| // -*- c-basic-offset: 2 -*- |
| /* |
| * This file is part of the KDE libraries |
| * Copyright (C) 1999-2000 Harri Porten (porten@kde.org) |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Library General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Library General Public License for more details. |
| * |
| * You should have received a copy of the GNU Library General Public License |
| * along with this library; see the file COPYING.LIB. If not, write to |
| * the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor, |
| * Boston, MA 02110-1301, USA. |
| * |
| */ |
| |
| #include "operations.h" |
| |
| #include "config.h" |
| |
| #include <stdio.h> |
| #include <assert.h> |
| #include <math.h> |
| #include <stdlib.h> |
| |
| #ifndef HAVE_FUNC_ISINF |
| #ifdef HAVE_IEEEFP_H |
| #include <ieeefp.h> |
| #endif |
| #endif /* HAVE_FUNC_ISINF */ |
| |
| #if HAVE_FLOAT_H |
| #include <float.h> |
| #endif |
| |
| #include "object.h" |
| |
| namespace KJS { |
| |
| #if !APPLE_CHANGES |
| |
| bool isNaN(double d) |
| { |
| #ifdef HAVE_FUNC_ISNAN |
| return isnan(d); |
| #elif defined HAVE_FLOAT_H |
| return _isnan(d) != 0; |
| #else |
| return !(d == d); |
| #endif |
| } |
| |
| bool isInf(double d) |
| { |
| #if WIN32 |
| int fpClass = _fpclass(d); |
| return _FPCLASS_PINF == fpClass || _FPCLASS_NINF == fpClass; |
| #elif defined(HAVE_FUNC_ISINF) |
| return isinf(d); |
| #elif HAVE_FUNC_FINITE |
| return finite(d) == 0 && d == d; |
| #elif HAVE_FUNC__FINITE |
| return _finite(d) == 0 && d == d; |
| #else |
| return false; |
| #endif |
| } |
| |
| bool isPosInf(double d) |
| { |
| #if WIN32 |
| return _FPCLASS_PINF == _fpclass(d); |
| #elif defined(HAVE_FUNC_ISINF) |
| return (isinf(d) == 1); |
| #elif HAVE_FUNC_FINITE |
| return finite(d) == 0 && d == d; // ### can we distinguish between + and - ? |
| #elif HAVE_FUNC__FINITE |
| return _finite(d) == 0 && d == d; // ### |
| #else |
| return false; |
| #endif |
| } |
| |
| bool isNegInf(double d) |
| { |
| #if WIN32 |
| return _FPCLASS_PINF == _fpclass(d); |
| #elif defined(HAVE_FUNC_ISINF) |
| return (isinf(d) == -1); |
| #elif HAVE_FUNC_FINITE |
| return finite(d) == 0 && d == d; // ### |
| #elif HAVE_FUNC__FINITE |
| return _finite(d) == 0 && d == d; // ### |
| #else |
| return false; |
| #endif |
| } |
| |
| #endif |
| |
| // ECMA 11.9.3 |
| bool equal(ExecState *exec, ValueImp *v1, ValueImp *v2) |
| { |
| Type t1 = v1->type(); |
| Type t2 = v2->type(); |
| |
| if (t1 != t2) { |
| if (t1 == UndefinedType) |
| t1 = NullType; |
| if (t2 == UndefinedType) |
| t2 = NullType; |
| |
| if (t1 == BooleanType) |
| t1 = NumberType; |
| if (t2 == BooleanType) |
| t2 = NumberType; |
| |
| if (t1 == NumberType && t2 == StringType) { |
| // use toNumber |
| } else if (t1 == StringType && t2 == NumberType) { |
| t1 = NumberType; |
| // use toNumber |
| } else { |
| if ((t1 == StringType || t1 == NumberType) && t2 >= ObjectType) |
| return equal(exec, v1, v2->toPrimitive(exec)); |
| if (t1 >= ObjectType && (t2 == StringType || t2 == NumberType)) |
| return equal(exec, v1->toPrimitive(exec), v2); |
| if (t1 != t2) |
| return false; |
| } |
| } |
| |
| if (t1 == UndefinedType || t1 == NullType) |
| return true; |
| |
| if (t1 == NumberType) { |
| double d1 = v1->toNumber(exec); |
| double d2 = v2->toNumber(exec); |
| // FIXME: Isn't this already how NaN behaves? |
| // Why the extra line of code? |
| if (isNaN(d1) || isNaN(d2)) |
| return false; |
| return d1 == d2; /* TODO: +0, -0 ? */ |
| } |
| |
| if (t1 == StringType) |
| return v1->toString(exec) == v2->toString(exec); |
| |
| if (t1 == BooleanType) |
| return v1->toBoolean(exec) == v2->toBoolean(exec); |
| |
| // types are Object |
| return v1 == v2; |
| } |
| |
| bool strictEqual(ExecState *exec, ValueImp *v1, ValueImp *v2) |
| { |
| Type t1 = v1->type(); |
| Type t2 = v2->type(); |
| |
| if (t1 != t2) |
| return false; |
| if (t1 == UndefinedType || t1 == NullType) |
| return true; |
| if (t1 == NumberType) { |
| double n1 = v1->toNumber(exec); |
| double n2 = v2->toNumber(exec); |
| // FIXME: Isn't this already how NaN behaves? |
| // Why the extra line of code? |
| if (isNaN(n1) || isNaN(n2)) |
| return false; |
| if (n1 == n2) |
| return true; |
| /* TODO: +0 and -0 */ |
| return false; |
| } else if (t1 == StringType) { |
| return v1->toString(exec) == v2->toString(exec); |
| } else if (t2 == BooleanType) { |
| return v1->toBoolean(exec) == v2->toBoolean(exec); |
| } |
| if (v1 == v2) |
| return true; |
| /* TODO: joined objects */ |
| |
| return false; |
| } |
| |
| int relation(ExecState *exec, ValueImp *v1, ValueImp *v2) |
| { |
| ValueImp *p1 = v1->toPrimitive(exec,NumberType); |
| ValueImp *p2 = v2->toPrimitive(exec,NumberType); |
| |
| if (p1->isString() && p2->isString()) |
| return p1->toString(exec) < p2->toString(exec) ? 1 : 0; |
| |
| double n1 = p1->toNumber(exec); |
| double n2 = p2->toNumber(exec); |
| if (n1 < n2) |
| return 1; |
| if (n1 >= n2) |
| return 0; |
| return -1; // must be NaN, so undefined |
| } |
| |
| int maxInt(int d1, int d2) |
| { |
| return (d1 > d2) ? d1 : d2; |
| } |
| |
| int minInt(int d1, int d2) |
| { |
| return (d1 < d2) ? d1 : d2; |
| } |
| |
| // ECMA 11.6 |
| ValueImp *add(ExecState *exec, ValueImp *v1, ValueImp *v2, char oper) |
| { |
| // exception for the Date exception in defaultValue() |
| Type preferred = oper == '+' ? UnspecifiedType : NumberType; |
| ValueImp *p1 = v1->toPrimitive(exec, preferred); |
| ValueImp *p2 = v2->toPrimitive(exec, preferred); |
| |
| if ((p1->isString() || p2->isString()) && oper == '+') { |
| return jsString(p1->toString(exec) + p2->toString(exec)); |
| } |
| |
| bool n1KnownToBeInteger; |
| double n1 = p1->toNumber(exec, n1KnownToBeInteger); |
| bool n2KnownToBeInteger; |
| double n2 = p2->toNumber(exec, n2KnownToBeInteger); |
| |
| bool resultKnownToBeInteger = n1KnownToBeInteger && n2KnownToBeInteger; |
| |
| if (oper == '+') |
| return jsNumber(n1 + n2, resultKnownToBeInteger); |
| else |
| return jsNumber(n1 - n2, resultKnownToBeInteger); |
| } |
| |
| // ECMA 11.5 |
| ValueImp *mult(ExecState *exec, ValueImp *v1, ValueImp *v2, char oper) |
| { |
| bool n1KnownToBeInteger; |
| double n1 = v1->toNumber(exec, n1KnownToBeInteger); |
| bool n2KnownToBeInteger; |
| double n2 = v2->toNumber(exec, n2KnownToBeInteger); |
| |
| double result; |
| bool resultKnownToBeInteger; |
| |
| if (oper == '*') { |
| result = n1 * n2; |
| resultKnownToBeInteger = n1KnownToBeInteger && n2KnownToBeInteger; |
| } else if (oper == '/') { |
| result = n1 / n2; |
| resultKnownToBeInteger = false; |
| } else { |
| result = fmod(n1, n2); |
| resultKnownToBeInteger = n1KnownToBeInteger && n2KnownToBeInteger && n2 != 0; |
| } |
| |
| return jsNumber(result, resultKnownToBeInteger); |
| } |
| |
| } |