_EvGb, src, base, index, scale, offset);
}
void xchgw_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp(OP_XCHG_EvGv, src, base, offset);
}
void xchgw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp(OP_XCHG_EvGv, src, base, index, scale, offset);
}
void xchgl_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_XCHG_EvGv, src, base, offset);
}
void xchgl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_XCHG_EvGv, src, base, index, scale, offset);
}
#if CPU(X86_64)
void xchgq_rr(RegisterID src, RegisterID dst)
{
if (src == X86Registers::eax)
m_formatter.oneByteOp64(OP_XCHG_EAX, dst);
else if (dst == X86Registers::eax)
m_formatter.oneByteOp64(OP_XCHG_EAX, src);
else
m_formatter.oneByteOp64(OP_XCHG_EvGv, src, dst);
}
void xchgq_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp64(OP_XCHG_EvGv, src, base, offset);
}
void xchgq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp64(OP_XCHG_EvGv, src, base, index, scale, offset);
}
#endif
void movl_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp(OP_MOV_EvGv, src, dst);
}
void movl_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_MOV_EvGv, src, base, offset);
}
void movl_rm_disp32(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp_disp32(OP_MOV_EvGv, src, base, offset);
}
void movl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_MOV_EvGv, src, base, index, scale, offset);
}
void movl_mEAX(const void* addr)
{
m_formatter.oneByteOp(OP_MOV_EAXOv);
#if CPU(X86_64)
m_formatter.immediate64(reinterpret_cast<int64_t>(addr));
#else
m_formatter.immediate32(reinterpret_cast<int>(addr));
#endif
}
void movl_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp(OP_MOV_GvEv, dst, base, offset);
}
void movl_mr_disp32(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp_disp32(OP_MOV_GvEv, dst, base, offset);
}
void movl_mr_disp8(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp_disp8(OP_MOV_GvEv, dst, base, offset);
}
void movl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.oneByteOp(OP_MOV_GvEv, dst, base, index, scale, offset);
}
void movl_i32r(int imm, RegisterID dst)
{
m_formatter.oneByteOp(OP_MOV_EAXIv, dst);
m_formatter.immediate32(imm);
}
void movl_i32m(int imm, int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP11_EvIz, GROUP11_MOV, base, offset);
m_formatter.immediate32(imm);
}
void movl_i32m(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_GROUP11_EvIz, GROUP11_MOV, base, index, scale, offset);
m_formatter.immediate32(imm);
}
#if !CPU(X86_64)
void movb_i8m(int imm, const void* addr)
{
ASSERT(-128 <= imm && imm < 128);
m_formatter.oneByteOpAddr(OP_GROUP11_EvIb, GROUP11_MOV, bitwise_cast<uint32_t>(addr));
m_formatter.immediate8(imm);
}
#endif
void movb_i8m(int imm, int offset, RegisterID base)
{
ASSERT(-128 <= imm && imm < 128);
m_formatter.oneByteOp(OP_GROUP11_EvIb, GROUP11_MOV, base, offset);
m_formatter.immediate8(imm);
}
void movb_i8m(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
ASSERT(-128 <= imm && imm < 128);
m_formatter.oneByteOp(OP_GROUP11_EvIb, GROUP11_MOV, base, index, scale, offset);
m_formatter.immediate8(imm);
}
#if !CPU(X86_64)
void movb_rm(RegisterID src, const void* addr)
{
m_formatter.oneByteOpAddr(OP_MOV_EbGb, src, bitwise_cast<uint32_t>(addr));
}
#endif
void movb_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp8(OP_MOV_EbGb, src, base, offset);
}
void movb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp8(OP_MOV_EbGb, src, base, index, scale, offset);
}
void movw_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
// FIXME: We often use oneByteOp8 for 16-bit operations. It's not clear that this is
// necessary. https://bugs.webkit.org/show_bug.cgi?id=153433
m_formatter.oneByteOp8(OP_MOV_EvGv, src, base, offset);
}
void movw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp8(OP_MOV_EvGv, src, base, index, scale, offset);
}
void movw_im(int imm, int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp(OP_GROUP11_EvIz, GROUP11_MOV, base, offset);
m_formatter.immediate16(imm);
}
void movw_im(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.oneByteOp(OP_GROUP11_EvIz, GROUP11_MOV, base, index, scale, offset);
m_formatter.immediate16(imm);
}
void movl_EAXm(const void* addr)
{
m_formatter.oneByteOp(OP_MOV_OvEAX);
#if CPU(X86_64)
m_formatter.immediate64(reinterpret_cast<int64_t>(addr));
#else
m_formatter.immediate32(reinterpret_cast<int>(addr));
#endif
}
void movl_mr(uint32_t addr, RegisterID dst)
{
m_formatter.oneByteOpAddr(OP_MOV_GvEv, dst, addr);
}
void movl_rm(RegisterID src, uint32_t addr)
{
m_formatter.oneByteOpAddr(OP_MOV_EvGv, src, addr);
}
#if CPU(X86_64)
void movq_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp64(OP_MOV_EvGv, src, dst);
}
void movq_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp64(OP_MOV_EvGv, src, base, offset);
}
void movq_rm_disp32(RegisterID src, int offset, RegisterID base)
{
m_formatter.oneByteOp64_disp32(OP_MOV_EvGv, src, base, offset);
}
void movq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp64(OP_MOV_EvGv, src, base, index, scale, offset);
}
void movq_rm(RegisterID src, int offset)
{
m_formatter.oneByteOp64Addr(OP_MOV_EvGv, src, offset);
}
void movq_mEAX(const void* addr)
{
m_formatter.oneByteOp64(OP_MOV_EAXOv);
m_formatter.immediate64(reinterpret_cast<int64_t>(addr));
}
void movq_EAXm(const void* addr)
{
m_formatter.oneByteOp64(OP_MOV_OvEAX);
m_formatter.immediate64(reinterpret_cast<int64_t>(addr));
}
void movq_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp64(OP_MOV_GvEv, dst, base, offset);
}
void movq_mr_disp32(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp64_disp32(OP_MOV_GvEv, dst, base, offset);
}
void movq_mr_disp8(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp64_disp8(OP_MOV_GvEv, dst, base, offset);
}
void movq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.oneByteOp64(OP_MOV_GvEv, dst, base, index, scale, offset);
}
void movq_mr(uint32_t addr, RegisterID dst)
{
m_formatter.oneByteOp64Addr(OP_MOV_GvEv, dst, addr);
}
void movq_i32m(int imm, int offset, RegisterID base)
{
m_formatter.oneByteOp64(OP_GROUP11_EvIz, GROUP11_MOV, base, offset);
m_formatter.immediate32(imm);
}
void movq_i32m(int imm, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp64(OP_GROUP11_EvIz, GROUP11_MOV, base, index, scale, offset);
m_formatter.immediate32(imm);
}
void movq_i64r(int64_t imm, RegisterID dst)
{
m_formatter.oneByteOp64(OP_MOV_EAXIv, dst);
m_formatter.immediate64(imm);
}
void mov_i32r(int32_t imm, RegisterID dst)
{
m_formatter.oneByteOp64(OP_GROUP11_EvIz, GROUP11_MOV, dst);
m_formatter.immediate32(imm);
}
void movsxd_rr(RegisterID src, RegisterID dst)
{
m_formatter.oneByteOp64(OP_MOVSXD_GvEv, dst, src);
}
#else
void movl_mr(const void* addr, RegisterID dst)
{
if (dst == X86Registers::eax)
movl_mEAX(addr);
else
m_formatter.oneByteOpAddr(OP_MOV_GvEv, dst, bitwise_cast<uint32_t>(addr));
}
void movl_rm(RegisterID src, const void* addr)
{
if (src == X86Registers::eax)
movl_EAXm(addr);
else
m_formatter.oneByteOpAddr(OP_MOV_EvGv, src, bitwise_cast<uint32_t>(addr));
}
void movl_i32m(int imm, const void* addr)
{
m_formatter.oneByteOpAddr(OP_GROUP11_EvIz, GROUP11_MOV, bitwise_cast<uint32_t>(addr));
m_formatter.immediate32(imm);
}
#endif
void movzwl_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.twoByteOp(OP2_MOVZX_GvEw, dst, base, offset);
}
void movzwl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.twoByteOp(OP2_MOVZX_GvEw, dst, base, index, scale, offset);
}
void movswl_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.twoByteOp(OP2_MOVSX_GvEw, dst, base, offset);
}
void movswl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.twoByteOp(OP2_MOVSX_GvEw, dst, base, index, scale, offset);
}
void movzbl_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.twoByteOp(OP2_MOVZX_GvEb, dst, base, offset);
}
void movzbl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.twoByteOp(OP2_MOVZX_GvEb, dst, base, index, scale, offset);
}
#if !CPU(X86_64)
void movzbl_mr(const void* address, RegisterID dst)
{
m_formatter.twoByteOpAddr(OP2_MOVZX_GvEb, dst, bitwise_cast<uint32_t>(address));
}
#endif
void movsbl_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.twoByteOp(OP2_MOVSX_GvEb, dst, base, offset);
}
void movsbl_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.twoByteOp(OP2_MOVSX_GvEb, dst, base, index, scale, offset);
}
void movzbl_rr(RegisterID src, RegisterID dst)
{
// In 64-bit, this may cause an unnecessary REX to be planted (if the dst register
// is in the range ESP-EDI, and the src would not have required a REX). Unneeded
// REX prefixes are defined to be silently ignored by the processor.
m_formatter.twoByteOp8(OP2_MOVZX_GvEb, dst, src);
}
void movsbl_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp8(OP2_MOVSX_GvEb, dst, src);
}
void movzwl_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp8(OP2_MOVZX_GvEw, dst, src);
}
void movswl_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp8(OP2_MOVSX_GvEw, dst, src);
}
void cmovl_rr(Condition cond, RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp(cmovcc(cond), dst, src);
}
void cmovl_mr(Condition cond, int offset, RegisterID base, RegisterID dst)
{
m_formatter.twoByteOp(cmovcc(cond), dst, base, offset);
}
void cmovl_mr(Condition cond, int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.twoByteOp(cmovcc(cond), dst, base, index, scale, offset);
}
void cmovel_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp(cmovcc(ConditionE), dst, src);
}
void cmovnel_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp(cmovcc(ConditionNE), dst, src);
}
void cmovpl_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp(cmovcc(ConditionP), dst, src);
}
void cmovnpl_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp(cmovcc(ConditionNP), dst, src);
}
#if CPU(X86_64)
void cmovq_rr(Condition cond, RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp64(cmovcc(cond), dst, src);
}
void cmovq_mr(Condition cond, int offset, RegisterID base, RegisterID dst)
{
m_formatter.twoByteOp64(cmovcc(cond), dst, base, offset);
}
void cmovq_mr(Condition cond, int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.twoByteOp64(cmovcc(cond), dst, base, index, scale, offset);
}
void cmoveq_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp64(cmovcc(ConditionE), dst, src);
}
void cmovneq_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp64(cmovcc(ConditionNE), dst, src);
}
void cmovpq_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp64(cmovcc(ConditionP), dst, src);
}
void cmovnpq_rr(RegisterID src, RegisterID dst)
{
m_formatter.twoByteOp64(cmovcc(ConditionNP), dst, src);
}
#else
void cmovl_mr(Condition cond, const void* addr, RegisterID dst)
{
m_formatter.twoByteOpAddr(cmovcc(cond), dst, bitwise_cast<uint32_t>(addr));
}
#endif
void leal_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp(OP_LEA, dst, base, offset);
}
void leal_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.oneByteOp(OP_LEA, dst, base, index, scale, offset);
}
#if CPU(X86_64)
void leaq_mr(int offset, RegisterID base, RegisterID dst)
{
m_formatter.oneByteOp64(OP_LEA, dst, base, offset);
}
void leaq_mr(int offset, RegisterID base, RegisterID index, int scale, RegisterID dst)
{
m_formatter.oneByteOp64(OP_LEA, dst, base, index, scale, offset);
}
#endif
// Flow control:
AssemblerLabel call()
{
m_formatter.oneByteOp(OP_CALL_rel32);
return m_formatter.immediateRel32();
}
AssemblerLabel call(RegisterID dst)
{
m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_CALLN, dst);
return m_formatter.label();
}
void call_m(int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_CALLN, base, offset);
}
AssemblerLabel jmp()
{
m_formatter.oneByteOp(OP_JMP_rel32);
return m_formatter.immediateRel32();
}
// Return a AssemblerLabel so we have a label to the jump, so we can use this
// To make a tail recursive call on x86-64. The MacroAssembler
// really shouldn't wrap this as a Jump, since it can't be linked. :-/
AssemblerLabel jmp_r(RegisterID dst)
{
m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_JMPN, dst);
return m_formatter.label();
}
void jmp_m(int offset, RegisterID base)
{
m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_JMPN, base, offset);
}
void jmp_m(int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.oneByteOp(OP_GROUP5_Ev, GROUP5_OP_JMPN, base, index, scale, offset);
}
#if !CPU(X86_64)
void jmp_m(const void* address)
{
m_formatter.oneByteOpAddr(OP_GROUP5_Ev, GROUP5_OP_JMPN, bitwise_cast<uint32_t>(address));
}
#endif
AssemblerLabel jne()
{
m_formatter.twoByteOp(jccRel32(ConditionNE));
return m_formatter.immediateRel32();
}
AssemblerLabel jnz()
{
return jne();
}
AssemblerLabel je()
{
m_formatter.twoByteOp(jccRel32(ConditionE));
return m_formatter.immediateRel32();
}
AssemblerLabel jz()
{
return je();
}
AssemblerLabel jl()
{
m_formatter.twoByteOp(jccRel32(ConditionL));
return m_formatter.immediateRel32();
}
AssemblerLabel jb()
{
m_formatter.twoByteOp(jccRel32(ConditionB));
return m_formatter.immediateRel32();
}
AssemblerLabel jle()
{
m_formatter.twoByteOp(jccRel32(ConditionLE));
return m_formatter.immediateRel32();
}
AssemblerLabel jbe()
{
m_formatter.twoByteOp(jccRel32(ConditionBE));
return m_formatter.immediateRel32();
}
AssemblerLabel jge()
{
m_formatter.twoByteOp(jccRel32(ConditionGE));
return m_formatter.immediateRel32();
}
AssemblerLabel jg()
{
m_formatter.twoByteOp(jccRel32(ConditionG));
return m_formatter.immediateRel32();
}
AssemblerLabel ja()
{
m_formatter.twoByteOp(jccRel32(ConditionA));
return m_formatter.immediateRel32();
}
AssemblerLabel jae()
{
m_formatter.twoByteOp(jccRel32(ConditionAE));
return m_formatter.immediateRel32();
}
AssemblerLabel jo()
{
m_formatter.twoByteOp(jccRel32(ConditionO));
return m_formatter.immediateRel32();
}
AssemblerLabel jnp()
{
m_formatter.twoByteOp(jccRel32(ConditionNP));
return m_formatter.immediateRel32();
}
AssemblerLabel jp()
{
m_formatter.twoByteOp(jccRel32(ConditionP));
return m_formatter.immediateRel32();
}
AssemblerLabel js()
{
m_formatter.twoByteOp(jccRel32(ConditionS));
return m_formatter.immediateRel32();
}
AssemblerLabel jCC(Condition cond)
{
m_formatter.twoByteOp(jccRel32(cond));
return m_formatter.immediateRel32();
}
// SSE operations:
void addsd_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)src);
}
void vaddsd_rr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dst)
{
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_F2, OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)a, (RegisterID)b);
}
void addsd_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, (RegisterID)dst, base, offset);
}
void addsd_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, dst, base, index, scale, offset);
}
void vaddsd_mr(int offset, RegisterID base, XMMRegisterID b, XMMRegisterID dst)
{
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)b, base, offset);
}
void vaddsd_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID b, XMMRegisterID dst)
{
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)b, offset, base, index, scale);
}
void addss_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)src);
}
void vaddss_rr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dst)
{
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_F3, OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)a, (RegisterID)b);
}
void addss_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, (RegisterID)dst, base, offset);
}
void addss_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_ADDSD_VsdWsd, dst, base, index, scale, offset);
}
void vaddss_mr(int offset, RegisterID base, XMMRegisterID b, XMMRegisterID dst)
{
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)b, base, offset);
}
void vaddss_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID b, XMMRegisterID dst)
{
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_ADDSD_VsdWsd, (RegisterID)dst, (RegisterID)b, offset, base, index, scale);
}
#if !CPU(X86_64)
void addsd_mr(const void* address, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOpAddr(OP2_ADDSD_VsdWsd, (RegisterID)dst, bitwise_cast<uint32_t>(address));
}
#endif
void cvtsi2sd_rr(RegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, src);
}
void cvtsi2ss_rr(RegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, src);
}
#if CPU(X86_64)
void cvtsi2sdq_rr(RegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp64(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, src);
}
void cvtsi2ssq_rr(RegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp64(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, src);
}
void cvtsi2sdq_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp64(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, base, offset);
}
void cvtsi2ssq_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp64(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, base, offset);
}
#endif
void cvtsi2sd_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, base, offset);
}
void cvtsi2ss_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, base, offset);
}
#if !CPU(X86_64)
void cvtsi2sd_mr(const void* address, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOpAddr(OP2_CVTSI2SD_VsdEd, (RegisterID)dst, bitwise_cast<uint32_t>(address));
}
#endif
void cvttsd2si_rr(XMMRegisterID src, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_CVTTSD2SI_GdWsd, dst, (RegisterID)src);
}
void cvttss2si_rr(XMMRegisterID src, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_CVTTSS2SI_GdWsd, dst, (RegisterID)src);
}
#if CPU(X86_64)
void cvttss2siq_rr(XMMRegisterID src, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp64(OP2_CVTTSS2SI_GdWsd, dst, (RegisterID)src);
}
#endif
void cvtsd2ss_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_CVTSD2SS_VsdWsd, dst, (RegisterID)src);
}
void cvtsd2ss_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_CVTSD2SS_VsdWsd, dst, base, offset);
}
void cvtss2sd_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_CVTSS2SD_VsdWsd, dst, (RegisterID)src);
}
void cvtss2sd_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_CVTSS2SD_VsdWsd, dst, base, offset);
}
#if CPU(X86_64)
void cvttsd2siq_rr(XMMRegisterID src, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp64(OP2_CVTTSD2SI_GdWsd, dst, (RegisterID)src);
}
#endif
void movd_rr(XMMRegisterID src, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_MOVD_EdVd, (RegisterID)src, dst);
}
void movd_rr(RegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_MOVD_VdEd, (RegisterID)dst, src);
}
#if CPU(X86_64)
void movmskpd_rr(XMMRegisterID src, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp64(OP2_MOVMSKPD_VdEd, dst, (RegisterID)src);
}
void movq_rr(XMMRegisterID src, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp64(OP2_MOVD_EdVd, (RegisterID)src, dst);
}
void movq_rr(RegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp64(OP2_MOVD_VdEd, (RegisterID)dst, src);
}
#endif
void movapd_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_MOVAPD_VpdWpd, (RegisterID)dst, (RegisterID)src);
}
void movaps_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.twoByteOp(OP2_MOVAPS_VpdWpd, (RegisterID)dst, (RegisterID)src);
}
void movsd_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, (RegisterID)dst, (RegisterID)src);
}
void movsd_rm(XMMRegisterID src, int offset, RegisterID base)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_MOVSD_WsdVsd, (RegisterID)src, base, offset);
}
void movsd_rm(XMMRegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_MOVSD_WsdVsd, (RegisterID)src, base, index, scale, offset);
}
void movss_rm(XMMRegisterID src, int offset, RegisterID base)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_MOVSD_WsdVsd, (RegisterID)src, base, offset);
}
void movss_rm(XMMRegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_MOVSD_WsdVsd, (RegisterID)src, base, index, scale, offset);
}
void movsd_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, (RegisterID)dst, base, offset);
}
void movsd_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, dst, base, index, scale, offset);
}
void movss_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, (RegisterID)dst, base, offset);
}
void movss_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_MOVSD_VsdWsd, dst, base, index, scale, offset);
}
#if !CPU(X86_64)
void movsd_mr(const void* address, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOpAddr(OP2_MOVSD_VsdWsd, (RegisterID)dst, bitwise_cast<uint32_t>(address));
}
void movsd_rm(XMMRegisterID src, const void* address)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOpAddr(OP2_MOVSD_WsdVsd, (RegisterID)src, bitwise_cast<uint32_t>(address));
}
void movss_mr(const void* address, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOpAddr(OP2_MOVSD_VsdWsd, (RegisterID)dst, bitwise_cast<uint32_t>(address));
}
void movss_rm(XMMRegisterID src, const void* address)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOpAddr(OP2_MOVSD_WsdVsd, (RegisterID)src, bitwise_cast<uint32_t>(address));
}
#endif
void mulsd_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)src);
}
void vmulsd_rr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dst)
{
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_F2, OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)a, (RegisterID)b);
}
void mulsd_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_MULSD_VsdWsd, (RegisterID)dst, base, offset);
}
void mulsd_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_MULSD_VsdWsd, dst, base, index, scale, offset);
}
void vmulsd_mr(int offset, RegisterID base, XMMRegisterID b, XMMRegisterID dst)
{
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)b, base, offset);
}
void vmulsd_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID b, XMMRegisterID dst)
{
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)b, offset, base, index, scale);
}
void mulss_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)src);
}
void vmulss_rr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dst)
{
m_formatter.vexNdsLigWigCommutativeTwoByteOp(PRE_SSE_F3, OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)a, (RegisterID)b);
}
void mulss_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_MULSD_VsdWsd, (RegisterID)dst, base, offset);
}
void mulss_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_MULSD_VsdWsd, dst, base, index, scale, offset);
}
void vmulss_mr(int offset, RegisterID base, XMMRegisterID b, XMMRegisterID dst)
{
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)b, base, offset);
}
void vmulss_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID b, XMMRegisterID dst)
{
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_MULSD_VsdWsd, (RegisterID)dst, (RegisterID)b, offset, base, index, scale);
}
void pextrw_irr(int whichWord, XMMRegisterID src, RegisterID dst)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_PEXTRW_GdUdIb, (RegisterID)dst, (RegisterID)src);
m_formatter.immediate8(whichWord);
}
void psllq_i8r(int imm, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp8(OP2_PSLLQ_UdqIb, GROUP14_OP_PSLLQ, (RegisterID)dst);
m_formatter.immediate8(imm);
}
void psrlq_i8r(int imm, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp8(OP2_PSRLQ_UdqIb, GROUP14_OP_PSRLQ, (RegisterID)dst);
m_formatter.immediate8(imm);
}
void por_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_POR_VdqWdq, (RegisterID)dst, (RegisterID)src);
}
void subsd_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)src);
}
void vsubsd_rr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dst)
{
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)a, (RegisterID)b);
}
void subsd_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, (RegisterID)dst, base, offset);
}
void subsd_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, dst, base, index, scale, offset);
}
void vsubsd_mr(XMMRegisterID b, int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)b, base, offset);
}
void vsubsd_mr(XMMRegisterID b, int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst)
{
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F2, OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)b, offset, base, index, scale);
}
void subss_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)src);
}
void vsubss_rr(XMMRegisterID a, XMMRegisterID b, XMMRegisterID dst)
{
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)a, (RegisterID)b);
}
void subss_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, (RegisterID)dst, base, offset);
}
void subss_mr(int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_SUBSD_VsdWsd, dst, base, index, scale, offset);
}
void vsubss_mr(XMMRegisterID b, int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)b, base, offset);
}
void vsubss_mr(XMMRegisterID b, int offset, RegisterID base, RegisterID index, int scale, XMMRegisterID dst)
{
m_formatter.vexNdsLigWigTwoByteOp(PRE_SSE_F3, OP2_SUBSD_VsdWsd, (RegisterID)dst, (RegisterID)b, offset, base, index, scale);
}
void ucomisd_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_UCOMISD_VsdWsd, (RegisterID)dst, (RegisterID)src);
}
void ucomisd_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_UCOMISD_VsdWsd, (RegisterID)dst, base, offset);
}
void ucomiss_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.twoByteOp(OP2_UCOMISD_VsdWsd, (RegisterID)dst, (RegisterID)src);
}
void ucomiss_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.twoByteOp(OP2_UCOMISD_VsdWsd, (RegisterID)dst, base, offset);
}
void divsd_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_DIVSD_VsdWsd, (RegisterID)dst, (RegisterID)src);
}
void divsd_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_DIVSD_VsdWsd, (RegisterID)dst, base, offset);
}
void divss_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_DIVSD_VsdWsd, (RegisterID)dst, (RegisterID)src);
}
void divss_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_DIVSD_VsdWsd, (RegisterID)dst, base, offset);
}
void andps_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.twoByteOp(OP2_ANDPS_VpdWpd, (RegisterID)dst, (RegisterID)src);
}
void orps_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.twoByteOp(OP2_ORPS_VpdWpd, (RegisterID)dst, (RegisterID)src);
}
void xorps_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.twoByteOp(OP2_XORPD_VpdWpd, (RegisterID)dst, (RegisterID)src);
}
void xorpd_rr(XMMRegisterID src, XMMRegisterID dst)
{
if (src == dst) {
xorps_rr(src, dst);
return;
}
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_XORPD_VpdWpd, (RegisterID)dst, (RegisterID)src);
}
void andnpd_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.twoByteOp(OP2_ANDNPD_VpdWpd, (RegisterID)dst, (RegisterID)src);
}
void sqrtsd_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_SQRTSD_VsdWsd, (RegisterID)dst, (RegisterID)src);
}
void sqrtsd_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F2);
m_formatter.twoByteOp(OP2_SQRTSD_VsdWsd, (RegisterID)dst, base, offset);
}
void sqrtss_rr(XMMRegisterID src, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_SQRTSD_VsdWsd, (RegisterID)dst, (RegisterID)src);
}
void sqrtss_mr(int offset, RegisterID base, XMMRegisterID dst)
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.twoByteOp(OP2_SQRTSD_VsdWsd, (RegisterID)dst, base, offset);
}
enum class RoundingType : uint8_t {
ToNearestWithTiesToEven = 0,
TowardNegativeInfiniti = 1,
TowardInfiniti = 2,
TowardZero = 3
};
void roundss_rr(XMMRegisterID src, XMMRegisterID dst, RoundingType rounding)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_3A, OP3_ROUNDSS_VssWssIb, (RegisterID)dst, (RegisterID)src);
m_formatter.immediate8(static_cast<uint8_t>(rounding));
}
void roundss_mr(int offset, RegisterID base, XMMRegisterID dst, RoundingType rounding)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_3A, OP3_ROUNDSS_VssWssIb, (RegisterID)dst, base, offset);
m_formatter.immediate8(static_cast<uint8_t>(rounding));
}
void roundsd_rr(XMMRegisterID src, XMMRegisterID dst, RoundingType rounding)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_3A, OP3_ROUNDSD_VsdWsdIb, (RegisterID)dst, (RegisterID)src);
m_formatter.immediate8(static_cast<uint8_t>(rounding));
}
void roundsd_mr(int offset, RegisterID base, XMMRegisterID dst, RoundingType rounding)
{
m_formatter.prefix(PRE_SSE_66);
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_3A, OP3_ROUNDSD_VsdWsdIb, (RegisterID)dst, base, offset);
m_formatter.immediate8(static_cast<uint8_t>(rounding));
}
// Misc instructions:
void int3()
{
m_formatter.oneByteOp(OP_INT3);
}
static bool isInt3(void* address)
{
uint8_t candidateInstruction = *reinterpret_cast<uint8_t*>(address);
return candidateInstruction == OP_INT3;
}
void ret()
{
m_formatter.oneByteOp(OP_RET);
}
void predictNotTaken()
{
m_formatter.prefix(PRE_PREDICT_BRANCH_NOT_TAKEN);
}
void lock()
{
m_formatter.prefix(PRE_LOCK);
}
// Causes the memory access in the next instruction to be offset by %gs. Usually you use
// this with a 32-bit absolute address load. That "address" ends up being the offset to
// %gs. This prefix is ignored by lea. Getting the value of %gs is hard - you can pretty
// much just use it as a secret offset.
void gs()
{
m_formatter.prefix(PRE_GS);
}
void cmpxchgb_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.twoByteOp8(OP2_CMPXCHGb, src, base, offset);
}
void cmpxchgb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.twoByteOp8(OP2_CMPXCHGb, src, base, index, scale, offset);
}
void cmpxchgw_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.twoByteOp(OP2_CMPXCHG, src, base, offset);
}
void cmpxchgw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.twoByteOp(OP2_CMPXCHG, src, base, index, scale, offset);
}
void cmpxchgl_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.twoByteOp(OP2_CMPXCHG, src, base, offset);
}
void cmpxchgl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.twoByteOp(OP2_CMPXCHG, src, base, index, scale, offset);
}
#if CPU(X86_64)
void cmpxchgq_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.twoByteOp64(OP2_CMPXCHG, src, base, offset);
}
void cmpxchgq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.twoByteOp64(OP2_CMPXCHG, src, base, index, scale, offset);
}
#endif // CPU(X86_64)
void xaddb_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.twoByteOp8(OP2_XADDb, src, base, offset);
}
void xaddb_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.twoByteOp8(OP2_XADDb, src, base, index, scale, offset);
}
void xaddw_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.twoByteOp(OP2_XADD, src, base, offset);
}
void xaddw_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.prefix(PRE_OPERAND_SIZE);
m_formatter.twoByteOp(OP2_XADD, src, base, index, scale, offset);
}
void xaddl_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.twoByteOp(OP2_XADD, src, base, offset);
}
void xaddl_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.twoByteOp(OP2_XADD, src, base, index, scale, offset);
}
#if CPU(X86_64)
void xaddq_rm(RegisterID src, int offset, RegisterID base)
{
m_formatter.twoByteOp64(OP2_XADD, src, base, offset);
}
void xaddq_rm(RegisterID src, int offset, RegisterID base, RegisterID index, int scale)
{
m_formatter.twoByteOp64(OP2_XADD, src, base, index, scale, offset);
}
#endif // CPU(X86_64)
void lfence()
{
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_AE, OP3_LFENCE);
}
void mfence()
{
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_AE, OP3_MFENCE);
}
void sfence()
{
m_formatter.threeByteOp(OP2_3BYTE_ESCAPE_AE, OP3_SFENCE);
}
void rdtsc()
{
m_formatter.twoByteOp(OP2_RDTSC);
}
void pause()
{
m_formatter.prefix(PRE_SSE_F3);
m_formatter.oneByteOp(OP_PAUSE);
}
void cpuid()
{
m_formatter.twoByteOp(OP2_CPUID);
}
// Assembler admin methods:
size_t codeSize() const
{
return m_formatter.codeSize();
}
AssemblerLabel labelForWatchpoint()
{
AssemblerLabel result = m_formatter.label();
if (static_cast<int>(result.m_offset) != m_indexOfLastWatchpoint)
result = label();
m_indexOfLastWatchpoint = result.m_offset;
m_indexOfTailOfLastWatchpoint = result.m_offset + maxJumpReplacementSize();
return result;
}
AssemblerLabel labelIgnoringWatchpoints()
{
return m_formatter.label();
}
AssemblerLabel label()
{
AssemblerLabel result = m_formatter.label();
while (UNLIKELY(static_cast<int>(result.m_offset) < m_indexOfTailOfLastWatchpoint)) {
nop();
result = m_formatter.label();
}
return result;
}
AssemblerLabel align(int alignment)
{
while (!m_formatter.isAligned(alignment))
m_formatter.oneByteOp(OP_HLT);
return label();
}
// Linking & patching:
//
// 'link' and 'patch' methods are for use on unprotected code - such as the code
// within the AssemblerBuffer, and code being patched by the patch buffer. Once
// code has been finalized it is (platform support permitting) within a non-
// writable region of memory; to modify the code in an execute-only execuable
// pool the 'repatch' and 'relink' methods should be used.
void linkJump(AssemblerLabel from, AssemblerLabel to)
{
ASSERT(from.isSet());
ASSERT(to.isSet());
char* code = reinterpret_cast<char*>(m_formatter.data());
ASSERT(!WTF::unalignedLoad<int32_t>(bitwise_cast<int32_t*>(code + from.m_offset) - 1));
setRel32(code + from.m_offset, code + to.m_offset);
}
static void linkJump(void* code, AssemblerLabel from, void* to)
{
ASSERT(from.isSet());
setRel32(reinterpret_cast<char*>(code) + from.m_offset, to);
}
static void linkCall(void* code, AssemblerLabel from, void* to)
{
ASSERT(from.isSet());
setRel32(reinterpret_cast<char*>(code) + from.m_offset, to);
}
static void linkPointer(void* code, AssemblerLabel where, void* value)
{
ASSERT(where.isSet());
setPointer(reinterpret_cast<char*>(code) + where.m_offset, value);
}
static void relinkJump(void* from, void* to)
{
setRel32(from, to);
}
static void relinkJumpToNop(void* from)
{
setInt32(from, 0);
}
static void relinkCall(void* from, void* to)
{
setRel32(from, to);
}
static void repatchCompact(void* where, int32_t value)
{
ASSERT(value >= std::numeric_limits<int8_t>::min());
ASSERT(value <= std::numeric_limits<int8_t>::max());
setInt8(where, value);
}
static void repatchInt32(void* where, int32_t value)
{
setInt32(where, value);
}
static void repatchPointer(void* where, void* value)
{
setPointer(where, value);
}
static void* readPointer(void* where)
{
return WTF::unalignedLoad<void*>(bitwise_cast<void**>(where) - 1);
}
static void replaceWithHlt(void* instructionStart)
{
WTF::unalignedStore<uint8_t>(instructionStart, static_cast<uint8_t>(OP_HLT));
}
static void replaceWithJump(void* instructionStart, void* to)
{
uint8_t* ptr = bitwise_cast<uint8_t*>(instructionStart);
uint8_t* dstPtr = bitwise_cast<uint8_t*>(to);
intptr_t distance = (intptr_t)(dstPtr - (ptr + 5));
WTF::unalignedStore<uint8_t>(ptr, static_cast<uint8_t>(OP_JMP_rel32));
WTF::unalignedStore<int32_t>(ptr + 1, static_cast<int32_t>(distance));
}
static ptrdiff_t maxJumpReplacementSize()
{
return 5;
}
static constexpr ptrdiff_t patchableJumpSize()
{
return 5;
}
#if CPU(X86_64)
static void revertJumpTo_movq_i64r(void* instructionStart, int64_t imm, RegisterID dst)
{
const unsigned instructionSize = 10; // REX.W MOV IMM64
const int rexBytes = 1;
const int opcodeBytes = 1;
uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart);
ptr[0] = PRE_REX | (1 << 3) | (dst >> 3);
ptr[1] = OP_MOV_EAXIv | (dst & 7);
union {
uint64_t asWord;
uint8_t asBytes[8];
} u;
u.asWord = imm;
for (unsigned i = rexBytes + opcodeBytes; i < instructionSize; ++i)
ptr[i] = u.asBytes[i - rexBytes - opcodeBytes];
}
static void revertJumpTo_movl_i32r(void* instructionStart, int32_t imm, RegisterID dst)
{
// We only revert jumps on inline caches, and inline caches always use the scratch register (r11).
// FIXME: If the above is ever false then we need to make this smarter with respect to emitting
// the REX byte.
ASSERT(dst == X86Registers::r11);
const unsigned instructionSize = 6; // REX MOV IMM32
const int rexBytes = 1;
const int opcodeBytes = 1;
uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart);
ptr[0] = PRE_REX | (dst >> 3);
ptr[1] = OP_MOV_EAXIv | (dst & 7);
union {
uint32_t asWord;
uint8_t asBytes[4];
} u;
u.asWord = imm;
for (unsigned i = rexBytes + opcodeBytes; i < instructionSize; ++i)
ptr[i] = u.asBytes[i - rexBytes - opcodeBytes];
}
#endif
static void revertJumpTo_cmpl_ir_force32(void* instructionStart, int32_t imm, RegisterID dst)
{
const int opcodeBytes = 1;
const int modRMBytes = 1;
ASSERT(opcodeBytes + modRMBytes <= maxJumpReplacementSize());
uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart);
ptr[0] = OP_GROUP1_EvIz;
ptr[1] = (X86InstructionFormatter::ModRmRegister << 6) | (GROUP1_OP_CMP << 3) | dst;
union {
uint32_t asWord;
uint8_t asBytes[4];
} u;
u.asWord = imm;
for (unsigned i = opcodeBytes + modRMBytes; i < static_cast<unsigned>(maxJumpReplacementSize()); ++i)
ptr[i] = u.asBytes[i - opcodeBytes - modRMBytes];
}
static void revertJumpTo_cmpl_im_force32(void* instructionStart, int32_t imm, int offset, RegisterID dst)
{
ASSERT_UNUSED(offset, !offset);
const int opcodeBytes = 1;
const int modRMBytes = 1;
ASSERT(opcodeBytes + modRMBytes <= maxJumpReplacementSize());
uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart);
ptr[0] = OP_GROUP1_EvIz;
ptr[1] = (X86InstructionFormatter::ModRmMemoryNoDisp << 6) | (GROUP1_OP_CMP << 3) | dst;
union {
uint32_t asWord;
uint8_t asBytes[4];
} u;
u.asWord = imm;
for (unsigned i = opcodeBytes + modRMBytes; i < static_cast<unsigned>(maxJumpReplacementSize()); ++i)
ptr[i] = u.asBytes[i - opcodeBytes - modRMBytes];
}
static void replaceWithLoad(void* instructionStart)
{
uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart);
#if CPU(X86_64)
if ((*ptr & ~15) == PRE_REX)
ptr++;
#endif
switch (*ptr) {
case OP_MOV_GvEv:
break;
case OP_LEA:
*ptr = OP_MOV_GvEv;
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
static void replaceWithAddressComputation(void* instructionStart)
{
uint8_t* ptr = reinterpret_cast<uint8_t*>(instructionStart);
#if CPU(X86_64)
if ((*ptr & ~15) == PRE_REX)
ptr++;
#endif
switch (*ptr) {
case OP_MOV_GvEv:
*ptr = OP_LEA;
break;
case OP_LEA:
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
static unsigned getCallReturnOffset(AssemblerLabel call)
{
ASSERT(call.isSet());
return call.m_offset;
}
static void* getRelocatedAddress(void* code, AssemblerLabel label)
{
ASSERT(label.isSet());
return reinterpret_cast<void*>(reinterpret_cast<ptrdiff_t>(code) + label.m_offset);
}
static int getDifferenceBetweenLabels(AssemblerLabel a, AssemblerLabel b)
{
return b.m_offset - a.m_offset;
}
unsigned debugOffset() { return m_formatter.debugOffset(); }
void nop()
{
m_formatter.oneByteOp(OP_NOP);
}
using CopyFunction = void*(&)(void*, const void*, size_t);
template <CopyFunction copy>
static void fillNops(void* base, size_t size)
{
UNUSED_PARAM(copy);
#if CPU(X86_64)
static const uint8_t nops[10][10] = {
// nop
{0x90},
// xchg %ax,%ax
{0x66, 0x90},
// nopl (%[re]ax)
{0x0f, 0x1f, 0x00},
// nopl 8(%[re]ax)
{0x0f, 0x1f, 0x40, 0x08},
// nopl 8(%[re]ax,%[re]ax,1)
{0x0f, 0x1f, 0x44, 0x00, 0x08},
// nopw 8(%[re]ax,%[re]ax,1)
{0x66, 0x0f, 0x1f, 0x44, 0x00, 0x08},
// nopl 512(%[re]ax)
{0x0f, 0x1f, 0x80, 0x00, 0x02, 0x00, 0x00},
// nopl 512(%[re]ax,%[re]ax,1)
{0x0f, 0x1f, 0x84, 0x00, 0x00, 0x02, 0x00, 0x00},
// nopw 512(%[re]ax,%[re]ax,1)
{0x66, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x02, 0x00, 0x00},
// nopw %cs:512(%[re]ax,%[re]ax,1)
{0x66, 0x2e, 0x0f, 0x1f, 0x84, 0x00, 0x00, 0x02, 0x00, 0x00}
};
uint8_t* where = reinterpret_cast<uint8_t*>(base);
while (size) {
unsigned nopSize = static_cast<unsigned>(std::min<size_t>(size, 15));
unsigned numPrefixes = nopSize <= 10 ? 0 : nopSize - 10;
for (unsigned i = 0; i != numPrefixes; ++i)
*where++ = 0x66;
unsigned nopRest = nopSize - numPrefixes;
for (unsigned i = 0; i != nopRest; ++i)
*where++ = nops[nopRest-1][i];
size -= nopSize;
}
#else
memset(base, OP_NOP, size);
#endif
}
// This is a no-op on x86
ALWAYS_INLINE static void cacheFlush(void*, size_t) { }
private:
static void setPointer(void* where, void* value)
{
WTF::unalignedStore<void*>(bitwise_cast<void**>(where) - 1, value);
}
static void setInt32(void* where, int32_t value)
{
WTF::unalignedStore<int32_t>(bitwise_cast<int32_t*>(where) - 1, value);
}
static void setInt8(void* where, int8_t value)
{
WTF::unalignedStore<int8_t>(bitwise_cast<int8_t*>(where) - 1, value);
}
static void setRel32(void* from, void* to)
{
intptr_t offset = reinterpret_cast<intptr_t>(to) - reinterpret_cast<intptr_t>(from);
ASSERT(offset == static_cast<int32_t>(offset));
setInt32(from, offset);
}
class X86InstructionFormatter {
static constexpr int maxInstructionSize = 16;
public:
enum ModRmMode {
ModRmMemoryNoDisp = 0,
ModRmMemoryDisp8 = 1 << 6,
ModRmMemoryDisp32 = 2 << 6,
ModRmRegister = 3 << 6,
};
// Legacy prefix bytes:
//
// These are emmitted prior to the instruction.
void prefix(OneByteOpcodeID pre)
{
m_buffer.putByte(pre);
}
#if CPU(X86_64)
// Byte operand register spl & above require a REX prefix (to prevent the 'H' registers be accessed).
static bool byteRegRequiresRex(int reg)
{
static_assert(X86Registers::esp == 4, "Necessary condition for OR-masking");
return (reg >= X86Registers::esp);
}
static bool byteRegRequiresRex(int a, int b)
{
return byteRegRequiresRex(a | b);
}
// Registers r8 & above require a REX prefixe.
static bool regRequiresRex(int reg)
{
static_assert(X86Registers::r8 == 8, "Necessary condition for OR-masking");
return (reg >= X86Registers::r8);
}
static bool regRequiresRex(int a, int b)
{
return regRequiresRex(a | b);
}
static bool regRequiresRex(int a, int b, int c)
{
return regRequiresRex(a | b | c);
}
#else
static bool byteRegRequiresRex(int) { return false; }
static bool byteRegRequiresRex(int, int) { return false; }
static bool regRequiresRex(int) { return false; }
static bool regRequiresRex(int, int) { return false; }
static bool regRequiresRex(int, int, int) { return false; }
#endif
class SingleInstructionBufferWriter : public AssemblerBuffer::LocalWriter {
public:
SingleInstructionBufferWriter(AssemblerBuffer& buffer)
: AssemblerBuffer::LocalWriter(buffer, maxInstructionSize)
{
}
// Internals; ModRm and REX formatters.
static constexpr RegisterID noBase = X86Registers::ebp;
static constexpr RegisterID hasSib = X86Registers::esp;
static constexpr RegisterID noIndex = X86Registers::esp;
#if CPU(X86_64)
static constexpr RegisterID noBase2 = X86Registers::r13;
static constexpr RegisterID hasSib2 = X86Registers::r12;
// Format a REX prefix byte.
ALWAYS_INLINE void emitRex(bool w, int r, int x, int b)
{
ASSERT(r >= 0);
ASSERT(x >= 0);
ASSERT(b >= 0);
putByteUnchecked(PRE_REX | ((int)w << 3) | ((r>>3)<<2) | ((x>>3)<<1) | (b>>3));
}
// Used to plant a REX byte with REX.w set (for 64-bit operations).
ALWAYS_INLINE void emitRexW(int r, int x, int b)
{
emitRex(true, r, x, b);
}
// Used for operations with byte operands - use byteRegRequiresRex() to check register operands,
// regRequiresRex() to check other registers (i.e. address base & index).
ALWAYS_INLINE void emitRexIf(bool condition, int r, int x, int b)
{
if (condition)
emitRex(false, r, x, b);
}
// Used for word sized operations, will plant a REX prefix if necessary (if any register is r8 or above).
ALWAYS_INLINE void emitRexIfNeeded(int r, int x, int b)
{
emitRexIf(regRequiresRex(r, x, b), r, x, b);
}
#else
// No REX prefix bytes on 32-bit x86.
ALWAYS_INLINE void emitRexIf(bool, int, int, int) { }
ALWAYS_INLINE void emitRexIfNeeded(int, int, int) { }
#endif
ALWAYS_INLINE void putModRm(ModRmMode mode, int reg, RegisterID rm)
{
putByteUnchecked(mode | ((reg & 7) << 3) | (rm & 7));
}
ALWAYS_INLINE void putModRmSib(ModRmMode mode, int reg, RegisterID base, RegisterID index, int scale)
{
ASSERT(mode != ModRmRegister);
putModRm(mode, reg, hasSib);
putByteUnchecked((scale << 6) | ((index & 7) << 3) | (base & 7));
}
ALWAYS_INLINE void registerModRM(int reg, RegisterID rm)
{
putModRm(ModRmRegister, reg, rm);
}
ALWAYS_INLINE void memoryModRM(int reg, RegisterID base, int offset)
{
// A base of esp or r12 would be interpreted as a sib, so force a sib with no index & put the base in there.
#if CPU(X86_64)
if ((base == hasSib) || (base == hasSib2)) {
#else
if (base == hasSib) {
#endif
if (!offset) // No need to check if the base is noBase, since we know it is hasSib!
putModRmSib(ModRmMemoryNoDisp, reg, base, noIndex, 0);
else if (CAN_SIGN_EXTEND_8_32(offset)) {
putModRmSib(ModRmMemoryDisp8, reg, base, noIndex, 0);
putByteUnchecked(offset);
} else {
putModRmSib(ModRmMemoryDisp32, reg, base, noIndex, 0);
putIntUnchecked(offset);
}
} else {
#if CPU(X86_64)
if (!offset && (base != noBase) && (base != noBase2))
#else
if (!offset && (base != noBase))
#endif
putModRm(ModRmMemoryNoDisp, reg, base);
else if (CAN_SIGN_EXTEND_8_32(offset)) {
putModRm(ModRmMemoryDisp8, reg, base);
putByteUnchecked(offset);
} else {
putModRm(ModRmMemoryDisp32, reg, base);
putIntUnchecked(offset);
}
}
}
ALWAYS_INLINE void memoryModRM_disp8(int reg, RegisterID base, int offset)
{
// A base of esp or r12 would be interpreted as a sib, so force a sib with no index & put the base in there.
ASSERT(CAN_SIGN_EXTEND_8_32(offset));
#if CPU(X86_64)
if ((base == hasSib) || (base == hasSib2)) {
#else
if (base == hasSib) {
#endif
putModRmSib(ModRmMemoryDisp8, reg, base, noIndex, 0);
putByteUnchecked(offset);
} else {
putModRm(ModRmMemoryDisp8, reg, base);
putByteUnchecked(offset);
}
}
ALWAYS_INLINE void memoryModRM_disp32(int reg, RegisterID base, int offset)
{
// A base of esp or r12 would be interpreted as a sib, so force a sib with no index & put the base in there.
#if CPU(X86_64)
if ((base == hasSib) || (base == hasSib2)) {
#else
if (base == hasSib) {
#endif
putModRmSib(ModRmMemoryDisp32, reg, base, noIndex, 0);
putIntUnchecked(offset);
} else {
putModRm(ModRmMemoryDisp32, reg, base);
putIntUnchecked(offset);
}
}
ALWAYS_INLINE void memoryModRM(int reg, RegisterID base, RegisterID index, int scale, int offset)
{
ASSERT(index != noIndex);
#if CPU(X86_64)
if (!offset && (base != noBase) && (base != noBase2))
#else
if (!offset && (base != noBase))
#endif
putModRmSib(ModRmMemoryNoDisp, reg, base, index, scale);
else if (CAN_SIGN_EXTEND_8_32(offset)) {
putModRmSib(ModRmMemoryDisp8, reg, base, index, scale);
putByteUnchecked(offset);
} else {
putModRmSib(ModRmMemoryDisp32, reg, base, index, scale);
putIntUnchecked(offset);
}
}
ALWAYS_INLINE void memoryModRMAddr(int reg, uint32_t address)
{
#if CPU(X86_64)
putModRmSib(ModRmMemoryNoDisp, reg, noBase, noIndex, 0);
#else
// noBase + ModRmMemoryNoDisp means noBase + ModRmMemoryDisp32!
putModRm(ModRmMemoryNoDisp, reg, noBase);
#endif
putIntUnchecked(address);
}
ALWAYS_INLINE void twoBytesVex(OneByteOpcodeID simdPrefix, RegisterID inOpReg, RegisterID r)
{
putByteUnchecked(VexPrefix::TwoBytes);
uint8_t secondByte = vexEncodeSimdPrefix(simdPrefix);
secondByte |= (~inOpReg & 0xf) << 3;
secondByte |= !regRequiresRex(r) << 7;
putByteUnchecked(secondByte);
}
ALWAYS_INLINE void threeBytesVexNds(OneByteOpcodeID simdPrefix, VexImpliedBytes impliedBytes, RegisterID r, RegisterID inOpReg, RegisterID x, RegisterID b)
{
putByteUnchecked(VexPrefix::ThreeBytes);
uint8_t secondByte = static_cast<uint8_t>(impliedBytes);
secondByte |= !regRequiresRex(r) << 7;
secondByte |= !regRequiresRex(x) << 6;
secondByte |= !regRequiresRex(b) << 5;
putByteUnchecked(secondByte);
uint8_t thirdByte = vexEncodeSimdPrefix(simdPrefix);
thirdByte |= (~inOpReg & 0xf) << 3;
putByteUnchecked(thirdByte);
}
ALWAYS_INLINE void threeBytesVexNds(OneByteOpcodeID simdPrefix, VexImpliedBytes impliedBytes, RegisterID r, RegisterID inOpReg, RegisterID b)
{
putByteUnchecked(VexPrefix::ThreeBytes);
uint8_t secondByte = static_cast<uint8_t>(impliedBytes);
secondByte |= !regRequiresRex(r) << 7;
secondByte |= 1 << 6; // REX.X
secondByte |= !regRequiresRex(b) << 5;
putByteUnchecked(secondByte);
uint8_t thirdByte = vexEncodeSimdPrefix(simdPrefix);
thirdByte |= (~inOpReg & 0xf) << 3;
putByteUnchecked(thirdByte);
}
private:
uint8_t vexEncodeSimdPrefix(OneByteOpcodeID simdPrefix)
{
switch (simdPrefix) {
case 0x66:
return 1;
case 0xF3:
return 2;
case 0xF2:
return 3;
default:
RELEASE_ASSERT_NOT_REACHED();
}
return 0;
}
};
// Word-sized operands / no operand instruction formatters.
//
// In addition to the opcode, the following operand permutations are supported:
// * None - instruction takes no operands.
// * One register - the low three bits of the RegisterID are added into the opcode.
// * Two registers - encode a register form ModRm (for all ModRm formats, the reg field is passed first, and a GroupOpcodeID may be passed in its place).
// * Three argument ModRM - a register, and a register and an offset describing a memory operand.
// * Five argument ModRM - a register, and a base register, an index, scale, and offset describing a memory operand.
//
// For 32-bit x86 targets, the address operand may also be provided as a void*.
// On 64-bit targets REX prefixes will be planted as necessary, where high numbered registers are used.
//
// The twoByteOp methods plant two-byte Intel instructions sequences (first opcode byte 0x0F).
void oneByteOp(OneByteOpcodeID opcode)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.putByteUnchecked(opcode);
}
void oneByteOp(OneByteOpcodeID opcode, RegisterID reg)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIfNeeded(0, 0, reg);
writer.putByteUnchecked(opcode + (reg & 7));
}
void oneByteOp(OneByteOpcodeID opcode, int reg, RegisterID rm)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIfNeeded(reg, 0, rm);
writer.putByteUnchecked(opcode);
writer.registerModRM(reg, rm);
}
void oneByteOp(OneByteOpcodeID opcode, int reg, RegisterID base, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIfNeeded(reg, 0, base);
writer.putByteUnchecked(opcode);
writer.memoryModRM(reg, base, offset);
}
void oneByteOp_disp32(OneByteOpcodeID opcode, int reg, RegisterID base, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIfNeeded(reg, 0, base);
writer.putByteUnchecked(opcode);
writer.memoryModRM_disp32(reg, base, offset);
}
void oneByteOp_disp8(OneByteOpcodeID opcode, int reg, RegisterID base, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIfNeeded(reg, 0, base);
writer.putByteUnchecked(opcode);
writer.memoryModRM_disp8(reg, base, offset);
}
void oneByteOp(OneByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIfNeeded(reg, index, base);
writer.putByteUnchecked(opcode);
writer.memoryModRM(reg, base, index, scale, offset);
}
void oneByteOpAddr(OneByteOpcodeID opcode, int reg, uint32_t address)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.putByteUnchecked(opcode);
writer.memoryModRMAddr(reg, address);
}
void twoByteOp(TwoByteOpcodeID opcode)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(opcode);
}
void twoByteOp(TwoByteOpcodeID opcode, int reg)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIfNeeded(0, 0, reg);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(opcode + (reg & 7));
}
void twoByteOp(TwoByteOpcodeID opcode, int reg, RegisterID rm)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIfNeeded(reg, 0, rm);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(opcode);
writer.registerModRM(reg, rm);
}
void twoByteOp(TwoByteOpcodeID opcode, int reg, RegisterID base, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIfNeeded(reg, 0, base);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(opcode);
writer.memoryModRM(reg, base, offset);
}
void twoByteOp(TwoByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIfNeeded(reg, index, base);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(opcode);
writer.memoryModRM(reg, base, index, scale, offset);
}
void twoByteOpAddr(TwoByteOpcodeID opcode, int reg, uint32_t address)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(opcode);
writer.memoryModRMAddr(reg, address);
}
void vexNdsLigWigTwoByteOp(OneByteOpcodeID simdPrefix, TwoByteOpcodeID opcode, RegisterID dest, RegisterID a, RegisterID b)
{
SingleInstructionBufferWriter writer(m_buffer);
if (regRequiresRex(b))
writer.threeBytesVexNds(simdPrefix, VexImpliedBytes::TwoBytesOp, dest, a, b);
else
writer.twoBytesVex(simdPrefix, a, dest);
writer.putByteUnchecked(opcode);
writer.registerModRM(dest, b);
}
void vexNdsLigWigCommutativeTwoByteOp(OneByteOpcodeID simdPrefix, TwoByteOpcodeID opcode, RegisterID dest, RegisterID a, RegisterID b)
{
// Since this is a commutative operation, we can try switching the arguments.
if (regRequiresRex(b))
std::swap(a, b);
vexNdsLigWigTwoByteOp(simdPrefix, opcode, dest, a, b);
}
void vexNdsLigWigTwoByteOp(OneByteOpcodeID simdPrefix, TwoByteOpcodeID opcode, RegisterID dest, RegisterID a, RegisterID base, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
if (regRequiresRex(base))
writer.threeBytesVexNds(simdPrefix, VexImpliedBytes::TwoBytesOp, dest, a, base);
else
writer.twoBytesVex(simdPrefix, a, dest);
writer.putByteUnchecked(opcode);
writer.memoryModRM(dest, base, offset);
}
void vexNdsLigWigTwoByteOp(OneByteOpcodeID simdPrefix, TwoByteOpcodeID opcode, RegisterID dest, RegisterID a, int offset, RegisterID base, RegisterID index, int scale)
{
SingleInstructionBufferWriter writer(m_buffer);
if (regRequiresRex(base, index))
writer.threeBytesVexNds(simdPrefix, VexImpliedBytes::TwoBytesOp, dest, a, index, base);
else
writer.twoBytesVex(simdPrefix, a, dest);
writer.putByteUnchecked(opcode);
writer.memoryModRM(dest, base, index, scale, offset);
}
void threeByteOp(TwoByteOpcodeID twoBytePrefix, ThreeByteOpcodeID opcode)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(twoBytePrefix);
writer.putByteUnchecked(opcode);
}
void threeByteOp(TwoByteOpcodeID twoBytePrefix, ThreeByteOpcodeID opcode, int reg, RegisterID rm)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIfNeeded(reg, 0, rm);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(twoBytePrefix);
writer.putByteUnchecked(opcode);
writer.registerModRM(reg, rm);
}
void threeByteOp(TwoByteOpcodeID twoBytePrefix, ThreeByteOpcodeID opcode, int reg, RegisterID base, int displacement)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIfNeeded(reg, 0, base);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(twoBytePrefix);
writer.putByteUnchecked(opcode);
writer.memoryModRM(reg, base, displacement);
}
#if CPU(X86_64)
// Quad-word-sized operands:
//
// Used to format 64-bit operantions, planting a REX.w prefix.
// When planting d64 or f64 instructions, not requiring a REX.w prefix,
// the normal (non-'64'-postfixed) formatters should be used.
void oneByteOp64(OneByteOpcodeID opcode)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexW(0, 0, 0);
writer.putByteUnchecked(opcode);
}
void oneByteOp64(OneByteOpcodeID opcode, RegisterID reg)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexW(0, 0, reg);
writer.putByteUnchecked(opcode + (reg & 7));
}
void oneByteOp64(OneByteOpcodeID opcode, int reg, RegisterID rm)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexW(reg, 0, rm);
writer.putByteUnchecked(opcode);
writer.registerModRM(reg, rm);
}
void oneByteOp64(OneByteOpcodeID opcode, int reg, RegisterID base, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexW(reg, 0, base);
writer.putByteUnchecked(opcode);
writer.memoryModRM(reg, base, offset);
}
void oneByteOp64_disp32(OneByteOpcodeID opcode, int reg, RegisterID base, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexW(reg, 0, base);
writer.putByteUnchecked(opcode);
writer.memoryModRM_disp32(reg, base, offset);
}
void oneByteOp64_disp8(OneByteOpcodeID opcode, int reg, RegisterID base, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexW(reg, 0, base);
writer.putByteUnchecked(opcode);
writer.memoryModRM_disp8(reg, base, offset);
}
void oneByteOp64(OneByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexW(reg, index, base);
writer.putByteUnchecked(opcode);
writer.memoryModRM(reg, base, index, scale, offset);
}
void oneByteOp64Addr(OneByteOpcodeID opcode, int reg, uint32_t address)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexW(reg, 0, 0);
writer.putByteUnchecked(opcode);
writer.memoryModRMAddr(reg, address);
}
void twoByteOp64(TwoByteOpcodeID opcode, int reg)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexW(0, 0, reg);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(opcode + (reg & 7));
}
void twoByteOp64(TwoByteOpcodeID opcode, int reg, RegisterID rm)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexW(reg, 0, rm);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(opcode);
writer.registerModRM(reg, rm);
}
void twoByteOp64(TwoByteOpcodeID opcode, int reg, RegisterID base, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexW(reg, 0, base);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(opcode);
writer.memoryModRM(reg, base, offset);
}
void twoByteOp64(TwoByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexW(reg, index, base);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(opcode);
writer.memoryModRM(reg, base, index, scale, offset);
}
#endif
// Byte-operands:
//
// These methods format byte operations. Byte operations differ from the normal
// formatters in the circumstances under which they will decide to emit REX prefixes.
// These should be used where any register operand signifies a byte register.
//
// The disctinction is due to the handling of register numbers in the range 4..7 on
// x86-64. These register numbers may either represent the second byte of the first
// four registers (ah..bh) or the first byte of the second four registers (spl..dil).
//
// Since ah..bh cannot be used in all permutations of operands (specifically cannot
// be accessed where a REX prefix is present), these are likely best treated as
// deprecated. In order to ensure the correct registers spl..dil are selected a
// REX prefix will be emitted for any byte register operand in the range 4..15.
//
// These formatters may be used in instructions where a mix of operand sizes, in which
// case an unnecessary REX will be emitted, for example:
// movzbl %al, %edi
// In this case a REX will be planted since edi is 7 (and were this a byte operand
// a REX would be required to specify dil instead of bh). Unneeded REX prefixes will
// be silently ignored by the processor.
//
// Address operands should still be checked using regRequiresRex(), while byteRegRequiresRex()
// is provided to check byte register operands.
void oneByteOp8(OneByteOpcodeID opcode, GroupOpcodeID groupOp, RegisterID rm)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIf(byteRegRequiresRex(rm), 0, 0, rm);
writer.putByteUnchecked(opcode);
writer.registerModRM(groupOp, rm);
}
void oneByteOp8(OneByteOpcodeID opcode, int reg, RegisterID rm)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIf(byteRegRequiresRex(reg, rm), reg, 0, rm);
writer.putByteUnchecked(opcode);
writer.registerModRM(reg, rm);
}
void oneByteOp8(OneByteOpcodeID opcode, int reg, RegisterID base, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIf(byteRegRequiresRex(reg, base), reg, 0, base);
writer.putByteUnchecked(opcode);
writer.memoryModRM(reg, base, offset);
}
void oneByteOp8(OneByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIf(byteRegRequiresRex(reg) || regRequiresRex(index, base), reg, index, base);
writer.putByteUnchecked(opcode);
writer.memoryModRM(reg, base, index, scale, offset);
}
void twoByteOp8(TwoByteOpcodeID opcode, RegisterID reg, RegisterID rm)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIf(byteRegRequiresRex(reg, rm), reg, 0, rm);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(opcode);
writer.registerModRM(reg, rm);
}
void twoByteOp8(TwoByteOpcodeID opcode, GroupOpcodeID groupOp, RegisterID rm)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIf(byteRegRequiresRex(rm), 0, 0, rm);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(opcode);
writer.registerModRM(groupOp, rm);
}
void twoByteOp8(TwoByteOpcodeID opcode, int reg, RegisterID base, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIf(byteRegRequiresRex(reg, base), reg, 0, base);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(opcode);
writer.memoryModRM(reg, base, offset);
}
void twoByteOp8(TwoByteOpcodeID opcode, int reg, RegisterID base, RegisterID index, int scale, int offset)
{
SingleInstructionBufferWriter writer(m_buffer);
writer.emitRexIf(byteRegRequiresRex(reg) || regRequiresRex(index, base), reg, index, base);
writer.putByteUnchecked(OP_2BYTE_ESCAPE);
writer.putByteUnchecked(opcode);
writer.memoryModRM(reg, base, index, scale, offset);
}
// Immediates:
//
// An immedaite should be appended where appropriate after an op has been emitted.
// The writes are unchecked since the opcode formatters above will have ensured space.
void immediate8(int imm)
{
m_buffer.putByteUnchecked(imm);
}
void immediate16(int imm)
{
m_buffer.putShortUnchecked(imm);
}
void immediate32(int imm)
{
m_buffer.putIntUnchecked(imm);
}
void immediate64(int64_t imm)
{
m_buffer.putInt64Unchecked(imm);
}
AssemblerLabel immediateRel32()
{
m_buffer.putIntUnchecked(0);
return label();
}
// Administrative methods:
size_t codeSize() const { return m_buffer.codeSize(); }
AssemblerLabel label() const { return m_buffer.label(); }
bool isAligned(int alignment) const { return m_buffer.isAligned(alignment); }
void* data() const { return m_buffer.data(); }
unsigned debugOffset() { return m_buffer.debugOffset(); }
public:
AssemblerBuffer m_buffer;
} m_formatter;
int m_indexOfLastWatchpoint;
int m_indexOfTailOfLastWatchpoint;
};
} // namespace JSC
#endif // ENABLE(ASSEMBLER) && CPU(X86)