blob: 07a30cb3ba151803142fa8af5e13e8fb5233b9b9 [file] [log] [blame]
/*
* Copyright (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 1999 Antti Koivisto (koivisto@kde.org)
* (C) 2005 Allan Sandfeld Jensen (kde@carewolf.com)
* (C) 2005, 2006 Samuel Weinig (sam.weinig@gmail.com)
* Copyright (C) 2005-2010, 2015 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include "config.h"
#include "RenderBox.h"
#include "CSSFontSelector.h"
#include "ControlStates.h"
#include "Document.h"
#include "Editing.h"
#include "EventHandler.h"
#include "FloatQuad.h"
#include "FloatRoundedRect.h"
#include "Frame.h"
#include "FrameView.h"
#include "GraphicsContext.h"
#include "HTMLBodyElement.h"
#include "HTMLButtonElement.h"
#include "HTMLFrameOwnerElement.h"
#include "HTMLHtmlElement.h"
#include "HTMLImageElement.h"
#include "HTMLInputElement.h"
#include "HTMLLegendElement.h"
#include "HTMLNames.h"
#include "HTMLSelectElement.h"
#include "HTMLTextAreaElement.h"
#include "HitTestResult.h"
#include "InlineIteratorInlineBox.h"
#include "InlineIteratorLine.h"
#include "InlineRunAndOffset.h"
#include "LayoutIntegrationLineLayout.h"
#include "LegacyInlineElementBox.h"
#include "Page.h"
#include "PaintInfo.h"
#include "PathOperation.h"
#include "RenderBoxFragmentInfo.h"
#include "RenderChildIterator.h"
#include "RenderDeprecatedFlexibleBox.h"
#include "RenderFlexibleBox.h"
#include "RenderFragmentContainer.h"
#include "RenderGeometryMap.h"
#include "RenderGrid.h"
#include "RenderInline.h"
#include "RenderIterator.h"
#include "RenderLayer.h"
#include "RenderLayerCompositor.h"
#include "RenderLayerScrollableArea.h"
#include "RenderLayoutState.h"
#include "RenderMultiColumnFlow.h"
#include "RenderSVGResourceClipper.h"
#include "RenderTableCell.h"
#include "RenderTheme.h"
#include "RenderView.h"
#include "RuntimeApplicationChecks.h"
#include "SVGClipPathElement.h"
#include "SVGElementTypeHelpers.h"
#include "ScrollAnimator.h"
#include "ScrollbarTheme.h"
#include "Settings.h"
#include "StyleScrollSnapPoints.h"
#include "TextDirection.h"
#include "TransformState.h"
#include <algorithm>
#include <math.h>
#include <wtf/IsoMallocInlines.h>
#include <wtf/StackStats.h>
namespace WebCore {
WTF_MAKE_ISO_ALLOCATED_IMPL(RenderBox);
struct SameSizeAsRenderBox : public RenderBoxModelObject {
virtual ~SameSizeAsRenderBox() = default;
LayoutRect frameRect;
LayoutBoxExtent marginBox;
LayoutUnit preferredLogicalWidths[2];
void* pointers[2];
};
COMPILE_ASSERT(sizeof(RenderBox) == sizeof(SameSizeAsRenderBox), RenderBox_should_stay_small);
using namespace HTMLNames;
typedef HashMap<const RenderBox*, LayoutUnit> OverrideSizeMap;
static OverrideSizeMap* gOverridingLogicalHeightMap = nullptr;
static OverrideSizeMap* gOverridingLogicalWidthMap = nullptr;
typedef HashMap<const RenderBox*, Length> OverridingLengthMap;
static OverridingLengthMap* gOverridingLogicalHeightLengthMap = nullptr;
static OverridingLengthMap* gOverridingLogicalWidthLengthMap = nullptr;
// FIXME: We should store these based on physical direction.
typedef HashMap<const RenderBox*, std::optional<LayoutUnit>> OverrideOptionalSizeMap;
static OverrideOptionalSizeMap* gOverridingContainingBlockContentLogicalHeightMap = nullptr;
static OverrideOptionalSizeMap* gOverridingContainingBlockContentLogicalWidthMap = nullptr;
// Size of border belt for autoscroll. When mouse pointer in border belt,
// autoscroll is started.
static const int autoscrollBeltSize = 20;
static const unsigned backgroundObscurationTestMaxDepth = 4;
using ControlStatesRendererMap = HashMap<const RenderObject*, std::unique_ptr<ControlStates>>;
static ControlStatesRendererMap& controlStatesRendererMap()
{
static NeverDestroyed<ControlStatesRendererMap> map;
return map;
}
static ControlStates* controlStatesForRenderer(const RenderBox& renderer)
{
return controlStatesRendererMap().ensure(&renderer, [] {
return makeUnique<ControlStates>();
}).iterator->value.get();
}
static void removeControlStatesForRenderer(const RenderBox& renderer)
{
controlStatesRendererMap().remove(&renderer);
}
bool RenderBox::s_hadNonVisibleOverflow = false;
RenderBox::RenderBox(Element& element, RenderStyle&& style, BaseTypeFlags baseTypeFlags)
: RenderBoxModelObject(element, WTFMove(style), baseTypeFlags)
{
setIsBox();
}
RenderBox::RenderBox(Document& document, RenderStyle&& style, BaseTypeFlags baseTypeFlags)
: RenderBoxModelObject(document, WTFMove(style), baseTypeFlags)
{
setIsBox();
}
RenderBox::~RenderBox()
{
// Do not add any code here. Add it to willBeDestroyed() instead.
}
void RenderBox::willBeDestroyed()
{
if (frame().eventHandler().autoscrollRenderer() == this)
frame().eventHandler().stopAutoscrollTimer(true);
clearOverridingContentSize();
clearOverridingContainingBlockContentSize();
RenderBlock::removePercentHeightDescendantIfNeeded(*this);
ShapeOutsideInfo::removeInfo(*this);
view().unscheduleLazyRepaint(*this);
removeControlStatesForRenderer(*this);
if (hasInitializedStyle() && style().hasSnapPosition())
view().unregisterBoxWithScrollSnapPositions(*this);
RenderBoxModelObject::willBeDestroyed();
}
RenderFragmentContainer* RenderBox::clampToStartAndEndFragments(RenderFragmentContainer* fragment) const
{
RenderFragmentedFlow* fragmentedFlow = enclosingFragmentedFlow();
ASSERT(isRenderView() || (fragment && fragmentedFlow));
if (isRenderView())
return fragment;
// We need to clamp to the block, since we want any lines or blocks that overflow out of the
// logical top or logical bottom of the block to size as though the border box in the first and
// last fragments extended infinitely. Otherwise the lines are going to size according to the fragments
// they overflow into, which makes no sense when this block doesn't exist in |fragment| at all.
RenderFragmentContainer* startFragment = nullptr;
RenderFragmentContainer* endFragment = nullptr;
if (!fragmentedFlow->getFragmentRangeForBox(this, startFragment, endFragment))
return fragment;
if (fragment->logicalTopForFragmentedFlowContent() < startFragment->logicalTopForFragmentedFlowContent())
return startFragment;
if (fragment->logicalTopForFragmentedFlowContent() > endFragment->logicalTopForFragmentedFlowContent())
return endFragment;
return fragment;
}
bool RenderBox::hasFragmentRangeInFragmentedFlow() const
{
RenderFragmentedFlow* fragmentedFlow = enclosingFragmentedFlow();
if (!fragmentedFlow || !fragmentedFlow->hasValidFragmentInfo())
return false;
return fragmentedFlow->hasCachedFragmentRangeForBox(*this);
}
LayoutRect RenderBox::clientBoxRectInFragment(RenderFragmentContainer* fragment) const
{
if (!fragment)
return clientBoxRect();
LayoutRect clientBox = borderBoxRectInFragment(fragment);
clientBox.setLocation(clientBox.location() + LayoutSize(borderLeft(), borderTop()));
clientBox.setSize(clientBox.size() - LayoutSize(borderLeft() + borderRight() + verticalScrollbarWidth(), borderTop() + borderBottom() + horizontalScrollbarHeight()));
return clientBox;
}
LayoutRect RenderBox::borderBoxRectInFragment(RenderFragmentContainer*, RenderBoxFragmentInfoFlags) const
{
return borderBoxRect();
}
static RenderBlockFlow* outermostBlockContainingFloatingObject(RenderBox& box)
{
ASSERT(box.isFloating());
RenderBlockFlow* parentBlock = nullptr;
for (auto& ancestor : ancestorsOfType<RenderBlockFlow>(box)) {
if (!parentBlock || ancestor.containsFloat(box))
parentBlock = &ancestor;
}
return parentBlock;
}
void RenderBox::removeFloatingOrPositionedChildFromBlockLists()
{
ASSERT(isFloatingOrOutOfFlowPositioned());
if (renderTreeBeingDestroyed())
return;
if (isFloating()) {
if (RenderBlockFlow* parentBlock = outermostBlockContainingFloatingObject(*this)) {
parentBlock->markSiblingsWithFloatsForLayout(this);
parentBlock->markAllDescendantsWithFloatsForLayout(this, false);
}
}
if (isOutOfFlowPositioned())
RenderBlock::removePositionedObject(*this);
}
void RenderBox::styleWillChange(StyleDifference diff, const RenderStyle& newStyle)
{
s_hadNonVisibleOverflow = hasNonVisibleOverflow();
const RenderStyle* oldStyle = hasInitializedStyle() ? &style() : nullptr;
if (oldStyle) {
// The background of the root element or the body element could propagate up to
// the canvas. Issue full repaint, when our style changes substantially.
if (diff >= StyleDifference::Repaint && (isDocumentElementRenderer() || isBody())) {
view().repaintRootContents();
if (oldStyle->hasEntirelyFixedBackground() != newStyle.hasEntirelyFixedBackground())
view().compositor().rootLayerConfigurationChanged();
}
// When a layout hint happens and an object's position style changes, we have to do a layout
// to dirty the render tree using the old position value now.
if (diff == StyleDifference::Layout && parent() && oldStyle->position() != newStyle.position()) {
markContainingBlocksForLayout();
if (oldStyle->position() != PositionType::Static && newStyle.hasOutOfFlowPosition())
parent()->setChildNeedsLayout();
if (isFloating() && !isOutOfFlowPositioned() && newStyle.hasOutOfFlowPosition())
removeFloatingOrPositionedChildFromBlockLists();
}
} else if (isBody())
view().repaintRootContents();
bool boxContributesSnapPositions = newStyle.hasSnapPosition();
if (boxContributesSnapPositions || (oldStyle && oldStyle->hasSnapPosition())) {
if (boxContributesSnapPositions)
view().registerBoxWithScrollSnapPositions(*this);
else
view().unregisterBoxWithScrollSnapPositions(*this);
}
RenderBoxModelObject::styleWillChange(diff, newStyle);
}
void RenderBox::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle)
{
// Horizontal writing mode definition is updated in RenderBoxModelObject::updateFromStyle,
// (as part of the RenderBoxModelObject::styleDidChange call below). So, we can safely cache the horizontal
// writing mode value before style change here.
bool oldHorizontalWritingMode = isHorizontalWritingMode();
RenderBoxModelObject::styleDidChange(diff, oldStyle);
const RenderStyle& newStyle = style();
if (needsLayout() && oldStyle) {
RenderBlock::removePercentHeightDescendantIfNeeded(*this);
// Normally we can do optimized positioning layout for absolute/fixed positioned objects. There is one special case, however, which is
// when the positioned object's margin-before is changed. In this case the parent has to get a layout in order to run margin collapsing
// to determine the new static position.
if (isOutOfFlowPositioned() && newStyle.hasStaticBlockPosition(isHorizontalWritingMode()) && oldStyle->marginBefore() != newStyle.marginBefore()
&& parent() && !parent()->normalChildNeedsLayout())
parent()->setChildNeedsLayout();
}
if (RenderBlock::hasPercentHeightContainerMap() && firstChild()
&& oldHorizontalWritingMode != isHorizontalWritingMode())
RenderBlock::clearPercentHeightDescendantsFrom(*this);
// If our zoom factor changes and we have a defined scrollLeft/Top, we need to adjust that value into the
// new zoomed coordinate space.
if (hasNonVisibleOverflow() && layer() && oldStyle && oldStyle->effectiveZoom() != newStyle.effectiveZoom()) {
if (auto* scrollableArea = layer()->scrollableArea()) {
ScrollPosition scrollPosition = scrollableArea->scrollPosition();
float zoomScaleFactor = newStyle.effectiveZoom() / oldStyle->effectiveZoom();
scrollPosition.scale(zoomScaleFactor);
scrollableArea->setPostLayoutScrollPosition(scrollPosition);
}
}
// Our opaqueness might have changed without triggering layout.
if (diff >= StyleDifference::Repaint && diff <= StyleDifference::RepaintLayer) {
auto parentToInvalidate = parent();
for (unsigned i = 0; i < backgroundObscurationTestMaxDepth && parentToInvalidate; ++i) {
parentToInvalidate->invalidateBackgroundObscurationStatus();
parentToInvalidate = parentToInvalidate->parent();
}
}
bool isBodyRenderer = isBody();
bool isDocElementRenderer = isDocumentElementRenderer();
if (isDocElementRenderer || isBodyRenderer) {
auto* documentElementRenderer = document().documentElement()->renderer();
auto& viewStyle = view().mutableStyle();
bool rootStyleChanged = false;
bool viewDirectionOrWritingModeChanged = false;
auto* rootRenderer = isBodyRenderer ? documentElementRenderer : nullptr;
auto propagateWritingModeToRenderViewIfApplicable = [&] {
// Propagate the new writing mode and direction up to the RenderView.
if (!documentElementRenderer)
return;
if (!isBodyRenderer || !(shouldApplyAnyContainment(*this) || shouldApplyAnyContainment(*documentElementRenderer))) {
if (viewStyle.direction() != newStyle.direction() && (isDocElementRenderer || !documentElementRenderer->style().hasExplicitlySetDirection())) {
viewStyle.setDirection(newStyle.direction());
viewDirectionOrWritingModeChanged = true;
if (isBodyRenderer) {
rootRenderer->mutableStyle().setDirection(newStyle.direction());
rootStyleChanged = true;
}
setNeedsLayoutAndPrefWidthsRecalc();
view().frameView().topContentDirectionDidChange();
}
if (viewStyle.writingMode() != newStyle.writingMode() && (isDocElementRenderer || !documentElementRenderer->style().hasExplicitlySetWritingMode())) {
viewStyle.setWritingMode(newStyle.writingMode());
viewDirectionOrWritingModeChanged = true;
view().setHorizontalWritingMode(newStyle.isHorizontalWritingMode());
view().markAllDescendantsWithFloatsForLayout();
if (isBodyRenderer) {
rootStyleChanged = true;
rootRenderer->mutableStyle().setWritingMode(newStyle.writingMode());
rootRenderer->setHorizontalWritingMode(newStyle.isHorizontalWritingMode());
}
setNeedsLayoutAndPrefWidthsRecalc();
}
}
};
propagateWritingModeToRenderViewIfApplicable();
#if ENABLE(DARK_MODE_CSS)
view().frameView().recalculateBaseBackgroundColor();
#endif
view().frameView().recalculateScrollbarOverlayStyle();
const Pagination& pagination = view().frameView().pagination();
if (viewDirectionOrWritingModeChanged && pagination.mode != Pagination::Unpaginated) {
viewStyle.setColumnStylesFromPaginationMode(pagination.mode);
if (view().multiColumnFlow())
view().updateColumnProgressionFromStyle(viewStyle);
}
if (viewDirectionOrWritingModeChanged && view().multiColumnFlow())
view().updateStylesForColumnChildren();
if (rootStyleChanged && is<RenderBlockFlow>(rootRenderer) && downcast<RenderBlockFlow>(*rootRenderer).multiColumnFlow())
downcast<RenderBlockFlow>(*rootRenderer).updateStylesForColumnChildren();
if (isBodyRenderer && pagination.mode != Pagination::Unpaginated && page().paginationLineGridEnabled()) {
// Propagate the body font back up to the RenderView and use it as
// the basis of the grid.
if (newStyle.fontDescription() != view().style().fontDescription()) {
view().mutableStyle().setFontDescription(FontCascadeDescription { newStyle.fontDescription() });
view().mutableStyle().fontCascade().update(&document().fontSelector());
}
}
if (diff != StyleDifference::Equal)
view().compositor().rootOrBodyStyleChanged(*this, oldStyle);
}
if ((oldStyle && oldStyle->shapeOutside()) || style().shapeOutside())
updateShapeOutsideInfoAfterStyleChange(style(), oldStyle);
updateGridPositionAfterStyleChange(style(), oldStyle);
// Changing the position from/to absolute can potentially create/remove flex/grid items, as absolutely positioned
// children of a flex/grid box are out-of-flow, and thus, not flex/grid items. This means that we need to clear
// any override content size set by our container, because it would likely be incorrect after the style change.
if (isOutOfFlowPositioned() && parent() && parent()->style().isDisplayFlexibleBoxIncludingDeprecatedOrGridBox())
clearOverridingContentSize();
#if ENABLE(LAYOUT_FORMATTING_CONTEXT)
if (auto* lineLayout = LayoutIntegration::LineLayout::containing(*this))
lineLayout->updateStyle(*this, *oldStyle);
#endif
}
void RenderBox::updateGridPositionAfterStyleChange(const RenderStyle& style, const RenderStyle* oldStyle)
{
if (!oldStyle || !is<RenderGrid>(parent()))
return;
if (oldStyle->gridItemColumnStart() == style.gridItemColumnStart()
&& oldStyle->gridItemColumnEnd() == style.gridItemColumnEnd()
&& oldStyle->gridItemRowStart() == style.gridItemRowStart()
&& oldStyle->gridItemRowEnd() == style.gridItemRowEnd()
&& oldStyle->order() == style.order()
&& oldStyle->hasOutOfFlowPosition() == style.hasOutOfFlowPosition())
return;
// Positioned items don't participate on the layout of the grid,
// so we don't need to mark the grid as dirty if they change positions.
if (oldStyle->hasOutOfFlowPosition() && style.hasOutOfFlowPosition())
return;
// It should be possible to not dirty the grid in some cases (like moving an
// explicitly placed grid item).
// For now, it's more simple to just always recompute the grid.
downcast<RenderGrid>(*parent()).dirtyGrid();
}
void RenderBox::updateShapeOutsideInfoAfterStyleChange(const RenderStyle& style, const RenderStyle* oldStyle)
{
const ShapeValue* shapeOutside = style.shapeOutside();
const ShapeValue* oldShapeOutside = oldStyle ? oldStyle->shapeOutside() : nullptr;
Length shapeMargin = style.shapeMargin();
Length oldShapeMargin = oldStyle ? oldStyle->shapeMargin() : RenderStyle::initialShapeMargin();
float shapeImageThreshold = style.shapeImageThreshold();
float oldShapeImageThreshold = oldStyle ? oldStyle->shapeImageThreshold() : RenderStyle::initialShapeImageThreshold();
// FIXME: A future optimization would do a deep comparison for equality. (bug 100811)
if (shapeOutside == oldShapeOutside && shapeMargin == oldShapeMargin && shapeImageThreshold == oldShapeImageThreshold)
return;
if (!shapeOutside)
ShapeOutsideInfo::removeInfo(*this);
else
ShapeOutsideInfo::ensureInfo(*this).markShapeAsDirty();
if (shapeOutside || shapeOutside != oldShapeOutside)
markShapeOutsideDependentsForLayout();
}
void RenderBox::updateFromStyle()
{
RenderBoxModelObject::updateFromStyle();
const RenderStyle& styleToUse = style();
bool isDocElementRenderer = isDocumentElementRenderer();
bool isViewObject = isRenderView();
// The root and the RenderView always paint their backgrounds/borders.
if (isDocElementRenderer || isViewObject)
setHasVisibleBoxDecorations(true);
setFloating(!isOutOfFlowPositioned() && styleToUse.isFloating());
// We also handle <body> and <html>, whose overflow applies to the viewport.
if (!(effectiveOverflowX() == Overflow::Visible && effectiveOverflowY() == Overflow::Visible) && !isDocElementRenderer && isRenderBlock()) {
bool boxHasNonVisibleOverflow = true;
if (isBody()) {
// Overflow on the body can propagate to the viewport under the following conditions.
// (1) The root element is <html>.
// (2) We are the primary <body> (can be checked by looking at document.body).
// (3) The root element has visible overflow.
if (is<HTMLHtmlElement>(*document().documentElement())
&& document().body() == element()
&& document().documentElement()->renderer()->effectiveOverflowX() == Overflow::Visible) {
boxHasNonVisibleOverflow = false;
}
}
// Check for overflow clip.
// It's sufficient to just check one direction, since it's illegal to have visible on only one overflow value.
if (boxHasNonVisibleOverflow) {
if (!s_hadNonVisibleOverflow && hasRenderOverflow()) {
// Erase the overflow.
// Overflow changes have to result in immediate repaints of the entire layout overflow area because
// repaints issued by removal of descendants get clipped using the updated style when they shouldn't.
repaintRectangle(visualOverflowRect());
repaintRectangle(layoutOverflowRect());
}
setHasNonVisibleOverflow();
}
}
setHasTransformRelatedProperty(styleToUse.hasTransformRelatedProperty());
setHasReflection(styleToUse.boxReflect());
}
void RenderBox::layout()
{
StackStats::LayoutCheckPoint layoutCheckPoint;
ASSERT(needsLayout());
RenderObject* child = firstChild();
if (!child) {
clearNeedsLayout();
return;
}
LayoutStateMaintainer statePusher(*this, locationOffset(), style().isFlippedBlocksWritingMode());
while (child) {
if (child->needsLayout())
downcast<RenderElement>(*child).layout();
ASSERT(!child->needsLayout());
child = child->nextSibling();
}
invalidateBackgroundObscurationStatus();
clearNeedsLayout();
}
// More IE extensions. clientWidth and clientHeight represent the interior of an object
// excluding border and scrollbar.
LayoutUnit RenderBox::clientWidth() const
{
return paddingBoxWidth();
}
LayoutUnit RenderBox::clientHeight() const
{
return paddingBoxHeight();
}
int RenderBox::scrollWidth() const
{
if (hasPotentiallyScrollableOverflow() && layer())
return layer()->scrollWidth();
// For objects with visible overflow, this matches IE.
// FIXME: Need to work right with writing modes.
if (style().isLeftToRightDirection()) {
// FIXME: This should use snappedIntSize() instead with absolute coordinates.
return roundToInt(std::max(clientWidth(), layoutOverflowRect().maxX() - borderLeft()));
}
return roundToInt(clientWidth() - std::min<LayoutUnit>(0, layoutOverflowRect().x() - borderLeft()));
}
int RenderBox::scrollHeight() const
{
if (hasPotentiallyScrollableOverflow() && layer())
return layer()->scrollHeight();
// For objects with visible overflow, this matches IE.
// FIXME: Need to work right with writing modes.
// FIXME: This should use snappedIntSize() instead with absolute coordinates.
return roundToInt(std::max(clientHeight(), layoutOverflowRect().maxY() - borderTop()));
}
int RenderBox::scrollLeft() const
{
auto* scrollableArea = layer() ? layer()->scrollableArea() : nullptr;
return (hasNonVisibleOverflow() && scrollableArea) ? scrollableArea->scrollPosition().x() : 0;
}
int RenderBox::scrollTop() const
{
auto* scrollableArea = layer() ? layer()->scrollableArea() : nullptr;
return (hasNonVisibleOverflow() && scrollableArea) ? scrollableArea->scrollPosition().y() : 0;
}
void RenderBox::resetLogicalHeightBeforeLayoutIfNeeded()
{
if (shouldResetLogicalHeightBeforeLayout() || (is<RenderBlock>(parent()) && downcast<RenderBlock>(*parent()).shouldResetChildLogicalHeightBeforeLayout(*this)))
setLogicalHeight(0_lu);
}
static void setupWheelEventMonitor(RenderLayerScrollableArea& scrollableArea)
{
Page& page = scrollableArea.layer().renderer().page();
if (!page.isMonitoringWheelEvents())
return;
scrollableArea.scrollAnimator().setWheelEventTestMonitor(page.wheelEventTestMonitor());
}
void RenderBox::setScrollLeft(int newLeft, const ScrollPositionChangeOptions& options)
{
if (!hasPotentiallyScrollableOverflow() || !layer())
return;
auto* scrollableArea = layer()->scrollableArea();
ASSERT(scrollableArea);
setupWheelEventMonitor(*scrollableArea);
scrollableArea->scrollToXPosition(newLeft, options);
}
void RenderBox::setScrollTop(int newTop, const ScrollPositionChangeOptions& options)
{
if (!hasPotentiallyScrollableOverflow() || !layer())
return;
auto* scrollableArea = layer()->scrollableArea();
ASSERT(scrollableArea);
setupWheelEventMonitor(*scrollableArea);
scrollableArea->scrollToYPosition(newTop, options);
}
void RenderBox::setScrollPosition(const ScrollPosition& position, const ScrollPositionChangeOptions& options)
{
if (!hasPotentiallyScrollableOverflow() || !layer())
return;
auto* scrollableArea = layer()->scrollableArea();
ASSERT(scrollableArea);
setupWheelEventMonitor(*scrollableArea);
scrollableArea->setScrollPosition(position, options);
}
void RenderBox::absoluteRects(Vector<IntRect>& rects, const LayoutPoint& accumulatedOffset) const
{
rects.append(snappedIntRect(accumulatedOffset, size()));
}
void RenderBox::absoluteQuads(Vector<FloatQuad>& quads, bool* wasFixed) const
{
RenderFragmentedFlow* fragmentedFlow = enclosingFragmentedFlow();
if (fragmentedFlow && fragmentedFlow->absoluteQuadsForBox(quads, wasFixed, this))
return;
auto localRect = FloatRect { 0, 0, width(), height() };
quads.append(localToAbsoluteQuad(localRect, UseTransforms, wasFixed));
}
void RenderBox::updateLayerTransform()
{
// Transform-origin depends on box size, so we need to update the layer transform after layout.
if (hasLayer())
layer()->updateTransform();
}
LayoutUnit RenderBox::constrainLogicalWidthInFragmentByMinMax(LayoutUnit logicalWidth, LayoutUnit availableWidth, RenderBlock& cb, RenderFragmentContainer* fragment, AllowIntrinsic allowIntrinsic) const
{
const RenderStyle& styleToUse = style();
if (shouldComputeLogicalHeightFromAspectRatio()) {
auto [logicalMinWidth, logicalMaxWidth] = computeMinMaxLogicalWidthFromAspectRatio();
logicalWidth = std::clamp(logicalWidth, logicalMinWidth, logicalMaxWidth);
}
if (!styleToUse.logicalMaxWidth().isUndefined() && (allowIntrinsic == AllowIntrinsic::Yes || !styleToUse.logicalMaxWidth().isIntrinsic()))
logicalWidth = std::min(logicalWidth, computeLogicalWidthInFragmentUsing(MaxSize, styleToUse.logicalMaxWidth(), availableWidth, cb, fragment));
if (allowIntrinsic == AllowIntrinsic::No && styleToUse.logicalMinWidth().isIntrinsic())
return logicalWidth;
auto logicalMinWidth = styleToUse.logicalMinWidth();
if (logicalMinWidth.isAuto() && shouldComputeLogicalWidthFromAspectRatio() && (styleToUse.logicalWidth().isAuto() || styleToUse.logicalWidth().isMinContent() || styleToUse.logicalWidth().isMaxContent()) && !is<RenderReplaced>(*this) && effectiveOverflowInlineDirection() == Overflow::Visible) {
// Make sure we actually used the aspect ratio.
logicalMinWidth = Length(LengthType::MinContent);
}
return std::max(logicalWidth, computeLogicalWidthInFragmentUsing(MinSize, logicalMinWidth, availableWidth, cb, fragment));
}
LayoutUnit RenderBox::constrainLogicalHeightByMinMax(LayoutUnit logicalHeight, std::optional<LayoutUnit> intrinsicContentHeight) const
{
const RenderStyle& styleToUse = style();
if (!styleToUse.logicalMaxHeight().isUndefined()) {
if (std::optional<LayoutUnit> maxH = computeLogicalHeightUsing(MaxSize, styleToUse.logicalMaxHeight(), intrinsicContentHeight))
logicalHeight = std::min(logicalHeight, maxH.value());
}
auto logicalMinHeight = styleToUse.logicalMinHeight();
if (logicalMinHeight.isAuto() && shouldComputeLogicalHeightFromAspectRatio() && intrinsicContentHeight && !is<RenderReplaced>(*this) && effectiveOverflowBlockDirection() == Overflow::Visible) {
auto heightFromAspectRatio = blockSizeFromAspectRatio(horizontalBorderAndPaddingExtent(), verticalBorderAndPaddingExtent(), style().logicalAspectRatio(), style().boxSizingForAspectRatio(), logicalWidth()) - borderAndPaddingLogicalHeight();
if (firstChild())
heightFromAspectRatio = std::max(heightFromAspectRatio, *intrinsicContentHeight);
logicalMinHeight = Length(heightFromAspectRatio, LengthType::Fixed);
}
if (logicalMinHeight.isMinContent() || logicalMinHeight.isMaxContent())
logicalMinHeight = Length();
if (std::optional<LayoutUnit> computedLogicalHeight = computeLogicalHeightUsing(MinSize, logicalMinHeight, intrinsicContentHeight))
return std::max(logicalHeight, computedLogicalHeight.value());
return logicalHeight;
}
LayoutUnit RenderBox::constrainContentBoxLogicalHeightByMinMax(LayoutUnit logicalHeight, std::optional<LayoutUnit> intrinsicContentHeight) const
{
const RenderStyle& styleToUse = style();
if (!styleToUse.logicalMaxHeight().isUndefined()) {
if (std::optional<LayoutUnit> maxH = computeContentLogicalHeight(MaxSize, styleToUse.logicalMaxHeight(), intrinsicContentHeight))
logicalHeight = std::min(logicalHeight, maxH.value());
}
if (std::optional<LayoutUnit> computedContentLogicalHeight = computeContentLogicalHeight(MinSize, styleToUse.logicalMinHeight(), intrinsicContentHeight))
return std::max(logicalHeight, computedContentLogicalHeight.value());
return logicalHeight;
}
RoundedRect::Radii RenderBox::borderRadii() const
{
auto& style = this->style();
LayoutRect bounds = frameRect();
unsigned borderLeft = style.borderLeftWidth();
unsigned borderTop = style.borderTopWidth();
bounds.moveBy(LayoutPoint(borderLeft, borderTop));
bounds.contract(borderLeft + style.borderRightWidth(), borderTop + style.borderBottomWidth());
return style.getRoundedBorderFor(bounds).radii();
}
RoundedRect RenderBox::roundedBorderBoxRect() const
{
return style().getRoundedInnerBorderFor(borderBoxRect());
}
LayoutRect RenderBox::paddingBoxRect() const
{
auto verticalScrollbarWidth = this->verticalScrollbarWidth();
LayoutUnit offsetForScrollbar = shouldPlaceVerticalScrollbarOnLeft() ? verticalScrollbarWidth : 0;
return LayoutRect(borderLeft() + offsetForScrollbar, borderTop(),
width() - borderLeft() - borderRight() - verticalScrollbarWidth,
height() - borderTop() - borderBottom() - horizontalScrollbarHeight());
}
LayoutRect RenderBox::contentBoxRect() const
{
return { contentBoxLocation(), contentSize() };
}
LayoutPoint RenderBox::contentBoxLocation() const
{
LayoutUnit scrollbarSpace = shouldPlaceVerticalScrollbarOnLeft() ? verticalScrollbarWidth() : 0;
return { borderLeft() + paddingLeft() + scrollbarSpace, borderTop() + paddingTop() };
}
LayoutRect RenderBox::referenceBox(CSSBoxType boxType) const
{
LayoutRect referenceBox;
switch (boxType) {
case CSSBoxType::ContentBox:
case CSSBoxType::FillBox:
return contentBoxRect();
case CSSBoxType::PaddingBox:
return paddingBoxRect();
case CSSBoxType::MarginBox:
return marginBoxRect();
// stroke-box, view-box compute to border-box for HTML elements.
case CSSBoxType::StrokeBox:
case CSSBoxType::ViewBox:
case CSSBoxType::BorderBox:
case CSSBoxType::BoxMissing:
return borderBoxRect();
}
return { };
}
IntRect RenderBox::absoluteContentBox() const
{
// This is wrong with transforms and flipped writing modes.
IntRect rect = snappedIntRect(contentBoxRect());
FloatPoint absPos = localToAbsolute();
rect.move(absPos.x(), absPos.y());
return rect;
}
FloatQuad RenderBox::absoluteContentQuad() const
{
LayoutRect rect = contentBoxRect();
return localToAbsoluteQuad(FloatRect(rect));
}
LayoutRect RenderBox::outlineBoundsForRepaint(const RenderLayerModelObject* repaintContainer, const RenderGeometryMap* geometryMap) const
{
LayoutRect box = borderBoundingBox();
adjustRectForOutlineAndShadow(box);
if (repaintContainer != this) {
FloatQuad containerRelativeQuad;
if (geometryMap)
containerRelativeQuad = geometryMap->mapToContainer(box, repaintContainer);
else
containerRelativeQuad = localToContainerQuad(FloatRect(box), repaintContainer);
box = LayoutRect(containerRelativeQuad.boundingBox());
}
// FIXME: layoutDelta needs to be applied in parts before/after transforms and
// repaint containers. https://bugs.webkit.org/show_bug.cgi?id=23308
box.move(view().frameView().layoutContext().layoutDelta());
return LayoutRect(snapRectToDevicePixels(box, document().deviceScaleFactor()));
}
void RenderBox::addFocusRingRects(Vector<LayoutRect>& rects, const LayoutPoint& additionalOffset, const RenderLayerModelObject*)
{
if (!size().isEmpty())
rects.append(LayoutRect(additionalOffset, size()));
}
int RenderBox::reflectionOffset() const
{
if (!style().boxReflect())
return 0;
if (style().boxReflect()->direction() == ReflectionDirection::Left || style().boxReflect()->direction() == ReflectionDirection::Right)
return valueForLength(style().boxReflect()->offset(), borderBoxRect().width());
return valueForLength(style().boxReflect()->offset(), borderBoxRect().height());
}
LayoutRect RenderBox::reflectedRect(const LayoutRect& r) const
{
if (!style().boxReflect())
return LayoutRect();
LayoutRect box = borderBoxRect();
LayoutRect result = r;
switch (style().boxReflect()->direction()) {
case ReflectionDirection::Below:
result.setY(box.maxY() + reflectionOffset() + (box.maxY() - r.maxY()));
break;
case ReflectionDirection::Above:
result.setY(box.y() - reflectionOffset() - box.height() + (box.maxY() - r.maxY()));
break;
case ReflectionDirection::Left:
result.setX(box.x() - reflectionOffset() - box.width() + (box.maxX() - r.maxX()));
break;
case ReflectionDirection::Right:
result.setX(box.maxX() + reflectionOffset() + (box.maxX() - r.maxX()));
break;
}
return result;
}
bool RenderBox::fixedElementLaysOutRelativeToFrame(const FrameView& frameView) const
{
return isFixedPositioned() && container()->isRenderView() && frameView.fixedElementsLayoutRelativeToFrame();
}
bool RenderBox::includeVerticalScrollbarSize() const
{
return hasNonVisibleOverflow() && layer() && !layer()->hasOverlayScrollbars()
&& (style().overflowY() == Overflow::Scroll || style().overflowY() == Overflow::Auto);
}
bool RenderBox::includeHorizontalScrollbarSize() const
{
return hasNonVisibleOverflow() && layer() && !layer()->hasOverlayScrollbars()
&& (style().overflowX() == Overflow::Scroll || style().overflowX() == Overflow::Auto);
}
int RenderBox::verticalScrollbarWidth() const
{
auto* scrollableArea = layer() ? layer()->scrollableArea() : nullptr;
if (!scrollableArea)
return 0;
return includeVerticalScrollbarSize() ? scrollableArea->verticalScrollbarWidth() : 0;
}
int RenderBox::horizontalScrollbarHeight() const
{
auto* scrollableArea = layer() ? layer()->scrollableArea() : nullptr;
if (!scrollableArea)
return 0;
return includeHorizontalScrollbarSize() ? scrollableArea->horizontalScrollbarHeight() : 0;
}
int RenderBox::intrinsicScrollbarLogicalWidth() const
{
if (!hasNonVisibleOverflow())
return 0;
if (isHorizontalWritingMode() && (style().overflowY() == Overflow::Scroll && !canUseOverlayScrollbars())) {
ASSERT(layer() && layer()->scrollableArea() && layer()->scrollableArea()->hasVerticalScrollbar());
return verticalScrollbarWidth();
}
if (!isHorizontalWritingMode() && (style().overflowX() == Overflow::Scroll && !canUseOverlayScrollbars())) {
ASSERT(layer() && layer()->scrollableArea() && layer()->scrollableArea()->hasHorizontalScrollbar());
return horizontalScrollbarHeight();
}
return 0;
}
bool RenderBox::scrollLayer(ScrollDirection direction, ScrollGranularity granularity, unsigned stepCount, Element** stopElement)
{
auto* scrollableArea = layer() ? layer()->scrollableArea() : nullptr;
if (scrollableArea && scrollableArea->scroll(direction, granularity, stepCount)) {
if (stopElement)
*stopElement = element();
return true;
}
return false;
}
bool RenderBox::scroll(ScrollDirection direction, ScrollGranularity granularity, unsigned stepCount, Element** stopElement, RenderBox* startBox, const IntPoint& wheelEventAbsolutePoint)
{
if (scrollLayer(direction, granularity, stepCount, stopElement))
return true;
if (stopElement && *stopElement && *stopElement == element())
return true;
RenderBlock* nextScrollBlock = containingBlock();
if (nextScrollBlock && !nextScrollBlock->isRenderView())
return nextScrollBlock->scroll(direction, granularity, stepCount, stopElement, startBox, wheelEventAbsolutePoint);
return false;
}
bool RenderBox::logicalScroll(ScrollLogicalDirection direction, ScrollGranularity granularity, unsigned stepCount, Element** stopElement)
{
bool scrolled = false;
if (auto* scrollableArea = layer() ? layer()->scrollableArea() : nullptr) {
#if PLATFORM(COCOA)
// On Mac only we reset the inline direction position when doing a document scroll (e.g., hitting Home/End).
if (granularity == ScrollGranularity::Document)
scrolled = scrollableArea->scroll(logicalToPhysical(ScrollInlineDirectionBackward, isHorizontalWritingMode(), style().isFlippedBlocksWritingMode()), ScrollGranularity::Document, stepCount);
#endif
if (scrollableArea->scroll(logicalToPhysical(direction, isHorizontalWritingMode(), style().isFlippedBlocksWritingMode()), granularity, stepCount))
scrolled = true;
if (scrolled) {
if (stopElement)
*stopElement = element();
return true;
}
}
if (stopElement && *stopElement && *stopElement == element())
return true;
RenderBlock* b = containingBlock();
if (b && !b->isRenderView())
return b->logicalScroll(direction, granularity, stepCount, stopElement);
return false;
}
bool RenderBox::canBeScrolledAndHasScrollableArea() const
{
return canBeProgramaticallyScrolled() && (hasHorizontalOverflow() || hasVerticalOverflow());
}
bool RenderBox::isScrollableOrRubberbandableBox() const
{
return canBeScrolledAndHasScrollableArea();
}
bool RenderBox::requiresLayerWithScrollableArea() const
{
// FIXME: This is wrong; these boxes' layers should not need ScrollableAreas via RenderLayer.
if (isRenderView() || isDocumentElementRenderer())
return true;
if (hasPotentiallyScrollableOverflow())
return true;
if (style().resize() != Resize::None)
return true;
if (isHTMLMarquee() && style().marqueeBehavior() != MarqueeBehavior::None)
return true;
return false;
}
// FIXME: This is badly named. overflow:hidden can be programmatically scrolled, yet this returns false in that case.
bool RenderBox::canBeProgramaticallyScrolled() const
{
if (isRenderView())
return true;
if (!hasPotentiallyScrollableOverflow())
return false;
if (hasScrollableOverflowX() || hasScrollableOverflowY())
return true;
return element() && element()->hasEditableStyle();
}
bool RenderBox::usesCompositedScrolling() const
{
return hasNonVisibleOverflow() && hasLayer() && layer()->usesCompositedScrolling();
}
void RenderBox::autoscroll(const IntPoint& position)
{
if (layer())
layer()->autoscroll(position);
}
// There are two kinds of renderer that can autoscroll.
bool RenderBox::canAutoscroll() const
{
if (isRenderView())
return view().frameView().isScrollable();
// Check for a box that can be scrolled in its own right.
if (canBeScrolledAndHasScrollableArea())
return true;
return false;
}
// If specified point is in border belt, returned offset denotes direction of
// scrolling.
IntSize RenderBox::calculateAutoscrollDirection(const IntPoint& windowPoint) const
{
IntRect box(absoluteBoundingBoxRect());
box.moveBy(view().frameView().scrollPosition());
IntRect windowBox = view().frameView().contentsToWindow(box);
IntPoint windowAutoscrollPoint = windowPoint;
if (windowAutoscrollPoint.x() < windowBox.x() + autoscrollBeltSize)
windowAutoscrollPoint.move(-autoscrollBeltSize, 0);
else if (windowAutoscrollPoint.x() > windowBox.maxX() - autoscrollBeltSize)
windowAutoscrollPoint.move(autoscrollBeltSize, 0);
if (windowAutoscrollPoint.y() < windowBox.y() + autoscrollBeltSize)
windowAutoscrollPoint.move(0, -autoscrollBeltSize);
else if (windowAutoscrollPoint.y() > windowBox.maxY() - autoscrollBeltSize)
windowAutoscrollPoint.move(0, autoscrollBeltSize);
return windowAutoscrollPoint - windowPoint;
}
RenderBox* RenderBox::findAutoscrollable(RenderObject* renderer)
{
while (renderer && !(is<RenderBox>(*renderer) && downcast<RenderBox>(*renderer).canAutoscroll())) {
if (is<RenderView>(*renderer) && renderer->document().ownerElement())
renderer = renderer->document().ownerElement()->renderer();
else
renderer = renderer->parent();
}
return dynamicDowncast<RenderBox>(renderer);
}
void RenderBox::panScroll(const IntPoint& source)
{
if (auto* scrollableArea = layer() ? layer()->scrollableArea() : nullptr)
scrollableArea->panScrollFromPoint(source);
}
bool RenderBox::canUseOverlayScrollbars() const
{
return !style().hasPseudoStyle(PseudoId::Scrollbar) && ScrollbarTheme::theme().usesOverlayScrollbars();
}
bool RenderBox::hasAutoScrollbar(ScrollbarOrientation orientation) const
{
if (!hasNonVisibleOverflow())
return false;
auto isAutoOrScrollWithOverlayScrollbar = [&](Overflow overflow) {
return overflow == Overflow::Auto || (overflow == Overflow::Scroll && canUseOverlayScrollbars());
};
switch (orientation) {
case ScrollbarOrientation::Horizontal:
return isAutoOrScrollWithOverlayScrollbar(style().overflowX());
case ScrollbarOrientation::Vertical:
return isAutoOrScrollWithOverlayScrollbar(style().overflowY());
}
return false;
}
bool RenderBox::hasAlwaysPresentScrollbar(ScrollbarOrientation orientation) const
{
if (!hasNonVisibleOverflow())
return false;
auto isAlwaysVisibleScrollbar = [&](Overflow overflow) {
return overflow == Overflow::Scroll && !canUseOverlayScrollbars();
};
switch (orientation) {
case ScrollbarOrientation::Horizontal:
return isAlwaysVisibleScrollbar(style().overflowX());
case ScrollbarOrientation::Vertical:
return isAlwaysVisibleScrollbar(style().overflowY());
}
return false;
}
bool RenderBox::needsPreferredWidthsRecalculation() const
{
return style().paddingStart().isPercentOrCalculated() || style().paddingEnd().isPercentOrCalculated() || (style().hasAspectRatio() && (hasRelativeLogicalHeight() || (isFlexItem() && hasStretchedLogicalHeight())));
}
ScrollPosition RenderBox::scrollPosition() const
{
if (!hasPotentiallyScrollableOverflow())
return { 0, 0 };
ASSERT(hasLayer());
auto* scrollableArea = layer()->scrollableArea();
if (!scrollableArea)
return { 0, 0 };
return scrollableArea->scrollPosition();
}
LayoutSize RenderBox::cachedSizeForOverflowClip() const
{
ASSERT(hasNonVisibleOverflow());
ASSERT(hasLayer());
return layer()->size();
}
bool RenderBox::applyCachedClipAndScrollPosition(LayoutRect& rect, const RenderLayerModelObject* container, VisibleRectContext context) const
{
flipForWritingMode(rect);
if (context.options.contains(VisibleRectContextOption::ApplyCompositedContainerScrolls) || this != container || !usesCompositedScrolling())
rect.moveBy(-scrollPosition()); // For overflow:auto/scroll/hidden.
// Do not clip scroll layer contents to reduce the number of repaints while scrolling.
if ((!context.options.contains(VisibleRectContextOption::ApplyCompositedClips) && usesCompositedScrolling())
|| (!context.options.contains(VisibleRectContextOption::ApplyContainerClip) && this == container)) {
flipForWritingMode(rect);
return true;
}
// height() is inaccurate if we're in the middle of a layout of this RenderBox, so use the
// layer's size instead. Even if the layer's size is wrong, the layer itself will repaint
// anyway if its size does change.
LayoutRect clipRect(LayoutPoint(), cachedSizeForOverflowClip());
bool intersects;
if (context.options.contains(VisibleRectContextOption::UseEdgeInclusiveIntersection))
intersects = rect.edgeInclusiveIntersect(clipRect);
else {
rect.intersect(clipRect);
intersects = !rect.isEmpty();
}
flipForWritingMode(rect);
return intersects;
}
void RenderBox::computeIntrinsicLogicalWidths(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth) const
{
minLogicalWidth = minPreferredLogicalWidth() - borderAndPaddingLogicalWidth();
maxLogicalWidth = maxPreferredLogicalWidth() - borderAndPaddingLogicalWidth();
}
LayoutUnit RenderBox::minPreferredLogicalWidth() const
{
if (preferredLogicalWidthsDirty()) {
SetLayoutNeededForbiddenScope layoutForbiddenScope(*this);
const_cast<RenderBox&>(*this).computePreferredLogicalWidths();
}
return m_minPreferredLogicalWidth;
}
LayoutUnit RenderBox::maxPreferredLogicalWidth() const
{
if (preferredLogicalWidthsDirty()) {
SetLayoutNeededForbiddenScope layoutForbiddenScope(*this);
const_cast<RenderBox&>(*this).computePreferredLogicalWidths();
}
return m_maxPreferredLogicalWidth;
}
bool RenderBox::hasOverridingLogicalHeight() const
{
return gOverridingLogicalHeightMap && gOverridingLogicalHeightMap->contains(this);
}
bool RenderBox::hasOverridingLogicalWidth() const
{
return gOverridingLogicalWidthMap && gOverridingLogicalWidthMap->contains(this);
}
void RenderBox::setOverridingLogicalHeight(LayoutUnit height)
{
if (!gOverridingLogicalHeightMap)
gOverridingLogicalHeightMap = new OverrideSizeMap();
gOverridingLogicalHeightMap->set(this, height);
}
void RenderBox::setOverridingLogicalWidth(LayoutUnit width)
{
if (!gOverridingLogicalWidthMap)
gOverridingLogicalWidthMap = new OverrideSizeMap();
gOverridingLogicalWidthMap->set(this, width);
}
void RenderBox::clearOverridingLogicalHeight()
{
if (gOverridingLogicalHeightMap)
gOverridingLogicalHeightMap->remove(this);
}
void RenderBox::clearOverridingLogicalWidth()
{
if (gOverridingLogicalWidthMap)
gOverridingLogicalWidthMap->remove(this);
}
void RenderBox::clearOverridingContentSize()
{
clearOverridingLogicalHeight();
clearOverridingLogicalWidth();
}
LayoutUnit RenderBox::overridingLogicalWidth() const
{
ASSERT(hasOverridingLogicalWidth());
return gOverridingLogicalWidthMap->get(this);
}
LayoutUnit RenderBox::overridingLogicalHeight() const
{
ASSERT(hasOverridingLogicalHeight());
return gOverridingLogicalHeightMap->get(this);
}
std::optional<LayoutUnit> RenderBox::overridingContainingBlockContentWidth() const
{
ASSERT(hasOverridingContainingBlockContentWidth());
return containingBlock()->style().isHorizontalWritingMode()
? gOverridingContainingBlockContentLogicalWidthMap->get(this)
: gOverridingContainingBlockContentLogicalHeightMap->get(this);
}
std::optional<LayoutUnit> RenderBox::overridingContainingBlockContentHeight() const
{
ASSERT(hasOverridingContainingBlockContentHeight());
return containingBlock()->style().isHorizontalWritingMode()
? gOverridingContainingBlockContentLogicalHeightMap->get(this)
: gOverridingContainingBlockContentLogicalWidthMap->get(this);
}
bool RenderBox::hasOverridingContainingBlockContentWidth() const
{
RenderBlock* cb = containingBlock();
if (!cb)
return false;
return cb->style().isHorizontalWritingMode()
? gOverridingContainingBlockContentLogicalWidthMap && gOverridingContainingBlockContentLogicalWidthMap->contains(this)
: gOverridingContainingBlockContentLogicalHeightMap && gOverridingContainingBlockContentLogicalHeightMap->contains(this);
}
bool RenderBox::hasOverridingContainingBlockContentHeight() const
{
RenderBlock* cb = containingBlock();
if (!cb)
return false;
return cb->style().isHorizontalWritingMode()
? gOverridingContainingBlockContentLogicalHeightMap && gOverridingContainingBlockContentLogicalHeightMap->contains(this)
: gOverridingContainingBlockContentLogicalWidthMap && gOverridingContainingBlockContentLogicalWidthMap->contains(this);
}
std::optional<LayoutUnit> RenderBox::overridingContainingBlockContentLogicalWidth() const
{
ASSERT(hasOverridingContainingBlockContentLogicalWidth());
return gOverridingContainingBlockContentLogicalWidthMap->get(this);
}
std::optional<LayoutUnit> RenderBox::overridingContainingBlockContentLogicalHeight() const
{
ASSERT(hasOverridingContainingBlockContentLogicalHeight());
return gOverridingContainingBlockContentLogicalHeightMap->get(this);
}
bool RenderBox::hasOverridingContainingBlockContentLogicalWidth() const
{
return gOverridingContainingBlockContentLogicalWidthMap && gOverridingContainingBlockContentLogicalWidthMap->contains(this);
}
bool RenderBox::hasOverridingContainingBlockContentLogicalHeight() const
{
return gOverridingContainingBlockContentLogicalHeightMap && gOverridingContainingBlockContentLogicalHeightMap->contains(this);
}
void RenderBox::setOverridingContainingBlockContentLogicalWidth(std::optional<LayoutUnit> logicalWidth)
{
if (!gOverridingContainingBlockContentLogicalWidthMap)
gOverridingContainingBlockContentLogicalWidthMap = new OverrideOptionalSizeMap;
gOverridingContainingBlockContentLogicalWidthMap->set(this, logicalWidth);
}
void RenderBox::setOverridingContainingBlockContentLogicalHeight(std::optional<LayoutUnit> logicalHeight)
{
if (!gOverridingContainingBlockContentLogicalHeightMap)
gOverridingContainingBlockContentLogicalHeightMap = new OverrideOptionalSizeMap;
gOverridingContainingBlockContentLogicalHeightMap->set(this, logicalHeight);
}
void RenderBox::clearOverridingContainingBlockContentSize()
{
if (gOverridingContainingBlockContentLogicalWidthMap)
gOverridingContainingBlockContentLogicalWidthMap->remove(this);
clearOverridingContainingBlockContentLogicalHeight();
}
void RenderBox::clearOverridingContainingBlockContentLogicalHeight()
{
if (gOverridingContainingBlockContentLogicalHeightMap)
gOverridingContainingBlockContentLogicalHeightMap->remove(this);
}
Length RenderBox::overridingLogicalHeightLength() const
{
ASSERT(hasOverridingLogicalHeightLength());
return gOverridingLogicalHeightLengthMap->get(this);
}
void RenderBox::setOverridingLogicalHeightLength(const Length& height)
{
if (!gOverridingLogicalHeightLengthMap)
gOverridingLogicalHeightLengthMap = new OverridingLengthMap();
gOverridingLogicalHeightLengthMap->set(this, height);
}
bool RenderBox::hasOverridingLogicalHeightLength() const
{
return gOverridingLogicalHeightLengthMap && gOverridingLogicalHeightLengthMap->contains(this);
}
void RenderBox::clearOverridingLogicalHeightLength()
{
if (gOverridingLogicalHeightLengthMap)
gOverridingLogicalHeightLengthMap->remove(this);
}
Length RenderBox::overridingLogicalWidthLength() const
{
ASSERT(hasOverridingLogicalWidthLength());
return gOverridingLogicalWidthLengthMap->get(this);
}
void RenderBox::setOverridingLogicalWidthLength(const Length& height)
{
if (!gOverridingLogicalWidthLengthMap)
gOverridingLogicalWidthLengthMap = new OverridingLengthMap();
gOverridingLogicalWidthLengthMap->set(this, height);
}
bool RenderBox::hasOverridingLogicalWidthLength() const
{
return gOverridingLogicalWidthLengthMap && gOverridingLogicalWidthLengthMap->contains(this);
}
void RenderBox::clearOverridingLogicalWidthLength()
{
if (gOverridingLogicalWidthLengthMap)
gOverridingLogicalWidthLengthMap->remove(this);
}
LayoutUnit RenderBox::adjustBorderBoxLogicalWidthForBoxSizing(const Length& logicalWidth) const
{
auto width = LayoutUnit { logicalWidth.value() };
LayoutUnit bordersPlusPadding = borderAndPaddingLogicalWidth();
if (style().boxSizing() == BoxSizing::ContentBox || logicalWidth.isIntrinsicOrAuto())
return width + bordersPlusPadding;
return std::max(width, bordersPlusPadding);
}
LayoutUnit RenderBox::adjustBorderBoxLogicalWidthForBoxSizing(LayoutUnit computedLogicalWidth, LengthType originalType) const
{
if (originalType == LengthType::Calculated)
return adjustBorderBoxLogicalWidthForBoxSizing({ computedLogicalWidth, LengthType::Fixed, false });
return adjustBorderBoxLogicalWidthForBoxSizing({ computedLogicalWidth, originalType, false });
}
LayoutUnit RenderBox::adjustBorderBoxLogicalHeightForBoxSizing(LayoutUnit height) const
{
LayoutUnit bordersPlusPadding = borderAndPaddingLogicalHeight();
if (style().boxSizing() == BoxSizing::ContentBox)
return height + bordersPlusPadding;
return std::max(height, bordersPlusPadding);
}
LayoutUnit RenderBox::adjustContentBoxLogicalWidthForBoxSizing(const Length& logicalWidth) const
{
auto width = LayoutUnit { logicalWidth.value() };
if (style().boxSizing() == BoxSizing::ContentBox || logicalWidth.isIntrinsicOrAuto())
return std::max(0_lu, width);
return std::max(0_lu, width - borderAndPaddingLogicalWidth());
}
LayoutUnit RenderBox::adjustContentBoxLogicalWidthForBoxSizing(LayoutUnit computedLogicalWidth, LengthType originalType) const
{
if (originalType == LengthType::Calculated)
return adjustContentBoxLogicalWidthForBoxSizing({ computedLogicalWidth, LengthType::Fixed, false });
return adjustContentBoxLogicalWidthForBoxSizing({ computedLogicalWidth, originalType, false });
}
LayoutUnit RenderBox::adjustContentBoxLogicalHeightForBoxSizing(std::optional<LayoutUnit> height) const
{
if (!height)
return 0;
LayoutUnit result = height.value();
if (style().boxSizing() == BoxSizing::BorderBox)
result -= borderAndPaddingLogicalHeight();
return std::max(0_lu, result);
}
// Hit Testing
bool RenderBox::hitTestVisualOverflow(const HitTestLocation& hitTestLocation, const LayoutPoint& accumulatedOffset) const
{
if (isRenderView())
return true;
LayoutPoint adjustedLocation = accumulatedOffset + location();
LayoutRect overflowBox = visualOverflowRect();
flipForWritingMode(overflowBox);
overflowBox.moveBy(adjustedLocation);
return hitTestLocation.intersects(overflowBox);
}
bool RenderBox::hitTestClipPath(const HitTestLocation& hitTestLocation, const LayoutPoint& accumulatedOffset) const
{
if (!style().clipPath())
return true;
auto offsetFromHitTestRoot = toLayoutSize(accumulatedOffset + location());
auto hitTestLocationInLocalCoordinates = hitTestLocation.point() - offsetFromHitTestRoot;
switch (style().clipPath()->type()) {
case PathOperation::Shape: {
auto& clipPath = downcast<ShapePathOperation>(*style().clipPath());
auto referenceBoxRect = referenceBox(clipPath.referenceBox());
if (!clipPath.pathForReferenceRect(referenceBoxRect).contains(hitTestLocationInLocalCoordinates, clipPath.windRule()))
return false;
break;
}
case PathOperation::Reference: {
const auto& referencePathOperation = downcast<ReferencePathOperation>(*style().clipPath());
auto* element = document().getElementById(referencePathOperation.fragment());
if (!element || !element->renderer())
break;
if (!is<SVGClipPathElement>(*element))
break;
auto& clipper = downcast<RenderSVGResourceClipper>(*element->renderer());
if (!clipper.hitTestClipContent(FloatRect(borderBoxRect()), FloatPoint { hitTestLocationInLocalCoordinates }))
return false;
break;
}
case PathOperation::Box:
break;
case PathOperation::Ray:
ASSERT_NOT_REACHED("clip-path does not support Ray shape");
break;
}
return true;
}
bool RenderBox::hitTestBorderRadius(const HitTestLocation& hitTestLocation, const LayoutPoint& accumulatedOffset) const
{
if (isRenderView() || !style().hasBorderRadius())
return true;
LayoutPoint adjustedLocation = accumulatedOffset + location();
LayoutRect borderRect = borderBoxRect();
borderRect.moveBy(adjustedLocation);
RoundedRect border = style().getRoundedBorderFor(borderRect);
return hitTestLocation.intersects(border);
}
bool RenderBox::nodeAtPoint(const HitTestRequest& request, HitTestResult& result, const HitTestLocation& locationInContainer, const LayoutPoint& accumulatedOffset, HitTestAction action)
{
LayoutPoint adjustedLocation = accumulatedOffset + location();
// Check kids first.
for (RenderObject* child = lastChild(); child; child = child->previousSibling()) {
if (!child->hasLayer() && child->nodeAtPoint(request, result, locationInContainer, adjustedLocation, action)) {
updateHitTestResult(result, locationInContainer.point() - toLayoutSize(adjustedLocation));
return true;
}
}
// Check our bounds next. For this purpose always assume that we can only be hit in the
// foreground phase (which is true for replaced elements like images).
LayoutRect boundsRect = borderBoxRectInFragment(nullptr);
boundsRect.moveBy(adjustedLocation);
if (visibleToHitTesting(request) && action == HitTestForeground && locationInContainer.intersects(boundsRect)) {
if (!hitTestVisualOverflow(locationInContainer, accumulatedOffset))
return false;
if (!hitTestClipPath(locationInContainer, accumulatedOffset))
return false;
if (!hitTestBorderRadius(locationInContainer, accumulatedOffset))
return false;
updateHitTestResult(result, locationInContainer.point() - toLayoutSize(adjustedLocation));
if (result.addNodeToListBasedTestResult(nodeForHitTest(), request, locationInContainer, boundsRect) == HitTestProgress::Stop)
return true;
}
return RenderBoxModelObject::nodeAtPoint(request, result, locationInContainer, accumulatedOffset, action);
}
// --------------------- painting stuff -------------------------------
void RenderBox::paintRootBoxFillLayers(const PaintInfo& paintInfo)
{
ASSERT(isDocumentElementRenderer());
if (paintInfo.skipRootBackground())
return;
auto* rootBackgroundRenderer = view().rendererForRootBackground();
if (!rootBackgroundRenderer)
return;
auto& style = rootBackgroundRenderer->style();
auto color = style.visitedDependentColor(CSSPropertyBackgroundColor);
auto compositeOp = document().compositeOperatorForBackgroundColor(color, *this);
paintFillLayers(paintInfo, style.colorByApplyingColorFilter(color), style.backgroundLayers(), view().backgroundRect(), BackgroundBleedNone, compositeOp, rootBackgroundRenderer);
}
BackgroundBleedAvoidance RenderBox::determineBackgroundBleedAvoidance(GraphicsContext& context) const
{
if (context.paintingDisabled())
return BackgroundBleedNone;
const RenderStyle& style = this->style();
if (!style.hasBackground() || !style.hasBorder() || !style.hasBorderRadius() || borderImageIsLoadedAndCanBeRendered())
return BackgroundBleedNone;
AffineTransform ctm = context.getCTM();
FloatSize contextScaling(static_cast<float>(ctm.xScale()), static_cast<float>(ctm.yScale()));
// Because RoundedRect uses IntRect internally the inset applied by the
// BackgroundBleedShrinkBackground strategy cannot be less than one integer
// layout coordinate, even with subpixel layout enabled. To take that into
// account, we clamp the contextScaling to 1.0 for the following test so
// that borderObscuresBackgroundEdge can only return true if the border
// widths are greater than 2 in both layout coordinates and screen
// coordinates.
// This precaution will become obsolete if RoundedRect is ever promoted to
// a sub-pixel representation.
if (contextScaling.width() > 1)
contextScaling.setWidth(1);
if (contextScaling.height() > 1)
contextScaling.setHeight(1);
if (borderObscuresBackgroundEdge(contextScaling))
return BackgroundBleedShrinkBackground;
if (!style.hasEffectiveAppearance() && borderObscuresBackground() && backgroundHasOpaqueTopLayer())
return BackgroundBleedBackgroundOverBorder;
return BackgroundBleedUseTransparencyLayer;
}
void RenderBox::paintBoxDecorations(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
if (!paintInfo.shouldPaintWithinRoot(*this))
return;
LayoutRect paintRect = borderBoxRectInFragment(nullptr);
paintRect.moveBy(paintOffset);
adjustBorderBoxRectForPainting(paintRect);
paintRect = theme().adjustedPaintRect(*this, paintRect);
BackgroundBleedAvoidance bleedAvoidance = determineBackgroundBleedAvoidance(paintInfo.context());
// FIXME: Should eventually give the theme control over whether the box shadow should paint, since controls could have
// custom shadows of their own.
if (!boxShadowShouldBeAppliedToBackground(paintRect.location(), bleedAvoidance, { }))
paintBoxShadow(paintInfo, paintRect, style(), ShadowStyle::Normal);
GraphicsContextStateSaver stateSaver(paintInfo.context(), false);
if (bleedAvoidance == BackgroundBleedUseTransparencyLayer) {
// To avoid the background color bleeding out behind the border, we'll render background and border
// into a transparency layer, and then clip that in one go (which requires setting up the clip before
// beginning the layer).
stateSaver.save();
paintInfo.context().clipRoundedRect(style().getRoundedBorderFor(paintRect).pixelSnappedRoundedRectForPainting(document().deviceScaleFactor()));
paintInfo.context().beginTransparencyLayer(1);
}
// If we have a native theme appearance, paint that before painting our background.
// The theme will tell us whether or not we should also paint the CSS background.
bool borderOrBackgroundPaintingIsNeeded = true;
if (style().hasEffectiveAppearance()) {
ControlStates* controlStates = controlStatesForRenderer(*this);
borderOrBackgroundPaintingIsNeeded = theme().paint(*this, *controlStates, paintInfo, paintRect);
if (controlStates->needsRepaint())
view().scheduleLazyRepaint(*this);
}
if (borderOrBackgroundPaintingIsNeeded) {
if (bleedAvoidance == BackgroundBleedBackgroundOverBorder)
paintBorder(paintInfo, paintRect, style(), bleedAvoidance);
paintBackground(paintInfo, paintRect, bleedAvoidance);
if (style().hasEffectiveAppearance())
theme().paintDecorations(*this, paintInfo, paintRect);
}
paintBoxShadow(paintInfo, paintRect, style(), ShadowStyle::Inset);
// The theme will tell us whether or not we should also paint the CSS border.
if (bleedAvoidance != BackgroundBleedBackgroundOverBorder && (!style().hasEffectiveAppearance() || (borderOrBackgroundPaintingIsNeeded && theme().paintBorderOnly(*this, paintInfo, paintRect))) && style().hasVisibleBorderDecoration())
paintBorder(paintInfo, paintRect, style(), bleedAvoidance);
if (bleedAvoidance == BackgroundBleedUseTransparencyLayer)
paintInfo.context().endTransparencyLayer();
}
bool RenderBox::paintsOwnBackground() const
{
if (isBody()) {
// The <body> only paints its background if the root element has defined a background independent of the body,
// or if the <body>'s parent is not the document element's renderer (e.g. inside SVG foreignObject).
auto documentElementRenderer = document().documentElement()->renderer();
return !documentElementRenderer
|| documentElementRenderer->hasBackground()
|| (documentElementRenderer != parent());
}
return true;
}
void RenderBox::paintBackground(const PaintInfo& paintInfo, const LayoutRect& paintRect, BackgroundBleedAvoidance bleedAvoidance)
{
if (isDocumentElementRenderer()) {
paintRootBoxFillLayers(paintInfo);
return;
}
if (!paintsOwnBackground())
return;
if (backgroundIsKnownToBeObscured(paintRect.location()) && !boxShadowShouldBeAppliedToBackground(paintRect.location(), bleedAvoidance, { }))
return;
auto backgroundColor = style().visitedDependentColor(CSSPropertyBackgroundColor);
auto compositeOp = document().compositeOperatorForBackgroundColor(backgroundColor, *this);
paintFillLayers(paintInfo, style().colorByApplyingColorFilter(backgroundColor), style().backgroundLayers(), paintRect, bleedAvoidance, compositeOp);
}
bool RenderBox::getBackgroundPaintedExtent(const LayoutPoint& paintOffset, LayoutRect& paintedExtent) const
{
ASSERT(hasBackground());
LayoutRect backgroundRect = snappedIntRect(borderBoxRect());
Color backgroundColor = style().visitedDependentColorWithColorFilter(CSSPropertyBackgroundColor);
if (backgroundColor.isVisible()) {
paintedExtent = backgroundRect;
return true;
}
auto& layers = style().backgroundLayers();
if (!layers.image() || layers.next()) {
paintedExtent = backgroundRect;
return true;
}
auto geometry = calculateBackgroundImageGeometry(nullptr, layers, paintOffset, backgroundRect);
paintedExtent = geometry.destRect();
return !geometry.hasNonLocalGeometry();
}
bool RenderBox::backgroundIsKnownToBeOpaqueInRect(const LayoutRect& localRect) const
{
if (!paintsOwnBackground())
return false;
Color backgroundColor = style().visitedDependentColorWithColorFilter(CSSPropertyBackgroundColor);
if (!backgroundColor.isOpaque())
return false;
// If the element has appearance, it might be painted by theme.
// We cannot be sure if theme paints the background opaque.
// In this case it is safe to not assume opaqueness.
// FIXME: May be ask theme if it paints opaque.
if (style().hasEffectiveAppearance())
return false;
// FIXME: Check the opaqueness of background images.
if (hasClip() || hasClipPath())
return false;
// FIXME: Use rounded rect if border radius is present.
if (style().hasBorderRadius())
return false;
// FIXME: The background color clip is defined by the last layer.
if (style().backgroundLayers().next())
return false;
LayoutRect backgroundRect;
switch (style().backgroundClip()) {
case FillBox::Border:
backgroundRect = borderBoxRect();
break;
case FillBox::Padding:
backgroundRect = paddingBoxRect();
break;
case FillBox::Content:
backgroundRect = contentBoxRect();
break;
default:
break;
}
return backgroundRect.contains(localRect);
}
static bool isCandidateForOpaquenessTest(const RenderBox& childBox)
{
const RenderStyle& childStyle = childBox.style();
if (childStyle.position() != PositionType::Static && childBox.containingBlock() != childBox.parent())
return false;
if (childStyle.visibility() != Visibility::Visible)
return false;
if (childStyle.shapeOutside())
return false;
if (!childBox.width() || !childBox.height())
return false;
if (RenderLayer* childLayer = childBox.layer()) {
if (childLayer->isComposited())
return false;
// FIXME: Deal with z-index.
if (!childStyle.hasAutoUsedZIndex())
return false;
if (childLayer->hasTransform() || childLayer->isTransparent() || childLayer->hasFilter())
return false;
if (!childBox.scrollPosition().isZero())
return false;
}
return true;
}
bool RenderBox::foregroundIsKnownToBeOpaqueInRect(const LayoutRect& localRect, unsigned maxDepthToTest) const
{
if (!maxDepthToTest)
return false;
for (auto& childBox : childrenOfType<RenderBox>(*this)) {
if (!isCandidateForOpaquenessTest(childBox))
continue;
LayoutPoint childLocation = childBox.location();
if (childBox.isRelativelyPositioned())
childLocation.move(childBox.relativePositionOffset());
LayoutRect childLocalRect = localRect;
childLocalRect.moveBy(-childLocation);
if (childLocalRect.y() < 0 || childLocalRect.x() < 0) {
// If there is unobscured area above/left of a static positioned box then the rect is probably not covered.
if (childBox.style().position() == PositionType::Static)
return false;
continue;
}
if (childLocalRect.maxY() > childBox.height() || childLocalRect.maxX() > childBox.width())
continue;
if (childBox.backgroundIsKnownToBeOpaqueInRect(childLocalRect))
return true;
if (childBox.foregroundIsKnownToBeOpaqueInRect(childLocalRect, maxDepthToTest - 1))
return true;
}
return false;
}
bool RenderBox::computeBackgroundIsKnownToBeObscured(const LayoutPoint& paintOffset)
{
// Test to see if the children trivially obscure the background.
// FIXME: This test can be much more comprehensive.
if (!hasBackground())
return false;
// Table and root background painting is special.
if (isTable() || isDocumentElementRenderer())
return false;
LayoutRect backgroundRect;
if (!getBackgroundPaintedExtent(paintOffset, backgroundRect))
return false;
if (auto* scrollableArea = layer() ? layer()->scrollableArea() : nullptr) {
if (scrollableArea->scrollingMayRevealBackground())
return false;
}
return foregroundIsKnownToBeOpaqueInRect(backgroundRect, backgroundObscurationTestMaxDepth);
}
bool RenderBox::backgroundHasOpaqueTopLayer() const
{
auto& fillLayer = style().backgroundLayers();
if (fillLayer.clip() != FillBox::Border)
return false;
// Clipped with local scrolling
if (hasNonVisibleOverflow() && fillLayer.attachment() == FillAttachment::LocalBackground)
return false;
if (fillLayer.hasOpaqueImage(*this) && fillLayer.hasRepeatXY() && fillLayer.image()->canRender(this, style().effectiveZoom()))
return true;
// If there is only one layer and no image, check whether the background color is opaque.
if (!fillLayer.next() && !fillLayer.hasImage()) {
Color bgColor = style().visitedDependentColorWithColorFilter(CSSPropertyBackgroundColor);
if (bgColor.isOpaque())
return true;
}
return false;
}
void RenderBox::paintMask(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
if (!paintInfo.shouldPaintWithinRoot(*this) || style().visibility() != Visibility::Visible || paintInfo.phase != PaintPhase::Mask || paintInfo.context().paintingDisabled())
return;
LayoutRect paintRect = LayoutRect(paintOffset, size());
adjustBorderBoxRectForPainting(paintRect);
paintMaskImages(paintInfo, paintRect);
}
void RenderBox::paintClippingMask(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
if (!paintInfo.shouldPaintWithinRoot(*this) || style().visibility() != Visibility::Visible || paintInfo.phase != PaintPhase::ClippingMask || paintInfo.context().paintingDisabled())
return;
LayoutRect paintRect = LayoutRect(paintOffset, size());
paintInfo.context().fillRect(snappedIntRect(paintRect), Color::black);
}
void RenderBox::paintMaskImages(const PaintInfo& paintInfo, const LayoutRect& paintRect)
{
// Figure out if we need to push a transparency layer to render our mask.
bool pushTransparencyLayer = false;
bool compositedMask = hasLayer() && layer()->hasCompositedMask();
bool flattenCompositingLayers = paintInfo.paintBehavior.contains(PaintBehavior::FlattenCompositingLayers);
CompositeOperator compositeOp = CompositeOperator::SourceOver;
bool allMaskImagesLoaded = true;
if (!compositedMask || flattenCompositingLayers) {
pushTransparencyLayer = true;
// Don't render a masked element until all the mask images have loaded, to prevent a flash of unmasked content.
if (auto* maskBoxImage = style().maskBoxImage().image())
allMaskImagesLoaded &= maskBoxImage->isLoaded();
allMaskImagesLoaded &= style().maskLayers().imagesAreLoaded();
paintInfo.context().setCompositeOperation(CompositeOperator::DestinationIn);
paintInfo.context().beginTransparencyLayer(1);
compositeOp = CompositeOperator::SourceOver;
}
if (allMaskImagesLoaded) {
paintFillLayers(paintInfo, Color(), style().maskLayers(), paintRect, BackgroundBleedNone, compositeOp);
paintNinePieceImage(paintInfo.context(), paintRect, style(), style().maskBoxImage(), compositeOp);
}
if (pushTransparencyLayer)
paintInfo.context().endTransparencyLayer();
}
LayoutRect RenderBox::maskClipRect(const LayoutPoint& paintOffset)
{
const NinePieceImage& maskBoxImage = style().maskBoxImage();
if (maskBoxImage.image()) {
LayoutRect borderImageRect = borderBoxRect();
// Apply outsets to the border box.
borderImageRect.expand(style().maskBoxImageOutsets());
return borderImageRect;
}
LayoutRect result;
LayoutRect borderBox = borderBoxRect();
for (auto* maskLayer = &style().maskLayers(); maskLayer; maskLayer = maskLayer->next()) {
if (maskLayer->image()) {
// Masks should never have fixed attachment, so it's OK for paintContainer to be null.
result.unite(calculateBackgroundImageGeometry(nullptr, *maskLayer, paintOffset, borderBox).destRect());
}
}
return result;
}
void RenderBox::paintFillLayers(const PaintInfo& paintInfo, const Color& color, const FillLayer& fillLayer, const LayoutRect& rect,
BackgroundBleedAvoidance bleedAvoidance, CompositeOperator op, RenderElement* backgroundObject)
{
Vector<const FillLayer*, 8> layers;
bool shouldDrawBackgroundInSeparateBuffer = false;
for (auto* layer = &fillLayer; layer; layer = layer->next()) {
layers.append(layer);
if (layer->blendMode() != BlendMode::Normal)
shouldDrawBackgroundInSeparateBuffer = true;
// Stop traversal when an opaque layer is encountered.
// FIXME: It would be possible for the following occlusion culling test to be more aggressive
// on layers with no repeat by testing whether the image covers the layout rect.
// Testing that here would imply duplicating a lot of calculations that are currently done in
// RenderBoxModelObject::paintFillLayerExtended. A more efficient solution might be to move
// the layer recursion into paintFillLayerExtended, or to compute the layer geometry here
// and pass it down.
// The clipOccludesNextLayers condition must be evaluated first to avoid short-circuiting.
if (layer->clipOccludesNextLayers(layer == &fillLayer) && layer->hasOpaqueImage(*this) && layer->image()->canRender(this, style().effectiveZoom()) && layer->hasRepeatXY() && layer->blendMode() == BlendMode::Normal)
break;
}
auto& context = paintInfo.context();
auto baseBgColorUsage = BaseBackgroundColorUse;
if (shouldDrawBackgroundInSeparateBuffer) {
paintFillLayer(paintInfo, color, *layers.last(), rect, bleedAvoidance, op, backgroundObject, BaseBackgroundColorOnly);
baseBgColorUsage = BaseBackgroundColorSkip;
context.beginTransparencyLayer(1);
}
auto topLayer = layers.rend();
for (auto it = layers.rbegin(); it != topLayer; ++it)
paintFillLayer(paintInfo, color, **it, rect, bleedAvoidance, op, backgroundObject, baseBgColorUsage);
if (shouldDrawBackgroundInSeparateBuffer)
context.endTransparencyLayer();
}
void RenderBox::paintFillLayer(const PaintInfo& paintInfo, const Color& c, const FillLayer& fillLayer, const LayoutRect& rect,
BackgroundBleedAvoidance bleedAvoidance, CompositeOperator op, RenderElement* backgroundObject, BaseBackgroundColorUsage baseBgColorUsage)
{
paintFillLayerExtended(paintInfo, c, fillLayer, rect, bleedAvoidance, { }, { }, op, backgroundObject, baseBgColorUsage);
}
static StyleImage* findLayerUsedImage(WrappedImagePtr image, const FillLayer& layers)
{
for (auto* layer = &layers; layer; layer = layer->next()) {
if (layer->image() && image == layer->image()->data())
return layer->image();
}
return nullptr;
}
void RenderBox::imageChanged(WrappedImagePtr image, const IntRect*)
{
if (!parent())
return;
if ((style().borderImage().image() && style().borderImage().image()->data() == image) ||
(style().maskBoxImage().image() && style().maskBoxImage().image()->data() == image)) {
repaint();
return;
}
ShapeValue* shapeOutsideValue = style().shapeOutside();
if (!view().frameView().layoutContext().isInRenderTreeLayout() && isFloating() && shapeOutsideValue && shapeOutsideValue->image() && shapeOutsideValue->image()->data() == image) {
ShapeOutsideInfo::ensureInfo(*this).markShapeAsDirty();
markShapeOutsideDependentsForLayout();
}
bool didFullRepaint = repaintLayerRectsForImage(image, style().backgroundLayers(), true);
if (!didFullRepaint)
repaintLayerRectsForImage(image, style().maskLayers(), false);
if (!isComposited())
return;
if (layer()->hasCompositedMask() && findLayerUsedImage(image, style().maskLayers()))
layer()->contentChanged(MaskImageChanged);
if (auto* styleImage = findLayerUsedImage(image, style().backgroundLayers())) {
layer()->contentChanged(BackgroundImageChanged);
incrementVisuallyNonEmptyPixelCountIfNeeded(flooredIntSize(styleImage->imageSize(this, style().effectiveZoom())));
}
}
void RenderBox::incrementVisuallyNonEmptyPixelCountIfNeeded(const IntSize& size)
{
if (didContibuteToVisuallyNonEmptyPixelCount())
return;
view().frameView().incrementVisuallyNonEmptyPixelCount(size);
setDidContibuteToVisuallyNonEmptyPixelCount();
}
bool RenderBox::repaintLayerRectsForImage(WrappedImagePtr image, const FillLayer& layers, bool drawingBackground)
{
LayoutRect rendererRect;
RenderBox* layerRenderer = nullptr;
for (auto* layer = &layers; layer; layer = layer->next()) {
if (layer->image() && image == layer->image()->data() && (layer->image()->isLoaded() || layer->image()->canRender(this, style().effectiveZoom()))) {
// Now that we know this image is being used, compute the renderer and the rect if we haven't already.
bool drawingRootBackground = drawingBackground && (isDocumentElementRenderer() || (isBody() && !document().documentElement()->renderer()->hasBackground()));
if (!layerRenderer) {
if (drawingRootBackground) {
layerRenderer = &view();
LayoutUnit rw = downcast<RenderView>(*layerRenderer).frameView().contentsWidth();
LayoutUnit rh = downcast<RenderView>(*layerRenderer).frameView().contentsHeight();
rendererRect = LayoutRect(-layerRenderer->marginLeft(),
-layerRenderer->marginTop(),
std::max(layerRenderer->width() + layerRenderer->horizontalMarginExtent() + layerRenderer->borderLeft() + layerRenderer->borderRight(), rw),
std::max(layerRenderer->height() + layerRenderer->verticalMarginExtent() + layerRenderer->borderTop() + layerRenderer->borderBottom(), rh));
} else {
layerRenderer = this;
rendererRect = borderBoxRect();
}
}
// FIXME: Figure out how to pass absolute position to calculateBackgroundImageGeometry (for pixel snapping)
BackgroundImageGeometry geometry = layerRenderer->calculateBackgroundImageGeometry(nullptr, *layer, LayoutPoint(), rendererRect);
if (geometry.hasNonLocalGeometry()) {
// Rather than incur the costs of computing the paintContainer for renderers with fixed backgrounds
// in order to get the right destRect, just repaint the entire renderer.
layerRenderer->repaint();
return true;
}
LayoutRect rectToRepaint = geometry.destRect();
bool shouldClipToLayer = true;
// If this is the root background layer, we may need to extend the repaintRect if the FrameView has an
// extendedBackground. We should only extend the rect if it is already extending the full width or height
// of the rendererRect.
if (drawingRootBackground && view().frameView().hasExtendedBackgroundRectForPainting()) {
shouldClipToLayer = false;
IntRect extendedBackgroundRect = view().frameView().extendedBackgroundRectForPainting();
if (rectToRepaint.width() == rendererRect.width()) {
rectToRepaint.move(extendedBackgroundRect.x(), 0);
rectToRepaint.setWidth(extendedBackgroundRect.width());
}
if (rectToRepaint.height() == rendererRect.height()) {
rectToRepaint.move(0, extendedBackgroundRect.y());
rectToRepaint.setHeight(extendedBackgroundRect.height());
}
}
layerRenderer->repaintRectangle(rectToRepaint, shouldClipToLayer);
if (geometry.destRect() == rendererRect)
return true;
}
}
return false;
}
bool RenderBox::pushContentsClip(PaintInfo& paintInfo, const LayoutPoint& accumulatedOffset)
{
if (paintInfo.phase == PaintPhase::BlockBackground || paintInfo.phase == PaintPhase::SelfOutline || paintInfo.phase == PaintPhase::Mask)
return false;
bool isControlClip = hasControlClip();
bool isOverflowClip = hasNonVisibleOverflow() && !layer()->isSelfPaintingLayer();
if (!isControlClip && !isOverflowClip)
return false;
if (paintInfo.phase == PaintPhase::Outline)
paintInfo.phase = PaintPhase::ChildOutlines;
else if (paintInfo.phase == PaintPhase::ChildBlockBackground) {
paintInfo.phase = PaintPhase::BlockBackground;
paintObject(paintInfo, accumulatedOffset);
paintInfo.phase = PaintPhase::ChildBlockBackgrounds;
}
float deviceScaleFactor = document().deviceScaleFactor();
FloatRect clipRect = snapRectToDevicePixels((isControlClip ? controlClipRect(accumulatedOffset) : overflowClipRect(accumulatedOffset, nullptr, IgnoreOverlayScrollbarSize, paintInfo.phase)), deviceScaleFactor);
paintInfo.context().save();
if (style().hasBorderRadius())
paintInfo.context().clipRoundedRect(style().getRoundedInnerBorderFor(LayoutRect(accumulatedOffset, size())).pixelSnappedRoundedRectForPainting(deviceScaleFactor));
paintInfo.context().clip(clipRect);
if (paintInfo.phase == PaintPhase::EventRegion)
paintInfo.eventRegionContext->pushClip(enclosingIntRect(clipRect));
return true;
}
void RenderBox::popContentsClip(PaintInfo& paintInfo, PaintPhase originalPhase, const LayoutPoint& accumulatedOffset)
{
ASSERT(hasControlClip() || (hasNonVisibleOverflow() && !layer()->isSelfPaintingLayer()));
if (paintInfo.phase == PaintPhase::EventRegion)
paintInfo.eventRegionContext->popClip();
paintInfo.context().restore();
if (originalPhase == PaintPhase::Outline) {
paintInfo.phase = PaintPhase::SelfOutline;
paintObject(paintInfo, accumulatedOffset);
paintInfo.phase = originalPhase;
} else if (originalPhase == PaintPhase::ChildBlockBackground)
paintInfo.phase = originalPhase;
}
LayoutRect RenderBox::overflowClipRect(const LayoutPoint& location, RenderFragmentContainer* fragment, OverlayScrollbarSizeRelevancy relevancy, PaintPhase) const
{
LayoutRect clipRect = borderBoxRectInFragment(fragment);
clipRect.setLocation(location + clipRect.location() + LayoutSize(borderLeft(), borderTop()));
clipRect.setSize(clipRect.size() - LayoutSize(borderLeft() + borderRight(), borderTop() + borderBottom()));
if (style().overflowX() == Overflow::Clip && style().overflowY() == Overflow::Visible) {
LayoutRect infRect = LayoutRect::infiniteRect();
clipRect.setY(infRect.y());
clipRect.setHeight(infRect.height());
} else if (style().overflowY() == Overflow::Clip && style().overflowX() == Overflow::Visible) {
LayoutRect infRect = LayoutRect::infiniteRect();
clipRect.setX(infRect.x());
clipRect.setWidth(infRect.width());
}
// Subtract out scrollbars if we have them.
if (auto* scrollableArea = layer() ? layer()->scrollableArea() : nullptr) {
if (shouldPlaceVerticalScrollbarOnLeft())
clipRect.move(scrollableArea->verticalScrollbarWidth(relevancy), 0);
clipRect.contract(scrollableArea->verticalScrollbarWidth(relevancy), scrollableArea->horizontalScrollbarHeight(relevancy));
}
return clipRect;
}
LayoutRect RenderBox::clipRect(const LayoutPoint& location, RenderFragmentContainer* fragment) const
{
LayoutRect borderBoxRect = borderBoxRectInFragment(fragment);
LayoutRect clipRect = LayoutRect(borderBoxRect.location() + location, borderBoxRect.size());
if (!style().clipLeft().isAuto()) {
LayoutUnit c = valueForLength(style().clipLeft(), borderBoxRect.width());
clipRect.move(c, 0_lu);
clipRect.contract(c, 0_lu);
}
// We don't use the fragment-specific border box's width and height since clip offsets are (stupidly) specified
// from the left and top edges. Therefore it's better to avoid constraining to smaller widths and heights.
if (!style().clipRight().isAuto())
clipRect.contract(width() - valueForLength(style().clipRight(), width()), 0_lu);
if (!style().clipTop().isAuto()) {
LayoutUnit c = valueForLength(style().clipTop(), borderBoxRect.height());
clipRect.move(0_lu, c);
clipRect.contract(0_lu, c);
}
if (!style().clipBottom().isAuto())
clipRect.contract(0_lu, height() - valueForLength(style().clipBottom(), height()));
return clipRect;
}
LayoutUnit RenderBox::shrinkLogicalWidthToAvoidFloats(LayoutUnit childMarginStart, LayoutUnit childMarginEnd, const RenderBlock& cb, RenderFragmentContainer* fragment) const
{
RenderFragmentContainer* containingBlockFragment = nullptr;
LayoutUnit logicalTopPosition = logicalTop();
if (fragment) {
LayoutUnit offsetFromLogicalTopOfFragment = fragment ? fragment->logicalTopForFragmentedFlowContent() - offsetFromLogicalTopOfFirstPage() : 0_lu;
logicalTopPosition = std::max(logicalTopPosition, logicalTopPosition + offsetFromLogicalTopOfFragment);
containingBlockFragment = cb.clampToStartAndEndFragments(fragment);
}
LayoutUnit logicalHeight = cb.logicalHeightForChild(*this);
LayoutUnit result = cb.availableLogicalWidthForLineInFragment(logicalTopPosition, DoNotIndentText, containingBlockFragment, logicalHeight) - childMarginStart - childMarginEnd;
// We need to see if margins on either the start side or the end side can contain the floats in question. If they can,
// then just using the line width is inaccurate. In the case where a float completely fits, we don't need to use the line
// offset at all, but can instead push all the way to the content edge of the containing block. In the case where the float
// doesn't fit, we can use the line offset, but we need to grow it by the margin to reflect the fact that the margin was
// "consumed" by the float. Negative margins aren't consumed by the float, and so we ignore them.
if (childMarginStart > 0) {
LayoutUnit startContentSide = cb.startOffsetForContent(containingBlockFragment);
LayoutUnit startContentSideWithMargin = startContentSide + childMarginStart;
LayoutUnit startOffset = cb.startOffsetForLineInFragment(logicalTopPosition, DoNotIndentText, containingBlockFragment, logicalHeight);
if (startOffset > startContentSideWithMargin)
result += childMarginStart;
else
result += startOffset - startContentSide;
}
if (childMarginEnd > 0) {
LayoutUnit endContentSide = cb.endOffsetForContent(containingBlockFragment);
LayoutUnit endContentSideWithMargin = endContentSide + childMarginEnd;
LayoutUnit endOffset = cb.endOffsetForLineInFragment(logicalTopPosition, DoNotIndentText, containingBlockFragment, logicalHeight);
if (endOffset > endContentSideWithMargin)
result += childMarginEnd;
else
result += endOffset - endContentSide;
}
return result;
}
LayoutUnit RenderBox::containingBlockLogicalWidthForContent() const
{
if (hasOverridingContainingBlockContentLogicalWidth())
return overridingContainingBlockContentLogicalWidth().value_or(0_lu);
if (RenderBlock* cb = containingBlock()) {
if (isOutOfFlowPositioned())
return cb->clientLogicalWidth();
return cb->availableLogicalWidth();
}
return 0_lu;
}
LayoutUnit RenderBox::containingBlockLogicalHeightForContent(AvailableLogicalHeightType heightType) const
{
if (hasOverridingContainingBlockContentLogicalHeight()) {
// FIXME: Containing block for a grid item is the grid area it's located in. We need to return whatever
// height value we get from overridingContainingBlockContentLogicalHeight() here, including std::nullopt.
if (auto height = overridingContainingBlockContentLogicalHeight())
return height.value();
}
if (RenderBlock* cb = containingBlock())
return cb->availableLogicalHeight(heightType);
return 0_lu;
}
LayoutUnit RenderBox::containingBlockLogicalWidthForContentInFragment(RenderFragmentContainer* fragment) const
{
if (!fragment)
return containingBlockLogicalWidthForContent();
RenderBlock* cb = containingBlock();
RenderFragmentContainer* containingBlockFragment = cb->clampToStartAndEndFragments(fragment);
// FIXME: It's unclear if a fragment's content should use the containing block's override logical width.
// If it should, the following line should call containingBlockLogicalWidthForContent.
LayoutUnit result = cb->availableLogicalWidth();
RenderBoxFragmentInfo* boxInfo = cb->renderBoxFragmentInfo(containingBlockFragment);
if (!boxInfo)
return result;
return std::max<LayoutUnit>(0, result - (cb->logicalWidth() - boxInfo->logicalWidth()));
}
LayoutUnit RenderBox::containingBlockAvailableLineWidthInFragment(RenderFragmentContainer* fragment) const
{
RenderBlock* cb = containingBlock();
RenderFragmentContainer* containingBlockFragment = nullptr;
LayoutUnit logicalTopPosition = logicalTop();
if (fragment) {
LayoutUnit offsetFromLogicalTopOfFragment = fragment ? fragment->logicalTopForFragmentedFlowContent() - offsetFromLogicalTopOfFirstPage() : 0_lu;
logicalTopPosition = std::max(logicalTopPosition, logicalTopPosition + offsetFromLogicalTopOfFragment);
containingBlockFragment = cb->clampToStartAndEndFragments(fragment);
}
return cb->availableLogicalWidthForLineInFragment(logicalTopPosition, DoNotIndentText, containingBlockFragment, availableLogicalHeight(IncludeMarginBorderPadding));
}
LayoutUnit RenderBox::perpendicularContainingBlockLogicalHeight() const
{
if (hasOverridingContainingBlockContentLogicalHeight()) {
if (auto height = overridingContainingBlockContentLogicalHeight())
return height.value();
}
RenderBlock* cb = containingBlock();
if (cb->hasOverridingLogicalHeight())
return cb->overridingContentLogicalHeight();
const RenderStyle& containingBlockStyle = cb->style();
Length logicalHeightLength = containingBlockStyle.logicalHeight();
// FIXME: For now just support fixed heights. Eventually should support percentage heights as well.
if (!logicalHeightLength.isFixed()) {
LayoutUnit fillFallbackExtent = containingBlockStyle.isHorizontalWritingMode() ? view().frameView().layoutSize().height() : view().frameView().layoutSize().width();
LayoutUnit fillAvailableExtent = containingBlock()->availableLogicalHeight(ExcludeMarginBorderPadding);
view().addPercentHeightDescendant(const_cast<RenderBox&>(*this));
// FIXME: https://bugs.webkit.org/show_bug.cgi?id=158286 We also need to perform the same percentHeightDescendant treatment to the element which dictates the return value for containingBlock()->availableLogicalHeight() above.
return std::min(fillAvailableExtent, fillFallbackExtent);
}
// Use the content box logical height as specified by the style.
return cb->adjustContentBoxLogicalHeightForBoxSizing(LayoutUnit(logicalHeightLength.value()));
}
void RenderBox::mapLocalToContainer(const RenderLayerModelObject* ancestorContainer, TransformState& transformState, OptionSet<MapCoordinatesMode> mode, bool* wasFixed) const
{
if (ancestorContainer == this)
return;
if (!ancestorContainer && view().frameView().layoutContext().isPaintOffsetCacheEnabled()) {
auto* layoutState = view().frameView().layoutContext().layoutState();
LayoutSize offset = layoutState->paintOffset() + locationOffset();
if (style().hasInFlowPosition() && layer())
offset += layer()->offsetForInFlowPosition();
transformState.move(offset);
return;
}
bool containerSkipped;
RenderElement* container = this->container(ancestorContainer, containerSkipped);
if (!container)
return;
bool isFixedPos = isFixedPositioned();
// If this box has a transform, it acts as a fixed position container for fixed descendants,
// and may itself also be fixed position. So propagate 'fixed' up only if this box is fixed position.
if (hasTransform() && !isFixedPos)
mode.remove(IsFixed);
else if (isFixedPos)
mode.add(IsFixed);
if (wasFixed)
*wasFixed = mode.contains(IsFixed);
LayoutSize containerOffset = offsetFromContainer(*container, LayoutPoint(transformState.mappedPoint()));
// Remove sticky positioning from the offset if it should be ignored. This is done here in
// order to avoid piping this flag down the method chain.
if (mode.contains(IgnoreStickyOffsets) && isStickilyPositioned())
containerOffset -= stickyPositionOffset();
bool preserve3D = mode.contains(UseTransforms) && (container->style().preserves3D() || style().preserves3D());
if (mode.contains(UseTransforms) && shouldUseTransformFromContainer(container)) {
TransformationMatrix t;
getTransformFromContainer(container, containerOffset, t);
transformState.applyTransform(t, preserve3D ? TransformState::AccumulateTransform : TransformState::FlattenTransform);
} else
transformState.move(containerOffset.width(), containerOffset.height(), preserve3D ? TransformState::AccumulateTransform : TransformState::FlattenTransform);
if (containerSkipped) {
// There can't be a transform between ancestorContainer and o, because transforms create containers, so it should be safe
// to just subtract the delta between the ancestorContainer and o.
LayoutSize containerOffset = ancestorContainer->offsetFromAncestorContainer(*container);
transformState.move(-containerOffset.width(), -containerOffset.height(), preserve3D ? TransformState::AccumulateTransform : TransformState::FlattenTransform);
return;
}
mode.remove(ApplyContainerFlip);
container->mapLocalToContainer(ancestorContainer, transformState, mode, wasFixed);
}
const RenderObject* RenderBox::pushMappingToContainer(const RenderLayerModelObject* ancestorToStopAt, RenderGeometryMap& geometryMap) const
{
ASSERT(ancestorToStopAt != this);
bool ancestorSkipped;
RenderElement* container = this->container(ancestorToStopAt, ancestorSkipped);
if (!container)
return nullptr;
bool isFixedPos = isFixedPositioned();
LayoutSize adjustmentForSkippedAncestor;
if (ancestorSkipped) {
// There can't be a transform between repaintContainer and container, because transforms create containers, so it should be safe
// to just subtract the delta between the ancestor and container.
adjustmentForSkippedAncestor = -ancestorToStopAt->offsetFromAncestorContainer(*container);
}
bool offsetDependsOnPoint = false;
LayoutSize containerOffset = offsetFromContainer(*container, LayoutPoint(), &offsetDependsOnPoint);
bool preserve3D = container->style().preserves3D() || style().preserves3D();
if (shouldUseTransformFromContainer(container) && (geometryMap.mapCoordinatesFlags() & UseTransforms)) {
TransformationMatrix t;
getTransformFromContainer(container, containerOffset, t);
t.translateRight(adjustmentForSkippedAncestor.width(), adjustmentForSkippedAncestor.height());
geometryMap.push(this, t, preserve3D, offsetDependsOnPoint, isFixedPos, hasTransform());
} else {
containerOffset += adjustmentForSkippedAncestor;
geometryMap.push(this, containerOffset, preserve3D, offsetDependsOnPoint, isFixedPos, hasTransform());
}
return ancestorSkipped ? ancestorToStopAt : container;
}
void RenderBox::mapAbsoluteToLocalPoint(OptionSet<MapCoordinatesMode> mode, TransformState& transformState) const
{
bool isFixedPos = isFixedPositioned();
if (hasTransform() && !isFixedPos) {
// If this box has a transform, it acts as a fixed position container for fixed descendants,
// and may itself also be fixed position. So propagate 'fixed' up only if this box is fixed position.
mode.remove(IsFixed);
} else if (isFixedPos)
mode.add(IsFixed);
RenderBoxModelObject::mapAbsoluteToLocalPoint(mode, transformState);
}
LayoutSize RenderBox::offsetFromContainer(RenderElement& container, const LayoutPoint&, bool* offsetDependsOnPoint) const
{
// A fragment "has" boxes inside it without being their container.
ASSERT(&container == this->container() || is<RenderFragmentContainer>(container));
LayoutSize offset;
if (isInFlowPositioned())
offset += offsetForInFlowPosition();
if (!isInline() || isReplacedOrInlineBlock())
offset += topLeftLocationOffset();
if (is<RenderBox>(container))
offset -= toLayoutSize(downcast<RenderBox>(container).scrollPosition());
if (isAbsolutelyPositioned() && container.isInFlowPositioned() && is<RenderInline>(container))
offset += downcast<RenderInline>(container).offsetForInFlowPositionedInline(this);
if (offsetDependsOnPoint)
*offsetDependsOnPoint |= is<RenderFragmentedFlow>(container);
return offset;
}
std::unique_ptr<LegacyInlineElementBox> RenderBox::createInlineBox()
{
return makeUnique<LegacyInlineElementBox>(*this);
}
void RenderBox::dirtyLineBoxes(bool fullLayout)
{
if (!m_inlineBoxWrapper)
return;
if (fullLayout) {
delete m_inlineBoxWrapper;
m_inlineBoxWrapper = nullptr;
} else
m_inlineBoxWrapper->dirtyLineBoxes();
}
void RenderBox::positionLineBox(LegacyInlineElementBox& box)
{
if (isOutOfFlowPositioned()) {
// Cache the x position only if we were an DisplayType::Inline type originally.
bool wasInline = style().isOriginalDisplayInlineType();
if (wasInline) {
// The value is cached in the xPos of the box. We only need this value if
// our object was inline originally, since otherwise it would have ended up underneath
// the inlines.
LegacyRootInlineBox& rootBox = box.root();
rootBox.blockFlow().setStaticInlinePositionForChild(*this, rootBox.lineBoxTop(), LayoutUnit::fromFloatRound(box.logicalLeft()));
if (style().hasStaticInlinePosition(box.isHorizontal()))
setChildNeedsLayout(MarkOnlyThis); // Just mark the positioned object as needing layout, so it will update its position properly.
} else {
// Our object was a block originally, so we make our normal flow position be
// just below the line box (as though all the inlines that came before us got
// wrapped in an anonymous block, which is what would have happened had we been
// in flow). This value was cached in the y() of the box.
layer()->setStaticBlockPosition(LayoutUnit(box.logicalTop()));
if (style().hasStaticBlockPosition(box.isHorizontal()))
setChildNeedsLayout(MarkOnlyThis); // Just mark the positioned object as needing layout, so it will update its position properly.
}
return;
}
if (isReplacedOrInlineBlock()) {
setLocation(LayoutPoint(box.topLeft()));
setInlineBoxWrapper(&box);
}
}
void RenderBox::deleteLineBoxWrapper()
{
if (!m_inlineBoxWrapper)
return;
if (!renderTreeBeingDestroyed())
m_inlineBoxWrapper->removeFromParent();
delete m_inlineBoxWrapper;
m_inlineBoxWrapper = nullptr;
}
LayoutRect RenderBox::clippedOverflowRect(const RenderLayerModelObject* repaintContainer, VisibleRectContext context) const
{
if (isInsideEntirelyHiddenLayer())
return { };
LayoutRect r = visualOverflowRect();
// FIXME: layoutDelta needs to be applied in parts before/after transforms and
// repaint containers. https://bugs.webkit.org/show_bug.cgi?id=23308
r.move(view().frameView().layoutContext().layoutDelta());
return computeRect(r, repaintContainer, context);
}
LayoutRect RenderBox::computeVisibleRectUsingPaintOffset(const LayoutRect& rect) const
{
LayoutRect adjustedRect = rect;
auto* layoutState = view().frameView().layoutContext().layoutState();
if (layer() && layer()->transform())
adjustedRect = LayoutRect(encloseRectToDevicePixels(layer()->transform()->mapRect(adjustedRect), document().deviceScaleFactor()));
// We can't trust the bits on RenderObject, because this might be called while re-resolving style.
if (style().hasInFlowPosition() && layer())
adjustedRect.move(layer()->offsetForInFlowPosition());
adjustedRect.moveBy(location());
adjustedRect.move(layoutState->paintOffset());
if (layoutState->isClipped())
adjustedRect.intersect(layoutState->clipRect());
return adjustedRect;
}
std::optional<LayoutRect> RenderBox::computeVisibleRectInContainer(const LayoutRect& rect, const RenderLayerModelObject* container, VisibleRectContext context) const
{
// The rect we compute at each step is shifted by our x/y offset in the parent container's coordinate space.
// Only when we cross a writing mode boundary will we have to possibly flipForWritingMode (to convert into a more appropriate
// offset corner for the enclosing container). This allows for a fully RL or BT document to repaint
// properly even during layout, since the rect remains flipped all the way until the end.
//
// RenderView::computeVisibleRectInContainer then converts the rect to physical coordinates. We also convert to
// physical when we hit a repaint container boundary. Therefore the final rect returned is always in the
// physical coordinate space of the container.
const RenderStyle& styleToUse = style();
// Paint offset cache is only valid for root-relative, non-fixed position repainting
if (view().frameView().layoutContext().isPaintOffsetCacheEnabled() && !container && styleToUse.position() != PositionType::Fixed && !context.options.contains(VisibleRectContextOption::UseEdgeInclusiveIntersection))
return computeVisibleRectUsingPaintOffset(rect);
LayoutRect adjustedRect = rect;
if (hasReflection())
adjustedRect.unite(reflectedRect(adjustedRect));
if (container == this) {
if (container->style().isFlippedBlocksWritingMode())
flipForWritingMode(adjustedRect);
if (context.descendantNeedsEnclosingIntRect)
adjustedRect = enclosingIntRect(adjustedRect);
return adjustedRect;
}
bool containerIsSkipped;
auto* localContainer = this->container(container, containerIsSkipped);
if (!localContainer)
return adjustedRect;
if (isWritingModeRoot()) {
if (!isOutOfFlowPositioned() || !context.dirtyRectIsFlipped) {
flipForWritingMode(adjustedRect);
context.dirtyRectIsFlipped = true;
}
}
LayoutSize locationOffset = this->locationOffset();
// FIXME: This is needed as long as RenderWidget snaps to integral size/position.
if (isRenderReplaced() && isWidget()) {
LayoutSize flooredLocationOffset = toIntSize(flooredIntPoint(locationOffset));
adjustedRect.expand(locationOffset - flooredLocationOffset);
locationOffset = flooredLocationOffset;
context.descendantNeedsEnclosingIntRect = true;
}
if (is<RenderMultiColumnFlow>(this)) {
// We won't normally run this code. Only when the container is null (i.e., we're trying
// to get the rect in view coordinates) will we come in here, since normally container
// will be set and we'll stop at the flow thread. This case is mainly hit by the check for whether
// or not images should animate.
// FIXME: Just as with offsetFromContainer, we aren't really handling objects that span
// multiple columns properly.
LayoutPoint physicalPoint(flipForWritingMode(adjustedRect.location()));
if (auto* fragment = downcast<RenderMultiColumnFlow>(*this).physicalTranslationFromFlowToFragment((physicalPoint))) {
adjustedRect.setLocation(fragment->flipForWritingMode(physicalPoint));
return fragment->computeVisibleRectInContainer(adjustedRect, container, context);
}
}
LayoutPoint topLeft = adjustedRect.location();
topLeft.move(locationOffset);
// We are now in our parent container's coordinate space. Apply our transform to obtain a bounding box
// in the parent's coordinate space that encloses us.
auto position = styleToUse.position();
if (hasLayer() && layer()->transform()) {
context.hasPositionFixedDescendant = position == PositionType::Fixed;
adjustedRect = LayoutRect(encloseRectToDevicePixels(layer()->transform()->mapRect(adjustedRect), document().deviceScaleFactor()));
topLeft = adjustedRect.location();
topLeft.move(locationOffset);
} else if (position == PositionType::Fixed)
context.hasPositionFixedDescendant = true;
if (position == PositionType::Absolute && localContainer->isInFlowPositioned() && is<RenderInline>(*localContainer))
topLeft += downcast<RenderInline>(*localContainer).offsetForInFlowPositionedInline(this);
else if (styleToUse.hasInFlowPosition() && layer()) {
// Apply the relative position offset when invalidating a rectangle. The layer
// is translated, but the render box isn't, so we need to do this to get the
// right dirty rect. Since this is called from RenderObject::setStyle, the relative position
// flag on the RenderObject has been cleared, so use the one on the style().
topLeft += layer()->offsetForInFlowPosition();
}
// FIXME: We ignore the lightweight clipping rect that controls use, since if |o| is in mid-layout,
// its controlClipRect will be wrong. For overflow clip we use the values cached by the layer.
adjustedRect.setLocation(topLeft);
if (localContainer->hasNonVisibleOverflow()) {
RenderBox& containerBox = downcast<RenderBox>(*localContainer);
bool isEmpty = !containerBox.applyCachedClipAndScrollPosition(adjustedRect, container, context);
if (isEmpty) {
if (context.options.contains(VisibleRectContextOption::UseEdgeInclusiveIntersection))
return std::nullopt;
return adjustedRect;
}
}
if (containerIsSkipped) {
// If the container is below localContainer, then we need to map the rect into container's coordinates.
LayoutSize containerOffset = container->offsetFromAncestorContainer(*localContainer);
adjustedRect.move(-containerOffset);
return adjustedRect;
}
return localContainer->computeVisibleRectInContainer(adjustedRect, container, context);
}
void RenderBox::repaintDuringLayoutIfMoved(const LayoutRect& oldRect)
{
if (oldRect.location() != m_frameRect.location()) {
LayoutRect newRect = m_frameRect;
// The child moved. Invalidate the object's old and new positions. We have to do this
// since the object may not have gotten a layout.
m_frameRect = oldRect;
repaint();
repaintOverhangingFloats(true);
m_frameRect = newRect;
repaint();
repaintOverhangingFloats(true);
}
}
void RenderBox::repaintOverhangingFloats(bool)
{
}
void RenderBox::updateLogicalWidth()
{
LogicalExtentComputedValues computedValues;
computeLogicalWidthInFragment(computedValues);
setLogicalWidth(computedValues.m_extent);
setLogicalLeft(computedValues.m_position);
setMarginStart(computedValues.m_margins.m_start);
setMarginEnd(computedValues.m_margins.m_end);
}
static LayoutUnit inlineSizeFromAspectRatio(LayoutUnit borderPaddingInlineSum, LayoutUnit borderPaddingBlockSum, double aspectRatio, BoxSizing boxSizing, LayoutUnit blockSize)
{
if (boxSizing == BoxSizing::BorderBox)
return LayoutUnit(blockSize * aspectRatio);
return LayoutUnit((blockSize - borderPaddingBlockSum) * aspectRatio) + borderPaddingInlineSum;
}
void RenderBox::computeLogicalWidthInFragment(LogicalExtentComputedValues& computedValues, RenderFragmentContainer* fragment) const
{
computedValues.m_extent = logicalWidth();
computedValues.m_position = logicalLeft();
computedValues.m_margins.m_start = marginStart();
computedValues.m_margins.m_end = marginEnd();
if (isOutOfFlowPositioned()) {
// FIXME: This calculation is not patched for block-flow yet.
// https://bugs.webkit.org/show_bug.cgi?id=46500
computePositionedLogicalWidth(computedValues, fragment);
return;
}
// If layout is limited to a subtree, the subtree root's logical width does not change.
if (element() && !view().frameView().layoutContext().isLayoutPending() && view().frameView().layoutContext().subtreeLayoutRoot() == this)
return;
// The parent box is flexing us, so it has increased or decreased our
// width. Use the width from the style context.
// FIXME: Account for block-flow in flexible boxes.
// https://bugs.webkit.org/show_bug.cgi?id=46418
if (hasOverridingLogicalWidth() && (isRubyRun() || (parent()->isFlexibleBoxIncludingDeprecated()))) {
computedValues.m_extent = overridingLogicalWidth();
return;
}
// FIXME: Account for block-flow in flexible boxes.
// https://bugs.webkit.org/show_bug.cgi?id=46418
bool inVerticalBox = parent()->isDeprecatedFlexibleBox() && (parent()->style().boxOrient() == BoxOrient::Vertical);
bool stretching = (parent()->style().boxAlign() == BoxAlignment::Stretch);
// FIXME: Stretching is the only reason why we don't want the box to be treated as a replaced element, so we could perhaps
// refactor all this logic, not only for flex and grid since alignment is intended to be applied to any block.
bool treatAsReplaced = shouldComputeSizeAsReplaced() && (!inVerticalBox || !stretching);
treatAsReplaced = treatAsReplaced && (!isGridItem() || !hasStretchedLogicalWidth());
const RenderStyle& styleToUse = style();
Length logicalWidthLength;
if (hasOverridingLogicalWidthLength())
logicalWidthLength = overridingLogicalWidthLength();
else
logicalWidthLength = treatAsReplaced ? Length(computeReplacedLogicalWidth(), LengthType::Fixed) : styleToUse.logicalWidth();
RenderBlock& cb = *containingBlock();
LayoutUnit containerLogicalWidth = std::max<LayoutUnit>(0, containingBlockLogicalWidthForContentInFragment(fragment));
bool hasPerpendicularContainingBlock = cb.isHorizontalWritingMode() != isHorizontalWritingMode();
if (isInline() && !isInlineBlockOrInlineTable()) {
// just calculate margins
computedValues.m_margins.m_start = minimumValueForLength(styleToUse.marginStart(), containerLogicalWidth);
computedValues.m_margins.m_end = minimumValueForLength(styleToUse.marginEnd(), containerLogicalWidth);
if (treatAsReplaced)
computedValues.m_extent = std::max(LayoutUnit(floatValueForLength(logicalWidthLength, 0) + borderAndPaddingLogicalWidth()), minPreferredLogicalWidth());
return;
}
LayoutUnit containerWidthInInlineDirection = containerLogicalWidth;
if (hasPerpendicularContainingBlock)
containerWidthInInlineDirection = perpendicularContainingBlockLogicalHeight();
// Width calculations
if (treatAsReplaced) {
computedValues.m_extent = logicalWidthLength.value() + borderAndPaddingLogicalWidth();
} else if (shouldComputeLogicalWidthFromAspectRatio() && style().logicalWidth().isAuto()) {
computedValues.m_extent = computeLogicalWidthFromAspectRatio(fragment);
} else {
LayoutUnit preferredWidth = computeLogicalWidthInFragmentUsing(MainOrPreferredSize, hasOverridingLogicalWidthLength() ? logicalWidthLength : styleToUse.logicalWidth(), containerWidthInInlineDirection, cb, fragment);
computedValues.m_extent = constrainLogicalWidthInFragmentByMinMax(preferredWidth, containerWidthInInlineDirection, cb, fragment);
}
// Margin calculations.
if (hasPerpendicularContainingBlock || isFloating() || isInline()) {
computedValues.m_margins.m_start = minimumValueForLength(styleToUse.marginStart(), containerLogicalWidth);
computedValues.m_margins.m_end = minimumValueForLength(styleToUse.marginEnd(), containerLogicalWidth);
} else {
LayoutUnit containerLogicalWidthForAutoMargins = containerLogicalWidth;
if (avoidsFloats() && cb.containsFloats())
containerLogicalWidthForAutoMargins = containingBlockAvailableLineWidthInFragment(fragment);
bool hasInvertedDirection = cb.style().isLeftToRightDirection() != style().isLeftToRightDirection();
computeInlineDirectionMargins(cb, containerLogicalWidthForAutoMargins, computedValues.m_extent,
hasInvertedDirection ? computedValues.m_margins.m_end : computedValues.m_margins.m_start,
hasInvertedDirection ? computedValues.m_margins.m_start : computedValues.m_margins.m_end);
}
if (!hasPerpendicularContainingBlock && containerLogicalWidth && containerLogicalWidth != (computedValues.m_extent + computedValues.m_margins.m_start + computedValues.m_margins.m_end)
&& !isFloating() && !isInline() && !cb.isFlexibleBoxIncludingDeprecated()
#if ENABLE(MATHML)
// RenderMathMLBlocks take the size of their content so we must not adjust the margin to fill the container size.
&& !cb.isRenderMathMLBlock()
#endif
&& !cb.isRenderGrid()
) {
LayoutUnit newMarginTotal = containerLogicalWidth - computedValues.m_extent;
bool hasInvertedDirection = cb.style().isLeftToRightDirection() != style().isLeftToRightDirection();
if (hasInvertedDirection)
computedValues.m_margins.m_start = newMarginTotal - computedValues.m_margins.m_end;
else
computedValues.m_margins.m_end = newMarginTotal - computedValues.m_margins.m_start;
}
}
LayoutUnit RenderBox::fillAvailableMeasure(LayoutUnit availableLogicalWidth) const
{
LayoutUnit marginStart;
LayoutUnit marginEnd;
return fillAvailableMeasure(availableLogicalWidth, marginStart, marginEnd);
}
LayoutUnit RenderBox::fillAvailableMeasure(LayoutUnit availableLogicalWidth, LayoutUnit& marginStart, LayoutUnit& marginEnd) const
{
bool isOrthogonalElement = isHorizontalWritingMode() != containingBlock()->isHorizontalWritingMode();
LayoutUnit availableSizeForResolvingMargin = isOrthogonalElement ? containingBlockLogicalWidthForContent() : availableLogicalWidth;
marginStart = minimumValueForLength(style().marginStart(), availableSizeForResolvingMargin);
marginEnd = minimumValueForLength(style().marginEnd(), availableSizeForResolvingMargin);
return availableLogicalWidth - marginStart - marginEnd;
}
LayoutUnit RenderBox::computeIntrinsicLogicalWidthUsing(Length logicalWidthLength, LayoutUnit availableLogicalWidth, LayoutUnit borderAndPadding) const
{
if (logicalWidthLength.isFillAvailable())
return std::max(borderAndPadding, fillAvailableMeasure(availableLogicalWidth));
LayoutUnit minLogicalWidth;
LayoutUnit maxLogicalWidth;
if (!logicalWidthLength.isMinIntrinsic() && shouldComputeLogicalWidthFromAspectRatio()) {
minLogicalWidth = maxLogicalWidth = computeLogicalWidthFromAspectRatioInternal() - borderAndPadding;
if (firstChild()) {
LayoutUnit minChildrenLogicalWidth;
LayoutUnit maxChildrenLogicalWidth;
computeIntrinsicKeywordLogicalWidths(minChildrenLogicalWidth, maxChildrenLogicalWidth);
minLogicalWidth = std::max(minLogicalWidth, minChildrenLogicalWidth);
maxLogicalWidth = std::max(maxLogicalWidth, maxChildrenLogicalWidth);
}
} else
computeIntrinsicKeywordLogicalWidths(minLogicalWidth, maxLogicalWidth);
if (logicalWidthLength.isMinContent() || logicalWidthLength.isMinIntrinsic())
return minLogicalWidth + borderAndPadding;
if (logicalWidthLength.isMaxContent())
return maxLogicalWidth + borderAndPadding;
if (logicalWidthLength.isFitContent()) {
minLogicalWidth += borderAndPadding;
maxLogicalWidth += borderAndPadding;
return std::max(minLogicalWidth, std::min(maxLogicalWidth, fillAvailableMeasure(availableLogicalWidth)));
}
ASSERT_NOT_REACHED();
return 0;
}
LayoutUnit RenderBox::computeLogicalWidthInFragmentUsing(SizeType widthType, Length logicalWidth, LayoutUnit availableLogicalWidth,
const RenderBlock& cb, RenderFragmentContainer* fragment) const
{
ASSERT(widthType == MinSize || widthType == MainOrPreferredSize || !logicalWidth.isAuto());
if (widthType == MinSize && logicalWidth.isAuto())
return adjustBorderBoxLogicalWidthForBoxSizing(0, logicalWidth.type());
if (!logicalWidth.isIntrinsicOrAuto()) {
// FIXME: If the containing block flow is perpendicular to our direction we need to use the available logical height instead.
return adjustBorderBoxLogicalWidthForBoxSizing(valueForLength(logicalWidth, availableLogicalWidth), logicalWidth.type());
}
if (logicalWidth.isIntrinsic() || logicalWidth.isMinIntrinsic())
return computeIntrinsicLogicalWidthUsing(logicalWidth, availableLogicalWidth, borderAndPaddingLogicalWidth());
LayoutUnit marginStart;
LayoutUnit marginEnd;
LayoutUnit logicalWidthResult = fillAvailableMeasure(availableLogicalWidth, marginStart, marginEnd);
if (shrinkToAvoidFloats() && cb.containsFloats())
logicalWidthResult = std::min(logicalWidthResult, shrinkLogicalWidthToAvoidFloats(marginStart, marginEnd, cb, fragment));
if (widthType == MainOrPreferredSize && sizesLogicalWidthToFitContent(widthType))
return std::max(minPreferredLogicalWidth(), std::min(maxPreferredLogicalWidth(), logicalWidthResult));
return logicalWidthResult;
}
bool RenderBox::columnFlexItemHasStretchAlignment() const
{
// auto margins mean we don't stretch. Note that this function will only be
// used for widths, so we don't have to check marginBefore/marginAfter.
const auto& parentStyle = parent()->style();
ASSERT(parentStyle.isColumnFlexDirection());
if (style().marginStart().isAuto() || style().marginEnd().isAuto())
return false;
return style().resolvedAlignSelf(&parentStyle, containingBlock()->selfAlignmentNormalBehavior()).position() == ItemPosition::Stretch;
}
bool RenderBox::isStretchingColumnFlexItem() const
{
if (parent()->isDeprecatedFlexibleBox() && parent()->style().boxOrient() == BoxOrient::Vertical && parent()->style().boxAlign() == BoxAlignment::Stretch)
return true;
// We don't stretch multiline flexboxes because they need to apply line spacing (align-content) first.
if (parent()->isFlexibleBox() && parent()->style().flexWrap() == FlexWrap::NoWrap && parent()->style().isColumnFlexDirection() && columnFlexItemHasStretchAlignment())
return true;
return false;
}
// FIXME: Can/Should we move this inside specific layout classes (flex. grid)? Can we refactor columnFlexItemHasStretchAlignment logic?
bool RenderBox::hasStretchedLogicalHeight() const
{
auto& style = this->style();
if (!style.logicalHeight().isAuto() || style.marginBefore().isAuto() || style.marginAfter().isAuto())
return false;
RenderBlock* containingBlock = this->containingBlock();
if (!containingBlock) {
// We are evaluating align-self/justify-self, which default to 'normal' for the root element.
// The 'normal' value behaves like 'start' except for Flexbox Items, which obviously should have a container.
return false;
}
if (containingBlock->isHorizontalWritingMode() != isHorizontalWritingMode())
return style.resolvedJustifySelf(&containingBlock->style(), containingBlock->selfAlignmentNormalBehavior(this)).position() == ItemPosition::Stretch;
return style.resolvedAlignSelf(&containingBlock->style(), containingBlock->selfAlignmentNormalBehavior(this)).position() == ItemPosition::Stretch;
}
// FIXME: Can/Should we move this inside specific layout classes (flex. grid)? Can we refactor columnFlexItemHasStretchAlignment logic?
bool RenderBox::hasStretchedLogicalWidth(StretchingMode stretchingMode) const
{
auto& style = this->style();
if (!style.logicalWidth().isAuto() || style.marginStart().isAuto() || style.marginEnd().isAuto())
return false;
RenderBlock* containingBlock = this->containingBlock();
if (!containingBlock) {
// We are evaluating align-self/justify-self, which default to 'normal' for the root element.
// The 'normal' value behaves like 'start' except for Flexbox Items, which obviously should have a container.
return false;
}
auto normalItemPosition = stretchingMode == StretchingMode::Any ? containingBlock->selfAlignmentNormalBehavior(this) : ItemPosition::Normal;
if (containingBlock->isHorizontalWritingMode() != isHorizontalWritingMode())
return style.resolvedAlignSelf(&containingBlock->style(), normalItemPosition).position() == ItemPosition::Stretch;
return style.resolvedJustifySelf(&containingBlock->style(), normalItemPosition).position() == ItemPosition::Stretch;
}
bool RenderBox::sizesLogicalWidthToFitContent(SizeType widthType) const
{
// Marquees in WinIE are like a mixture of blocks and inline-blocks. They size as though they're blocks,
// but they allow text to sit on the same line as the marquee.
if (isFloating() || (isInlineBlockOrInlineTable() && !isHTMLMarquee()))
return true;
if (isGridItem())
return !hasStretchedLogicalWidth();
// This code may look a bit strange. Basically width:intrinsic should clamp the size when testing both
// min-width and width. max-width is only clamped if it is also intrinsic.
Length logicalWidth = (widthType == MaxSize) ? style().logicalMaxWidth() : style().logicalWidth();
if (logicalWidth.type() == LengthType::Intrinsic)
return true;
// Children of a horizontal marquee do not fill the container by default.
// FIXME: Need to deal with MarqueeDirection::Auto value properly. It could be vertical.
// FIXME: Think about block-flow here. Need to find out how marquee direction relates to
// block-flow (as well as how marquee overflow should relate to block flow).
// https://bugs.webkit.org/show_bug.cgi?id=46472
if (parent()->isHTMLMarquee()) {
MarqueeDirection dir = parent()->style().marqueeDirection();
if (dir == MarqueeDirection::Auto || dir == MarqueeDirection::Forward || dir == MarqueeDirection::Backward || dir == MarqueeDirection::Left || dir == MarqueeDirection::Right)
return true;
}
#if ENABLE(MATHML)
// RenderMathMLBlocks take the size of their content, not of their container.
if (parent()->isRenderMathMLBlock())
return true;
#endif
// Flexible box items should shrink wrap, so we lay them out at their intrinsic widths.
// In the case of columns that have a stretch alignment, we layout at the stretched size
// to avoid an extra layout when applying alignment.
if (parent()->isFlexibleBox()) {
// For multiline columns, we need to apply align-content first, so we can't stretch now.
if (!parent()->style().isColumnFlexDirection() || parent()->style().flexWrap() != FlexWrap::NoWrap)
return true;
if (!columnFlexItemHasStretchAlignment())
return true;
}
// Flexible horizontal boxes lay out children at their intrinsic widths. Also vertical boxes
// that don't stretch their kids lay out their children at their intrinsic widths.
// FIXME: Think about block-flow here.
// https://bugs.webkit.org/show_bug.cgi?id=46473
if (parent()->isDeprecatedFlexibleBox() && (parent()->style().boxOrient() == BoxOrient::Horizontal || parent()->style().boxAlign() != BoxAlignment::Stretch))
return true;
// Button, input, select, textarea, and legend treat width value of 'auto' as 'intrinsic' unless it's in a
// stretching column flexbox.
// FIXME: Think about block-flow here.
// https://bugs.webkit.org/show_bug.cgi?id=46473
if (logicalWidth.isAuto() && !isStretchingColumnFlexItem() && element() && (is<HTMLInputElement>(*element()) || is<HTMLSelectElement>(*element()) || is<HTMLButtonElement>(*element()) || is<HTMLTextAreaElement>(*element()) || is<HTMLLegendElement>(*element())))
return true;
if (isHorizontalWritingMode() != containingBlock()->isHorizontalWritingMode())
return true;
return false;
}
void RenderBox::computeInlineDirectionMargins(const RenderBlock& containingBlock, LayoutUnit containerWidth, LayoutUnit childWidth, LayoutUnit& marginStart, LayoutUnit& marginEnd) const
{
const RenderStyle& containingBlockStyle = containingBlock.style();
Length marginStartLength = style().marginStartUsing(&containingBlockStyle);
Length marginEndLength = style().marginEndUsing(&containingBlockStyle);
if (isFloating() || isInline()) {
// Inline blocks/tables and floats don't have their margins increased.
marginStart = minimumValueForLength(marginStartLength, containerWidth);
marginEnd = minimumValueForLength(marginEndLength, containerWidth);
return;
}
if (containingBlock.isFlexibleBox()) {
// We need to let flexbox handle the margin adjustment - otherwise, flexbox
// will think we're wider than we actually are and calculate line sizes
// wrong. See also http://dev.w3.org/csswg/css-flexbox/#auto-margins
if (marginStartLength.isAuto())
marginStartLength = Length(0, LengthType::Fixed);
if (marginEndLength.isAuto())
marginEndLength = Length(0, LengthType::Fixed);
}
// Case One: The object is being centered in the containing block's available logical width.
if ((marginStartLength.isAuto() && marginEndLength.isAuto() && childWidth < containerWidth)
|| (!marginStartLength.isAuto() && !marginEndLength.isAuto() && containingBlock.style().textAlign() == TextAlignMode::WebKitCenter)) {
// Other browsers center the margin box for align=center elements so we match them here.
LayoutUnit marginStartWidth = minimumValueForLength(marginStartLength, containerWidth);
LayoutUnit marginEndWidth = minimumValueForLength(marginEndLength, containerWidth);
LayoutUnit centeredMarginBoxStart = std::max<LayoutUnit>(0, (containerWidth - childWidth - marginStartWidth - marginEndWidth) / 2);
marginStart = centeredMarginBoxStart + marginStartWidth;
marginEnd = containerWidth - childWidth - marginStart + marginEndWidth;
return;
}
// Case Two: The object is being pushed to the start of the containing block's available logical width.
if (marginEndLength.isAuto() && childWidth < containerWidth) {
marginStart = valueForLength(marginStartLength, containerWidth);
marginEnd = containerWidth - childWidth - marginStart;
return;
}
// Case Three: The object is being pushed to the end of the containing block's available logical width.
bool pushToEndFromTextAlign = !marginEndLength.isAuto() && ((!containingBlockStyle.isLeftToRightDirection() && containingBlockStyle.textAlign() == TextAlignMode::WebKitLeft)
|| (containingBlockStyle.isLeftToRightDirection() && containingBlockStyle.textAlign() == TextAlignMode::WebKitRight));
if ((marginStartLength.isAuto() || pushToEndFromTextAlign) && childWidth < containerWidth) {
marginEnd = valueForLength(marginEndLength, containerWidth);
marginStart = containerWidth - childWidth - marginEnd;
return;
}
// Case Four: Either no auto margins, or our width is >= the container width (css2.1, 10.3.3). In that case
// auto margins will just turn into 0.
marginStart = minimumValueForLength(marginStartLength, containerWidth);
marginEnd = minimumValueForLength(marginEndLength, containerWidth);
}
RenderBoxFragmentInfo* RenderBox::renderBoxFragmentInfo(RenderFragmentContainer* fragment, RenderBoxFragmentInfoFlags cacheFlag) const
{
// Make sure nobody is trying to call this with a null fragment.
if (!fragment)
return nullptr;
// If we have computed our width in this fragment already, it will be cached, and we can
// just return it.
RenderBoxFragmentInfo* boxInfo = fragment->renderBoxFragmentInfo(this);
if (boxInfo && cacheFlag == CacheRenderBoxFragmentInfo)
return boxInfo;
return nullptr;
}
static bool shouldFlipBeforeAfterMargins(const RenderStyle& containingBlockStyle, const RenderStyle* childStyle)
{
ASSERT(containingBlockStyle.isHorizontalWritingMode() != childStyle->isHorizontalWritingMode());
WritingMode childWritingMode = childStyle->writingMode();
bool shouldFlip = false;
switch (containingBlockStyle.writingMode()) {
case WritingMode::TopToBottom:
shouldFlip = (childWritingMode == WritingMode::RightToLeft);
break;
case WritingMode::BottomToTop:
shouldFlip = (childWritingMode == WritingMode::RightToLeft);
break;
case WritingMode::RightToLeft:
shouldFlip = (childWritingMode == WritingMode::BottomToTop);
break;
case WritingMode::LeftToRight:
shouldFlip = (childWritingMode == WritingMode::BottomToTop);
break;
}
if (!containingBlockStyle.isLeftToRightDirection())
shouldFlip = !shouldFlip;
return shouldFlip;
}
void RenderBox::cacheIntrinsicContentLogicalHeightForFlexItem(LayoutUnit height) const
{
// FIXME: it should be enough with checking hasOverridingLogicalHeight() as this logic could be shared
// by any layout system using overrides like grid or flex. However this causes a never ending sequence of calls
// between layoutBlock() <-> relayoutToAvoidWidows().
if (isFloatingOrOutOfFlowPositioned() || !parent() || !parent()->isFlexibleBox() || hasOverridingLogicalHeight() || shouldComputeLogicalHeightFromAspectRatio())
return;
downcast<RenderFlexibleBox>(parent())->setCachedChildIntrinsicContentLogicalHeight(*this, height);
}
void RenderBox::updateLogicalHeight()
{
if (shouldApplySizeContainment(*this) && !isRenderGrid()) {
// We need the exact width of border and padding here, yet we can't use borderAndPadding* interfaces.
// Because these interfaces evetually call borderAfter/Before, and RenderBlock::borderBefore
// adds extra border to fieldset by adding intrinsicBorderForFieldset which is not needed here.
auto borderAndPadding = RenderBox::borderBefore() + RenderBox::paddingBefore() + RenderBox::borderAfter() + RenderBox::paddingAfter();
setLogicalHeight(borderAndPadding + scrollbarLogicalHeight());
}
cacheIntrinsicContentLogicalHeightForFlexItem(contentLogicalHeight());
auto computedValues = computeLogicalHeight(logicalHeight(), logicalTop());
setLogicalHeight(computedValues.m_extent);
setLogicalTop(computedValues.m_position);
setMarginBefore(computedValues.m_margins.m_before);
setMarginAfter(computedValues.m_margins.m_after);
}
RenderBox::LogicalExtentComputedValues RenderBox::computeLogicalHeight(LayoutUnit logicalHeight, LayoutUnit logicalTop) const
{
LogicalExtentComputedValues computedValues;
computedValues.m_extent = logicalHeight;
computedValues.m_position = logicalTop;
// Cell height is managed by the table and inline non-replaced elements do not support a height property.
if (isTableCell() || (isInline() && !isReplacedOrInlineBlock()))
return computedValues;
Length h;
if (isOutOfFlowPositioned())
computePositionedLogicalHeight(computedValues);
else {
RenderBlock& cb = *containingBlock();
bool hasPerpendicularContainingBlock = cb.isHorizontalWritingMode() != isHorizontalWritingMode();
if (!hasPerpendicularContainingBlock) {
bool shouldFlipBeforeAfter = cb.style().writingMode() != style().writingMode();
computeBlockDirectionMargins(cb,
shouldFlipBeforeAfter ? computedValues.m_margins.m_after : computedValues.m_margins.m_before,
shouldFlipBeforeAfter ? computedValues.m_margins.m_before : computedValues.m_margins.m_after);
}
// For tables, calculate margins only.
if (isTable()) {
if (shouldComputeLogicalHeightFromAspectRatio())
computedValues.m_extent = blockSizeFromAspectRatio(horizontalBorderAndPaddingExtent(), verticalBorderAndPaddingExtent(), style().logicalAspectRatio(), style().boxSizingForAspectRatio(), logicalWidth());
if (hasPerpendicularContainingBlock) {
bool shouldFlipBeforeAfter = shouldFlipBeforeAfterMargins(cb.style(), &style());
computeInlineDirectionMargins(cb, containingBlockLogicalWidthForContent(), computedValues.m_extent,
shouldFlipBeforeAfter ? computedValues.m_margins.m_after : computedValues.m_margins.m_before,
shouldFlipBeforeAfter ? computedValues.m_margins.m_before : computedValues.m_margins.m_after);
}
return computedValues;
}
// FIXME: Account for block-flow in flexible boxes.
// https://bugs.webkit.org/show_bug.cgi?id=46418
bool inHorizontalBox = parent()->isDeprecatedFlexibleBox() && parent()->style().boxOrient() == BoxOrient::Horizontal;
bool stretching = parent()->style().boxAlign() == BoxAlignment::Stretch;
bool treatAsReplaced = shouldComputeSizeAsReplaced() && (!inHorizontalBox || !stretching);
bool checkMinMaxHeight = false;
const auto& logicalHeightInUse = hasOverridingLogicalHeightLength() ? overridingLogicalHeightLength() : style().logicalHeight();
// The parent box is flexing us, so it has increased or decreased our height. We have to
// grab our cached flexible height.
// FIXME: Account for block-flow in flexible boxes.
// https://bugs.webkit.org/show_bug.cgi?id=46418
if (hasOverridingLogicalHeight() && (parent()->isFlexibleBoxIncludingDeprecated() || parent()->isRenderGrid())) {
h = Length(overridingLogicalHeight(), LengthType::Fixed);
} else if (treatAsReplaced)
h = Length(computeReplacedLogicalHeight() + borderAndPaddingLogicalHeight(), LengthType::Fixed);
else {
h = logicalHeightInUse;
checkMinMaxHeight = true;
}
// Block children of horizontal flexible boxes fill the height of the box.
// FIXME: Account for block-flow in flexible boxes.
// https://bugs.webkit.org/show_bug.cgi?id=46418
if (h.isAuto() && is<RenderDeprecatedFlexibleBox>(*parent()) && parent()->style().boxOrient() == BoxOrient::Horizontal
&& downcast<RenderDeprecatedFlexibleBox>(*parent()).isStretchingChildren()) {
h = Length(parentBox()->contentLogicalHeight() - marginBefore() - marginAfter(), LengthType::Fixed);
checkMinMaxHeight = false;
}
LayoutUnit heightResult;
if (checkMinMaxHeight) {
// Callers passing LayoutUnit::max() for logicalHeight means an indefinite height, so
// translate this to a nullopt intrinsic height for further logical height computations.
std::optional<LayoutUnit> intrinsicHeight;
if (computedValues.m_extent != LayoutUnit::max())
intrinsicHeight = computedValues.m_extent;
if (shouldComputeLogicalHeightFromAspectRatio()) {
if (intrinsicHeight && style().boxSizingForAspectRatio() == BoxSizing::ContentBox)
*intrinsicHeight -= borderAndPaddingLogicalHeight();
heightResult = blockSizeFromAspectRatio(horizontalBorderAndPaddingExtent(), verticalBorderAndPaddingExtent(), style().logicalAspectRatio(), style().boxSizingForAspectRatio(), logicalWidth());
} else {
if (intrinsicHeight)
*intrinsicHeight -= borderAndPaddingLogicalHeight();
heightResult = computeLogicalHeightUsing(MainOrPreferredSize, logicalHeightInUse, intrinsicHeight).value_or(computedValues.m_extent);
}
heightResult = constrainLogicalHeightByMinMax(heightResult, intrinsicHeight);
} else {
ASSERT(h.isFixed());
heightResult = h.value();
}
computedValues.m_extent = heightResult;
if (hasPerpendicularContainingBlock) {
bool shouldFlipBeforeAfter = shouldFlipBeforeAfterMargins(cb.style(), &style());
computeInlineDirectionMargins(cb, containingBlockLogicalWidthForContent(), heightResult,
shouldFlipBeforeAfter ? computedValues.m_margins.m_after : computedValues.m_margins.m_before,
shouldFlipBeforeAfter ? computedValues.m_margins.m_before : computedValues.m_margins.m_after);
}
}
// WinIE quirk: The <html> block always fills the entire canvas in quirks mode. The <body> always fills the
// <html> block in quirks mode. Only apply this quirk if the block is normal flow and no height
// is specified. When we're printing, we also need this quirk if the body or root has a percentage
// height since we don't set a height in RenderView when we're printing. So without this quirk, the
// height has nothing to be a percentage of, and it ends up being 0. That is bad.
bool paginatedContentNeedsBaseHeight = document().printing() && h.isPercentOrCalculated()
&& (isDocumentElementRenderer() || (isBody() && document().documentElement()->renderer()->style().logicalHeight().isPercentOrCalculated())) && !isInline();
if (stretchesToViewport() || paginatedContentNeedsBaseHeight) {
LayoutUnit margins = collapsedMarginBefore() + collapsedMarginAfter();
LayoutUnit visibleHeight = view().pageOrViewLogicalHeight();
if (isDocumentElementRenderer())
computedValues.m_extent = std::max(computedValues.m_extent, visibleHeight - margins);
else {
LayoutUnit marginsBordersPadding = margins + parentBox()->marginBefore() + parentBox()->marginAfter() + parentBox()->borderAndPaddingLogicalHeight();
computedValues.m_extent = std::max(computedValues.m_extent, visibleHeight - marginsBordersPadding);
}
}
return computedValues;
}
LayoutUnit RenderBox::computeLogicalHeightWithoutLayout() const
{
// FIXME:: We should probably return something other than just
// border + padding, but for now we have no good way to do anything else
// without layout, so we just use that.
LogicalExtentComputedValues computedValues = computeLogicalHeight(borderAndPaddingLogicalHeight(), 0_lu);
return computedValues.m_extent;
}
std::optional<LayoutUnit> RenderBox::computeLogicalHeightUsing(SizeType heightType, const Length& height, std::optional<LayoutUnit> intrinsicContentHeight) const
{
if (std::optional<LayoutUnit> logicalHeight = computeContentAndScrollbarLogicalHeightUsing(heightType, height, intrinsicContentHeight))
return adjustBorderBoxLogicalHeightForBoxSizing(logicalHeight.value());
return std::nullopt;
}
std::optional<LayoutUnit> RenderBox::computeContentLogicalHeight(SizeType heightType, const Length& height, std::optional<LayoutUnit> intrinsicContentHeight) const
{
if (std::optional<LayoutUnit> heightIncludingScrollbar = computeContentAndScrollbarLogicalHeightUsing(heightType, height, intrinsicContentHeight))
return std::max<LayoutUnit>(0, adjustContentBoxLogicalHeightForBoxSizing(heightIncludingScrollbar) - scrollbarLogicalHeight());
return std::nullopt;
}
std::optional<LayoutUnit> RenderBox::computeIntrinsicLogicalContentHeightUsing(Length logicalHeightLength, std::optional<LayoutUnit> intrinsicContentHeight, LayoutUnit borderAndPadding) const
{
// FIXME: The CSS sizing spec is considering changing what min-content/max-content should resolve to.
// If that happens, this code will have to change.
if (logicalHeightLength.isMinContent() || logicalHeightLength.isMaxContent() || logicalHeightLength.isFitContent() || logicalHeightLength.isLegacyIntrinsic()) {
if (intrinsicContentHeight && style().boxSizing() == BoxSizing::BorderBox)
return intrinsicContentHeight.value() + borderAndPaddingLogicalHeight();
return intrinsicContentHeight;
}
if (logicalHeightLength.isFillAvailable())
return containingBlock()->availableLogicalHeight(ExcludeMarginBorderPadding) - borderAndPadding;
ASSERT_NOT_REACHED();
return 0_lu;
}
std::optional<LayoutUnit> RenderBox::computeContentAndScrollbarLogicalHeightUsing(SizeType heightType, const Length& height, std::optional<LayoutUnit> intrinsicContentHeight) const
{
if (height.isAuto())
return heightType == MinSize ? std::optional<LayoutUnit>(0) : std::nullopt;
// FIXME: The CSS sizing spec is considering changing what min-content/max-content should resolve to.
// If that happens, this code will have to change.
if (height.isIntrinsic() || height.isLegacyIntrinsic())
return computeIntrinsicLogicalContentHeightUsing(height, intrinsicContentHeight, borderAndPaddingLogicalHeight());
if (height.isFixed())
return LayoutUnit(height.value());
if (height.isPercentOrCalculated())
return computePercentageLogicalHeight(height);
return std::nullopt;
}
bool RenderBox::skipContainingBlockForPercentHeightCalculation(const RenderBox& containingBlock, bool isPerpendicularWritingMode) const
{
// Flow threads for multicol or paged overflow should be skipped. They are invisible to the DOM,
// and percent heights of children should be resolved against the multicol or paged container.
if (containingBlock.isRenderFragmentedFlow() && !isPerpendicularWritingMode)
return true;
// Render view is not considered auto height.
if (is<RenderView>(containingBlock))
return false;
// If the writing mode of the containing block is orthogonal to ours, it means
// that we shouldn't skip anything, since we're going to resolve the
// percentage height against a containing block *width*.
if (isPerpendicularWritingMode)
return false;
// Anonymous blocks should not impede percentage resolution on a child.
// Examples of such anonymous blocks are blocks wrapped around inlines that
// have block siblings (from the CSS spec) and multicol flow threads (an
// implementation detail). Another implementation detail, ruby runs, create
// anonymous inline-blocks, so skip those too. All other types of anonymous
// objects, such as table-cells and flexboxes, will be treated as if they were
// non-anonymous.
if (containingBlock.isAnonymous())
return containingBlock.style().display() == DisplayType::Block || containingBlock.style().display() == DisplayType::InlineBlock;
// For quirks mode, we skip most auto-height containing blocks when computing
// percentages.
return document().inQuirksMode() && !containingBlock.isTableCell() && !containingBlock.isOutOfFlowPositioned() && !containingBlock.isRenderGrid() && !containingBlock.isFlexibleBoxIncludingDeprecated() && containingBlock.style().logicalHeight().isAuto();
}
bool RenderBox::shouldTreatChildAsReplacedInTableCells() const
{
if (isReplacedOrInlineBlock())
return true;
return element() && (element()->isFormControlElement() || is<HTMLImageElement>(element()));
}
static bool tableCellShouldHaveZeroInitialSize(const RenderBlock& block, const RenderBox& child, bool scrollsOverflowY)
{
// Normally we would let the cell size intrinsically, but scrolling overflow has to be
// treated differently, since WinIE lets scrolled overflow fragments shrink as needed.
// While we can't get all cases right, we can at least detect when the cell has a specified
// height or when the table has a specified height. In these cases we want to initially have
// no size and allow the flexing of the table or the cell to its specified height to cause us
// to grow to fill the space. This could end up being wrong in some cases, but it is
// preferable to the alternative (sizing intrinsically and making the row end up too big).
const RenderTableCell& cell = downcast<RenderTableCell>(block);
return scrollsOverflowY && !child.shouldTreatChildAsReplacedInTableCells() && (!cell.style().logicalHeight().isAuto() || !cell.table()->style().logicalHeight().isAuto());
}
std::optional<LayoutUnit> RenderBox::computePercentageLogicalHeight(const Length& height, UpdatePercentageHeightDescendants updateDescendants) const
{
std::optional<LayoutUnit> availableHeight;
bool skippedAutoHeightContainingBlock = false;
RenderBlock* cb = containingBlock();
const RenderBox* containingBlockChild = this;
LayoutUnit rootMarginBorderPaddingHeight;
bool isHorizontal = isHorizontalWritingMode();
while (cb && !is<RenderView>(*cb) && skipContainingBlockForPercentHeightCalculation(*cb, isHorizontal != cb->isHorizontalWritingMode())) {
if (cb->isBody() || cb->isDocumentElementRenderer())
rootMarginBorderPaddingHeight += cb->marginBefore() + cb->marginAfter() + cb->borderAndPaddingLogicalHeight();
skippedAutoHeightContainingBlock = true;
containingBlockChild = cb;
cb = cb->containingBlock();
}
if (updateDescendants == UpdatePercentageHeightDescendants::Yes)
cb->addPercentHeightDescendant(const_cast<RenderBox&>(*this));
bool isOrthogonal = isHorizontal != cb->isHorizontalWritingMode();
if (hasOverridingContainingBlockContentLogicalWidth() && isOrthogonal)
availableHeight = overridingContainingBlockContentLogicalWidth();
else if (hasOverridingContainingBlockContentLogicalHeight() && !isOrthogonal)
availableHeight = overridingContainingBlockContentLogicalHeight();
else if (isOrthogonal)
availableHeight = containingBlockChild->containingBlockLogicalWidthForContent();
else if (is<RenderTableCell>(*cb)) {
if (!skippedAutoHeightContainingBlock) {
// Table cells violate what the CSS spec says to do with heights. Basically we
// don't care if the cell specified a height or not. We just always make ourselves
// be a percentage of the cell's current content height.
if (!cb->hasOverridingLogicalHeight())
return tableCellShouldHaveZeroInitialSize(*cb, *this, scrollsOverflowY()) ? std::optional<LayoutUnit>(0) : std::nullopt;
availableHeight = cb->overridingLogicalHeight() - cb->computedCSSPaddingBefore() - cb->computedCSSPaddingAfter() - cb->borderBefore() - cb->borderAfter();
}
} else
availableHeight = cb->availableLogicalHeightForPercentageComputation();
if (!availableHeight)
return availableHeight;
LayoutUnit result = valueForLength(height, availableHeight.value() - rootMarginBorderPaddingHeight + (isTable() && isOutOfFlowPositioned() ? cb->paddingBefore() + cb->paddingAfter() : 0_lu));
// |overridingLogicalHeight| is the maximum height made available by the
// cell to its percent height children when we decide they can determine the
// height of the cell. If the percent height child is box-sizing:content-box
// then we must subtract the border and padding from the cell's
// |availableHeight| (given by |overridingLogicalHeight|) to arrive
// at the child's computed height.
bool subtractBorderAndPadding = isTable() || (is<RenderTableCell>(*cb) && !skippedAutoHeightContainingBlock && cb->hasOverridingLogicalHeight() && style().boxSizing() == BoxSizing::ContentBox);
if (subtractBorderAndPadding) {
result -= borderAndPaddingLogicalHeight();
return std::max(0_lu, result);
}
return result;
}
LayoutUnit RenderBox::computeReplacedLogicalWidth(ShouldComputePreferred shouldComputePreferred) const
{
return computeReplacedLogicalWidthRespectingMinMaxWidth(computeReplacedLogicalWidthUsing(MainOrPreferredSize, style().logicalWidth()), shouldComputePreferred);
}
LayoutUnit RenderBox::computeReplacedLogicalWidthRespectingMinMaxWidth(LayoutUnit logicalWidth, ShouldComputePreferred shouldComputePreferred) const
{
auto& logicalMinWidth = style().logicalMinWidth();
auto& logicalMaxWidth = style().logicalMaxWidth();
bool useLogicalWidthForMinWidth = (shouldComputePreferred == ComputePreferred && logicalMinWidth.isPercentOrCalculated()) || logicalMinWidth.isUndefined();
bool useLogicalWidthForMaxWidth = (shouldComputePreferred == ComputePreferred && logicalMaxWidth.isPercentOrCalculated()) || logicalMaxWidth.isUndefined();
auto minLogicalWidth = useLogicalWidthForMinWidth ? logicalWidth : computeReplacedLogicalWidthUsing(MinSize, logicalMinWidth);
auto maxLogicalWidth = useLogicalWidthForMaxWidth ? logicalWidth : computeReplacedLogicalWidthUsing(MaxSize, logicalMaxWidth);
return std::max(minLogicalWidth, std::min(logicalWidth, maxLogicalWidth));
}
LayoutUnit RenderBox::computeReplacedLogicalWidthUsing(SizeType widthType, Length logicalWidth) const
{
ASSERT(widthType == MinSize || widthType == MainOrPreferredSize || !logicalWidth.isAuto());
if (widthType == MinSize && logicalWidth.isAuto())
return adjustContentBoxLogicalWidthForBoxSizing(0, logicalWidth.type());
switch (logicalWidth.type()) {
case LengthType::Fixed:
return adjustContentBoxLogicalWidthForBoxSizing(logicalWidth);
case LengthType::MinContent:
case LengthType::MaxContent: {
// MinContent/MaxContent don't need the availableLogicalWidth argument.
LayoutUnit availableLogicalWidth;
return computeIntrinsicLogicalWidthUsing(logicalWidth, availableLogicalWidth, borderAndPaddingLogicalWidth()) - borderAndPaddingLogicalWidth();
}
case LengthType::FitContent:
case LengthType::FillAvailable:
case LengthType::Percent:
case LengthType::Calculated: {
LayoutUnit containerWidth;
if (isOutOfFlowPositioned())
containerWidth = containingBlockLogicalWidthForPositioned(downcast<RenderBoxModelObject>(*container()));
else if (isHorizontalWritingMode() == containingBlock()->isHorizontalWritingMode())
containerWidth = containingBlockLogicalWidthForContent();
else
containerWidth = perpendicularContainingBlockLogicalHeight();
Length containerLogicalWidth = containingBlock()->style().logicalWidth();
// FIXME: Handle cases when containing block width is calculated or viewport percent.
// https://bugs.webkit.org/show_bug.cgi?id=91071
if (logicalWidth.isIntrinsic())
return computeIntrinsicLogicalWidthUsing(logicalWidth, containerWidth, borderAndPaddingLogicalWidth()) - borderAndPaddingLogicalWidth();
if (containerWidth > 0 || (!containerWidth && (containerLogicalWidth.isFixed() || containerLogicalWidth.isPercentOrCalculated())))
return adjustContentBoxLogicalWidthForBoxSizing(minimumValueForLength(logicalWidth, containerWidth), logicalWidth.type());
return 0_lu;
}
case LengthType::Intrinsic:
case LengthType::MinIntrinsic:
case LengthType::Auto:
case LengthType::Content:
case LengthType::Relative:
case LengthType::Undefined:
return intrinsicLogicalWidth();
}
ASSERT_NOT_REACHED();
return 0;
}
LayoutUnit RenderBox::computeReplacedLogicalHeight(std::optional<LayoutUnit>) const
{
return computeReplacedLogicalHeightRespectingMinMaxHeight(computeReplacedLogicalHeightUsing(MainOrPreferredSize, style().logicalHeight()));
}
static bool allowMinMaxPercentagesInAutoHeightBlocksQuirk()
{
#if PLATFORM(COCOA)
return CocoaApplication::isIBooks();
#else
return false;
#endif
}
void RenderBox::computePreferredLogicalWidths()
{
ASSERT(preferredLogicalWidthsDirty());
computePreferredLogicalWidths(style().logicalMinWidth(), style().logicalMaxWidth(), borderAndPaddingLogicalWidth());
setPreferredLogicalWidthsDirty(false);
}
void RenderBox::computePreferredLogicalWidths(const Length& minWidth, const Length& maxWidth, LayoutUnit borderAndPadding)
{
if (shouldComputeLogicalHeightFromAspectRatio()) {
auto [logicalMinWidth, logicalMaxWidth] = computeMinMaxLogicalWidthFromAspectRatio();
m_minPreferredLogicalWidth = std::clamp(m_minPreferredLogicalWidth, logicalMinWidth, logicalMaxWidth);
m_maxPreferredLogicalWidth = std::clamp(m_maxPreferredLogicalWidth, logicalMinWidth, logicalMaxWidth);
}
if (maxWidth.isFixed()) {
auto adjustContentBoxLogicalWidth = adjustContentBoxLogicalWidthForBoxSizing(maxWidth);
m_maxPreferredLogicalWidth = std::min(m_maxPreferredLogicalWidth, adjustContentBoxLogicalWidth);
m_minPreferredLogicalWidth = std::min(m_minPreferredLogicalWidth, adjustContentBoxLogicalWidth);
}
if (minWidth.isFixed() && minWidth.value() > 0) {
auto adjustContentBoxLogicalWidth = adjustContentBoxLogicalWidthForBoxSizing(minWidth);
m_maxPreferredLogicalWidth = std::max(m_maxPreferredLogicalWidth, adjustContentBoxLogicalWidth);
m_minPreferredLogicalWidth = std::max(m_minPreferredLogicalWidth, adjustContentBoxLogicalWidth);
}
m_minPreferredLogicalWidth += borderAndPadding;
m_maxPreferredLogicalWidth += borderAndPadding;
}
bool RenderBox::replacedMinMaxLogicalHeightComputesAsNone(SizeType sizeType) const
{
ASSERT(sizeType == MinSize || sizeType == MaxSize);
auto logicalHeight = sizeType == MinSize ? style().logicalMinHeight() : style().logicalMaxHeight();
auto initialLogicalHeight = sizeType == MinSize ? RenderStyle::initialMinSize() : RenderStyle::initialMaxSize();
if (logicalHeight == initialLogicalHeight)
return true;
if (logicalHeight.isPercentOrCalculated() && hasOverridingContainingBlockContentLogicalHeight())
return overridingContainingBlockContentLogicalHeight() == std::nullopt;
// Make sure % min-height and % max-height resolve to none if the containing block has auto height.
// Note that the "height" case for replaced elements was handled by hasReplacedLogicalHeight, which is why
// min and max-height are the only ones handled here.
// FIXME: For now we put in a quirk for iBooks until we can move them to viewport units.
if (auto* cb = containingBlockForAutoHeightDetection(logicalHeight))
return allowMinMaxPercentagesInAutoHeightBlocksQuirk() ? false : cb->hasAutoHeightOrContainingBlockWithAutoHeight();
return false;
}
LayoutUnit RenderBox::computeReplacedLogicalHeightRespectingMinMaxHeight(LayoutUnit logicalHeight) const
{
LayoutUnit minLogicalHeight;
if (!replacedMinMaxLogicalHeightComputesAsNone(MinSize))
minLogicalHeight = computeReplacedLogicalHeightUsing(MinSize, style().logicalMinHeight());
LayoutUnit maxLogicalHeight = logicalHeight;
if (!replacedMinMaxLogicalHeightComputesAsNone(MaxSize))
maxLogicalHeight = computeReplacedLogicalHeightUsing(MaxSize, style().logicalMaxHeight());
return std::max(minLogicalHeight, std::min(logicalHeight, maxLogicalHeight));
}
LayoutUnit RenderBox::computeReplacedLogicalHeightUsing(SizeType heightType, Length logicalHeight) const
{
ASSERT(heightType == MinSize || heightType == MainOrPreferredSize || !logicalHeight.isAuto());
if (heightType == MinSize && logicalHeight.isAuto())
return adjustContentBoxLogicalHeightForBoxSizing(std::optional<LayoutUnit>(0));
switch (logicalHeight.type()) {
case LengthType::Fixed:
return adjustContentBoxLogicalHeightForBoxSizing(LayoutUnit(logicalHeight.value()));
case LengthType::Percent:
case LengthType::Calculated: {
auto* container = isOutOfFlowPositioned() ? this->container() : containingBlock();
while (container && container->isAnonymous()) {
// Stop at rendering context root.
if (is<RenderView>(*container))
break;
container = container->containingBlock();
}
bool hasPerpendicularContainingBlock = container->isHorizontalWritingMode() != isHorizontalWritingMode();
std::optional<LayoutUnit> stretchedHeight;
if (is<RenderBlock>(container)) {
auto* block = downcast<RenderBlock>(container);
block->addPercentHeightDescendant(*const_cast<RenderBox*>(this));
if (block->isFlexItem() && downcast<RenderFlexibleBox>(block->parent())->useChildOverridingLogicalHeightForPercentageResolution(*block))
stretchedHeight = block->overridingContentLogicalHeight();
else if (block->isGridItem() && block->hasOverridingLogicalHeight() && !hasPerpendicularContainingBlock)
stretchedHeight = block->overridingContentLogicalHeight();
}
// FIXME: This calculation is not patched for block-flow yet.
// https://bugs.webkit.org/show_bug.cgi?id=46500
if (container->isOutOfFlowPositioned()
&& container->style().height().isAuto()
&& !(container->style().top().isAuto() || container->style().bottom().isAuto())) {
RELEASE_ASSERT_WITH_SECURITY_IMPLICATION(container->isRenderBlock());
auto& block = downcast<RenderBlock>(*container);
auto computedValues = block.computeLogicalHeight(block.logicalHeight(), 0);
LayoutUnit newContentHeight = computedValues.m_extent - block.borderAndPaddingLogicalHeight() - block.scrollbarLogicalHeight();
return adjustContentBoxLogicalHeightForBoxSizing(valueForLength(logicalHeight, newContentHeight));
}
LayoutUnit availableHeight;
if (isOutOfFlowPositioned())
availableHeight = containingBlockLogicalHeightForPositioned(downcast<RenderBoxModelObject>(*container));
else if (stretchedHeight)
availableHeight = stretchedHeight.value();
else {
availableHeight = hasPerpendicularContainingBlock ? containingBlockLogicalWidthForContent() : containingBlockLogicalHeightForContent(IncludeMarginBorderPadding);
// It is necessary to use the border-box to match WinIE's broken
// box model. This is essential for sizing inside
// table cells using percentage heights.
// FIXME: This needs to be made block-flow-aware. If the cell and image are perpendicular block-flows, this isn't right.
// https://bugs.webkit.org/show_bug.cgi?id=46997
while (container && !is<RenderView>(*container)
&& (container->style().logicalHeight().isAuto() || container->style().logicalHeight().isPercentOrCalculated())) {
if (container->isTableCell()) {
// Don't let table cells squeeze percent-height replaced elements
// <http://bugs.webkit.org/show_bug.cgi?id=15359>
availableHeight = std::max(availableHeight, intrinsicLogicalHeight());
return valueForLength(logicalHeight, availableHeight - borderAndPaddingLogicalHeight());
}
downcast<RenderBlock>(*container).addPercentHeightDescendant(const_cast<RenderBox&>(*this));
container = container->containingBlock();
}
}
return adjustContentBoxLogicalHeightForBoxSizing(valueForLength(logicalHeight, availableHeight));
}
case LengthType::MinContent:
case LengthType::MaxContent:
case LengthType::FitContent:
case LengthType::FillAvailable:
return adjustContentBoxLogicalHeightForBoxSizing(computeIntrinsicLogicalContentHeightUsing(logicalHeight, intrinsicLogicalHeight(), borderAndPaddingLogicalHeight()));
default:
return intrinsicLogicalHeight();
}
}
LayoutUnit RenderBox::availableLogicalHeight(AvailableLogicalHeightType heightType) const
{
return constrainContentBoxLogicalHeightByMinMax(availableLogicalHeightUsing(style().logicalHeight(), heightType), std::nullopt);
}
LayoutUnit RenderBox::availableLogicalHeightUsing(const Length& h, AvailableLogicalHeightType heightType) const
{
// We need to stop here, since we don't want to increase the height of the table
// artificially. We're going to rely on this cell getting expanded to some new
// height, and then when we lay out again we'll use the calculation below.
if (isTableCell() && (h.isAuto() || h.isPercentOrCalculated())) {
if (hasOverridingLogicalHeight())
return overridingLogicalHeight() - computedCSSPaddingBefore() - computedCSSPaddingAfter() - borderBefore() - borderAfter();
return logicalHeight() - borderAndPaddingLogicalHeight();
}
if (isFlexItem() && downcast<RenderFlexibleBox>(*parent()).useChildOverridingLogicalHeightForPercentageResolution(*this))
return overridingContentLogicalHeight();
if (shouldComputeLogicalHeightFromAspectRatio())
return blockSizeFromAspectRatio(horizontalBorderAndPaddingExtent(), verticalBorderAndPaddingExtent(), style().logicalAspectRatio(), style().boxSizingForAspectRatio(), logicalWidth());
if (h.isPercentOrCalculated() && isOutOfFlowPositioned() && !isRenderFragmentedFlow()) {
// FIXME: This is wrong if the containingBlock has a perpendicular writing mode.
LayoutUnit availableHeight = containingBlockLogicalHeightForPositioned(*containingBlock());
return adjustContentBoxLogicalHeightForBoxSizing(valueForLength(h, availableHeight));
}
if (std::optional<LayoutUnit> heightIncludingScrollbar = computeContentAndScrollbarLogicalHeightUsing(MainOrPreferredSize, h, std::nullopt))
return std::max<LayoutUnit>(0, adjustContentBoxLogicalHeightForBoxSizing(heightIncludingScrollbar) - scrollbarLogicalHeight());
// FIXME: Check logicalTop/logicalBottom here to correctly handle vertical writing-mode.
// https://bugs.webkit.org/show_bug.cgi?id=46500
if (is<RenderBlock>(*this) && isOutOfFlowPositioned() && style().height().isAuto() && !(style().top().isAuto() || style().bottom().isAuto())) {
RenderBlock& block = const_cast<RenderBlock&>(downcast<RenderBlock>(*this));
auto computedValues = block.computeLogicalHeight(block.logicalHeight(), 0);
return computedValues.m_extent - block.borderAndPaddingLogicalHeight() - block.scrollbarLogicalHeight();
}
// FIXME: This is wrong if the containingBlock has a perpendicular writing mode.
LayoutUnit availableHeight = containingBlockLogicalHeightForContent(heightType);
if (heightType == ExcludeMarginBorderPadding) {
// FIXME: Margin collapsing hasn't happened yet, so this incorrectly removes collapsed margins.
availableHeight -= marginBefore() + marginAfter() + borderAndPaddingLogicalHeight();
}
return availableHeight;
}
void RenderBox::computeBlockDirectionMargins(const RenderBlock& containingBlock, LayoutUnit& marginBefore, LayoutUnit& marginAfter) const
{
if (isTableCell()) {
// FIXME: Not right if we allow cells to have different directionality than the table. If we do allow this, though,
// we may just do it with an extra anonymous block inside the cell.
marginBefore = 0;
marginAfter = 0;
return;
}
// Margins are calculated with respect to the logical width of
// the containing block (8.3)
LayoutUnit cw = containingBlockLogicalWidthForContent();
const RenderStyle& containingBlockStyle = containingBlock.style();
marginBefore = minimumValueForLength(style().marginBeforeUsing(&containingBlockStyle), cw);
marginAfter = minimumValueForLength(style().marginAfterUsing(&containingBlockStyle), cw);
}
void RenderBox::computeAndSetBlockDirectionMargins(const RenderBlock& containingBlock)
{
LayoutUnit marginBefore;
LayoutUnit marginAfter;
computeBlockDirectionMargins(containingBlock, marginBefore, marginAfter);
containingBlock.setMarginBeforeForChild(*this, marginBefore);
containingBlock.setMarginAfterForChild(*this, marginAfter);
}
LayoutUnit RenderBox::containingBlockLogicalWidthForPositioned(const RenderBoxModelObject& containingBlock, RenderFragmentContainer* fragment, bool checkForPerpendicularWritingMode) const
{
if (checkForPerpendicularWritingMode && containingBlock.isHorizontalWritingMode() != isHorizontalWritingMode())
return containingBlockLogicalHeightForPositioned(containingBlock, false);
if (hasOverridingContainingBlockContentLogicalWidth()) {
if (auto width = overridingContainingBlockContentLogicalWidth())
return width.value();
}
if (is<RenderBox>(containingBlock)) {
bool isFixedPosition = isFixedPositioned();
RenderFragmentedFlow* fragmentedFlow = enclosingFragmentedFlow();
if (!fragmentedFlow) {
if (isFixedPosition && is<RenderView>(containingBlock))
return downcast<RenderView>(containingBlock).clientLogicalWidthForFixedPosition();
return downcast<RenderBox>(containingBlock).clientLogicalWidth();
}
if (!is<RenderBlock>(containingBlock))
return downcast<RenderBox>(containingBlock).clientLogicalWidth();
const RenderBlock& cb = downcast<RenderBlock>(containingBlock);
RenderBoxFragmentInfo* boxInfo = nullptr;
if (!fragment) {
if (is<RenderFragmentedFlow>(containingBlock) && !checkForPerpendicularWritingMode)
return downcast<RenderFragmentedFlow>(containingBlock).contentLogicalWidthOfFirstFragment();
if (isWritingModeRoot()) {
LayoutUnit cbPageOffset = cb.offsetFromLogicalTopOfFirstPage();
RenderFragmentContainer* cbFragment = cb.fragmentAtBlockOffset(cbPageOffset);
if (cbFragment)
boxInfo = cb.renderBoxFragmentInfo(cbFragment);
}
} else if (fragmentedFlow->isHorizontalWritingMode() == containingBlock.isHorizontalWritingMode()) {
RenderFragmentContainer* containingBlockFragment = cb.clampToStartAndEndFragments(fragment);
boxInfo = cb.renderBoxFragmentInfo(containingBlockFragment);
}
return (boxInfo) ? std::max<LayoutUnit>(0, cb.clientLogicalWidth() - (cb.logicalWidth() - boxInfo->logicalWidth())) : cb.clientLogicalWidth();
}
ASSERT(containingBlock.isInFlowPositioned());
const auto& flow = downcast<RenderInline>(containingBlock);
LegacyInlineFlowBox* first = flow.firstLineBox();
LegacyInlineFlowBox* last = flow.lastLineBox();
// If the containing block is empty, return a width of 0.
if (!first || !last)
return 0;
LayoutUnit fromLeft;
LayoutUnit fromRight;
if (containingBlock.style().isLeftToRightDirection()) {
fromLeft = first->logicalLeft() + first->borderLogicalLeft();
fromRight = last->logicalLeft() + last->logicalWidth() - last->borderLogicalRight();
} else {
fromRight = first->logicalLeft() + first->logicalWidth() - first->borderLogicalRight();
fromLeft = last->logicalLeft() + last->borderLogicalLeft();
}
return std::max<LayoutUnit>(0, fromRight - fromLeft);
}
LayoutUnit RenderBox::containingBlockLogicalHeightForPositioned(const RenderBoxModelObject& containingBlock, bool checkForPerpendicularWritingMode) const
{
if (checkForPerpendicularWritingMode && containingBlock.isHorizontalWritingMode() != isHorizontalWritingMode())
return containingBlockLogicalWidthForPositioned(containingBlock, nullptr, false);
if (hasOverridingContainingBlockContentLogicalHeight()) {
if (auto height = overridingContainingBlockContentLogicalHeight())
return height.value();
}
if (containingBlock.isBox()) {
bool isFixedPosition = isFixedPositioned();
if (isFixedPosition && is<RenderView>(containingBlock))
return downcast<RenderView>(containingBlock).clientLogicalHeightForFixedPosition();
const RenderBlock& cb = is<RenderBlock>(containingBlock) ? downcast<RenderBlock>(containingBlock) : *containingBlock.containingBlock();
LayoutUnit result = cb.clientLogicalHeight();
RenderFragmentedFlow* fragmentedFlow = enclosingFragmentedFlow();
if (fragmentedFlow && is<RenderFragmentedFlow>(containingBlock) && fragmentedFlow->isHorizontalWritingMode() == containingBlock.isHorizontalWritingMode())
return downcast<RenderFragmentedFlow>(containingBlock).contentLogicalHeightOfFirstFragment();
return result;
}
ASSERT(containingBlock.isInFlowPositioned());
const auto& flow = downcast<RenderInline>(containingBlock);
LegacyInlineFlowBox* first = flow.firstLineBox();
LegacyInlineFlowBox* last = flow.lastLineBox();
// If the containing block is empty, return a height of 0.
if (!first || !last)
return 0;
LayoutUnit heightResult;
LayoutRect boundingBox = flow.linesBoundingBox();
if (containingBlock.isHorizontalWritingMode())
heightResult = boundingBox.height();
else
heightResult = boundingBox.width();
heightResult -= (containingBlock.borderBefore() + containingBlock.borderAfter());
return heightResult;
}
// FIXME: evaluate whether this should be a method of RenderObject instead.
static inline bool isOrthogonal(const RenderObject& renderer, const RenderObject& ancestor)
{
return renderer.isHorizontalWritingMode() != ancestor.isHorizontalWritingMode();
}
static void computeInlineStaticDistance(Length& logicalLeft, Length& logicalRight, const RenderBox* child, const RenderBoxModelObject& containerBlock, LayoutUnit containerLogicalWidth, RenderFragmentContainer* fragment)
{
if (!logicalLeft.isAuto() || !logicalRight.isAuto())
return;
RenderObject* parent = child->parent();
TextDirection parentDirection = parent->style().direction();
// This method is using enclosingBox() which is wrong for absolutely
// positioned grid items, as they rely on the grid area. So for grid items if
// both "left" and "right" properties are "auto", we can consider that one of
// them (depending on the direction) is simply "0".
if (parent->isRenderGrid() && parent == child->containingBlock()) {
if (parentDirection == TextDirection::LTR)
logicalLeft.setValue(LengthType::Fixed, 0);
else
logicalRight.setValue(LengthType::Fixed, 0);
return;
}
// For orthogonal flows we don't care whether the parent is LTR or RTL because it does not affect the position in our inline axis.
if (parentDirection == TextDirection::LTR || isOrthogonal(*child, *parent)) {
LayoutUnit staticPosition = isOrthogonal(*child, *parent) ? child->layer()->staticBlockPosition() - containerBlock.borderBefore() : child->layer()->staticInlinePosition() - containerBlock.borderLogicalLeft();
for (auto* current = parent; current && current != &containerBlock; current = current->container()) {
if (!is<RenderBox>(*current))
continue;
const auto& renderBox = downcast<RenderBox>(*current);
staticPosition += isOrthogonal(*child, *parent) ? renderBox.logicalTop() : renderBox.logicalLeft();
if (renderBox.isInFlowPositioned())
staticPosition += renderBox.isHorizontalWritingMode() ? renderBox.offsetForInFlowPosition().width() : renderBox.offsetForInFlowPosition().height();
if (fragment && is<RenderBlock>(*current)) {
const RenderBlock& currentBlock = downcast<RenderBlock>(*current);
fragment = currentBlock.clampToStartAndEndFragments(fragment);
RenderBoxFragmentInfo* boxInfo = currentBlock.renderBoxFragmentInfo(fragment);
if (boxInfo)
staticPosition += boxInfo->logicalLeft();
}
}
logicalLeft.setValue(LengthType::Fixed, staticPosition);
} else {
ASSERT(!isOrthogonal(*child, *parent));
LayoutUnit staticPosition = child->layer()->staticInlinePosition() + containerLogicalWidth + containerBlock.borderLogicalLeft();
auto& enclosingBox = parent->enclosingBox();
if (&enclosingBox != &containerBlock && containerBlock.isDescendantOf(&enclosingBox)) {
logicalRight.setValue(LengthType::Fixed, staticPosition);
return;
}
staticPosition -= enclosingBox.logicalWidth();
for (const RenderElement* current = &enclosingBox; current; current = current->container()) {
if (!is<RenderBox>(*current))
continue;
if (current != &containerBlock) {
auto& renderBox = downcast<RenderBox>(*current);
staticPosition -= renderBox.logicalLeft();
if (renderBox.isInFlowPositioned())
staticPosition -= renderBox.isHorizontalWritingMode() ? renderBox.offsetForInFlowPosition().width() : renderBox.offsetForInFlowPosition().height();
}
if (fragment && is<RenderBlock>(*current)) {
auto& currentBlock = downcast<RenderBlock>(*current);
fragment = currentBlock.clampToStartAndEndFragments(fragment);
RenderBoxFragmentInfo* boxInfo = currentBlock.renderBoxFragmentInfo(fragment);
if (boxInfo) {
if (current != &containerBlock)
staticPosition -= currentBlock.logicalWidth() - (boxInfo->logicalLeft() + boxInfo->logicalWidth());
if (current == &enclosingBox)
staticPosition += enclosingBox.logicalWidth() - boxInfo->logicalWidth();
}
}
if (current == &containerBlock)
break;
}
logicalRight.setValue(LengthType::Fixed, staticPosition);
}
}
void RenderBox::computePositionedLogicalWidth(LogicalExtentComputedValues& computedValues, RenderFragmentContainer* fragment) const
{
if (isReplacedOrInlineBlock()) {
// FIXME: Positioned replaced elements inside a flow thread are not working properly
// with variable width fragments (see https://bugs.webkit.org/show_bug.cgi?id=69896 ).
computePositionedLogicalWidthReplaced(computedValues);
return;
}
// QUESTIONS
// FIXME 1: Should we still deal with these the cases of 'left' or 'right' having
// the type 'static' in determining whether to calculate the static distance?
// NOTE: 'static' is not a legal value for 'left' or 'right' as of CSS 2.1.
// FIXME 2: Can perhaps optimize out cases when max-width/min-width are greater
// than or less than the computed width(). Be careful of box-sizing and
// percentage issues.
// The following is based off of the W3C Working Draft from April 11, 2006 of
// CSS 2.1: Section 10.3.7 "Absolutely positioned, non-replaced elements"
// <http://www.w3.org/TR/CSS21/visudet.html#abs-non-replaced-width>
// (block-style-comments in this function and in computePositionedLogicalWidthUsing()
// correspond to text from the spec)
// We don't use containingBlock(), since we may be positioned by an enclosing
// relative positioned inline.
const RenderBoxModelObject& containerBlock = downcast<RenderBoxModelObject>(*container());
const LayoutUnit containerLogicalWidth = containingBlockLogicalWidthForPositioned(containerBlock, fragment);
// Use the container block's direction except when calculating the static distance
// This conforms with the reference results for abspos-replaced-width-margin-000.htm
// of the CSS 2.1 test suite
TextDirection containerDirection = containerBlock.style().direction();
bool isHorizontal = isHorizontalWritingMode();
const LayoutUnit bordersPlusPadding = borderAndPaddingLogicalWidth();
const Length marginLogicalLeft = isHorizontal ? style().marginLeft() : style().marginTop();
const Length marginLogicalRight = isHorizontal ? style().marginRight() : style().marginBottom();
Length logicalLeftLength = style().logicalLeft();
Length logicalRightLength = style().logicalRight();
/*---------------------------------------------------------------------------*\
* For the purposes of this section and the next, the term "static position"
* (of an element) refers, roughly, to the position an element would have had
* in the normal flow. More precisely:
*
* * The static position for 'left' is the distance from the left edge of the
* containing block to the left margin edge of a hypothetical box that would
* have been the first box of the element if its 'position' property had
* been 'static' and 'float' had been 'none'. The value is negative if the
* hypothetical box is to the left of the containing block.
* * The static position for 'right' is the distance from the right edge of the
* containing block to the right margin edge of the same hypothetical box as
* above. The value is positive if the hypothetical box is to the left of the
* containing block's edge.
*
* But rather than actually calculating the dimensions of that hypothetical box,
* user agents are free to make a guess at its probable position.
*
* For the purposes of calculating the static position, the containing block of
* fixed positioned elements is the initial containing block instead of the
* viewport, and all scrollable boxes should be assumed to be scrolled to their
* origin.
\*---------------------------------------------------------------------------*/
// see FIXME 1
// Calculate the static distance if needed.
computeInlineStaticDistance(logicalLeftLength, logicalRightLength, this, containerBlock, containerLogicalWidth, fragment);
// Calculate constraint equation values for 'width' case.
computePositionedLogicalWidthUsing(MainOrPreferredSize, style().logicalWidth(), containerBlock, containerDirection,
containerLogicalWidth, bordersPlusPadding,
logicalLeftLength, logicalRightLength, marginLogicalLeft, marginLogicalRight,
computedValues);
LayoutUnit transferredMinSize = LayoutUnit::min();
LayoutUnit transferredMaxSize = LayoutUnit::max();
if (shouldComputeLogicalHeightFromAspectRatio())
std::tie(transferredMinSize, transferredMaxSize) = computeMinMaxLogicalWidthFromAspectRatio();
LogicalExtentComputedValues maxValues;
maxValues.m_extent = LayoutUnit::max();
// Calculate constraint equation values for 'max-width' case.
if (!style().logicalMaxWidth().isUndefined()) {
computePositionedLogicalWidthUsing(MaxSize, style().logicalMaxWidth(), containerBlock, containerDirection,
containerLogicalWidth, bordersPlusPadding,
logicalLeftLength, logicalRightLength, marginLogicalLeft, marginLogicalRight,
maxValues);
}
if (transferredMaxSize < maxValues.m_extent) {
computePositionedLogicalWidthUsing(MaxSize, Length(transferredMaxSize, LengthType::Fixed), containerBlock, containerDirection,
containerLogicalWidth, bordersPlusPadding,
logicalLeftLength, logicalRightLength, marginLogicalLeft, marginLogicalRight,
maxValues);
}
if (computedValues.m_extent > maxValues.m_extent) {
computedValues.m_extent = maxValues.m_extent;
computedValues.m_position = maxValues.m_position;
computedValues.m_margins.m_start = maxValues.m_margins.m_start;
computedValues.m_margins.m_end = maxValues.m_margins.m_end;
}
LogicalExtentComputedValues minValues;
minValues.m_extent = LayoutUnit::min();
// Calculate constraint equation values for 'min-width' case.
if (!style().logicalMinWidth().isZero() || style().logicalMinWidth().isIntrinsic()) {
computePositionedLogicalWidthUsing(MinSize, style().logicalMinWidth(), containerBlock, containerDirection,
containerLogicalWidth, bordersPlusPadding,
logicalLeftLength, logicalRightLength, marginLogicalLeft, marginLogicalRight,
minValues);
}
if (transferredMinSize > minValues.m_extent) {
computePositionedLogicalWidthUsing(MinSize, Length(transferredMinSize, LengthType::Fixed), containerBlock, containerDirection,
containerLogicalWidth, bordersPlusPadding,
logicalLeftLength, logicalRightLength, marginLogicalLeft, marginLogicalRight,
minValues);
}
if (computedValues.m_extent < minValues.m_extent) {
computedValues.m_extent = minValues.m_extent;
computedValues.m_position = minValues.m_position;
computedValues.m_margins.m_start = minValues.m_margins.m_start;
computedValues.m_margins.m_end = minValues.m_margins.m_end;
}
computedValues.m_extent += bordersPlusPadding;
if (is<RenderBox>(containerBlock)) {
auto& containingBox = downcast<RenderBox>(containerBlock);
if (containingBox.shouldPlaceVerticalScrollbarOnLeft() && isHorizontalWritingMode())
computedValues.m_position += containingBox.verticalScrollbarWidth();
}
// Adjust logicalLeft if we need to for the flipped version of our writing mode in fragments.
// FIXME: Add support for other types of objects as containerBlock, not only RenderBlock.
RenderFragmentedFlow* fragmentedFlow = enclosingFragmentedFlow();
if (fragmentedFlow && !fragment && isWritingModeRoot() && isHorizontalWritingMode() == containerBlock.isHorizontalWritingMode() && is<RenderBlock>(containerBlock)) {
ASSERT(containerBlock.canHaveBoxInfoInFragment());
LayoutUnit logicalLeftPos = computedValues.m_position;
const RenderBlock& renderBlock = downcast<RenderBlock>(containerBlock);
LayoutUnit cbPageOffset = renderBlock.offsetFromLogicalTopOfFirstPage();
RenderFragmentContainer* cbFragment = renderBlock.fragmentAtBlockOffset(cbPageOffset);
if (cbFragment) {
RenderBoxFragmentInfo* boxInfo = renderBlock.renderBoxFragmentInfo(cbFragment);
if (boxInfo) {
logicalLeftPos += boxInfo->logicalLeft();
computedValues.m_position = logicalLeftPos;
}
}
}
}
static void computeLogicalLeftPositionedOffset(LayoutUnit& logicalLeftPos, const RenderBox* child, LayoutUnit logicalWidthValue, const RenderBoxModelObject& containerBlock, LayoutUnit containerLogicalWidth, bool logicalLeftIsAuto, bool logicalRightIsAuto)
{
auto logicalLeftAndRightAreAuto = logicalLeftIsAuto && logicalRightIsAuto;
bool isOverconstrained = !logicalLeftIsAuto && !logicalRightIsAuto && !child->style().logicalWidth().isAuto();
// Deal with differing writing modes here. Our offset needs to be in the containing block's coordinate space. If the containing block is flipped
// along this axis, then we need to flip the coordinate. Auto positioned items do not need this correction as it was properly handled in
// computeInlineStaticDistance().
if (isOrthogonal(*child, containerBlock) && !logicalLeftAndRightAreAuto && !isOverconstrained && containerBlock.style().isFlippedBlocksWritingMode()) {
logicalLeftPos = containerLogicalWidth - logicalWidthValue - logicalLeftPos;
logicalLeftPos += (child->isHorizontalWritingMode() ? containerBlock.borderRight() : containerBlock.borderBottom());
} else
logicalLeftPos += (child->isHorizontalWritingMode() ? containerBlock.borderLeft() : containerBlock.borderTop());
}
void RenderBox::computePositionedLogicalWidthUsing(SizeType widthType, Length logicalWidth, const RenderBoxModelObject& containerBlock, TextDirection containerDirection,
LayoutUnit containerLogicalWidth, LayoutUnit bordersPlusPadding,
Length logicalLeft, Length logicalRight, Length marginLogicalLeft, Length marginLogicalRight,
LogicalExtentComputedValues& computedValues) const
{
ASSERT(widthType == MinSize || widthType == MainOrPreferredSize || !logicalWidth.isAuto());
auto originalLogicalWidthType = logicalWidth.type();
if (widthType == MinSize && logicalWidth.isAuto()) {
if (shouldComputeLogicalWidthFromAspectRatio()) {
LayoutUnit minLogicalWidth;
LayoutUnit maxLogicalWidth;
computeIntrinsicLogicalWidths(minLogicalWidth, maxLogicalWidth);
logicalWidth = Length(minLogicalWidth, LengthType::Fixed);
} else
logicalWidth = Length(0, LengthType::Fixed);
} else if (widthType == MainOrPreferredSize && logicalWidth.isAuto() && shouldComputeLogicalWidthFromAspectRatio())
logicalWidth = Length(computeLogicalWidthFromAspectRatio(), LengthType::Fixed);
else if (logicalWidth.isIntrinsic())
logicalWidth = Length(computeIntrinsicLogicalWidthUsing(logicalWidth, containerLogicalWidth, bordersPlusPadding) - bordersPlusPadding, LengthType::Fixed);
// 'left' and 'right' cannot both be 'auto' because one would of been
// converted to the static position already
ASSERT(!(logicalLeft.isAuto() && logicalRight.isAuto()));
LayoutUnit logicalLeftValue;
const LayoutUnit containerRelativeLogicalWidth = containingBlockLogicalWidthForPositioned(containerBlock, nullptr, false);
bool logicalWidthIsAuto = logicalWidth.isIntrinsicOrAuto() && !shouldComputeLogicalWidthFromAspectRatio();
bool logicalLeftIsAuto = logicalLeft.isAuto();
bool logicalRightIsAuto = logicalRight.isAuto();
LayoutUnit& marginLogicalLeftValue = style().isLeftToRightDirection() ? computedValues.m_margins.m_start : computedValues.m_margins.m_end;
LayoutUnit& marginLogicalRightValue = style().isLeftToRightDirection() ? computedValues.m_margins.m_end : computedValues.m_margins.m_start;
if (!logicalLeftIsAuto && !logicalWidthIsAuto && !logicalRightIsAuto) {
/*-----------------------------------------------------------------------*\
* If none of the three is 'auto': If both 'margin-left' and 'margin-
* right' are 'auto', solve the equation under the extra constraint that
* the two margins get equal values, unless this would make them negative,
* in which case when direction of the containing block is 'ltr' ('rtl'),
* set 'margin-left' ('margin-right') to zero and solve for 'margin-right'
* ('margin-left'). If one of 'margin-left' or 'margin-right' is 'auto',
* solve the equation for that value. If the values are over-constrained,
* ignore the value for 'left' (in case the 'direction' property of the
* containing block is 'rtl') or 'right' (in case 'direction' is 'ltr')
* and solve for that value.
\*-----------------------------------------------------------------------*/
// NOTE: It is not necessary to solve for 'right' in the over constrained
// case because the value is not used for any further calculations.
logicalLeftValue = valueForLength(logicalLeft, containerLogicalWidth);
computedValues.m_extent = adjustContentBoxLogicalWidthForBoxSizing(valueForLength(logicalWidth, containerLogicalWidth), originalLogicalWidthType);
const LayoutUnit availableSpace = containerLogicalWidth - (logicalLeftValue + computedValues.m_extent + valueForLength(logicalRight, containerLogicalWidth) + bordersPlusPadding);
// Margins are now the only unknown
if (marginLogicalLeft.isAuto() && marginLogicalRight.isAuto()) {
// Both margins auto, solve for equality
if (availableSpace >= 0) {
marginLogicalLeftValue = availableSpace / 2; // split the difference
marginLogicalRightValue = availableSpace - marginLogicalLeftValue; // account for odd valued differences
} else {
// Use the containing block's direction rather than the parent block's
// per CSS 2.1 reference test abspos-non-replaced-width-margin-000.
if (containerDirection == TextDirection::LTR) {
marginLogicalLeftValue = 0;
marginLogicalRightValue = availableSpace; // will be negative
} else {
marginLogicalLeftValue = availableSpace; // will be negative
marginLogicalRightValue = 0;
}
}
} else if (marginLogicalLeft.isAuto()) {
// Solve for left margin
marginLogicalRightValue = valueForLength(marginLogicalRight, containerRelativeLogicalWidth);
marginLogicalLeftValue = availableSpace - marginLogicalRightValue;
} else if (marginLogicalRight.isAuto()) {
// Solve for right margin
marginLogicalLeftValue = valueForLength(marginLogicalLeft, containerRelativeLogicalWidth);
marginLogicalRightValue = availableSpace - marginLogicalLeftValue;
} else {
// Over-constrained, solve for left if direction is RTL
marginLogicalLeftValue = valueForLength(marginLogicalLeft, containerRelativeLogicalWidth);
marginLogicalRightValue = valueForLength(marginLogicalRight, containerRelativeLogicalWidth);
// Use the containing block's direction rather than the parent block's
// per CSS 2.1 reference test abspos-non-replaced-width-margin-000.
if (!isOrthogonal(*this, containerBlock) && containerDirection == TextDirection::RTL)
logicalLeftValue = (availableSpace + logicalLeftValue) - marginLogicalLeftValue - marginLogicalRightValue;
}
} else {
/*--------------------------------------------------------------------*\
* Otherwise, set 'auto' values for 'margin-left' and 'margin-right'
* to 0, and pick the one of the following six rules that applies.
*
* 1. 'left' and 'width' are 'auto' and 'right' is not 'auto', then the
* width is shrink-to-fit. Then solve for 'left'
*
* OMIT RULE 2 AS IT SHOULD NEVER BE HIT
* ------------------------------------------------------------------
* 2. 'left' and 'right' are 'auto' and 'width' is not 'auto', then if
* the 'direction' property of the containing block is 'ltr' set
* 'left' to the static position, otherwise set 'right' to the
* static position. Then solve for 'left' (if 'direction is 'rtl')
* or 'right' (if 'direction' is 'ltr').
* ------------------------------------------------------------------
*
* 3. 'width' and 'right' are 'auto' and 'left' is not 'auto', then the
* width is shrink-to-fit . Then solve for 'right'
* 4. 'left' is 'auto', 'width' and 'right' are not 'auto', then solve
* for 'left'
* 5. 'width' is 'auto', 'left' and 'right' are not 'auto', then solve
* for 'width'
* 6. 'right' is 'auto', 'left' and 'width' are not 'auto', then solve
* for 'right'
*
* Calculation of the shrink-to-fit width is similar to calculating the
* width of a table cell using the automatic table layout algorithm.
* Roughly: calculate the preferred width by formatting the content
* without breaking lines other than where explicit line breaks occur,
* and also calculate the preferred minimum width, e.g., by trying all
* possible line breaks. CSS 2.1 does not define the exact algorithm.
* Thirdly, calculate the available width: this is found by solving
* for 'width' after setting 'left' (in case 1) or 'right' (in case 3)
* to 0.
*
* Then the shrink-to-fit width is:
* min(max(preferred minimum width, available width), preferred width).
\*--------------------------------------------------------------------*/
// NOTE: For rules 3 and 6 it is not necessary to solve for 'right'
// because the value is not used for any further calculations.
// Calculate margins, 'auto' margins are ignored.
marginLogicalLeftValue = minimumValueForLength(marginLogicalLeft, containerRelativeLogicalWidth);
marginLogicalRightValue = minimumValueForLength(marginLogicalRight, containerRelativeLogicalWidth);
const LayoutUnit availableSpace = containerLogicalWidth - (marginLogicalLeftValue + marginLogicalRightValue + bordersPlusPadding);
// FIXME: Is there a faster way to find the correct case?
// Use rule/case that applies.
if (logicalLeftIsAuto && logicalWidthIsAuto && !logicalRightIsAuto) {
// RULE 1: (use shrink-to-fit for width, and solve of left)
LayoutUnit logicalRightValue = valueForLength(logicalRight, containerLogicalWidth);
// FIXME: would it be better to have shrink-to-fit in one step?
LayoutUnit preferredWidth = maxPreferredLogicalWidth() - bordersPlusPadding;
LayoutUnit preferredMinWidth = minPreferredLogicalWidth() - bordersPlusPadding;
LayoutUnit availableWidth = availableSpace - logicalRightValue;
computedValues.m_extent = std::min(std::max(preferredMinWidth, availableWidth), preferredWidth);
logicalLeftValue = availableSpace - (computedValues.m_extent + logicalRightValue);
} else if (!logicalLeftIsAuto && logicalWidthIsAuto && logicalRightIsAuto) {
// RULE 3: (use shrink-to-fit for width, and no need solve of right)
logicalLeftValue = valueForLength(logicalLeft, containerLogicalWidth);
// FIXME: would it be better to have shrink-to-fit in one step?
LayoutUnit preferredWidth = maxPreferredLogicalWidth() - bordersPlusPadding;
LayoutUnit preferredMinWidth = minPreferredLogicalWidth() - bordersPlusPadding;
LayoutUnit availableWidth = availableSpace - logicalLeftValue;
computedValues.m_extent = std::min(std::max(preferredMinWidth, availableWidth), preferredWidth);
} else if (logicalLeftIsAuto && !logicalWidthIsAuto && !logicalRightIsAuto) {
// RULE 4: (solve for left)
computedValues.m_extent = adjustContentBoxLogicalWidthForBoxSizing(valueForLength(logicalWidth, containerLogicalWidth), originalLogicalWidthType);
logicalLeftValue = availableSpace - (computedValues.m_extent + valueForLength(logicalRight, containerLogicalWidth));
} else if (!logicalLeftIsAuto && logicalWidthIsAuto && !logicalRightIsAuto) {
// RULE 5: (solve for width)
logicalLeftValue = valueForLength(logicalLeft, containerLogicalWidth);
computedValues.m_extent = availableSpace - (logicalLeftValue + valueForLength(logicalRight, containerLogicalWidth));
} else if (!logicalLeftIsAuto && !logicalWidthIsAuto && logicalRightIsAuto) {
// RULE 6: (no need solve for right)
logicalLeftValue = valueForLength(logicalLeft, containerLogicalWidth);
computedValues.m_extent = adjustContentBoxLogicalWidthForBoxSizing(valueForLength(logicalWidth, containerLogicalWidth), originalLogicalWidthType);
}
}
// Use computed values to calculate the horizontal position.
// FIXME: This hack is needed to calculate the logical left position for a 'rtl' relatively
// positioned, inline because right now, it is using the logical left position
// of the first line box when really it should use the last line box. When
// this is fixed elsewhere, this block should be removed.
if (is<RenderInline>(containerBlock) && !containerBlock.style().isLeftToRightDirection()) {
const auto& flow = downcast<RenderInline>(containerBlock);
LegacyInlineFlowBox* firstLine = flow.firstLineBox();
LegacyInlineFlowBox* lastLine = flow.lastLineBox();
if (firstLine && lastLine && firstLine != lastLine) {
computedValues.m_position = logicalLeftValue + marginLogicalLeftValue + lastLine->borderLogicalLeft() + (lastLine->logicalLeft() - firstLine->logicalLeft());
return;
}
}
computedValues.m_position = logicalLeftValue + marginLogicalLeftValue;
computeLogicalLeftPositionedOffset(computedValues.m_position, this, computedValues.m_extent + bordersPlusPadding, containerBlock, containerLogicalWidth, style().logicalLeft().isAuto(), style().logicalRight().isAuto());
}
static void computeBlockStaticDistance(Length& logicalTop, Length& logicalBottom, const RenderBox* child, const RenderBoxModelObject& containerBlock)
{
if (!logicalTop.isAuto() || !logicalBottom.isAuto())
return;
RenderObject* parent = child->parent();
// The static positions from the child's layer are relative to the container block's coordinate space (which is determined
// by the writing mode and text direction), meaning that for orthogonal flows the logical top of the child (which depends on
// the child's writing mode) is retrieved from the static inline position instead of the static block position.
LayoutUnit staticLogicalTop = isOrthogonal(*child, *parent) ? child->layer()->staticInlinePosition() - containerBlock.borderLogicalLeft() : child->layer()->staticBlockPosition() - containerBlock.borderBefore();
for (RenderElement* container = child->parent(); container && container != &containerBlock; container = container->container()) {
if (!is<RenderBox>(*container))
continue;
const auto& renderBox = downcast<RenderBox>(*container);
if (!is<RenderTableRow>(renderBox))
staticLogicalTop += isOrthogonal(*child, *parent) ? renderBox.logicalLeft() : renderBox.logicalTop();
if (renderBox.isInFlowPositioned())
staticLogicalTop += renderBox.isHorizontalWritingMode() ? renderBox.offsetForInFlowPosition().height() : renderBox.offsetForInFlowPosition().width();
}
// If the parent is RTL then we need to flip the coordinate by setting the logical bottom instead of the logical top. That only needs
// to be done in case of orthogonal writing modes, for horizontal ones the text direction of the parent does not affect the block position.
if (parent->style().direction() != TextDirection::LTR && isOrthogonal(*child, *parent))
logicalBottom.setValue(LengthType::Fixed, staticLogicalTop);
else
logicalTop.setValue(LengthType::Fixed, staticLogicalTop);
}
void RenderBox::computePositionedLogicalHeight(LogicalExtentComputedValues& computedValues) const
{
if (isReplacedOrInlineBlock()) {
computePositionedLogicalHeightReplaced(computedValues);
return;
}
// The following is based off of the W3C Working Draft from April 11, 2006 of
// CSS 2.1: Section 10.6.4 "Absolutely positioned, non-replaced elements"
// <http://www.w3.org/TR/2005/WD-CSS21-20050613/visudet.html#abs-non-replaced-height>
// (block-style-comments in this function and in computePositionedLogicalHeightUsing()
// correspond to text from the spec)
// We don't use containingBlock(), since we may be positioned by an enclosing relpositioned inline.
const RenderBoxModelObject& containerBlock = downcast<RenderBoxModelObject>(*container());
const LayoutUnit containerLogicalHeight = containingBlockLogicalHeightForPositioned(containerBlock);
const RenderStyle& styleToUse = style();
const LayoutUnit bordersPlusPadding = borderAndPaddingLogicalHeight();
const Length marginBefore = styleToUse.marginBefore();
const Length marginAfter = styleToUse.marginAfter();
Length logicalTopLength = styleToUse.logicalTop();
Length logicalBottomLength = styleToUse.logicalBottom();
/*---------------------------------------------------------------------------*\
* For the purposes of this section and the next, the term "static position"
* (of an element) refers, roughly, to the position an element would have had
* in the normal flow. More precisely, the static position for 'top' is the
* distance from the top edge of the containing block to the top margin edge
* of a hypothetical box that would have been the first box of the element if
* its 'position' property had been 'static' and 'float' had been 'none'. The
* value is negative if the hypothetical box is above the containing block.
*
* But rather than actually calculating the dimensions of that hypothetical
* box, user agents are free to make a guess at its probable position.
*
* For the purposes of calculating the static position, the containing block
* of fixed positioned elements is the initial containing block instead of
* the viewport.
\*---------------------------------------------------------------------------*/
// see FIXME 1
// Calculate the static distance if needed.
computeBlockStaticDistance(logicalTopLength, logicalBottomLength, this, containerBlock);
// Calculate constraint equation values for 'height' case.
LayoutUnit logicalHeight = computedValues.m_extent;
computePositionedLogicalHeightUsing(MainOrPreferredSize, styleToUse.logicalHeight(), containerBlock, containerLogicalHeight, bordersPlusPadding, logicalHeight,
logicalTopLength, logicalBottomLength, marginBefore, marginAfter,
computedValues);
// Avoid doing any work in the common case (where the values of min-height and max-height are their defaults).
// see FIXME 2
// Calculate constraint equation values for 'max-height' case.
if (!styleToUse.logicalMaxHeight().isUndefined()) {
LogicalExtentComputedValues maxValues;
computePositionedLogicalHeightUsing(MaxSize, styleToUse.logicalMaxHeight(), containerBlock, containerLogicalHeight, bordersPlusPadding, logicalHeight,
logicalTopLength, logicalBottomLength, marginBefore, marginAfter,
maxValues);
if (computedValues.m_extent > maxValues.m_extent) {
computedValues.m_extent = maxValues.m_extent;
computedValues.m_position = maxValues.m_position;
computedValues.m_margins.m_before = maxValues.m_margins.m_before;
computedValues.m_margins.m_after = maxValues.m_margins.m_after;
}
}
// Calculate constraint equation values for 'min-height' case.
Length logicalMinHeight = styleToUse.logicalMinHeight();
if (logicalMinHeight.isAuto() || !logicalMinHeight.isZero() || logicalMinHeight.isIntrinsic()) {
LogicalExtentComputedValues minValues;
computePositionedLogicalHeightUsing(MinSize, styleToUse.logicalMinHeight(), containerBlock, containerLogicalHeight, bordersPlusPadding, logicalHeight,
logicalTopLength, logicalBottomLength, marginBefore, marginAfter,
minValues);
if (computedValues.m_extent < minValues.m_extent) {
computedValues.m_extent = minValues.m_extent;
computedValues.m_position = minValues.m_position;
computedValues.m_margins.m_before = minValues.m_margins.m_before;
computedValues.m_margins.m_after = minValues.m_margins.m_after;
}
}
// Set final height value.
computedValues.m_extent += bordersPlusPadding;
// Adjust logicalTop if we need to for perpendicular writing modes in fragments.
// FIXME: Add support for other types of objects as containerBlock, not only RenderBlock.
RenderFragmentedFlow* fragmentedFlow = enclosingFragmentedFlow();
if (fragmentedFlow && isHorizontalWritingMode() != containerBlock.isHorizontalWritingMode() && is<RenderBlock>(containerBlock)) {
ASSERT(containerBlock.canHaveBoxInfoInFragment());
LayoutUnit logicalTopPos = computedValues.m_position;
const RenderBlock& renderBox = downcast<RenderBlock>(containerBlock);
LayoutUnit cbPageOffset = renderBox.offsetFromLogicalTopOfFirstPage() - logicalLeft();
RenderFragmentContainer* cbFragment = renderBox.fragmentAtBlockOffset(cbPageOffset);
if (cbFragment) {
RenderBoxFragmentInfo* boxInfo = renderBox.renderBoxFragmentInfo(cbFragment);
if (boxInfo) {
logicalTopPos += boxInfo->logicalLeft();
computedValues.m_position = logicalTopPos;
}
}
}
}
// The |containerLogicalHeightForPositioned| is already aware of orthogonal flows.
// The logicalTop concept is confusing here. It's the logical top from the child's POV. This means that is the physical
// y if the child is vertical or the physical x if the child is horizontal.
static void computeLogicalTopPositionedOffset(LayoutUnit& logicalTopPos, const RenderBox* child, LayoutUnit logicalHeightValue, const RenderBoxModelObject& containerBlock, LayoutUnit containerLogicalHeightForPositioned)
{
auto logicalTopAndBottomAreAuto = child->style().logicalTop().isAuto() && child->style().logicalBottom().isAuto();
auto haveOrthogonalWritingModes = isOrthogonal(*child, containerBlock);
auto haveFlippedBlockAxis = child->style().isFlippedBlocksWritingMode() != containerBlock.style().isFlippedBlocksWritingMode();
// Deal with differing writing modes here. Our offset needs to be in the containing block's coordinate space. If the containing block is flipped
// along this axis, then we need to flip the coordinate. This can only happen if the containing block is both a flipped mode and perpendicular to us.
if ((haveOrthogonalWritingModes && !logicalTopAndBottomAreAuto && child->style().isFlippedBlocksWritingMode())
|| (haveFlippedBlockAxis && !haveOrthogonalWritingModes))
logicalTopPos = containerLogicalHeightForPositioned - logicalHeightValue - logicalTopPos;
// Our offset is from the logical bottom edge in a flipped environment, e.g., right for vertical-rl and bottom for horizontal-bt.
if (containerBlock.style().isFlippedBlocksWritingMode() && !haveOrthogonalWritingModes) {
if (child->isHorizontalWritingMode())
logicalTopPos += containerBlock.borderBottom();
else
logicalTopPos += containerBlock.borderRight();
} else {
if (child->isHorizontalWritingMode())
logicalTopPos += containerBlock.borderTop();
else
logicalTopPos += containerBlock.borderLeft();
}
}
void RenderBox::computePositionedLogicalHeightUsing(SizeType heightType, Length logicalHeightLength, const RenderBoxModelObject& containerBlock,
LayoutUnit containerLogicalHeight, LayoutUnit bordersPlusPadding, LayoutUnit logicalHeight,
Length logicalTop, Length logicalBottom, Length marginBefore, Length marginAfter,
LogicalExtentComputedValues& computedValues) const
{
ASSERT(heightType == MinSize || heightType == MainOrPreferredSize || !logicalHeightLength.isAuto());
if (heightType == MinSize && logicalHeightLength.isAuto()) {
if (shouldComputeLogicalHeightFromAspectRatio())
logicalHeightLength = Length(logicalHeight, LengthType::Fixed);
else
logicalHeightLength = Length(0, LengthType::Fixed);
}
// 'top' and 'bottom' cannot both be 'auto' because 'top would of been
// converted to the static position in computePositionedLogicalHeight()
ASSERT(!(logicalTop.isAuto() && logicalBottom.isAuto()));
LayoutUnit logicalHeightValue;
LayoutUnit contentLogicalHeight = logicalHeight - bordersPlusPadding;
const LayoutUnit containerRelativeLogicalWidth = containingBlockLogicalWidthForPositioned(containerBlock, nullptr, false);
LayoutUnit logicalTopValue;
bool fromAspectRatio = heightType == MainOrPreferredSize && shouldComputeLogicalHeightFromAspectRatio();
bool logicalHeightIsAuto = logicalHeightLength.isAuto() && !fromAspectRatio;
bool logicalTopIsAuto = logicalTop.isAuto();
bool logicalBottomIsAuto = logicalBottom.isAuto();
// Height is never unsolved for tables.
LayoutUnit resolvedLogicalHeight;
if (isTable()) {
resolvedLogicalHeight = contentLogicalHeight;
logicalHeightIsAuto = false;
} else {
if (logicalHeightLength.isIntrinsic())
resolvedLogicalHeight = adjustContentBoxLogicalHeightForBoxSizing(computeIntrinsicLogicalContentHeightUsing(logicalHeightLength, contentLogicalHeight, bordersPlusPadding).value());
else if (fromAspectRatio) {
resolvedLogicalHeight = blockSizeFromAspectRatio(horizontalBorderAndPaddingExtent(), verticalBorderAndPaddingExtent(), style().logicalAspectRatio(), style().boxSizingForAspectRatio(), logicalWidth());
resolvedLogicalHeight = std::max(LayoutUnit(), resolvedLogicalHeight - bordersPlusPadding);
} else
resolvedLogicalHeight = adjustContentBoxLogicalHeightForBoxSizing(valueForLength(logicalHeightLength, containerLogicalHeight));
}
if (!logicalTopIsAuto && !logicalHeightIsAuto && !logicalBottomIsAuto) {
/*-----------------------------------------------------------------------*\
* If none of the three are 'auto': If both 'margin-top' and 'margin-
* bottom' are 'auto', solve the equation under the extra constraint that
* the two margins get equal values. If one of 'margin-top' or 'margin-
* bottom' is 'auto', solve the equation for that value. If the values
* are over-constrained, ignore the value for 'bottom' and solve for that
* value.
\*-----------------------------------------------------------------------*/
// NOTE: It is not necessary to solve for 'bottom' in the over constrained
// case because the value is not used for any further calculations.
logicalHeightValue = resolvedLogicalHeight;
logicalTopValue = valueForLength(logicalTop, containerLogicalHeight);
const LayoutUnit availableSpace = containerLogicalHeight - (logicalTopValue + logicalHeightValue + valueForLength(logicalBottom, containerLogicalHeight) + bordersPlusPadding);
// Margins are now the only unknown
if (marginBefore.isAuto() && marginAfter.isAuto()) {
// Both margins auto, solve for equality
// NOTE: This may result in negative values.
computedValues.m_margins.m_before = availableSpace / 2; // split the difference
computedValues.m_margins.m_after = availableSpace - computedValues.m_margins.m_before; // account for odd valued differences
} else if (marginBefore.isAuto()) {
// Solve for top margin
computedValues.m_margins.m_after = valueForLength(marginAfter, containerRelativeLogicalWidth);
computedValues.m_margins.m_before = availableSpace - computedValues.m_margins.m_after;
} else if (marginAfter.isAuto()) {
// Solve for bottom margin
computedValues.m_margins.m_before = valueForLength(marginBefore, containerRelativeLogicalWidth);
computedValues.m_margins.m_after = availableSpace - computedValues.m_margins.m_before;
} else {
// Over-constrained, (no need solve for bottom)
computedValues.m_margins.m_before = valueForLength(marginBefore, containerRelativeLogicalWidth);
computedValues.m_margins.m_after = valueForLength(marginAfter, containerRelativeLogicalWidth);
}
} else {
/*--------------------------------------------------------------------*\
* Otherwise, set 'auto' values for 'margin-top' and 'margin-bottom'
* to 0, and pick the one of the following six rules that applies.
*
* 1. 'top' and 'height' are 'auto' and 'bottom' is not 'auto', then
* the height is based on the content, and solve for 'top'.
*
* OMIT RULE 2 AS IT SHOULD NEVER BE HIT
* ------------------------------------------------------------------
* 2. 'top' and 'bottom' are 'auto' and 'height' is not 'auto', then
* set 'top' to the static position, and solve for 'bottom'.
* ------------------------------------------------------------------
*
* 3. 'height' and 'bottom' are 'auto' and 'top' is not 'auto', then
* the height is based on the content, and solve for 'bottom'.
* 4. 'top' is 'auto', 'height' and 'bottom' are not 'auto', and
* solve for 'top'.
* 5. 'height' is 'auto', 'top' and 'bottom' are not 'auto', and
* solve for 'height'.
* 6. 'bottom' is 'auto', 'top' and 'height' are not 'auto', and
* solve for 'bottom'.
\*--------------------------------------------------------------------*/
// NOTE: For rules 3 and 6 it is not necessary to solve for 'bottom'
// because the value is not used for any further calculations.
// Calculate margins, 'auto' margins are ignored.
computedValues.m_margins.m_before = minimumValueForLength(marginBefore, containerRelativeLogicalWidth);
computedValues.m_margins.m_after = minimumValueForLength(marginAfter, containerRelativeLogicalWidth);
const LayoutUnit availableSpace = containerLogicalHeight - (computedValues.m_margins.m_before + computedValues.m_margins.m_after + bordersPlusPadding);
// Use rule/case that applies.
if (logicalTopIsAuto && logicalHeightIsAuto && !logicalBottomIsAuto) {
// RULE 1: (height is content based, solve of top)
logicalHeightValue = contentLogicalHeight;
logicalTopValue = availableSpace - (logicalHeightValue + valueForLength(logicalBottom, containerLogicalHeight));
} else if (!logicalTopIsAuto && logicalHeightIsAuto && logicalBottomIsAuto) {
// RULE 3: (height is content based, no need solve of bottom)
logicalTopValue = valueForLength(logicalTop, containerLogicalHeight);
logicalHeightValue = contentLogicalHeight;
} else if (logicalTopIsAuto && !logicalHeightIsAuto && !logicalBottomIsAuto) {
// RULE 4: (solve of top)
logicalHeightValue = resolvedLogicalHeight;
logicalTopValue = availableSpace - (logicalHeightValue + valueForLength(logicalBottom, containerLogicalHeight));
} else if (!logicalTopIsAuto && logicalHeightIsAuto && !logicalBottomIsAuto) {
// RULE 5: (solve of height)
logicalTopValue = valueForLength(logicalTop, containerLogicalHeight);
logicalHeightValue = std::max<LayoutUnit>(0, availableSpace - (logicalTopValue + valueForLength(logicalBottom, containerLogicalHeight)));
} else if (!logicalTopIsAuto && !logicalHeightIsAuto && logicalBottomIsAuto) {
// RULE 6: (no need solve of bottom)
logicalHeightValue = resolvedLogicalHeight;
logicalTopValue = valueForLength(logicalTop, containerLogicalHeight);
}
}
computedValues.m_extent = logicalHeightValue;
// Use computed values to calculate the vertical position.
computedValues.m_position = logicalTopValue + computedValues.m_margins.m_before;
computeLogicalTopPositionedOffset(computedValues.m_position, this, logicalHeightValue + bordersPlusPadding, containerBlock, containerLogicalHeight);
}
void RenderBox::computePositionedLogicalWidthReplaced(LogicalExtentComputedValues& computedValues) const
{
// The following is based off of the W3C Working Draft from April 11, 2006 of
// CSS 2.1: Section 10.3.8 "Absolutely positioned, replaced elements"
// <http://www.w3.org/TR/2005/WD-CSS21-20050613/visudet.html#abs-replaced-width>
// (block-style-comments in this function correspond to text from the spec and
// the numbers correspond to numbers in spec)
// We don't use containingBlock(), since we may be positioned by an enclosing
// relative positioned inline.
const RenderBoxModelObject& containerBlock = downcast<RenderBoxModelObject>(*container());
const LayoutUnit containerLogicalWidth = containingBlockLogicalWidthForPositioned(containerBlock);
const LayoutUnit containerRelativeLogicalWidth = containingBlockLogicalWidthForPositioned(containerBlock, nullptr, false);
// To match WinIE, in quirks mode use the parent's 'direction' property
// instead of the container block's.
TextDirection containerDirection = containerBlock.style().direction();
// Variables to solve.
bool isHorizontal = isHorizontalWritingMode();
Length logicalLeft = style().logicalLeft();
Length logicalRight = style().logicalRight();
Length marginLogicalLeft = isHorizontal ? style().marginLeft() : style().marginTop();
Length marginLogicalRight = isHorizontal ? style().marginRight() : style().marginBottom();
LayoutUnit& marginLogicalLeftAlias = style().isLeftToRightDirection() ? computedValues.m_margins.m_start : computedValues.m_margins.m_end;
LayoutUnit& marginLogicalRightAlias = style().isLeftToRightDirection() ? computedValues.m_margins.m_end : computedValues.m_margins.m_start;
/*-----------------------------------------------------------------------*\
* 1. The used value of 'width' is determined as for inline replaced
* elements.
\*-----------------------------------------------------------------------*/
// NOTE: This value of width is final in that the min/max width calculations
// are dealt with in computeReplacedWidth(). This means that the steps to produce
// correct max/min in the non-replaced version, are not necessary.
computedValues.m_extent = computeReplacedLogicalWidth() + borderAndPaddingLogicalWidth();
const LayoutUnit availableSpace = containerLogicalWidth - computedValues.m_extent;
/*-----------------------------------------------------------------------*\
* 2. If both 'left' and 'right' have the value 'auto', then if 'direction'
* of the containing block is 'ltr', set 'left' to the static position;
* else if 'direction' is 'rtl', set 'right' to the static position.
\*-----------------------------------------------------------------------*/
// see FIXME 1
computeInlineStaticDistance(logicalLeft, logicalRight, this, containerBlock, containerLogicalWidth, nullptr); // FIXME: Pass the fragment.
/*-----------------------------------------------------------------------*\
* 3. If 'left' or 'right' are 'auto', replace any 'auto' on 'margin-left'
* or 'margin-right' with '0'.
\*-----------------------------------------------------------------------*/
if (logicalLeft.isAuto() || logicalRight.isAuto()) {
if (marginLogicalLeft.isAuto())
marginLogicalLeft.setValue(LengthType::Fixed, 0);
if (marginLogicalRight.isAuto())
marginLogicalRight.setValue(LengthType::Fixed, 0);
}
/*-----------------------------------------------------------------------*\
* 4. If at this point both 'margin-left' and 'margin-right' are still
* 'auto', solve the equation under the extra constraint that the two
* margins must get equal values, unless this would make them negative,
* in which case when the direction of the containing block is 'ltr'
* ('rtl'), set 'margin-left' ('margin-right') to zero and solve for
* 'margin-right' ('margin-left').
\*-----------------------------------------------------------------------*/
LayoutUnit logicalLeftValue;
LayoutUnit logicalRightValue;
if (marginLogicalLeft.isAuto() && marginLogicalRight.isAuto()) {
// 'left' and 'right' cannot be 'auto' due to step 3
ASSERT(!(logicalLeft.isAuto() && logicalRight.isAuto()));
logicalLeftValue = valueForLength(logicalLeft, containerLogicalWidth);
logicalRightValue = valueForLength(logicalRight, containerLogicalWidth);
LayoutUnit difference = availableSpace - (logicalLeftValue + logicalRightValue);
if (difference > 0) {
marginLogicalLeftAlias = difference / 2; // split the difference
marginLogicalRightAlias = difference - marginLogicalLeftAlias; // account for odd valued differences
} else {
// Use the containing block's direction rather than the parent block's
// per CSS 2.1 reference test abspos-replaced-width-margin-000.
if (containerDirection == TextDirection::LTR) {
marginLogicalLeftAlias = 0;
marginLogicalRightAlias = difference; // will be negative
} else {
marginLogicalLeftAlias = difference; // will be negative
marginLogicalRightAlias = 0;
}
}
/*-----------------------------------------------------------------------*\
* 5. If at this point there is an 'auto' left, solve the equation for
* that value.
\*-----------------------------------------------------------------------*/
} else if (logicalLeft.isAuto()) {
marginLogicalLeftAlias = valueForLength(marginLogicalLeft, containerRelativeLogicalWidth);
marginLogicalRightAlias = valueForLength(marginLogicalRight, containerRelativeLogicalWidth);
logicalRightValue = valueForLength(logicalRight, containerLogicalWidth);
// Solve for 'left'
logicalLeftValue = availableSpace - (logicalRightValue + marginLogicalLeftAlias + marginLogicalRightAlias);
} else if (logicalRight.isAuto()) {
marginLogicalLeftAlias = valueForLength(marginLogicalLeft, containerRelativeLogicalWidth);
marginLogicalRightAlias = valueForLength(marginLogicalRight, containerRelativeLogicalWidth);
logicalLeftValue = valueForLength(logicalLeft, containerLogicalWidth);
// Solve for 'right'
logicalRightValue = availableSpace - (logicalLeftValue + marginLogicalLeftAlias + marginLogicalRightAlias);
} else if (marginLogicalLeft.isAuto()) {
marginLogicalRightAlias = valueForLength(marginLogicalRight, containerRelativeLogicalWidth);
logicalLeftValue = valueForLength(logicalLeft, containerLogicalWidth);
logicalRightValue = valueForLength(logicalRight, containerLogicalWidth);
// Solve for 'margin-left'
marginLogicalLeftAlias = availableSpace - (logicalLeftValue + logicalRightValue + marginLogicalRightAlias);
} else if (marginLogicalRight.isAuto()) {
marginLogicalLeftAlias = valueForLength(marginLogicalLeft, containerRelativeLogicalWidth);
logicalLeftValue = valueForLength(logicalLeft, containerLogicalWidth);
logicalRightValue = valueForLength(logicalRight, containerLogicalWidth);
// Solve for 'margin-right'
marginLogicalRightAlias = availableSpace - (logicalLeftValue + logicalRightValue + marginLogicalLeftAlias);
} else {
// Nothing is 'auto', just calculate the values.
marginLogicalLeftAlias = valueForLength(marginLogicalLeft, containerRelativeLogicalWidth);
marginLogicalRightAlias = valueForLength(marginLogicalRight, containerRelativeLogicalWidth);
logicalRightValue = valueForLength(logicalRight, containerLogicalWidth);
logicalLeftValue = valueForLength(logicalLeft, containerLogicalWidth);
// If the containing block is right-to-left, then push the left position as far to the right as possible
if (containerDirection == TextDirection::RTL) {
int totalLogicalWidth = computedValues.m_extent + logicalLeftValue + logicalRightValue + marginLogicalLeftAlias + marginLogicalRightAlias;
logicalLeftValue = containerLogicalWidth - (totalLogicalWidth - logicalLeftValue);
}
}
/*-----------------------------------------------------------------------*\
* 6. If at this point the values are over-constrained, ignore the value
* for either 'left' (in case the 'direction' property of the
* containing block is 'rtl') or 'right' (in case 'direction' is
* 'ltr') and solve for that value.
\*-----------------------------------------------------------------------*/
// NOTE: Constraints imposed by the width of the containing block and its content have already been accounted for above.
// FIXME: Deal with differing writing modes here. Our offset needs to be in the containing block's coordinate space, so that
// can make the result here rather complicated to compute.
// Use computed values to calculate the horizontal position.
// FIXME: This hack is needed to calculate the logical left position for a 'rtl' relatively
// positioned, inline containing block because right now, it is using the logical left position
// of the first line box when really it should use the last line box. When
// this is fixed elsewhere, this block should be removed.
if (is<RenderInline>(containerBlock) && !containerBlock.style().isLeftToRightDirection()) {
const auto& flow = downcast<RenderInline>(containerBlock);
LegacyInlineFlowBox* firstLine = flow.firstLineBox();
LegacyInlineFlowBox* lastLine = flow.lastLineBox();
if (firstLine && lastLine && firstLine != lastLine) {
computedValues.m_position = logicalLeftValue + marginLogicalLeftAlias + lastLine->borderLogicalLeft() + (lastLine->logicalLeft() - firstLine->logicalLeft());
return;
}
}
LayoutUnit logicalLeftPos = logicalLeftValue + marginLogicalLeftAlias;
// Border and padding have already been included in computedValues.m_extent.
computeLogicalLeftPositionedOffset(logicalLeftPos, this, computedValues.m_extent, containerBlock, containerLogicalWidth, style().logicalLeft().isAuto(), style().logicalRight().isAuto());
computedValues.m_position = logicalLeftPos;
}
void RenderBox::computePositionedLogicalHeightReplaced(LogicalExtentComputedValues& computedValues) const
{
// The following is based off of the W3C Working Draft from April 11, 2006 of
// CSS 2.1: Section 10.6.5 "Absolutely positioned, replaced elements"
// <http://www.w3.org/TR/2005/WD-CSS21-20050613/visudet.html#abs-replaced-height>
// (block-style-comments in this function correspond to text from the spec and
// the numbers correspond to numbers in spec)
// We don't use containingBlock(), since we may be positioned by an enclosing relpositioned inline.
const RenderBoxModelObject& containerBlock = downcast<RenderBoxModelObject>(*container());
const LayoutUnit containerLogicalHeight = containingBlockLogicalHeightForPositioned(containerBlock);
const LayoutUnit containerRelativeLogicalWidth = containingBlockLogicalWidthForPositioned(containerBlock, nullptr, false);
// Variables to solve.
Length marginBefore = style().marginBefore();
Length marginAfter = style().marginAfter();
LayoutUnit& marginBeforeAlias = computedValues.m_margins.m_before;
LayoutUnit& marginAfterAlias = computedValues.m_margins.m_after;
Length logicalTop = style().logicalTop();
Length logicalBottom = style().logicalBottom();
/*-----------------------------------------------------------------------*\
* 1. The used value of 'height' is determined as for inline replaced
* elements.
\*-----------------------------------------------------------------------*/
// NOTE: This value of height is final in that the min/max height calculations
// are dealt with in computeReplacedHeight(). This means that the steps to produce
// correct max/min in the non-replaced version, are not necessary.
computedValues.m_extent = computeReplacedLogicalHeight() + borderAndPaddingLogicalHeight();
const LayoutUnit availableSpace = containerLogicalHeight - computedValues.m_extent;
/*-----------------------------------------------------------------------*\
* 2. If both 'top' and 'bottom' have the value 'auto', replace 'top'
* with the element's static position.
\*-----------------------------------------------------------------------*/
// see FIXME 1
computeBlockStaticDistance(logicalTop, logicalBottom, this, containerBlock);
/*-----------------------------------------------------------------------*\
* 3. If 'bottom' is 'auto', replace any 'auto' on 'margin-top' or
* 'margin-bottom' with '0'.
\*-----------------------------------------------------------------------*/
// FIXME: The spec. says that this step should only be taken when bottom is
// auto, but if only top is auto, this makes step 4 impossible.
if (logicalTop.isAuto() || logicalBottom.isAuto()) {
if (marginBefore.isAuto())
marginBefore.setValue(LengthType::Fixed, 0);
if (marginAfter.isAuto())
marginAfter.setValue(LengthType::Fixed, 0);
}
/*-----------------------------------------------------------------------*\
* 4. If at this point both 'margin-top' and 'margin-bottom' are still
* 'auto', solve the equation under the extra constraint that the two
* margins must get equal values.
\*-----------------------------------------------------------------------*/
LayoutUnit logicalTopValue;
LayoutUnit logicalBottomValue;
if (marginBefore.isAuto() && marginAfter.isAuto()) {
// 'top' and 'bottom' cannot be 'auto' due to step 2 and 3 combined.
ASSERT(!(logicalTop.isAuto() || logicalBottom.isAuto()));
logicalTopValue = valueForLength(logicalTop, containerLogicalHeight);
logicalBottomValue = valueForLength(logicalBottom, containerLogicalHeight);
LayoutUnit difference = availableSpace - (logicalTopValue + logicalBottomValue);
// NOTE: This may result in negative values.
marginBeforeAlias = difference / 2; // split the difference
marginAfterAlias = difference - marginBeforeAlias; // account for odd valued differences
/*-----------------------------------------------------------------------*\
* 5. If at this point there is only one 'auto' left, solve the equation
* for that value.
\*-----------------------------------------------------------------------*/
} else if (logicalTop.isAuto()) {
marginBeforeAlias = valueForLength(marginBefore, containerRelativeLogicalWidth);
marginAfterAlias = valueForLength(marginAfter, containerRelativeLogicalWidth);
logicalBottomValue = valueForLength(logicalBottom, containerLogicalHeight);
// Solve for 'top'
logicalTopValue = availableSpace - (logicalBottomValue + marginBeforeAlias + marginAfterAlias);
} else if (logicalBottom.isAuto()) {
marginBeforeAlias = valueForLength(marginBefore, containerRelativeLogicalWidth);
marginAfterAlias = valueForLength(marginAfter, containerRelativeLogicalWidth);
logicalTopValue = valueForLength(logicalTop, containerLogicalHeight);
// Solve for 'bottom'
// NOTE: It is not necessary to solve for 'bottom' because we don't ever
// use the value.
} else if (marginBefore.isAuto()) {
marginAfterAlias = valueForLength(marginAfter, containerRelativeLogicalWidth);
logicalTopValue = valueForLength(logicalTop, containerLogicalHeight);
logicalBottomValue = valueForLength(logicalBottom, containerLogicalHeight);
// Solve for 'margin-top'
marginBeforeAlias = availableSpace - (logicalTopValue + logicalBottomValue + marginAfterAlias);
} else if (marginAfter.isAuto()) {
marginBeforeAlias = valueForLength(marginBefore, containerRelativeLogicalWidth);
logicalTopValue = valueForLength(logicalTop, containerLogicalHeight);
logicalBottomValue = valueForLength(logicalBottom, containerLogicalHeight);
// Solve for 'margin-bottom'
marginAfterAlias = availableSpace - (logicalTopValue + logicalBottomValue + marginBeforeAlias);
} else {
// Nothing is 'auto', just calculate the values.
marginBeforeAlias = valueForLength(marginBefore, containerRelativeLogicalWidth);
marginAfterAlias = valueForLength(marginAfter, containerRelativeLogicalWidth);
logicalTopValue = valueForLength(logicalTop, containerLogicalHeight);
// NOTE: It is not necessary to solve for 'bottom' because we don't ever
// use the value.
}
/*-----------------------------------------------------------------------*\
* 6. If at this point the values are over-constrained, ignore the value
* for 'bottom' and solve for that value.
\*-----------------------------------------------------------------------*/
// NOTE: It is not necessary to do this step because we don't end up using
// the value of 'bottom' regardless of whether the values are over-constrained
// or not.
// Use computed values to calculate the vertical position.
LayoutUnit logicalTopPos = logicalTopValue + marginBeforeAlias;
// Border and padding have already been included in computedValues.m_extent.
computeLogicalTopPositionedOffset(logicalTopPos, this, computedValues.m_extent, containerBlock, containerLogicalHeight);
computedValues.m_position = logicalTopPos;
}
VisiblePosition RenderBox::positionForPoint(const LayoutPoint& point, const RenderFragmentContainer* fragment)
{
// no children...return this render object's element, if there is one, and offset 0
if (!firstChild())
return createVisiblePosition(nonPseudoElement() ? firstPositionInOrBeforeNode(nonPseudoElement()) : Position());
if (isTable() && nonPseudoElement()) {
LayoutUnit right = contentWidth() + horizontalBorderAndPaddingExtent();
LayoutUnit bottom = contentHeight() + verticalBorderAndPaddingExtent();
if (point.x() < 0 || point.x() > right || point.y() < 0 || point.y() > bottom) {
if (point.x() <= right / 2)
return createVisiblePosition(firstPositionInOrBeforeNode(nonPseudoElement()));
return createVisiblePosition(lastPositionInOrAfterNode(nonPseudoElement()));
}
}
// Pass off to the closest child.
LayoutUnit minDist = LayoutUnit::max();
RenderBox* closestRenderer = nullptr;
LayoutPoint adjustedPoint = point;
if (isTableRow())
adjustedPoint.moveBy(location());
for (auto& renderer : childrenOfType<RenderBox>(*this)) {
if (is<RenderFragmentedFlow>(*this)) {
ASSERT(fragment);
if (!downcast<RenderFragmentedFlow>(*this).objectShouldFragmentInFlowFragment(&renderer, fragment))
continue;
}
if ((!renderer.firstChild() && !renderer.isInline() && !is<RenderBlockFlow>(renderer))
|| renderer.style().visibility() != Visibility::Visible)
continue;
LayoutUnit top = renderer.borderTop() + renderer.paddingTop() + (is<RenderTableRow>(*this) ? 0_lu : renderer.y());
LayoutUnit bottom = top + renderer.contentHeight();
LayoutUnit left = renderer.borderLeft() + renderer.paddingLeft() + (is<RenderTableRow>(*this) ? 0_lu : renderer.x());
LayoutUnit right = left + renderer.contentWidth();
if (point.x() <= right && point.x() >= left && point.y() <= top && point.y() >= bottom) {
if (is<RenderTableRow>(renderer))
return renderer.positionForPoint(point + adjustedPoint - renderer.locationOffset(), fragment);
return renderer.positionForPoint(point - renderer.locationOffset(), fragment);
}
// Find the distance from (x, y) to the box. Split the space around the box into 8 pieces
// and use a different compare depending on which piece (x, y) is in.
LayoutPoint cmp;
if (point.x() > right) {
if (point.y() < top)
cmp = LayoutPoint(right, top);
else if (point.y() > bottom)
cmp = LayoutPoint(right, bottom);
else
cmp = LayoutPoint(right, point.y());
} else if (point.x() < left) {
if (point.y() < top)
cmp = LayoutPoint(left, top);
else if (point.y() > bottom)
cmp = LayoutPoint(left, bottom);
else
cmp = LayoutPoint(left, point.y());
} else {
if (point.y() < top)
cmp = LayoutPoint(point.x(), top);
else
cmp = LayoutPoint(point.x(), bottom);
}
LayoutSize difference = cmp - point;
LayoutUnit dist = difference.width() * difference.width() + difference.height() * difference.height();
if (dist < minDist) {
closestRenderer = &renderer;
minDist = dist;
}
}
if (closestRenderer)
return closestRenderer->positionForPoint(adjustedPoint - closestRenderer->locationOffset(), fragment);
return createVisiblePosition(firstPositionInOrBeforeNode(nonPseudoElement()));
}
bool RenderBox::shrinkToAvoidFloats() const
{
// Floating objects don't shrink. Objects that don't avoid floats don't shrink. Marquees don't shrink.
if ((isInline() && !isHTMLMarquee()) || !avoidsFloats() || isFloating())
return false;
// Only auto width objects can possibly shrink to avoid floats.
return style().width().isAuto();
}
bool RenderBox::createsNewFormattingContext() const
{
return isInlineBlockOrInlineTable() || isFloatingOrOutOfFlowPositioned() || hasPotentiallyScrollableOverflow() || isFlexItemIncludingDeprecated()
|| isTableCell() || isTableCaption() || isFieldset() || isWritingModeRoot() || isDocumentElementRenderer() || isRenderFragmentedFlow()
|| style().containsLayout() || paintContainmentApplies() || isGridItem() || style().specifiesColumns() || style().columnSpan() == ColumnSpan::All || style().display() == DisplayType::FlowRoot;
}
bool RenderBox::avoidsFloats() const
{
return isReplacedOrInlineBlock() || isHR() || isLegend() || isFieldset() || createsNewFormattingContext();
}
void RenderBox::addVisualEffectOverflow()
{
bool hasBoxShadow = style().boxShadow();
bool hasBorderImageOutsets = style().hasBorderImageOutsets();
bool hasOutline = outlineStyleForRepaint().hasOutlineInVisualOverflow();
if (!hasBoxShadow && !hasBorderImageOutsets && !hasOutline)
return;
addVisualOverflow(applyVisualEffectOverflow(borderBoxRect()));
if (auto* fragmentedFlow = enclosingFragmentedFlow())
fragmentedFlow->addFragmentsVisualEffectOverflow(this);
}
LayoutRect RenderBox::applyVisualEffectOverflow(const LayoutRect& borderBox) const
{
bool isFlipped = style().isFlippedBlocksWritingMode();
bool isHorizontal = isHorizontalWritingMode();
LayoutUnit overflowMinX = borderBox.x();
LayoutUnit overflowMaxX = borderBox.maxX();
LayoutUnit overflowMinY = borderBox.y();
LayoutUnit overflowMaxY = borderBox.maxY();
// Compute box-shadow overflow first.
if (style().boxShadow()) {
auto shadowExtent = style().boxShadowExtent();
// In flipped blocks writing modes such as vertical-rl, the physical right shadow value is actually at the lower x-coordinate.
overflowMinX = borderBox.x() + ((!isFlipped || isHorizontal) ? shadowExtent.left() : -shadowExtent.right());
overflowMaxX = borderBox.maxX() + ((!isFlipped || isHorizontal) ? shadowExtent.right() : -shadowExtent.left());
overflowMinY = borderBox.y() + ((!isFlipped || !isHorizontal) ? shadowExtent.top() : -shadowExtent.bottom());
overflowMaxY = borderBox.maxY() + ((!isFlipped || !isHorizontal) ? shadowExtent.bottom() : -shadowExtent.top());
}
// Now compute border-image-outset overflow.
if (style().hasBorderImageOutsets()) {
auto borderOutsets = style().borderImageOutsets();
// In flipped blocks writing modes, the physical sides are inverted. For example in vertical-rl, the right
// border is at the lower x coordinate value.
overflowMinX = std::min(overflowMinX, borderBox.x() - ((!isFlipped || isHorizontal) ? borderOutsets.left() : borderOutsets.right()));
overflowMaxX = std::max(overflowMaxX, borderBox.maxX() + ((!isFlipped || isHorizontal) ? borderOutsets.right() : borderOutsets.left()));
overflowMinY = std::min(overflowMinY, borderBox.y() - ((!isFlipped || !isHorizontal) ? borderOutsets.top() : borderOutsets.bottom()));
overflowMaxY = std::max(overflowMaxY, borderBox.maxY() + ((!isFlipped || !isHorizontal) ? borderOutsets.bottom() : borderOutsets.top()));
}
if (outlineStyleForRepaint().hasOutlineInVisualOverflow()) {
LayoutUnit outlineSize { outlineStyleForRepaint().outlineSize() };
overflowMinX = std::min(overflowMinX, borderBox.x() - outlineSize);
overflowMaxX = std::max(overflowMaxX, borderBox.maxX() + outlineSize);
overflowMinY = std::min(overflowMinY, borderBox.y() - outlineSize);
overflowMaxY = std::max(overflowMaxY, borderBox.maxY() + outlineSize);
}
// Add in the final overflow with shadows and outsets combined.
return LayoutRect(overflowMinX, overflowMinY, overflowMaxX - overflowMinX, overflowMaxY - overflowMinY);
}
void RenderBox::addOverflowFromChild(const RenderBox* child, const LayoutSize& delta)
{
if (paintContainmentApplies())
return;
// Never allow flow threads to propagate overflow up to a parent.
if (child->isRenderFragmentedFlow())
return;
RenderFragmentedFlow* fragmentedFlow = enclosingFragmentedFlow();
if (fragmentedFlow)
fragmentedFlow->addFragmentsOverflowFromChild(this, child, delta);
// Only propagate layout overflow from the child if the child isn't clipping its overflow. If it is, then
// its overflow is internal to it, and we don't care about it. layoutOverflowRectForPropagation takes care of this
// and just propagates the border box rect instead.
LayoutRect childLayoutOverflowRect = child->layoutOverflowRectForPropagation(&style());
childLayoutOverflowRect.move(delta);
addLayoutOverflow(childLayoutOverflowRect);
// Add in visual overflow from the child. Even if the child clips its overflow, it may still
// have visual overflow of its own set from box shadows or reflections. It is unnecessary to propagate this
// overflow if we are clipping our own overflow.
if (child->hasSelfPaintingLayer() || hasPotentiallyScrollableOverflow())
return;
LayoutRect childVisualOverflowRect = child->visualOverflowRectForPropagation(&style());
childVisualOverflowRect.move(delta);
addVisualOverflow(childVisualOverflowRect);
}
void RenderBox::addLayoutOverflow(const LayoutRect& rect)
{
LayoutRect clientBox = flippedClientBoxRect();
if (clientBox.contains(rect) || rect.isEmpty())
return;
// For overflow clip objects, we don't want to propagate overflow into unreachable areas.
LayoutRect overflowRect(rect);
if (hasPotentiallyScrollableOverflow() || isRenderView()) {
// Overflow is in the block's coordinate space and thus is flipped for horizontal-bt and vertical-rl
// writing modes. At this stage that is actually a simplification, since we can treat horizontal-tb/bt as the same
// and vertical-lr/rl as the same.
bool hasTopOverflow = isTopLayoutOverflowAllowed();
bool hasLeftOverflow = isLeftLayoutOverflowAllowed();
if (!hasTopOverflow)
overflowRect.shiftYEdgeTo(std::max(overflowRect.y(), clientBox.y()));
else
overflowRect.shiftMaxYEdgeTo(std::min(overflowRect.maxY(), clientBox.maxY()));
if (!hasLeftOverflow)
overflowRect.shiftXEdgeTo(std::max(overflowRect.x(), clientBox.x()));
else
overflowRect.shiftMaxXEdgeTo(std::min(overflowRect.maxX(), clientBox.maxX()));
// Now re-test with the adjusted rectangle and see if it has become unreachable or fully
// contained.
if (clientBox.contains(overflowRect) || overflowRect.isEmpty())
return;
}
if (!m_overflow)
m_overflow = adoptRef(new RenderOverflow(clientBox, borderBoxRect()));
m_overflow->addLayoutOverflow(overflowRect);
}
void RenderBox::addVisualOverflow(const LayoutRect& rect)
{
LayoutRect borderBox = borderBoxRect();
if (borderBox.contains(rect) || rect.isEmpty())
return;
if (!m_overflow)
m_overflow = adoptRef(new RenderOverflow(flippedClientBoxRect(), borderBox));
m_overflow->addVisualOverflow(rect);
}
void RenderBox::clearOverflow()
{
m_overflow = nullptr;
RenderFragmentedFlow* fragmentedFlow = enclosingFragmentedFlow();
if (fragmentedFlow)
fragmentedFlow->clearFragmentsOverflow(this);
}
bool RenderBox::percentageLogicalHeightIsResolvable() const
{
// Do this to avoid duplicating all the logic that already exists when computing
// an actual percentage height.
Length fakeLength(100, LengthType::Percent);
return computePercentageLogicalHeight(fakeLength) != std::nullopt;
}
bool RenderBox::hasUnsplittableScrollingOverflow() const
{
// We will paginate as long as we don't scroll overflow in the pagination direction.
bool isHorizontal = isHorizontalWritingMode();
if ((isHorizontal && !scrollsOverflowY()) || (!isHorizontal && !scrollsOverflowX()))
return false;
// We do have overflow. We'll still be willing to paginate as long as the block
// has auto logical height, auto or undefined max-logical-height and a zero or auto min-logical-height.
// Note this is just a heuristic, and it's still possible to have overflow under these
// conditions, but it should work out to be good enough for common cases. Paginating overflow
// with scrollbars present is not the end of the world and is what we used to do in the old model anyway.
return !style().logicalHeight().isIntrinsicOrAuto()
|| (!style().logicalMaxHeight().isIntrinsicOrAuto() && !style().logicalMaxHeight().isUndefined() && (!style().logicalMaxHeight().isPercentOrCalculated() || percentageLogicalHeightIsResolvable()))
|| (!style().logicalMinHeight().isIntrinsicOrAuto() && style().logicalMinHeight().isPositive() && (!style().logicalMinHeight().isPercentOrCalculated() || percentageLogicalHeightIsResolvable()));
}
bool RenderBox::isUnsplittableForPagination() const
{
return isReplacedOrInlineBlock()
|| hasUnsplittableScrollingOverflow()
|| (parent() && isWritingModeRoot())
|| (isFloating() && style().styleType() == PseudoId::FirstLetter && style().initialLetterDrop() > 0)
|| shouldApplySizeContainment(*this);
}
LayoutUnit RenderBox::lineHeight(bool /*firstLine*/, LineDirectionMode direction, LinePositionMode /*linePositionMode*/) const
{
if (isReplacedOrInlineBlock())
return direction == HorizontalLine ? m_marginBox.top() + height() + m_marginBox.bottom() : m_marginBox.right() + width() + m_marginBox.left();
return 0;
}
LayoutUnit RenderBox::baselinePosition(FontBaseline baselineType, bool /*firstLine*/, LineDirectionMode direction, LinePositionMode /*linePositionMode*/) const
{
if (isReplacedOrInlineBlock()) {
auto result = roundToInt(direction == HorizontalLine ? m_marginBox.top() + height() + m_marginBox.bottom() : m_marginBox.right() + width() + m_marginBox.left());
if (baselineType == AlphabeticBaseline)
return result;
return result - result / 2;
}
return 0;
}
RenderLayer* RenderBox::enclosingFloatPaintingLayer() const
{
for (auto& box : lineageOfType<RenderBox>(*this)) {
if (box.layer() && box.layer()->isSelfPaintingLayer())
return box.layer();
}
return nullptr;
}
LayoutRect RenderBox::logicalVisualOverflowRectForPropagation(const RenderStyle* parentStyle) const
{
LayoutRect rect = visualOverflowRectForPropagation(parentStyle);
if (!parentStyle->isHorizontalWritingMode())
return rect.transposedRect();
return rect;
}
LayoutRect RenderBox::visualOverflowRectForPropagation(const RenderStyle* parentStyle) const
{
// If the writing modes of the child and parent match, then we don't have to
// do anything fancy. Just return the result.
LayoutRect rect = visualOverflowRect();
if (parentStyle->writingMode() == style().writingMode())
return rect;
// We are putting ourselves into our parent's coordinate space. If there is a flipped block mismatch
// in a particular axis, then we have to flip the rect along that axis.
if (style().writingMode() == WritingMode::RightToLeft || parentStyle->writingMode() == WritingMode::RightToLeft)
rect.setX(width() - rect.maxX());
else if (style().writingMode() == WritingMode::BottomToTop || parentStyle->writingMode() == WritingMode::BottomToTop)
rect.setY(height() - rect.maxY());
return rect;
}
LayoutRect RenderBox::logicalLayoutOverflowRectForPropagation(const RenderStyle* parentStyle) const
{
LayoutRect rect = layoutOverflowRectForPropagation(parentStyle);
if (!parentStyle->isHorizontalWritingMode())
return rect.transposedRect();
return rect;
}
LayoutRect RenderBox::layoutOverflowRectForPropagation(const RenderStyle* parentStyle) const
{
// Only propagate interior layout overflow if we don't completely clip it.
LayoutRect rect = borderBoxRect();
if (!shouldApplyLayoutContainment(*this)) {
if (style().overflowX() == Overflow::Clip && style().overflowY() == Overflow::Visible) {
LayoutRect clippedOverflowRect = layoutOverflowRect();
clippedOverflowRect.setX(rect.x());
clippedOverflowRect.setWidth(rect.width());
rect.unite(clippedOverflowRect);
} else if (style().overflowY() == Overflow::Clip && style().overflowX() == Overflow::Visible) {
LayoutRect clippedOverflowRect = layoutOverflowRect();
clippedOverflowRect.setY(rect.y());
clippedOverflowRect.setHeight(rect.height());
rect.unite(clippedOverflowRect);
} else if (!hasNonVisibleOverflow())
rect.unite(layoutOverflowRect());
}
bool hasTransform = this->hasTransform();
// While a stickily positioned renderer is also inflow positioned, they stretch the overflow rect with their inflow geometry
// (as opposed to the paint geometry) because they are not stationary.
bool paintGeometryAffectsLayoutOverflow = hasTransform || (isInFlowPositioned() && !isStickilyPositioned());
if (paintGeometryAffectsLayoutOverflow) {
// If we are relatively positioned or if we have a transform, then we have to convert
// this rectangle into physical coordinates, apply relative positioning and transforms
// to it, and then convert it back.
// It ensures that the overflow rect tracks the paint geometry and not the inflow layout position.
flipForWritingMode(rect);
if (hasTransform && hasLayer())
rect = layer()->currentTransform().mapRect(rect);
if (isInFlowPositioned())
rect.move(offsetForInFlowPosition());
// Now we need to flip back.
flipForWritingMode(rect);
}
// If the writing modes of the child and parent match, then we don't have to
// do anything fancy. Just return the result.
if (parentStyle->writingMode() == style().writingMode())
return rect;
// We are putting ourselves into our parent's coordinate space. If there is a flipped block mismatch
// in a particular axis, then we have to flip the rect along that axis.
if (style().writingMode() == WritingMode::RightToLeft || parentStyle->writingMode() == WritingMode::RightToLeft)
rect.setX(width() - rect.maxX());
else if (style().writingMode() == WritingMode::BottomToTop || parentStyle->writingMode() == WritingMode::BottomToTop)
rect.setY(height() - rect.maxY());
return rect;
}
LayoutRect RenderBox::flippedClientBoxRect() const
{
// Because of the special coordinate system used for overflow rectangles (not quite logical, not
// quite physical), we need to flip the block progression coordinate in vertical-rl and
// horizontal-bt writing modes. Apart from that, this method does the same as clientBoxRect().
LayoutUnit left = borderLeft();
LayoutUnit top = borderTop();
LayoutUnit right = borderRight();
LayoutUnit bottom = borderBottom();
// Calculate physical padding box.
LayoutRect rect(left, top, width() - left - right, height() - top - bottom);
// Flip block progression axis if writing mode is vertical-rl or horizontal-bt.
flipForWritingMode(rect);
// Subtract space occupied by scrollbars. They are at their physical edge in this coordinate
// system, so order is important here: first flip, then subtract scrollbars.
if (shouldPlaceVerticalScrollbarOnLeft() && isHorizontalWritingMode())
rect.move(verticalScrollbarWidth(), 0);
rect.contract(verticalScrollbarWidth(), horizontalScrollbarHeight());
return rect;
}
LayoutUnit RenderBox::offsetLeft() const
{
return adjustedPositionRelativeToOffsetParent(topLeftLocation()).x();
}
LayoutUnit RenderBox::offsetTop() const
{
return adjustedPositionRelativeToOffsetParent(topLeftLocation()).y();
}
LayoutPoint RenderBox::flipForWritingModeForChild(const RenderBox* child, const LayoutPoint& point) const
{
if (!style().isFlippedBlocksWritingMode())
return point;
// The child is going to add in its x() and y(), so we have to make sure it ends up in
// the right place.
if (isHorizontalWritingMode())
return LayoutPoint(point.x(), point.y() + height() - child->height() - (2 * child->y()));
return LayoutPoint(point.x() + width() - child->width() - (2 * child->x()), point.y());
}
void RenderBox::flipForWritingMode(LayoutRect& rect) const
{
if (!style().isFlippedBlocksWritingMode())
return;
if (isHorizontalWritingMode())
rect.setY(height() - rect.maxY());
else
rect.setX(width() - rect.maxX());
}
LayoutUnit RenderBox::flipForWritingMode(LayoutUnit position) const
{
if (!style().isFlippedBlocksWritingMode())
return position;
return logicalHeight() - position;
}
LayoutPoint RenderBox::flipForWritingMode(const LayoutPoint& position) const
{
if (!style().isFlippedBlocksWritingMode())
return position;
return isHorizontalWritingMode() ? LayoutPoint(position.x(), height() - position.y()) : LayoutPoint(width() - position.x(), position.y());
}
LayoutSize RenderBox::flipForWritingMode(const LayoutSize& offset) const
{
if (!style().isFlippedBlocksWritingMode())
return offset;
return isHorizontalWritingMode() ? LayoutSize(offset.width(), height() - offset.height()) : LayoutSize(width() - offset.width(), offset.height());
}
FloatPoint RenderBox::flipForWritingMode(const FloatPoint& position) const
{
if (!style().isFlippedBlocksWritingMode())
return position;
return isHorizontalWritingMode() ? FloatPoint(position.x(), height() - position.y()) : FloatPoint(width() - position.x(), position.y());
}
void RenderBox::flipForWritingMode(FloatRect& rect) const
{
if (!style().isFlippedBlocksWritingMode())
return;
if (isHorizontalWritingMode())
rect.setY(height() - rect.maxY());
else
rect.setX(width() - rect.maxX());
}
LayoutPoint RenderBox::topLeftLocation() const
{
if (!view().frameView().hasFlippedBlockRenderers())
return location();
RenderBlock* containerBlock = containingBlock();
if (!containerBlock || containerBlock == this)
return location();
return containerBlock->flipForWritingModeForChild(this, location());
}
LayoutSize RenderBox::topLeftLocationOffset() const
{
if (!view().frameView().hasFlippedBlockRenderers())
return locationOffset();
RenderBlock* containerBlock = containingBlock();
if (!containerBlock || containerBlock == this)
return locationOffset();
LayoutRect rect(frameRect());
containerBlock->flipForWritingMode(rect); // FIXME: This is wrong if we are an absolutely positioned object enclosed by a relative-positioned inline.
return LayoutSize(rect.x(), rect.y());
}
void RenderBox::applyTopLeftLocationOffsetWithFlipping(LayoutPoint& point) const
{
RenderBlock* containerBlock = containingBlock();
if (!containerBlock || containerBlock == this) {
point.move(m_frameRect.x(), m_frameRect.y());
return;
}
LayoutRect rect(frameRect());
containerBlock->flipForWritingMode(rect); // FIXME: This is wrong if we are an absolutely positioned object enclosed by a relative-positioned inline.
point.move(rect.x(), rect.y());
}
bool RenderBox::shouldIgnoreAspectRatio() const
{
return !style().hasAspectRatio() || isTablePart();
}
static inline bool shouldComputeLogicalWidthFromAspectRatioAndInsets(const RenderBox& renderer)
{
if (!renderer.isOutOfFlowPositioned())
return false;
auto& style = renderer.style();
if (!style.logicalWidth().isAuto()) {
// Not applicable for aspect ratio computation.
return false;
}
// When both left and right are set, the out-of-flow positioned box is horizontally constrained and aspect ratio for the logical width is not applicable.
auto hasConstrainedWidth = (!style.logicalLeft().isAuto() && !style.logicalRight().isAuto()) || renderer.intrinsicLogicalWidth();
if (hasConstrainedWidth)
return false;
// When both top and bottom are set, the out-of-flow positioned box is vertically constrained and it can be used as if it had a non-auto height value.
auto hasConstrainedHeight = !style.logicalTop().isAuto() && !style.logicalBottom().isAuto();
if (!hasConstrainedHeight)
return false;
// FIXME: This could probably be omitted and let the callers handle the height check (as they seem to be doing anyway).
return style.logicalHeight().isAuto();
}
bool RenderBox::shouldComputeLogicalHeightFromAspectRatio() const
{
if (shouldIgnoreAspectRatio())
return false;
if (shouldComputeLogicalWidthFromAspectRatioAndInsets(*this))
return false;
auto h = style().logicalHeight();
return h.isAuto() || h.isIntrinsic() || (!isOutOfFlowPositioned() && h.isPercentOrCalculated() && !percentageLogicalHeightIsResolvable());
}
bool RenderBox::shouldComputeLogicalWidthFromAspectRatio() const
{
if (shouldIgnoreAspectRatio())
return false;
if (isGridItem()) {
if (shouldComputeSizeAsReplaced()) {
if (hasStretchedLogicalWidth() && hasStretchedLogicalHeight())
return false;
} else if (hasStretchedLogicalWidth(StretchingMode::Explicit))
return false;
}
auto isResolvablePercentageHeight = [&] {
return style().logicalHeight().isPercentOrCalculated() && (isOutOfFlowPositioned() || percentageLogicalHeightIsResolvable());
};
return hasOverridingLogicalHeight() || shouldComputeLogicalWidthFromAspectRatioAndInsets(*this) || style().logicalHeight().isFixed() || isResolvablePercentageHeight();
}
LayoutUnit RenderBox::computeLogicalWidthFromAspectRatioInternal() const
{
ASSERT(shouldComputeLogicalWidthFromAspectRatio());
auto computedValues = computeLogicalHeight(logicalHeight(), logicalTop());
LayoutUnit logicalHeightforAspectRatio = computedValues.m_extent;
return inlineSizeFromAspectRatio(horizontalBorderAndPaddingExtent(), verticalBorderAndPaddingExtent(), style().logicalAspectRatio(), style().boxSizingForAspectRatio(), logicalHeightforAspectRatio);
}
LayoutUnit RenderBox::computeLogicalWidthFromAspectRatio(RenderFragmentContainer* fragment) const
{
auto logicalWidth = computeLogicalWidthFromAspectRatioInternal();
LayoutUnit containerWidthInInlineDirection = std::max<LayoutUnit>(0, containingBlockLogicalWidthForContentInFragment(fragment));
return constrainLogicalWidthInFragmentByMinMax(logicalWidth, containerWidthInInlineDirection, *containingBlock(), fragment, AllowIntrinsic::No);
}
std::pair<LayoutUnit, LayoutUnit> RenderBox::computeMinMaxLogicalWidthFromAspectRatio() const
{
LayoutUnit blockMinSize = constrainLogicalHeightByMinMax(LayoutUnit(), std::nullopt);
LayoutUnit blockMaxSize = constrainLogicalHeightByMinMax(LayoutUnit::max(), std::nullopt);
LayoutUnit transferredMinSize = LayoutUnit();
LayoutUnit transferredMaxSize = LayoutUnit::max();
if (blockMinSize > LayoutUnit())
transferredMinSize = inlineSizeFromAspectRatio(horizontalBorderAndPaddingExtent(), verticalBorderAndPaddingExtent(), style().logicalAspectRatio(), style().boxSizingForAspectRatio(), blockMinSize);
if (blockMaxSize != LayoutUnit::max())
transferredMaxSize = inlineSizeFromAspectRatio(horizontalBorderAndPaddingExtent(), verticalBorderAndPaddingExtent(), style().logicalAspectRatio(), style().boxSizingForAspectRatio(), blockMaxSize);
// Minimum size wins over maximum size.
transferredMaxSize = std::max(transferredMaxSize, transferredMinSize);
return { transferredMinSize, transferredMaxSize };
}
bool RenderBox::hasRelativeDimensions() const
{
return style().height().isPercentOrCalculated() || style().width().isPercentOrCalculated()
|| style().maxHeight().isPercentOrCalculated() || style().maxWidth().isPercentOrCalculated()
|| style().minHeight().isPercentOrCalculated() || style().minWidth().isPercentOrCalculated();
}
bool RenderBox::hasRelativeLogicalHeight() const
{
return style().logicalHeight().isPercentOrCalculated()
|| style().logicalMinHeight().isPercentOrCalculated()
|| style().logicalMaxHeight().isPercentOrCalculated();
}
bool RenderBox::hasRelativeLogicalWidth() const
{
return style().logicalWidth().isPercentOrCalculated()
|| style().logicalMinWidth().isPercentOrCalculated()
|| style().logicalMaxWidth().isPercentOrCalculated();
}
LayoutUnit RenderBox::offsetFromLogicalTopOfFirstPage() const
{
auto* layoutState = view().frameView().layoutContext().layoutState();
if ((layoutState && !layoutState->isPaginated()) || (!layoutState && !enclosingFragmentedFlow()))
return 0;
RenderBlock* containerBlock = containingBlock();
return containerBlock->offsetFromLogicalTopOfFirstPage() + logicalTop();
}
LayoutRect RenderBox::absoluteAnchorRectWithScrollMargin(bool* insideFixed) const
{
LayoutRect anchorRect = absoluteAnchorRect(insideFixed);
const LengthBox& scrollMargin = style().scrollMargin();
if (scrollMargin.isZero())
return anchorRect;
// The scroll snap specification says that the scroll-margin should be applied in the
// coordinate system of the scroll container and applied to the rectangular bounding
// box of the transformed border box of the target element.
// See https://www.w3.org/TR/css-scroll-snap-1/#scroll-margin.
const LayoutSize boxSize = size();
const LayoutBoxExtent margin(
valueForLength(scrollMargin.top(), boxSize.height()),
valueForLength(scrollMargin.right(), boxSize.width()),
valueForLength(scrollMargin.bottom(), boxSize.height()),
valueForLength(scrollMargin.left(), boxSize.width()));
anchorRect.expand(margin);
return anchorRect;
}
LayoutBoxExtent RenderBox::scrollPaddingForViewportRect(const LayoutRect& viewportRect)
{
// We are using minimumValueForLength here, because scroll-padding values might be "auto". WebKit currently
// interprets "auto" as 0. See: https://drafts.csswg.org/css-scroll-snap-1/#propdef-scroll-padding
const auto& padding = style().scrollPadding();
return LayoutBoxExtent(
minimumValueForLength(padding.top(), viewportRect.height()), minimumValueForLength(padding.right(), viewportRect.width()),
minimumValueForLength(padding.bottom(), viewportRect.height()), minimumValueForLength(padding.left(), viewportRect.width()));
}
LayoutUnit synthesizedBaselineFromBorderBox(const RenderBox& box, LineDirectionMode direction)
{
return direction == HorizontalLine ? box.height() : box.width();
}
} // namespace WebCore