blob: bc43551fe9a202db071555b218813a2af860f378 [file] [log] [blame]
/*
* Copyright (C) 2011 Adobe Systems Incorporated. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "config.h"
#include "RenderFlowThread.h"
#include "FlowThreadController.h"
#include "HitTestRequest.h"
#include "HitTestResult.h"
#include "Node.h"
#include "PODIntervalTree.h"
#include "PaintInfo.h"
#include "RenderBoxRegionInfo.h"
#include "RenderInline.h"
#include "RenderLayer.h"
#include "RenderLayerCompositor.h"
#include "RenderNamedFlowFragment.h"
#include "RenderRegion.h"
#include "RenderTheme.h"
#include "RenderView.h"
#include "TransformState.h"
#include "WebKitNamedFlow.h"
#include <wtf/StackStats.h>
namespace WebCore {
RenderFlowThread::RenderFlowThread(Document& document, PassRef<RenderStyle> style)
: RenderBlockFlow(document, std::move(style))
, m_previousRegionCount(0)
, m_autoLogicalHeightRegionsCount(0)
, m_regionsInvalidated(false)
, m_regionsHaveUniformLogicalWidth(true)
, m_regionsHaveUniformLogicalHeight(true)
, m_dispatchRegionLayoutUpdateEvent(false)
, m_dispatchRegionOversetChangeEvent(false)
, m_pageLogicalSizeChanged(false)
, m_layoutPhase(LayoutPhaseMeasureContent)
, m_needsTwoPhasesLayout(false)
#if USE(ACCELERATED_COMPOSITING)
, m_layersToRegionMappingsDirty(true)
#endif
{
setFlowThreadState(InsideOutOfFlowThread);
}
PassRef<RenderStyle> RenderFlowThread::createFlowThreadStyle(RenderStyle* parentStyle)
{
auto newStyle = RenderStyle::create();
newStyle.get().inheritFrom(parentStyle);
newStyle.get().setDisplay(BLOCK);
newStyle.get().setPosition(AbsolutePosition);
newStyle.get().setZIndex(0);
newStyle.get().setLeft(Length(0, Fixed));
newStyle.get().setTop(Length(0, Fixed));
newStyle.get().setWidth(Length(100, Percent));
newStyle.get().setHeight(Length(100, Percent));
newStyle.get().font().update(0);
return newStyle;
}
void RenderFlowThread::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle)
{
RenderBlockFlow::styleDidChange(diff, oldStyle);
if (oldStyle && oldStyle->writingMode() != style().writingMode())
invalidateRegions();
}
void RenderFlowThread::removeFlowChildInfo(RenderObject* child)
{
if (child->isBox())
removeRenderBoxRegionInfo(toRenderBox(child));
}
void RenderFlowThread::addRegionToThread(RenderRegion* renderRegion)
{
ASSERT(renderRegion);
m_regionList.add(renderRegion);
renderRegion->setIsValid(true);
}
void RenderFlowThread::removeRegionFromThread(RenderRegion* renderRegion)
{
ASSERT(renderRegion);
m_regionList.remove(renderRegion);
}
void RenderFlowThread::invalidateRegions()
{
ASSERT(!inFinalLayoutPhase());
if (m_regionsInvalidated) {
ASSERT(selfNeedsLayout());
return;
}
m_regionRangeMap.clear();
m_breakBeforeToRegionMap.clear();
m_breakAfterToRegionMap.clear();
setNeedsLayout();
m_regionsInvalidated = true;
}
class CurrentRenderFlowThreadDisabler {
WTF_MAKE_NONCOPYABLE(CurrentRenderFlowThreadDisabler);
public:
CurrentRenderFlowThreadDisabler(RenderView* view)
: m_view(view)
, m_renderFlowThread(0)
{
m_renderFlowThread = m_view->flowThreadController().currentRenderFlowThread();
if (m_renderFlowThread)
view->flowThreadController().setCurrentRenderFlowThread(0);
}
~CurrentRenderFlowThreadDisabler()
{
if (m_renderFlowThread)
m_view->flowThreadController().setCurrentRenderFlowThread(m_renderFlowThread);
}
private:
RenderView* m_view;
RenderFlowThread* m_renderFlowThread;
};
void RenderFlowThread::validateRegions()
{
if (m_regionsInvalidated) {
m_regionsInvalidated = false;
m_regionsHaveUniformLogicalWidth = true;
m_regionsHaveUniformLogicalHeight = true;
if (hasRegions()) {
LayoutUnit previousRegionLogicalWidth = 0;
LayoutUnit previousRegionLogicalHeight = 0;
bool firstRegionVisited = false;
for (auto iter = m_regionList.begin(), end = m_regionList.end(); iter != end; ++iter) {
RenderRegion* region = *iter;
ASSERT(!region->needsLayout() || region->isRenderRegionSet());
region->deleteAllRenderBoxRegionInfo();
// In the measure content layout phase we need to initialize the computedAutoHeight for auto-height regions.
// See initializeRegionsComputedAutoHeight for the explanation.
// Also, if we have auto-height regions we can't assume m_regionsHaveUniformLogicalHeight to be true in the first phase
// because the auto-height regions don't have their height computed yet.
if (inMeasureContentLayoutPhase() && region->hasAutoLogicalHeight()) {
RenderNamedFlowFragment* namedFlowFragment = toRenderNamedFlowFragment(region);
namedFlowFragment->setComputedAutoHeight(namedFlowFragment->maxPageLogicalHeight());
m_regionsHaveUniformLogicalHeight = false;
}
LayoutUnit regionLogicalWidth = region->pageLogicalWidth();
LayoutUnit regionLogicalHeight = region->pageLogicalHeight();
if (!firstRegionVisited)
firstRegionVisited = true;
else {
if (m_regionsHaveUniformLogicalWidth && previousRegionLogicalWidth != regionLogicalWidth)
m_regionsHaveUniformLogicalWidth = false;
if (m_regionsHaveUniformLogicalHeight && previousRegionLogicalHeight != regionLogicalHeight)
m_regionsHaveUniformLogicalHeight = false;
}
previousRegionLogicalWidth = regionLogicalWidth;
}
setRegionRangeForBox(this, m_regionList.first(), m_regionList.last());
}
}
updateLogicalWidth(); // Called to get the maximum logical width for the region.
updateRegionsFlowThreadPortionRect();
}
void RenderFlowThread::layout()
{
StackStats::LayoutCheckPoint layoutCheckPoint;
m_pageLogicalSizeChanged = m_regionsInvalidated && everHadLayout();
// In case this is the second pass of the measure content phase we need to update the auto-height regions to their initial value.
// If the region chain was invalidated this will happen anyway.
if (!m_regionsInvalidated && inMeasureContentLayoutPhase())
initializeRegionsComputedAutoHeight();
// This is the first phase of the layout and because we have auto-height regions we'll need a second
// pass to update the flow with the computed auto-height regions.
// It's also possible to need a secondary layout if the overflow computation invalidated the region chain (e.g. overflow: auto scrollbars
// shrunk some regions) so repropagation is required.
m_needsTwoPhasesLayout = (inMeasureContentLayoutPhase() && hasAutoLogicalHeightRegions()) || (inOverflowLayoutPhase() && m_regionsInvalidated);
validateRegions();
CurrentRenderFlowThreadMaintainer currentFlowThreadSetter(this);
RenderBlockFlow::layout();
m_pageLogicalSizeChanged = false;
if (lastRegion())
lastRegion()->expandToEncompassFlowThreadContentsIfNeeded();
#if USE(ACCELERATED_COMPOSITING)
// If there are children layers in the RenderFlowThread then we need to make sure that the
// composited children layers will land in the right RenderRegions. Also, the parent RenderRegions
// will get RenderLayers and become composited as needed.
// Note that there's no need to do so for the inline multi-column as we are not moving layers into different
// containers, but just adjusting the position of the RenderLayerBacking.
if (!m_needsTwoPhasesLayout) {
// If we have layers that moved from one region to another, we trigger
// a composited layers rebuild in here to make sure that the regions will collect the right layers.
if (updateAllLayerToRegionMappings())
layer()->compositor().setCompositingLayersNeedRebuild();
}
#endif
if (shouldDispatchRegionLayoutUpdateEvent())
dispatchRegionLayoutUpdateEvent();
if (shouldDispatchRegionOversetChangeEvent())
dispatchRegionOversetChangeEvent();
}
#if USE(ACCELERATED_COMPOSITING)
bool RenderFlowThread::hasCompositingRegionDescendant() const
{
for (auto iter = m_regionList.begin(), end = m_regionList.end(); iter != end; ++iter)
if (RenderLayerModelObject* layerOwner = toRenderNamedFlowFragment(*iter)->layerOwner())
if (layerOwner->hasLayer() && layerOwner->layer()->hasCompositingDescendant())
return true;
return false;
}
const RenderLayerList* RenderFlowThread::getLayerListForRegion(RenderNamedFlowFragment* region)
{
if (!m_regionToLayerListMap)
return 0;
updateAllLayerToRegionMappingsIfNeeded();
auto iterator = m_regionToLayerListMap->find(region);
return iterator == m_regionToLayerListMap->end() ? 0 : &iterator->value;
}
RenderNamedFlowFragment* RenderFlowThread::regionForCompositedLayer(RenderLayer& childLayer)
{
if (childLayer.renderer().fixedPositionedWithNamedFlowContainingBlock())
return 0;
if (childLayer.renderBox()) {
RenderRegion* startRegion = 0;
RenderRegion* endRegion = 0;
getRegionRangeForBox(childLayer.renderBox(), startRegion, endRegion);
// The video tag is such a box that doesn't have a region range because it's inline (by default).
if (startRegion)
return toRenderNamedFlowFragment(startRegion);
}
// FIXME: remove this when we'll have region ranges for inlines as well.
LayoutPoint flowThreadOffset = flooredLayoutPoint(childLayer.renderer().localToContainerPoint(LayoutPoint(), this, ApplyContainerFlip));
return toRenderNamedFlowFragment(regionAtBlockOffset(0, flipForWritingMode(isHorizontalWritingMode() ? flowThreadOffset.y() : flowThreadOffset.x()), true, DisallowRegionAutoGeneration));
}
RenderNamedFlowFragment* RenderFlowThread::cachedRegionForCompositedLayer(RenderLayer& childLayer)
{
if (!m_layerToRegionMap)
return 0;
updateAllLayerToRegionMappingsIfNeeded();
return m_layerToRegionMap->get(&childLayer);
}
void RenderFlowThread::updateLayerToRegionMappings(RenderLayer& layer, LayerToRegionMap& layerToRegionMap, RegionToLayerListMap& regionToLayerListMap, bool& needsLayerUpdate)
{
RenderNamedFlowFragment* region = regionForCompositedLayer(layer);
if (!needsLayerUpdate) {
// Figure out if we moved this layer from a region to the other.
RenderNamedFlowFragment* previousRegion = cachedRegionForCompositedLayer(layer);
if (previousRegion != region)
needsLayerUpdate = true;
}
if (!region)
return;
layerToRegionMap.set(&layer, region);
auto iterator = regionToLayerListMap.find(region);
RenderLayerList& list = iterator == regionToLayerListMap.end() ? regionToLayerListMap.set(region, RenderLayerList()).iterator->value : iterator->value;
ASSERT(!list.contains(&layer));
list.append(&layer);
}
bool RenderFlowThread::updateAllLayerToRegionMappings()
{
if (!collectsGraphicsLayersUnderRegions())
return false;
// We can't use currentFlowThread as it is possible to have interleaved flow threads and the wrong one could be used.
// Let each region figure out the proper enclosing flow thread.
CurrentRenderFlowThreadDisabler disabler(&view());
// If the RenderFlowThread had a z-index layer update, then we need to update the composited layers too.
bool needsLayerUpdate = layer()->isDirtyRenderFlowThread() || m_layersToRegionMappingsDirty || !m_layerToRegionMap.get();
layer()->updateLayerListsIfNeeded();
LayerToRegionMap layerToRegionMap;
RegionToLayerListMap regionToLayerListMap;
RenderLayerList* lists[] = { layer()->negZOrderList(), layer()->normalFlowList(), layer()->posZOrderList()};
for (size_t listIndex = 0; listIndex < sizeof(lists) / sizeof(lists[0]); ++listIndex)
if (RenderLayerList* list = lists[listIndex])
for (size_t i = 0, listSize = list->size(); i < listSize; ++i)
updateLayerToRegionMappings(*list->at(i), layerToRegionMap, regionToLayerListMap, needsLayerUpdate);
if (needsLayerUpdate) {
if (!m_layerToRegionMap)
m_layerToRegionMap = adoptPtr(new LayerToRegionMap());
m_layerToRegionMap->swap(layerToRegionMap);
if (!m_regionToLayerListMap)
m_regionToLayerListMap = adoptPtr(new RegionToLayerListMap());
m_regionToLayerListMap->swap(regionToLayerListMap);
}
m_layersToRegionMappingsDirty = false;
return needsLayerUpdate;
}
#endif
bool RenderFlowThread::collectsGraphicsLayersUnderRegions() const
{
// We only need to map layers to regions for named flow threads.
// Multi-column threads are displayed on top of the regions and do not require
// distributing the layers.
return false;
}
void RenderFlowThread::updateLogicalWidth()
{
LayoutUnit logicalWidth = initialLogicalWidth();
for (auto iter = m_regionList.begin(), end = m_regionList.end(); iter != end; ++iter) {
RenderRegion* region = *iter;
ASSERT(!region->needsLayout() || region->isRenderRegionSet());
logicalWidth = std::max(region->pageLogicalWidth(), logicalWidth);
}
setLogicalWidth(logicalWidth);
// If the regions have non-uniform logical widths, then insert inset information for the RenderFlowThread.
for (auto iter = m_regionList.begin(), end = m_regionList.end(); iter != end; ++iter) {
RenderRegion* region = *iter;
LayoutUnit regionLogicalWidth = region->pageLogicalWidth();
LayoutUnit logicalLeft = style().direction() == LTR ? LayoutUnit() : logicalWidth - regionLogicalWidth;
region->setRenderBoxRegionInfo(this, logicalLeft, regionLogicalWidth, false);
}
}
void RenderFlowThread::computeLogicalHeight(LayoutUnit, LayoutUnit logicalTop, LogicalExtentComputedValues& computedValues) const
{
computedValues.m_position = logicalTop;
computedValues.m_extent = 0;
const LayoutUnit maxFlowSize = RenderFlowThread::maxLogicalHeight();
for (auto iter = m_regionList.begin(), end = m_regionList.end(); iter != end; ++iter) {
RenderRegion* region = *iter;
ASSERT(!region->needsLayout() || region->isRenderRegionSet());
LayoutUnit distanceToMaxSize = maxFlowSize - computedValues.m_extent;
computedValues.m_extent += std::min(distanceToMaxSize, region->logicalHeightOfAllFlowThreadContent());
// If we reached the maximum size there's no point in going further.
if (computedValues.m_extent == maxFlowSize)
return;
}
}
LayoutRect RenderFlowThread::computeRegionClippingRect(const LayoutPoint& offset, const LayoutRect& flowThreadPortionRect, const LayoutRect& flowThreadPortionOverflowRect) const
{
LayoutRect regionClippingRect(offset + (flowThreadPortionOverflowRect.location() - flowThreadPortionRect.location()), flowThreadPortionOverflowRect.size());
if (style().isFlippedBlocksWritingMode())
regionClippingRect.move(flowThreadPortionRect.size() - flowThreadPortionOverflowRect.size());
return regionClippingRect;
}
bool RenderFlowThread::nodeAtPoint(const HitTestRequest& request, HitTestResult& result, const HitTestLocation& locationInContainer, const LayoutPoint& accumulatedOffset, HitTestAction hitTestAction)
{
if (hitTestAction == HitTestBlockBackground)
return false;
return RenderBlockFlow::nodeAtPoint(request, result, locationInContainer, accumulatedOffset, hitTestAction);
}
bool RenderFlowThread::shouldRepaint(const LayoutRect& r) const
{
if (view().printing() || r.isEmpty())
return false;
return true;
}
void RenderFlowThread::repaintRectangleInRegions(const LayoutRect& repaintRect, bool immediate) const
{
if (!shouldRepaint(repaintRect) || !hasValidRegionInfo())
return;
LayoutStateDisabler layoutStateDisabler(&view()); // We can't use layout state to repaint, since the regions are somewhere else.
// We can't use currentFlowThread as it is possible to have interleaved flow threads and the wrong one could be used.
// Let each region figure out the proper enclosing flow thread.
CurrentRenderFlowThreadDisabler disabler(&view());
for (auto iter = m_regionList.begin(), end = m_regionList.end(); iter != end; ++iter) {
RenderRegion* region = *iter;
region->repaintFlowThreadContent(repaintRect, immediate);
}
}
RenderRegion* RenderFlowThread::regionAtBlockOffset(const RenderBox* clampBox, LayoutUnit offset, bool extendLastRegion, RegionAutoGenerationPolicy autoGenerationPolicy)
{
ASSERT(!m_regionsInvalidated);
if (autoGenerationPolicy == AllowRegionAutoGeneration)
autoGenerateRegionsToBlockOffset(offset);
if (m_regionList.isEmpty())
return 0;
if (offset <= 0)
return clampBox ? clampBox->clampToStartAndEndRegions(m_regionList.first()) : m_regionList.first();
RegionSearchAdapter adapter(offset);
m_regionIntervalTree.allOverlapsWithAdapter<RegionSearchAdapter>(adapter);
// If no region was found, the offset is in the flow thread overflow.
// The last region will contain the offset if extendLastRegion is set or if the last region is a set.
if (!adapter.result() && (extendLastRegion || m_regionList.last()->isRenderRegionSet()))
return clampBox ? clampBox->clampToStartAndEndRegions(m_regionList.last()) : m_regionList.last();
RenderRegion* region = adapter.result();
if (!clampBox)
return region;
return region ? clampBox->clampToStartAndEndRegions(region) : 0;
}
LayoutPoint RenderFlowThread::adjustedPositionRelativeToOffsetParent(const RenderBoxModelObject& boxModelObject, const LayoutPoint& startPoint)
{
LayoutPoint referencePoint = startPoint;
const RenderBlock* objContainingBlock = boxModelObject.containingBlock();
// FIXME: This needs to be adapted for different writing modes inside the flow thread.
RenderRegion* startRegion = regionAtBlockOffset(objContainingBlock, referencePoint.y());
if (startRegion) {
// Take into account the offset coordinates of the region.
RenderBoxModelObject* startRegionBox = startRegion->isRenderNamedFlowFragment() ? toRenderBoxModelObject(startRegion->parent()) : startRegion;
RenderBoxModelObject* currObject = startRegionBox;
RenderBoxModelObject* currOffsetParent;
while ((currOffsetParent = currObject->offsetParent())) {
referencePoint.move(currObject->offsetLeft(), currObject->offsetTop());
// Since we're looking for the offset relative to the body, we must also
// take into consideration the borders of the region's offsetParent.
if (currOffsetParent->isBox() && !currOffsetParent->isBody())
referencePoint.move(toRenderBox(currOffsetParent)->borderLeft(), toRenderBox(currOffsetParent)->borderTop());
currObject = currOffsetParent;
}
// We need to check if any of this box's containing blocks start in a different region
// and if so, drop the object's top position (which was computed relative to its containing block
// and is no longer valid) and recompute it using the region in which it flows as reference.
bool wasComputedRelativeToOtherRegion = false;
while (objContainingBlock && !objContainingBlock->isRenderNamedFlowThread()) {
// Check if this object is in a different region.
RenderRegion* parentStartRegion = 0;
RenderRegion* parentEndRegion = 0;
getRegionRangeForBox(objContainingBlock, parentStartRegion, parentEndRegion);
if (parentStartRegion && parentStartRegion != startRegion) {
wasComputedRelativeToOtherRegion = true;
break;
}
objContainingBlock = objContainingBlock->containingBlock();
}
if (wasComputedRelativeToOtherRegion) {
if (boxModelObject.isBox()) {
// Use borderBoxRectInRegion to account for variations such as percentage margins.
LayoutRect borderBoxRect = toRenderBox(boxModelObject).borderBoxRectInRegion(startRegion, RenderBox::DoNotCacheRenderBoxRegionInfo);
referencePoint.move(borderBoxRect.location().x(), 0);
}
// Get the logical top coordinate of the current object.
LayoutUnit top = 0;
if (boxModelObject.isRenderBlock())
top = toRenderBlock(boxModelObject).offsetFromLogicalTopOfFirstPage();
else {
if (boxModelObject.containingBlock())
top = boxModelObject.containingBlock()->offsetFromLogicalTopOfFirstPage();
if (boxModelObject.isBox())
top += toRenderBox(boxModelObject).topLeftLocation().y();
else if (boxModelObject.isRenderInline())
top -= toRenderInline(boxModelObject).borderTop();
}
// Get the logical top of the region this object starts in
// and compute the object's top, relative to the region's top.
LayoutUnit regionLogicalTop = startRegion->pageLogicalTopForOffset(top);
LayoutUnit topRelativeToRegion = top - regionLogicalTop;
referencePoint.setY(startRegionBox->offsetTop() + topRelativeToRegion);
// Since the top has been overriden, check if the
// relative/sticky positioning must be reconsidered.
if (boxModelObject.isRelPositioned())
referencePoint.move(0, boxModelObject.relativePositionOffset().height());
else if (boxModelObject.isStickyPositioned())
referencePoint.move(0, boxModelObject.stickyPositionOffset().height());
}
// Since we're looking for the offset relative to the body, we must also
// take into consideration the borders of the region.
referencePoint.move(startRegionBox->borderLeft(), startRegionBox->borderTop());
}
return referencePoint;
}
LayoutUnit RenderFlowThread::pageLogicalTopForOffset(LayoutUnit offset)
{
RenderRegion* region = regionAtBlockOffset(0, offset, false, AllowRegionAutoGeneration);
return region ? region->pageLogicalTopForOffset(offset) : LayoutUnit();
}
LayoutUnit RenderFlowThread::pageLogicalWidthForOffset(LayoutUnit offset)
{
RenderRegion* region = regionAtBlockOffset(0, offset, true, AllowRegionAutoGeneration);
return region ? region->pageLogicalWidth() : contentLogicalWidth();
}
LayoutUnit RenderFlowThread::pageLogicalHeightForOffset(LayoutUnit offset)
{
RenderRegion* region = regionAtBlockOffset(0, offset, false, AllowRegionAutoGeneration);
if (!region)
return 0;
return region->pageLogicalHeight();
}
LayoutUnit RenderFlowThread::pageRemainingLogicalHeightForOffset(LayoutUnit offset, PageBoundaryRule pageBoundaryRule)
{
RenderRegion* region = regionAtBlockOffset(0, offset, false, AllowRegionAutoGeneration);
if (!region)
return 0;
LayoutUnit pageLogicalTop = region->pageLogicalTopForOffset(offset);
LayoutUnit pageLogicalHeight = region->pageLogicalHeight();
LayoutUnit pageLogicalBottom = pageLogicalTop + pageLogicalHeight;
LayoutUnit remainingHeight = pageLogicalBottom - offset;
if (pageBoundaryRule == IncludePageBoundary) {
// If IncludePageBoundary is set, the line exactly on the top edge of a
// region will act as being part of the previous region.
remainingHeight = intMod(remainingHeight, pageLogicalHeight);
}
return remainingHeight;
}
RenderRegion* RenderFlowThread::mapFromFlowToRegion(TransformState& transformState) const
{
if (!hasValidRegionInfo())
return 0;
LayoutRect boxRect = transformState.mappedQuad().enclosingBoundingBox();
flipForWritingMode(boxRect);
// FIXME: We need to refactor RenderObject::absoluteQuads to be able to split the quads across regions,
// for now we just take the center of the mapped enclosing box and map it to a region.
// Note: Using the center in order to avoid rounding errors.
LayoutPoint center = boxRect.center();
RenderRegion* renderRegion = const_cast<RenderFlowThread*>(this)->regionAtBlockOffset(this, isHorizontalWritingMode() ? center.y() : center.x(), true, DisallowRegionAutoGeneration);
if (!renderRegion)
return 0;
LayoutRect flippedRegionRect(renderRegion->flowThreadPortionRect());
flipForWritingMode(flippedRegionRect);
transformState.move(renderRegion->contentBoxRect().location() - flippedRegionRect.location());
return renderRegion;
}
void RenderFlowThread::removeRenderBoxRegionInfo(RenderBox* box)
{
if (!hasRegions())
return;
// If the region chain was invalidated the next layout will clear the box information from all the regions.
if (m_regionsInvalidated) {
ASSERT(selfNeedsLayout());
return;
}
RenderRegion* startRegion;
RenderRegion* endRegion;
getRegionRangeForBox(box, startRegion, endRegion);
for (auto iter = m_regionList.find(startRegion), end = m_regionList.end(); iter != end; ++iter) {
RenderRegion* region = *iter;
region->removeRenderBoxRegionInfo(box);
if (region == endRegion)
break;
}
#ifndef NDEBUG
// We have to make sure we did not leave any RenderBoxRegionInfo attached.
for (auto iter = m_regionList.begin(), end = m_regionList.end(); iter != end; ++iter) {
RenderRegion* region = *iter;
ASSERT(!region->renderBoxRegionInfo(box));
}
#endif
m_regionRangeMap.remove(box);
}
void RenderFlowThread::logicalWidthChangedInRegionsForBlock(const RenderBlock* block, bool& relayoutChildren)
{
if (!hasValidRegionInfo())
return;
auto it = m_regionRangeMap.find(block);
if (it == m_regionRangeMap.end())
return;
RenderRegionRange& range = it->value;
bool rangeInvalidated = range.rangeInvalidated();
range.clearRangeInvalidated();
// If there will be a relayout anyway skip the next steps because they only verify
// the state of the ranges.
if (relayoutChildren)
return;
RenderRegion* startRegion;
RenderRegion* endRegion;
getRegionRangeForBox(block, startRegion, endRegion);
// Not necessary for the flow thread, since we already computed the correct info for it.
// If the regions have changed invalidate the children.
if (block == this) {
relayoutChildren = m_pageLogicalSizeChanged;
return;
}
for (auto iter = m_regionList.find(startRegion), end = m_regionList.end(); iter != end; ++iter) {
RenderRegion* region = *iter;
ASSERT(!region->needsLayout() || region->isRenderRegionSet());
// We have no information computed for this region so we need to do it.
OwnPtr<RenderBoxRegionInfo> oldInfo = region->takeRenderBoxRegionInfo(block);
if (!oldInfo) {
relayoutChildren = rangeInvalidated;
return;
}
LayoutUnit oldLogicalWidth = oldInfo->logicalWidth();
RenderBoxRegionInfo* newInfo = block->renderBoxRegionInfo(region);
if (!newInfo || newInfo->logicalWidth() != oldLogicalWidth) {
relayoutChildren = true;
return;
}
if (region == endRegion)
break;
}
}
LayoutUnit RenderFlowThread::contentLogicalWidthOfFirstRegion() const
{
RenderRegion* firstValidRegionInFlow = firstRegion();
if (!firstValidRegionInFlow)
return 0;
return isHorizontalWritingMode() ? firstValidRegionInFlow->contentWidth() : firstValidRegionInFlow->contentHeight();
}
LayoutUnit RenderFlowThread::contentLogicalHeightOfFirstRegion() const
{
RenderRegion* firstValidRegionInFlow = firstRegion();
if (!firstValidRegionInFlow)
return 0;
return isHorizontalWritingMode() ? firstValidRegionInFlow->contentHeight() : firstValidRegionInFlow->contentWidth();
}
LayoutUnit RenderFlowThread::contentLogicalLeftOfFirstRegion() const
{
RenderRegion* firstValidRegionInFlow = firstRegion();
if (!firstValidRegionInFlow)
return 0;
return isHorizontalWritingMode() ? firstValidRegionInFlow->flowThreadPortionRect().x() : firstValidRegionInFlow->flowThreadPortionRect().y();
}
RenderRegion* RenderFlowThread::firstRegion() const
{
if (!hasRegions())
return 0;
return m_regionList.first();
}
RenderRegion* RenderFlowThread::lastRegion() const
{
if (!hasRegions())
return 0;
return m_regionList.last();
}
void RenderFlowThread::clearRenderBoxRegionInfoAndCustomStyle(const RenderBox* box,
const RenderRegion* newStartRegion, const RenderRegion* newEndRegion,
const RenderRegion* oldStartRegion, const RenderRegion* oldEndRegion)
{
ASSERT(newStartRegion && newEndRegion && oldStartRegion && oldEndRegion);
bool insideOldRegionRange = false;
bool insideNewRegionRange = false;
for (auto iter = m_regionList.begin(), end = m_regionList.end(); iter != end; ++iter) {
RenderRegion* region = *iter;
if (oldStartRegion == region)
insideOldRegionRange = true;
if (newStartRegion == region)
insideNewRegionRange = true;
if (!(insideOldRegionRange && insideNewRegionRange)) {
if (region->isRenderNamedFlowFragment())
toRenderNamedFlowFragment(region)->clearObjectStyleInRegion(box);
if (region->renderBoxRegionInfo(box))
region->removeRenderBoxRegionInfo(box);
}
if (oldEndRegion == region)
insideOldRegionRange = false;
if (newEndRegion == region)
insideNewRegionRange = false;
}
}
void RenderFlowThread::setRegionRangeForBox(const RenderBox* box, RenderRegion* startRegion, RenderRegion* endRegion)
{
ASSERT(hasRegions());
ASSERT(startRegion && endRegion);
auto it = m_regionRangeMap.find(box);
if (it == m_regionRangeMap.end()) {
m_regionRangeMap.set(box, RenderRegionRange(startRegion, endRegion));
return;
}
// If nothing changed, just bail.
RenderRegionRange& range = it->value;
if (range.startRegion() == startRegion && range.endRegion() == endRegion)
return;
clearRenderBoxRegionInfoAndCustomStyle(box, startRegion, endRegion, range.startRegion(), range.endRegion());
range.setRange(startRegion, endRegion);
}
void RenderFlowThread::getRegionRangeForBox(const RenderBox* box, RenderRegion*& startRegion, RenderRegion*& endRegion) const
{
startRegion = 0;
endRegion = 0;
auto it = m_regionRangeMap.find(box);
if (it == m_regionRangeMap.end())
return;
const RenderRegionRange& range = it->value;
startRegion = range.startRegion();
endRegion = range.endRegion();
ASSERT(m_regionList.contains(startRegion) && m_regionList.contains(endRegion));
}
void RenderFlowThread::applyBreakAfterContent(LayoutUnit clientHeight)
{
// Simulate a region break at height. If it points inside an auto logical height region,
// then it may determine the region computed autoheight.
addForcedRegionBreak(this, clientHeight, this, false);
}
bool RenderFlowThread::regionInRange(const RenderRegion* targetRegion, const RenderRegion* startRegion, const RenderRegion* endRegion) const
{
ASSERT(targetRegion);
for (auto it = m_regionList.find(const_cast<RenderRegion*>(startRegion)), end = m_regionList.end(); it != end; ++it) {
const RenderRegion* currRegion = *it;
if (targetRegion == currRegion)
return true;
if (currRegion == endRegion)
break;
}
return false;
}
bool RenderFlowThread::objectShouldPaintInFlowRegion(const RenderObject* object, const RenderRegion* region) const
{
ASSERT(object);
ASSERT(region);
RenderFlowThread* flowThread = object->flowThreadContainingBlock();
if (flowThread != this)
return false;
if (!m_regionList.contains(const_cast<RenderRegion*>(region)))
return false;
RenderBox* enclosingBox = object->enclosingBox();
RenderRegion* enclosingBoxStartRegion = 0;
RenderRegion* enclosingBoxEndRegion = 0;
getRegionRangeForBox(enclosingBox, enclosingBoxStartRegion, enclosingBoxEndRegion);
// If the box has no range, do not check regionInRange. Boxes inside inlines do not get ranges.
// Instead, the containing RootInlineBox will abort when trying to paint inside the wrong region.
if (enclosingBoxStartRegion && enclosingBoxEndRegion && !regionInRange(region, enclosingBoxStartRegion, enclosingBoxEndRegion))
return false;
return object->isBox() || object->isRenderInline();
}
bool RenderFlowThread::objectInFlowRegion(const RenderObject* object, const RenderRegion* region) const
{
ASSERT(object);
ASSERT(region);
RenderFlowThread* flowThread = object->flowThreadContainingBlock();
if (flowThread != this)
return false;
if (!m_regionList.contains(const_cast<RenderRegion*>(region)))
return false;
RenderBox* enclosingBox = object->enclosingBox();
RenderRegion* enclosingBoxStartRegion = 0;
RenderRegion* enclosingBoxEndRegion = 0;
getRegionRangeForBox(enclosingBox, enclosingBoxStartRegion, enclosingBoxEndRegion);
if (!regionInRange(region, enclosingBoxStartRegion, enclosingBoxEndRegion))
return false;
if (object->isBox())
return true;
LayoutRect objectABBRect = object->absoluteBoundingBoxRect(true);
if (!objectABBRect.width())
objectABBRect.setWidth(1);
if (!objectABBRect.height())
objectABBRect.setHeight(1);
if (objectABBRect.intersects(region->absoluteBoundingBoxRect(true)))
return true;
if (region == lastRegion()) {
// If the object does not intersect any of the enclosing box regions
// then the object is in last region.
for (auto it = m_regionList.find(enclosingBoxStartRegion), end = m_regionList.end(); it != end; ++it) {
const RenderRegion* currRegion = *it;
if (currRegion == region)
break;
if (objectABBRect.intersects(currRegion->absoluteBoundingBoxRect(true)))
return false;
}
return true;
}
return false;
}
#ifndef NDEBUG
bool RenderFlowThread::isAutoLogicalHeightRegionsCountConsistent() const
{
unsigned autoLogicalHeightRegions = 0;
for (auto iter = m_regionList.begin(), end = m_regionList.end(); iter != end; ++iter) {
const RenderRegion* region = *iter;
if (region->hasAutoLogicalHeight())
autoLogicalHeightRegions++;
}
return autoLogicalHeightRegions == m_autoLogicalHeightRegionsCount;
}
#endif
// During the measure content layout phase of the named flow the regions are initialized with a height equal to their max-height.
// This way unforced breaks are automatically placed when a region is full and the content height/position correctly estimated.
// Also, the region where a forced break falls is exactly the region found at the forced break offset inside the flow content.
void RenderFlowThread::initializeRegionsComputedAutoHeight(RenderRegion* startRegion)
{
ASSERT(inMeasureContentLayoutPhase());
if (!hasAutoLogicalHeightRegions())
return;
for (auto regionIter = startRegion ? m_regionList.find(startRegion) : m_regionList.begin(),
end = m_regionList.end(); regionIter != end; ++regionIter) {
RenderRegion* region = *regionIter;
if (region->hasAutoLogicalHeight()) {
RenderNamedFlowFragment* namedFlowFragment = toRenderNamedFlowFragment(region);
namedFlowFragment->setComputedAutoHeight(namedFlowFragment->maxPageLogicalHeight());
}
}
}
void RenderFlowThread::markAutoLogicalHeightRegionsForLayout()
{
ASSERT(hasAutoLogicalHeightRegions());
for (auto iter = m_regionList.begin(), end = m_regionList.end(); iter != end; ++iter) {
RenderRegion* region = *iter;
if (!region->hasAutoLogicalHeight())
continue;
// FIXME: We need to find a way to avoid marking all the regions ancestors for layout
// as we are already inside layout.
region->setNeedsLayout();
}
}
void RenderFlowThread::markRegionsForOverflowLayoutIfNeeded()
{
if (!hasRegions())
return;
for (auto iter = m_regionList.begin(), end = m_regionList.end(); iter != end; ++iter) {
RenderRegion* region = *iter;
region->setNeedsSimplifiedNormalFlowLayout();
}
}
void RenderFlowThread::updateRegionsFlowThreadPortionRect(const RenderRegion* lastRegionWithContent)
{
ASSERT(!lastRegionWithContent || (inMeasureContentLayoutPhase() && hasAutoLogicalHeightRegions()));
LayoutUnit logicalHeight = 0;
bool emptyRegionsSegment = false;
// FIXME: Optimize not to clear the interval all the time. This implies manually managing the tree nodes lifecycle.
m_regionIntervalTree.clear();
m_regionIntervalTree.initIfNeeded();
for (auto iter = m_regionList.begin(), end = m_regionList.end(); iter != end; ++iter) {
RenderRegion* region = *iter;
// If we find an empty auto-height region, clear the computedAutoHeight value.
if (emptyRegionsSegment && region->hasAutoLogicalHeight())
toRenderNamedFlowFragment(region)->clearComputedAutoHeight();
LayoutUnit regionLogicalWidth = region->pageLogicalWidth();
LayoutUnit regionLogicalHeight = std::min<LayoutUnit>(RenderFlowThread::maxLogicalHeight() - logicalHeight, region->logicalHeightOfAllFlowThreadContent());
LayoutRect regionRect(style().direction() == LTR ? LayoutUnit() : logicalWidth() - regionLogicalWidth, logicalHeight, regionLogicalWidth, regionLogicalHeight);
region->setFlowThreadPortionRect(isHorizontalWritingMode() ? regionRect : regionRect.transposedRect());
m_regionIntervalTree.add(RegionIntervalTree::createInterval(logicalHeight, logicalHeight + regionLogicalHeight, region));
logicalHeight += regionLogicalHeight;
// Once we find the last region with content the next regions are considered empty.
if (lastRegionWithContent == region)
emptyRegionsSegment = true;
}
ASSERT(!lastRegionWithContent || emptyRegionsSegment);
}
// Even if we require the break to occur at offsetBreakInFlowThread, because regions may have min/max-height values,
// it is possible that the break will occur at a different offset than the original one required.
// offsetBreakAdjustment measures the different between the requested break offset and the current break offset.
bool RenderFlowThread::addForcedRegionBreak(const RenderBlock* block, LayoutUnit offsetBreakInFlowThread, RenderBox* breakChild, bool isBefore, LayoutUnit* offsetBreakAdjustment)
{
// We take breaks into account for height computation for auto logical height regions
// only in the layout phase in which we lay out the flows threads unconstrained
// and we use the content breaks to determine the computed auto height for
// auto logical height regions.
if (!inMeasureContentLayoutPhase())
return false;
// Breaks can come before or after some objects. We need to track these objects, so that if we get
// multiple breaks for the same object (for example because of multiple layouts on the same object),
// we need to invalidate every other region after the old one and start computing from fresh.
RenderBoxToRegionMap& mapToUse = isBefore ? m_breakBeforeToRegionMap : m_breakAfterToRegionMap;
auto iter = mapToUse.find(breakChild);
if (iter != mapToUse.end()) {
auto regionIter = m_regionList.find(iter->value);
ASSERT(regionIter != m_regionList.end());
ASSERT((*regionIter)->hasAutoLogicalHeight());
initializeRegionsComputedAutoHeight(*regionIter);
// We need to update the regions flow thread portion rect because we are going to process
// a break on these regions.
updateRegionsFlowThreadPortionRect();
}
// Simulate a region break at offsetBreakInFlowThread. If it points inside an auto logical height region,
// then it determines the region computed auto height.
RenderRegion* region = regionAtBlockOffset(block, offsetBreakInFlowThread);
if (!region)
return false;
bool lastBreakAfterContent = breakChild == this;
bool hasComputedAutoHeight = false;
LayoutUnit currentRegionOffsetInFlowThread = isHorizontalWritingMode() ? region->flowThreadPortionRect().y() : region->flowThreadPortionRect().x();
LayoutUnit offsetBreakInCurrentRegion = offsetBreakInFlowThread - currentRegionOffsetInFlowThread;
if (region->hasAutoLogicalHeight()) {
RenderNamedFlowFragment* namedFlowFragment = toRenderNamedFlowFragment(region);
// A forced break can appear only in an auto-height region that didn't have a forced break before.
// This ASSERT is a good-enough heuristic to verify the above condition.
ASSERT(namedFlowFragment->maxPageLogicalHeight() == namedFlowFragment->computedAutoHeight());
mapToUse.set(breakChild, namedFlowFragment);
hasComputedAutoHeight = true;
// Compute the region height pretending that the offsetBreakInCurrentRegion is the logicalHeight for the auto-height region.
LayoutUnit regionComputedAutoHeight = namedFlowFragment->constrainContentBoxLogicalHeightByMinMax(offsetBreakInCurrentRegion);
// The new height of this region needs to be smaller than the initial value, the max height. A forced break is the only way to change the initial
// height of an auto-height region besides content ending.
ASSERT(regionComputedAutoHeight <= namedFlowFragment->maxPageLogicalHeight());
namedFlowFragment->setComputedAutoHeight(regionComputedAutoHeight);
currentRegionOffsetInFlowThread += regionComputedAutoHeight;
} else
currentRegionOffsetInFlowThread += isHorizontalWritingMode() ? region->flowThreadPortionRect().height() : region->flowThreadPortionRect().width();
// If the break was found inside an auto-height region its size changed so we need to recompute the flow thread portion rectangles.
// Also, if this is the last break after the content we need to clear the computedAutoHeight value on the last empty regions.
if (hasAutoLogicalHeightRegions() && lastBreakAfterContent)
updateRegionsFlowThreadPortionRect(region);
else if (hasComputedAutoHeight)
updateRegionsFlowThreadPortionRect();
if (offsetBreakAdjustment)
*offsetBreakAdjustment = std::max<LayoutUnit>(0, currentRegionOffsetInFlowThread - offsetBreakInFlowThread);
return hasComputedAutoHeight;
}
void RenderFlowThread::incrementAutoLogicalHeightRegions()
{
if (!m_autoLogicalHeightRegionsCount)
view().flowThreadController().incrementFlowThreadsWithAutoLogicalHeightRegions();
++m_autoLogicalHeightRegionsCount;
}
void RenderFlowThread::decrementAutoLogicalHeightRegions()
{
ASSERT(m_autoLogicalHeightRegionsCount > 0);
--m_autoLogicalHeightRegionsCount;
if (!m_autoLogicalHeightRegionsCount)
view().flowThreadController().decrementFlowThreadsWithAutoLogicalHeightRegions();
}
void RenderFlowThread::collectLayerFragments(LayerFragments& layerFragments, const LayoutRect& layerBoundingBox, const LayoutRect& dirtyRect)
{
ASSERT(!m_regionsInvalidated);
for (auto iter = m_regionList.begin(), end = m_regionList.end(); iter != end; ++iter) {
RenderRegion* region = *iter;
region->collectLayerFragments(layerFragments, layerBoundingBox, dirtyRect);
}
}
LayoutRect RenderFlowThread::fragmentsBoundingBox(const LayoutRect& layerBoundingBox)
{
ASSERT(!m_regionsInvalidated);
LayoutRect result;
for (auto iter = m_regionList.begin(), end = m_regionList.end(); iter != end; ++iter) {
RenderRegion* region = *iter;
LayerFragments fragments;
region->collectLayerFragments(fragments, layerBoundingBox, LayoutRect::infiniteRect());
for (size_t i = 0; i < fragments.size(); ++i) {
const LayerFragment& fragment = fragments.at(i);
LayoutRect fragmentRect(layerBoundingBox);
fragmentRect.intersect(fragment.paginationClip);
fragmentRect.moveBy(fragment.paginationOffset);
result.unite(fragmentRect);
}
}
return result;
}
bool RenderFlowThread::hasCachedOffsetFromLogicalTopOfFirstRegion(const RenderBox* box) const
{
return m_boxesToOffsetMap.contains(box);
}
LayoutUnit RenderFlowThread::cachedOffsetFromLogicalTopOfFirstRegion(const RenderBox* box) const
{
return m_boxesToOffsetMap.get(box);
}
void RenderFlowThread::setOffsetFromLogicalTopOfFirstRegion(const RenderBox* box, LayoutUnit offset)
{
m_boxesToOffsetMap.set(box, offset);
}
void RenderFlowThread::clearOffsetFromLogicalTopOfFirstRegion(const RenderBox* box)
{
ASSERT(m_boxesToOffsetMap.contains(box));
m_boxesToOffsetMap.remove(box);
}
const RenderBox* RenderFlowThread::currentActiveRenderBox() const
{
if (m_activeObjectsStack.isEmpty())
return 0;
const RenderObject* currentObject = m_activeObjectsStack.last();
return currentObject->isBox() ? toRenderBox(currentObject) : 0;
}
void RenderFlowThread::pushFlowThreadLayoutState(const RenderObject& object)
{
if (const RenderBox* currentBoxDescendant = currentActiveRenderBox()) {
LayoutState* layoutState = currentBoxDescendant->view().layoutState();
if (layoutState && layoutState->isPaginated()) {
ASSERT(layoutState->m_renderer == currentBoxDescendant);
LayoutSize offsetDelta = layoutState->m_layoutOffset - layoutState->m_pageOffset;
setOffsetFromLogicalTopOfFirstRegion(currentBoxDescendant, currentBoxDescendant->isHorizontalWritingMode() ? offsetDelta.height() : offsetDelta.width());
}
}
m_activeObjectsStack.add(&object);
}
void RenderFlowThread::popFlowThreadLayoutState()
{
m_activeObjectsStack.removeLast();
if (const RenderBox* currentBoxDescendant = currentActiveRenderBox()) {
LayoutState* layoutState = currentBoxDescendant->view().layoutState();
if (layoutState && layoutState->isPaginated())
clearOffsetFromLogicalTopOfFirstRegion(currentBoxDescendant);
}
}
LayoutUnit RenderFlowThread::offsetFromLogicalTopOfFirstRegion(const RenderBlock* currentBlock) const
{
// First check if we cached the offset for the block if it's an ancestor containing block of the box
// being currently laid out.
if (hasCachedOffsetFromLogicalTopOfFirstRegion(currentBlock))
return cachedOffsetFromLogicalTopOfFirstRegion(currentBlock);
// If it's the current box being laid out, use the layout state.
const RenderBox* currentBoxDescendant = currentActiveRenderBox();
if (currentBlock == currentBoxDescendant) {
LayoutState* layoutState = view().layoutState();
ASSERT(layoutState->m_renderer == currentBlock);
ASSERT(layoutState && layoutState->isPaginated());
LayoutSize offsetDelta = layoutState->m_layoutOffset - layoutState->m_pageOffset;
return currentBoxDescendant->isHorizontalWritingMode() ? offsetDelta.height() : offsetDelta.width();
}
// As a last resort, take the slow path.
LayoutRect blockRect(0, 0, currentBlock->width(), currentBlock->height());
while (currentBlock && !currentBlock->isRenderFlowThread()) {
RenderBlock* containerBlock = currentBlock->containingBlock();
ASSERT(containerBlock);
if (!containerBlock)
return 0;
LayoutPoint currentBlockLocation = currentBlock->location();
if (containerBlock->style().writingMode() != currentBlock->style().writingMode()) {
// We have to put the block rect in container coordinates
// and we have to take into account both the container and current block flipping modes
if (containerBlock->style().isFlippedBlocksWritingMode()) {
if (containerBlock->isHorizontalWritingMode())
blockRect.setY(currentBlock->height() - blockRect.maxY());
else
blockRect.setX(currentBlock->width() - blockRect.maxX());
}
currentBlock->flipForWritingMode(blockRect);
}
blockRect.moveBy(currentBlockLocation);
currentBlock = containerBlock;
}
return currentBlock->isHorizontalWritingMode() ? blockRect.y() : blockRect.x();
}
void RenderFlowThread::RegionSearchAdapter::collectIfNeeded(const RegionInterval& interval)
{
if (m_result)
return;
if (interval.low() <= m_offset && interval.high() > m_offset)
m_result = interval.data();
}
void RenderFlowThread::mapLocalToContainer(const RenderLayerModelObject* repaintContainer, TransformState& transformState, MapCoordinatesFlags mode, bool* wasFixed) const
{
if (this == repaintContainer)
return;
if (RenderRegion* region = mapFromFlowToRegion(transformState))
// FIXME: The cast below is probably not the best solution, we may need to find a better way.
static_cast<const RenderObject*>(region)->mapLocalToContainer(region->containerForRepaint(), transformState, mode, wasFixed);
}
// FIXME: Make this function faster. Walking the render tree is slow, better use a caching mechanism (e.g. |cachedOffsetFromLogicalTopOfFirstRegion|).
LayoutRect RenderFlowThread::mapFromLocalToFlowThread(const RenderBox* box, const LayoutRect& localRect) const
{
LayoutRect boxRect = localRect;
while (box && box != this) {
RenderBlock* containerBlock = box->containingBlock();
ASSERT(containerBlock);
if (!containerBlock)
return LayoutRect();
LayoutPoint currentBoxLocation = box->location();
if (containerBlock->style().writingMode() != box->style().writingMode())
box->flipForWritingMode(boxRect);
boxRect.moveBy(currentBoxLocation);
box = containerBlock;
}
return boxRect;
}
// FIXME: Make this function faster. Walking the render tree is slow, better use a caching mechanism (e.g. |cachedOffsetFromLogicalTopOfFirstRegion|).
LayoutRect RenderFlowThread::mapFromFlowThreadToLocal(const RenderBox* box, const LayoutRect& rect) const
{
LayoutRect localRect = rect;
if (box == this)
return localRect;
RenderBlock* containerBlock = box->containingBlock();
ASSERT(containerBlock);
if (!containerBlock)
return LayoutRect();
localRect = mapFromFlowThreadToLocal(containerBlock, localRect);
LayoutPoint currentBoxLocation = box->location();
localRect.moveBy(-currentBoxLocation);
if (containerBlock->style().writingMode() != box->style().writingMode())
box->flipForWritingMode(localRect);
return localRect;
}
LayoutRect RenderFlowThread::decorationsClipRectForBoxInRegion(const RenderBox& box, RenderRegion& region) const
{
LayoutRect visualOverflowRect = region.visualOverflowRectForBox(&box);
LayoutUnit initialLogicalX = style().isHorizontalWritingMode() ? visualOverflowRect.x() : visualOverflowRect.y();
// The visual overflow rect returned by visualOverflowRectForBox is already flipped but the
// RenderRegion::rectFlowPortionForBox method expects it unflipped.
flipForWritingModeLocalCoordinates(visualOverflowRect);
visualOverflowRect = region.rectFlowPortionForBox(&box, visualOverflowRect);
// Now flip it again.
flipForWritingModeLocalCoordinates(visualOverflowRect);
// Layers are in physical coordinates so the origin must be moved to the physical top-left of the flowthread.
if (style().isFlippedBlocksWritingMode()) {
if (style().isHorizontalWritingMode())
visualOverflowRect.moveBy(LayoutPoint(0, height()));
else
visualOverflowRect.moveBy(LayoutPoint(width(), 0));
}
const RenderBox* iterBox = &box;
while (iterBox && iterBox != this) {
RenderBlock* containerBlock = iterBox->containingBlock();
// FIXME: This doesn't work properly with flipped writing modes.
// https://bugs.webkit.org/show_bug.cgi?id=125149
if (iterBox->isPositioned()) {
// For positioned elements, just use the layer's absolute bounding box.
visualOverflowRect.moveBy(iterBox->layer()->absoluteBoundingBox().location());
break;
}
LayoutRect currentBoxRect = iterBox->frameRect();
if (iterBox->style().isFlippedBlocksWritingMode()) {
if (iterBox->style().isHorizontalWritingMode())
currentBoxRect.setY(currentBoxRect.height() - currentBoxRect.maxY());
else
currentBoxRect.setX(currentBoxRect.width() - currentBoxRect.maxX());
}
if (containerBlock->style().writingMode() != iterBox->style().writingMode())
iterBox->flipForWritingMode(currentBoxRect);
visualOverflowRect.moveBy(currentBoxRect.location());
iterBox = containerBlock;
}
// Since the purpose of this method is to make sure the borders of a fragmented
// element don't overflow the region in the fragmentation direction, there's no
// point in restricting the clipping rect on the logical X axis.
// This also saves us the trouble of handling percent-based widths and margins
// since the absolute bounding box of a positioned element would not contain
// the correct coordinates relative to the region we're interested in, but rather
// relative to the actual flow thread.
if (style().isHorizontalWritingMode()) {
if (initialLogicalX < visualOverflowRect.x())
visualOverflowRect.shiftXEdgeTo(initialLogicalX);
if (visualOverflowRect.width() < frameRect().width())
visualOverflowRect.setWidth(frameRect().width());
} else {
if (initialLogicalX < visualOverflowRect.y())
visualOverflowRect.shiftYEdgeTo(initialLogicalX);
if (visualOverflowRect.height() < frameRect().height())
visualOverflowRect.setHeight(frameRect().height());
}
return visualOverflowRect;
}
void RenderFlowThread::flipForWritingModeLocalCoordinates(LayoutRect& rect) const
{
if (!style().isFlippedBlocksWritingMode())
return;
if (isHorizontalWritingMode())
rect.setY(0 - rect.maxY());
else
rect.setX(0 - rect.maxX());
}
void RenderFlowThread::addRegionsVisualEffectOverflow(const RenderBox* box)
{
RenderRegion* startRegion = 0;
RenderRegion* endRegion = 0;
getRegionRangeForBox(box, startRegion, endRegion);
for (auto iter = m_regionList.find(startRegion), end = m_regionList.end(); iter != end; ++iter) {
RenderRegion* region = *iter;
LayoutRect borderBox = box->borderBoxRectInRegion(region);
borderBox = box->applyVisualEffectOverflow(borderBox);
borderBox = region->rectFlowPortionForBox(box, borderBox);
region->addVisualOverflowForBox(box, borderBox);
if (region == endRegion)
break;
}
}
void RenderFlowThread::addRegionsVisualOverflowFromTheme(const RenderBlock* block)
{
RenderRegion* startRegion = 0;
RenderRegion* endRegion = 0;
getRegionRangeForBox(block, startRegion, endRegion);
for (auto iter = m_regionList.find(startRegion), end = m_regionList.end(); iter != end; ++iter) {
RenderRegion* region = *iter;
LayoutRect borderBox = block->borderBoxRectInRegion(region);
borderBox = region->rectFlowPortionForBox(block, borderBox);
IntRect inflatedRect = pixelSnappedIntRect(borderBox);
block->theme().adjustRepaintRect(block, inflatedRect);
region->addVisualOverflowForBox(block, inflatedRect);
if (region == endRegion)
break;
}
}
void RenderFlowThread::addRegionsOverflowFromChild(const RenderBox* box, const RenderBox* child, const LayoutSize& delta)
{
RenderRegion* startRegion = 0;
RenderRegion* endRegion = 0;
getRegionRangeForBox(child, startRegion, endRegion);
RenderRegion* containerStartRegion = 0;
RenderRegion* containerEndRegion = 0;
getRegionRangeForBox(box, containerStartRegion, containerEndRegion);
for (auto iter = m_regionList.find(startRegion), end = m_regionList.end(); iter != end; ++iter) {
RenderRegion* region = *iter;
if (!regionInRange(region, containerStartRegion, containerEndRegion)) {
if (region == endRegion)
break;
continue;
}
LayoutRect childLayoutOverflowRect = region->layoutOverflowRectForBoxForPropagation(child);
childLayoutOverflowRect.move(delta);
region->addLayoutOverflowForBox(box, childLayoutOverflowRect);
if (child->hasSelfPaintingLayer() || box->hasOverflowClip()) {
if (region == endRegion)
break;
continue;
}
LayoutRect childVisualOverflowRect = region->visualOverflowRectForBoxForPropagation(child);
childVisualOverflowRect.move(delta);
region->addVisualOverflowForBox(box, childVisualOverflowRect);
if (region == endRegion)
break;
}
}
void RenderFlowThread::addRegionsLayoutOverflow(const RenderBox* box, const LayoutRect& layoutOverflow)
{
RenderRegion* startRegion = 0;
RenderRegion* endRegion = 0;
getRegionRangeForBox(box, startRegion, endRegion);
for (auto iter = m_regionList.find(startRegion), end = m_regionList.end(); iter != end; ++iter) {
RenderRegion* region = *iter;
LayoutRect layoutOverflowInRegion = region->rectFlowPortionForBox(box, layoutOverflow);
region->addLayoutOverflowForBox(box, layoutOverflowInRegion);
if (region == endRegion)
break;
}
}
void RenderFlowThread::addRegionsVisualOverflow(const RenderBox* box, const LayoutRect& visualOverflow)
{
RenderRegion* startRegion = 0;
RenderRegion* endRegion = 0;
getRegionRangeForBox(box, startRegion, endRegion);
for (RenderRegionList::iterator iter = m_regionList.find(startRegion); iter != m_regionList.end(); ++iter) {
RenderRegion* region = *iter;
LayoutRect visualOverflowInRegion = region->rectFlowPortionForBox(box, visualOverflow);
region->addVisualOverflowForBox(box, visualOverflowInRegion);
if (region == endRegion)
break;
}
}
void RenderFlowThread::clearRegionsOverflow(const RenderBox* box)
{
RenderRegion* startRegion = 0;
RenderRegion* endRegion = 0;
getRegionRangeForBox(box, startRegion, endRegion);
for (auto iter = m_regionList.find(startRegion), end = m_regionList.end(); iter != end; ++iter) {
RenderRegion* region = *iter;
RenderBoxRegionInfo* boxInfo = region->renderBoxRegionInfo(box);
if (boxInfo && boxInfo->overflow())
boxInfo->clearOverflow();
if (region == endRegion)
break;
}
}
CurrentRenderFlowThreadMaintainer::CurrentRenderFlowThreadMaintainer(RenderFlowThread* renderFlowThread)
: m_renderFlowThread(renderFlowThread)
, m_previousRenderFlowThread(0)
{
if (!m_renderFlowThread)
return;
FlowThreadController& controller = m_renderFlowThread->view().flowThreadController();
m_previousRenderFlowThread = controller.currentRenderFlowThread();
// Remove the assert so we can use this to change the flow thread context.
// ASSERT(!m_previousRenderFlowThread || !renderFlowThread->isRenderNamedFlowThread());
controller.setCurrentRenderFlowThread(m_renderFlowThread);
}
CurrentRenderFlowThreadMaintainer::~CurrentRenderFlowThreadMaintainer()
{
if (!m_renderFlowThread)
return;
FlowThreadController& controller = m_renderFlowThread->view().flowThreadController();
ASSERT(controller.currentRenderFlowThread() == m_renderFlowThread);
controller.setCurrentRenderFlowThread(m_previousRenderFlowThread);
}
} // namespace WebCore