blob: 3494708d88626e9677794145e0f81e6165b150ad [file] [log] [blame]
/*
* Copyright (C) 2021 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "CalcExpressionOperation.h"
#include <cmath>
#include <wtf/text/TextStream.h>
namespace WebCore {
static std::pair<double, double> getNearestMultiples(double a, double b)
{
auto absB = std::abs(b);
double lowerB = std::floor(a / absB) * absB;
double upperB = lowerB + absB;
return std::make_pair(lowerB, upperB);
}
float CalcExpressionOperation::evaluate(float maxValue) const
{
switch (m_operator) {
case CalcOperator::Add: {
float sum = 0;
for (auto& child : m_children)
sum += child->evaluate(maxValue);
return sum;
}
case CalcOperator::Subtract: {
// FIXME
ASSERT(m_children.size() == 2);
float left = m_children[0]->evaluate(maxValue);
float right = m_children[1]->evaluate(maxValue);
return left - right;
}
case CalcOperator::Multiply: {
float product = 1;
for (auto& child : m_children)
product *= child->evaluate(maxValue);
return product;
}
case CalcOperator::Divide: {
// FIXME
ASSERT(m_children.size() == 1 || m_children.size() == 2);
if (m_children.size() == 1)
return std::numeric_limits<float>::quiet_NaN();
float left = m_children[0]->evaluate(maxValue);
float right = m_children[1]->evaluate(maxValue);
return left / right;
}
case CalcOperator::Min: {
if (m_children.isEmpty())
return std::numeric_limits<float>::quiet_NaN();
float minimum = m_children[0]->evaluate(maxValue);
for (auto& child : m_children)
minimum = std::min(minimum, child->evaluate(maxValue));
return minimum;
}
case CalcOperator::Max: {
if (m_children.isEmpty())
return std::numeric_limits<float>::quiet_NaN();
float maximum = m_children[0]->evaluate(maxValue);
for (auto& child : m_children)
maximum = std::max(maximum, child->evaluate(maxValue));
return maximum;
}
case CalcOperator::Clamp: {
if (m_children.size() != 3)
return std::numeric_limits<float>::quiet_NaN();
float min = m_children[0]->evaluate(maxValue);
float value = m_children[1]->evaluate(maxValue);
float max = m_children[2]->evaluate(maxValue);
return std::max(min, std::min(value, max));
}
case CalcOperator::Pow: {
if (m_children.size() != 2)
return std::numeric_limits<float>::quiet_NaN();
float base = m_children[0]->evaluate(maxValue);
float power = m_children[1]->evaluate(maxValue);
return std::pow(base, power);
}
case CalcOperator::Sqrt: {
if (m_children.size() != 1)
return std::numeric_limits<float>::quiet_NaN();
return std::sqrt(m_children[0]->evaluate(maxValue));
}
case CalcOperator::Hypot: {
if (m_children.isEmpty())
return std::numeric_limits<float>::quiet_NaN();
if (m_children.size() == 1)
return std::abs(m_children[0]->evaluate(maxValue));
float sum = 0;
for (auto& child : m_children) {
float value = child->evaluate(maxValue);
sum += (value * value);
}
return sum;
}
case CalcOperator::Sin: {
if (m_children.size() != 1)
return std::numeric_limits<double>::quiet_NaN();
return std::sin(m_children[0]->evaluate(maxValue));
}
case CalcOperator::Cos: {
if (m_children.size() != 1)
return std::numeric_limits<double>::quiet_NaN();
return std::cos(m_children[0]->evaluate(maxValue));
}
case CalcOperator::Tan: {
if (m_children.size() != 1)
return std::numeric_limits<double>::quiet_NaN();
return std::tan(m_children[0]->evaluate(maxValue));
}
case CalcOperator::Log: {
if (m_children.size() != 1 && m_children.size() != 2)
return std::numeric_limits<float>::quiet_NaN();
if (m_children.size() == 1)
return std::log(m_children[0]->evaluate(maxValue));
return std::log(m_children[0]->evaluate(maxValue)) / std::log(m_children[1]->evaluate(maxValue));
}
case CalcOperator::Exp: {
if (m_children.size() != 1)
return std::numeric_limits<float>::quiet_NaN();
return std::exp(m_children[0]->evaluate(maxValue));
}
case CalcOperator::Asin: {
if (m_children.size() != 1)
return std::numeric_limits<float>::quiet_NaN();
return rad2deg(std::asin(m_children[0]->evaluate(maxValue)));
}
case CalcOperator::Acos: {
if (m_children.size() != 1)
return std::numeric_limits<float>::quiet_NaN();
return rad2deg(std::acos(m_children[0]->evaluate(maxValue)));
}
case CalcOperator::Atan: {
if (m_children.size() != 1)
return std::numeric_limits<float>::quiet_NaN();
return rad2deg(std::atan(m_children[0]->evaluate(maxValue)));
}
case CalcOperator::Atan2: {
if (m_children.size() != 2)
return std::numeric_limits<float>::quiet_NaN();
return rad2deg(atan2(m_children[0]->evaluate(maxValue), m_children[1]->evaluate(maxValue)));
}
case CalcOperator::Abs: {
if (m_children.size() != 1)
return std::numeric_limits<float>::quiet_NaN();
return std::abs(m_children[0]->evaluate(maxValue));
}
case CalcOperator::Sign: {
if (m_children.size() != 1)
return std::numeric_limits<double>::quiet_NaN();
if (m_children[0]->evaluate(maxValue) > 0)
return 1;
if (m_children[0]->evaluate(maxValue) < 0)
return -1;
return m_children[0]->evaluate(maxValue);
}
case CalcOperator::Mod: {
if (m_children.size() != 2)
return std::numeric_limits<double>::quiet_NaN();
float left = m_children[0]->evaluate(maxValue);
float right = m_children[1]->evaluate(maxValue);
if (!right)
return std::numeric_limits<double>::quiet_NaN();
if ((left < 0) == (right < 0))
return std::fmod(left, right);
return std::remainder(left, right);
}
case CalcOperator::Rem: {
if (m_children.size() != 2)
return std::numeric_limits<double>::quiet_NaN();
float left = m_children[0]->evaluate(maxValue);
float right = m_children[1]->evaluate(maxValue);
if (!right)
return std::numeric_limits<double>::quiet_NaN();
return std::fmod(left, right);
}
case CalcOperator::Round:
return std::numeric_limits<double>::quiet_NaN();
case CalcOperator::Up: {
if (m_children.size() != 2)
return std::numeric_limits<double>::quiet_NaN();
auto ret = getNearestMultiples(m_children[0]->evaluate(maxValue), m_children[1]->evaluate(maxValue));
return ret.second;
}
case CalcOperator::Down: {
if (m_children.size() != 2)
return std::numeric_limits<double>::quiet_NaN();
auto ret = getNearestMultiples(m_children[0]->evaluate(maxValue), m_children[1]->evaluate(maxValue));
return ret.first;
}
case CalcOperator::Nearest: {
if (m_children.size() != 2)
return std::numeric_limits<double>::quiet_NaN();
auto a = m_children[0]->evaluate(maxValue);
auto b = m_children[1]->evaluate(maxValue);
auto ret = getNearestMultiples(a, b);
auto upperB = ret.second;
auto lowerB = ret.first;
return std::abs(upperB - a) <= std::abs(b) / 2 ? upperB : lowerB;
}
case CalcOperator::ToZero: {
if (m_children.size() != 2)
return std::numeric_limits<double>::quiet_NaN();
auto ret = getNearestMultiples(m_children[0]->evaluate(maxValue), m_children[1]->evaluate(maxValue));
auto upperB = ret.second;
auto lowerB = ret.first;
return std::abs(upperB) < std::abs(lowerB) ? upperB : lowerB;
}
}
ASSERT_NOT_REACHED();
return std::numeric_limits<float>::quiet_NaN();
}
bool CalcExpressionOperation::operator==(const CalcExpressionNode& other) const
{
return is<CalcExpressionOperation>(other) && *this == downcast<CalcExpressionOperation>(other);
}
bool operator==(const CalcExpressionOperation& a, const CalcExpressionOperation& b)
{
if (a.getOperator() != b.getOperator() || a.destinationCategory() != b.destinationCategory())
return false;
if (a.children().size() != b.children().size())
return false;
for (unsigned i = 0; i < a.children().size(); ++i) {
if (!(*a.children()[i] == *b.children()[i]))
return false;
}
return true;
}
void CalcExpressionOperation::dump(TextStream& ts) const
{
if (m_operator == CalcOperator::Min || m_operator == CalcOperator::Max) {
ts << m_operator << "(";
size_t childrenCount = m_children.size();
for (size_t i = 0; i < childrenCount; i++) {
ts << m_children[i].get();
if (i < childrenCount - 1)
ts << ", ";
}
ts << ")";
} else
ts << m_children[0].get() << " " << m_operator << " " << m_children[1].get();
}
}