| /* |
| * Copyright (C) 2016 Igalia S.L. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS |
| * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
| * THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "ScrollAnimationKinetic.h" |
| |
| #include "ScrollableArea.h" |
| |
| /* |
| * PerAxisData is a port of GtkKineticScrolling as of GTK+ 3.20, |
| * mimicking its API and its behavior. |
| * |
| * All our curves are second degree linear differential equations, and |
| * so they can always be written as linear combinations of 2 base |
| * solutions. coef1 and coef2 are the coefficients to these two base |
| * solutions, and are computed from the initial position and velocity. |
| * |
| * In the case of simple deceleration, the differential equation is |
| * |
| * y'' = -my' |
| * |
| * With m the resistence factor. For this we use the following 2 |
| * base solutions: |
| * |
| * f1(x) = 1 |
| * f2(x) = exp(-mx) |
| * |
| * In the case of overshoot, the differential equation is |
| * |
| * y'' = -my' - ky |
| * |
| * With m the resistance, and k the spring stiffness constant. We let |
| * k = m^2 / 4, so that the system is critically damped (ie, returns to its |
| * equilibrium position as quickly as possible, without oscillating), and offset |
| * the whole thing, such that the equilibrium position is at 0. This gives the |
| * base solutions |
| * |
| * f1(x) = exp(-mx / 2) |
| * f2(x) = t exp(-mx / 2) |
| */ |
| |
| static const double decelFriction = 4; |
| static const double frameRate = 60; |
| static const Seconds tickTime = 1_s / frameRate; |
| static const Seconds minimumTimerInterval { 1_ms }; |
| |
| namespace WebCore { |
| |
| ScrollAnimationKinetic::PerAxisData::PerAxisData(double lower, double upper, double initialPosition, double initialVelocity) |
| : m_lower(lower) |
| , m_upper(upper) |
| , m_coef1(initialVelocity / decelFriction + initialPosition) |
| , m_coef2(-initialVelocity / decelFriction) |
| , m_position(clampTo(initialPosition, lower, upper)) |
| , m_velocity(initialPosition < lower || initialPosition > upper ? 0 : initialVelocity) |
| { |
| } |
| |
| bool ScrollAnimationKinetic::PerAxisData::animateScroll(Seconds timeDelta) |
| { |
| auto lastPosition = m_position; |
| auto lastTime = m_elapsedTime; |
| m_elapsedTime += timeDelta; |
| |
| double exponentialPart = exp(-decelFriction * m_elapsedTime.value()); |
| m_position = m_coef1 + m_coef2 * exponentialPart; |
| m_velocity = -decelFriction * m_coef2 * exponentialPart; |
| |
| if (m_position < m_lower) { |
| m_position = m_lower; |
| m_velocity = 0; |
| } else if (m_position > m_upper) { |
| m_position = m_upper; |
| m_velocity = 0; |
| } else if (fabs(m_velocity) < 1 || (lastTime && fabs(m_position - lastPosition) < 1)) { |
| m_position = round(m_position); |
| m_velocity = 0; |
| } |
| |
| return m_velocity; |
| } |
| |
| ScrollAnimationKinetic::ScrollAnimationKinetic(ScrollableArea& scrollableArea, std::function<void(FloatPoint&&)>&& notifyPositionChangedFunction) |
| : ScrollAnimation(scrollableArea) |
| , m_notifyPositionChangedFunction(WTFMove(notifyPositionChangedFunction)) |
| , m_animationTimer(*this, &ScrollAnimationKinetic::animationTimerFired) |
| { |
| } |
| |
| ScrollAnimationKinetic::~ScrollAnimationKinetic() = default; |
| |
| void ScrollAnimationKinetic::stop() |
| { |
| m_animationTimer.stop(); |
| m_horizontalData = std::nullopt; |
| m_verticalData = std::nullopt; |
| } |
| |
| void ScrollAnimationKinetic::start(const FloatPoint& initialPosition, const FloatPoint& velocity, bool mayHScroll, bool mayVScroll) |
| { |
| stop(); |
| |
| m_position = initialPosition; |
| |
| if (!velocity.x() && !velocity.y()) |
| return; |
| |
| if (mayHScroll) { |
| m_horizontalData = PerAxisData(m_scrollableArea.minimumScrollPosition().x(), |
| m_scrollableArea.maximumScrollPosition().x(), |
| initialPosition.x(), velocity.x()); |
| } |
| if (mayVScroll) { |
| m_verticalData = PerAxisData(m_scrollableArea.minimumScrollPosition().y(), |
| m_scrollableArea.maximumScrollPosition().y(), |
| initialPosition.y(), velocity.y()); |
| } |
| |
| m_startTime = MonotonicTime::now() - tickTime / 2.; |
| animationTimerFired(); |
| } |
| |
| void ScrollAnimationKinetic::animationTimerFired() |
| { |
| MonotonicTime currentTime = MonotonicTime::now(); |
| Seconds deltaToNextFrame = 1_s * ceil((currentTime - m_startTime).value() * frameRate) / frameRate - (currentTime - m_startTime); |
| |
| if (m_horizontalData && !m_horizontalData.value().animateScroll(deltaToNextFrame)) |
| m_horizontalData = std::nullopt; |
| |
| if (m_verticalData && !m_verticalData.value().animateScroll(deltaToNextFrame)) |
| m_verticalData = std::nullopt; |
| |
| // If one of the axes didn't finish its animation we must continue it. |
| if (m_horizontalData || m_verticalData) |
| m_animationTimer.startOneShot(std::max(minimumTimerInterval, deltaToNextFrame)); |
| |
| double x = m_horizontalData ? m_horizontalData.value().position() : m_position.x(); |
| double y = m_verticalData ? m_verticalData.value().position() : m_position.y(); |
| m_position = FloatPoint(x, y); |
| m_notifyPositionChangedFunction(FloatPoint(m_position)); |
| } |
| |
| } // namespace WebCore |