blob: be12bb5aa027e53a1346847e6c993c23f9f01898 [file] [log] [blame]
/*
* Copyright (C) 2010 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if ENABLE(WEB_AUDIO)
#include "AudioParam.h"
#include "AudioNode.h"
#include "AudioNodeOutput.h"
#include "AudioUtilities.h"
#include "FloatConversion.h"
#include "Logging.h"
#include "VectorMath.h"
#include <wtf/MathExtras.h>
namespace WebCore {
static void replaceNaNValues(float* values, unsigned numberOfValues, float defaultValue)
{
for (unsigned i = 0; i < numberOfValues; ++i) {
if (std::isnan(values[i]))
values[i] = defaultValue;
}
}
AudioParam::AudioParam(BaseAudioContext& context, const String& name, float defaultValue, float minValue, float maxValue, AutomationRate automationRate, AutomationRateMode automationRateMode)
: AudioSummingJunction(context)
, m_name(name)
, m_value(defaultValue)
, m_defaultValue(defaultValue)
, m_minValue(minValue)
, m_maxValue(maxValue)
, m_automationRate(automationRate)
, m_automationRateMode(automationRateMode)
, m_smoothedValue(defaultValue)
, m_summingBus(AudioBus::create(1, AudioUtilities::renderQuantumSize, false).releaseNonNull())
#if !RELEASE_LOG_DISABLED
, m_logger(context.logger())
, m_logIdentifier(context.nextAudioParameterLogIdentifier())
#endif
{
ALWAYS_LOG(LOGIDENTIFIER, "name = ", m_name, ", value = ", m_value, ", default = ", m_defaultValue, ", min = ", m_minValue, ", max = ", m_maxValue);
}
float AudioParam::value()
{
// Update value for timeline.
if (context() && context()->isAudioThread()) {
auto timelineValue = m_timeline.valueForContextTime(*context(), m_value, minValue(), maxValue());
if (timelineValue)
m_value = *timelineValue;
}
return m_value;
}
void AudioParam::setValue(float value)
{
DEBUG_LOG(LOGIDENTIFIER, value);
m_value = std::clamp(value, minValue(), maxValue());
}
float AudioParam::valueForBindings() const
{
ASSERT(isMainThread());
return m_value;
}
ExceptionOr<void> AudioParam::setValueForBindings(float value)
{
ASSERT(isMainThread());
setValue(value);
if (!context())
return { };
auto result = setValueAtTime(m_value, context()->currentTime());
if (result.hasException())
return result.releaseException();
return { };
}
ExceptionOr<void> AudioParam::setAutomationRate(AutomationRate automationRate)
{
if (m_automationRateMode == AutomationRateMode::Fixed)
return Exception { InvalidStateError, "automationRate cannot be changed for this node" };
m_automationRate = automationRate;
return { };
}
float AudioParam::smoothedValue()
{
return m_smoothedValue;
}
bool AudioParam::smooth()
{
if (!context())
return true;
// If values have been explicitly scheduled on the timeline, then use the exact value.
// Smoothing effectively is performed by the timeline.
auto timelineValue = m_timeline.valueForContextTime(*context(), m_value, minValue(), maxValue());
if (timelineValue)
m_value = *timelineValue;
if (m_smoothedValue == m_value) {
// Smoothed value has already approached and snapped to value.
return true;
}
if (timelineValue)
m_smoothedValue = m_value;
else {
// Dezipper - exponential approach.
m_smoothedValue += (m_value - m_smoothedValue) * SmoothingConstant;
// If we get close enough then snap to actual value.
if (fabs(m_smoothedValue - m_value) < SnapThreshold) // FIXME: the threshold needs to be adjustable depending on range - but this is OK general purpose value.
m_smoothedValue = m_value;
}
return false;
}
ExceptionOr<AudioParam&> AudioParam::setValueAtTime(float value, double startTime)
{
if (!context())
return *this;
if (startTime < 0)
return Exception { RangeError, "startTime must be a positive value"_s };
startTime = std::max(startTime, context()->currentTime());
auto result = m_timeline.setValueAtTime(value, Seconds { startTime });
if (result.hasException())
return result.releaseException();
return *this;
}
ExceptionOr<AudioParam&> AudioParam::linearRampToValueAtTime(float value, double endTime)
{
if (!context())
return *this;
if (endTime < 0)
return Exception { RangeError, "endTime must be a positive value"_s };
endTime = std::max(endTime, context()->currentTime());
auto result = m_timeline.linearRampToValueAtTime(value, Seconds { endTime }, m_value, Seconds { context()->currentTime() });
if (result.hasException())
return result.releaseException();
return *this;
}
ExceptionOr<AudioParam&> AudioParam::exponentialRampToValueAtTime(float value, double endTime)
{
if (!context())
return *this;
if (!value)
return Exception { RangeError, "value cannot be 0"_s };
if (endTime < 0)
return Exception { RangeError, "endTime must be a positive value"_s };
endTime = std::max(endTime, context()->currentTime());
auto result = m_timeline.exponentialRampToValueAtTime(value, Seconds { endTime }, m_value, Seconds { context()->currentTime() });
if (result.hasException())
return result.releaseException();
return *this;
}
ExceptionOr<AudioParam&> AudioParam::setTargetAtTime(float target, double startTime, float timeConstant)
{
if (!context())
return *this;
if (startTime < 0)
return Exception { RangeError, "startTime must be a positive value"_s };
if (timeConstant < 0)
return Exception { RangeError, "timeConstant must be a positive value"_s };
startTime = std::max(startTime, context()->currentTime());
auto result = m_timeline.setTargetAtTime(target, Seconds { startTime }, timeConstant);
if (result.hasException())
return result.releaseException();
return *this;
}
ExceptionOr<AudioParam&> AudioParam::setValueCurveAtTime(Vector<float>&& curve, double startTime, double duration)
{
if (!context())
return *this;
if (curve.size() < 2)
return Exception { InvalidStateError, "Array must have a length of at least 2"_s };
if (startTime < 0)
return Exception { RangeError, "startTime must be a positive value"_s };
if (duration <= 0)
return Exception { RangeError, "duration must be a strictly positive value"_s };
startTime = std::max(startTime, context()->currentTime());
auto result = m_timeline.setValueCurveAtTime(WTFMove(curve), Seconds { startTime }, Seconds { duration });
if (result.hasException())
return result.releaseException();
return *this;
}
ExceptionOr<AudioParam&> AudioParam::cancelScheduledValues(double cancelTime)
{
if (cancelTime < 0)
return Exception { RangeError, "cancelTime must be a positive value"_s };
m_timeline.cancelScheduledValues(Seconds { cancelTime });
return *this;
}
ExceptionOr<AudioParam&> AudioParam::cancelAndHoldAtTime(double cancelTime)
{
if (cancelTime < 0)
return Exception { RangeError, "cancelTime must be a positive value"_s };
auto result = m_timeline.cancelAndHoldAtTime(Seconds { cancelTime });
if (result.hasException())
return result.releaseException();
return *this;
}
bool AudioParam::hasSampleAccurateValues() const
{
if (numberOfRenderingConnections())
return true;
if (!context())
return false;
return m_timeline.hasValues(context()->currentSampleFrame(), context()->sampleRate());
}
float AudioParam::finalValue()
{
float value;
calculateFinalValues(&value, 1, false);
return value;
}
void AudioParam::calculateSampleAccurateValues(float* values, unsigned numberOfValues)
{
bool isSafe = context() && context()->isAudioThread() && values && numberOfValues;
ASSERT(isSafe);
if (!isSafe)
return;
calculateFinalValues(values, numberOfValues, automationRate() == AutomationRate::ARate);
}
void AudioParam::calculateFinalValues(float* values, unsigned numberOfValues, bool sampleAccurate)
{
bool isGood = context() && context()->isAudioThread() && values && numberOfValues;
ASSERT(isGood);
if (!isGood)
return;
// The calculated result will be the "intrinsic" value summed with all audio-rate connections.
if (sampleAccurate) {
// Calculate sample-accurate (a-rate) intrinsic values.
calculateTimelineValues(values, numberOfValues);
} else {
// Calculate control-rate (k-rate) intrinsic value.
auto timelineValue = m_timeline.valueForContextTime(*context(), m_value, minValue(), maxValue());
if (timelineValue)
m_value = *timelineValue;
std::fill_n(values, numberOfValues, m_value);
}
if (!numberOfRenderingConnections())
return;
// Now sum all of the audio-rate connections together (unity-gain summing junction).
// Note that connections would normally be mono, but we mix down to mono if necessary.
// If we're not sample accurate, we only need one value, so make the summing
// bus have length 1. When the connections are added in, only the first
// value will be added. Which is exactly what we want.
ASSERT(numberOfValues <= AudioUtilities::renderQuantumSize);
m_summingBus->setChannelMemory(0, values, sampleAccurate ? numberOfValues : 1);
for (auto& output : m_renderingOutputs) {
ASSERT(output);
// Render audio from this output.
AudioBus* connectionBus = output->pull(0, AudioUtilities::renderQuantumSize);
// Sum, with unity-gain.
m_summingBus->sumFrom(*connectionBus);
}
// If we're not sample accurate, duplicate the first element of |values| to all of the elements.
if (!sampleAccurate)
std::fill_n(values + 1, numberOfValues - 1, values[0]);
// As per https://webaudio.github.io/web-audio-api/#computation-of-value, we should replace NaN values
// with the default value.
replaceNaNValues(values, numberOfValues, m_defaultValue);
// Clamp values based on range allowed by AudioParam's min and max values.
VectorMath::clamp(values, minValue(), maxValue(), values, numberOfValues);
}
void AudioParam::calculateTimelineValues(float* values, unsigned numberOfValues)
{
if (!context())
return;
// Calculate values for this render quantum.
// Normally numberOfValues will equal AudioUtilities::renderQuantumSize (the render quantum size).
double sampleRate = context()->sampleRate();
size_t startFrame = context()->currentSampleFrame();
size_t endFrame = startFrame + numberOfValues;
// Note we're running control rate at the sample-rate.
// Pass in the current value as default value.
m_value = m_timeline.valuesForFrameRange(startFrame, endFrame, m_value, minValue(), maxValue(), values, numberOfValues, sampleRate, sampleRate);
}
void AudioParam::connect(AudioNodeOutput* output)
{
ASSERT(context());
ASSERT(context()->isGraphOwner());
ASSERT(output);
if (!output)
return;
if (!addOutput(*output))
return;
INFO_LOG(LOGIDENTIFIER, output->node()->nodeType());
output->addParam(this);
}
void AudioParam::disconnect(AudioNodeOutput* output)
{
ASSERT(context());
ASSERT(context()->isGraphOwner());
ASSERT(output);
if (!output)
return;
INFO_LOG(LOGIDENTIFIER, output->node()->nodeType());
if (removeOutput((*output)))
output->removeParam(this);
}
#if !RELEASE_LOG_DISABLED
WTFLogChannel& AudioParam::logChannel() const
{
return LogMedia;
}
#endif
} // namespace WebCore
#endif // ENABLE(WEB_AUDIO)