blob: 78ecc1ea8d89f22dd208355e748a3063c1e93b5a [file] [log] [blame]
/*
* Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012 Apple Inc. All rights reserved.
* Copyright (C) 2008, 2010 Nokia Corporation and/or its subsidiary(-ies)
* Copyright (C) 2007 Alp Toker <alp@atoker.com>
* Copyright (C) 2008 Eric Seidel <eric@webkit.org>
* Copyright (C) 2008 Dirk Schulze <krit@webkit.org>
* Copyright (C) 2010 Torch Mobile (Beijing) Co. Ltd. All rights reserved.
* Copyright (C) 2012 Intel Corporation. All rights reserved.
* Copyright (C) 2012, 2013 Adobe Systems Incorporated. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "config.h"
#include "CanvasPath.h"
#include "AffineTransform.h"
#include "FloatRect.h"
#include <wtf/MathExtras.h>
namespace WebCore {
void CanvasPath::closePath()
{
if (m_path.isEmpty())
return;
FloatRect boundRect = m_path.fastBoundingRect();
if (boundRect.width() || boundRect.height())
m_path.closeSubpath();
}
void CanvasPath::moveTo(float x, float y)
{
if (!std::isfinite(x) || !std::isfinite(y))
return;
if (!hasInvertibleTransform())
return;
m_path.moveTo(FloatPoint(x, y));
}
void CanvasPath::lineTo(FloatPoint point)
{
lineTo(point.x(), point.y());
}
void CanvasPath::lineTo(float x, float y)
{
if (!std::isfinite(x) || !std::isfinite(y))
return;
if (!hasInvertibleTransform())
return;
FloatPoint p1 = FloatPoint(x, y);
if (!m_path.hasCurrentPoint())
m_path.moveTo(p1);
else if (p1 != m_path.currentPoint())
m_path.addLineTo(p1);
}
void CanvasPath::quadraticCurveTo(float cpx, float cpy, float x, float y)
{
if (!std::isfinite(cpx) || !std::isfinite(cpy) || !std::isfinite(x) || !std::isfinite(y))
return;
if (!hasInvertibleTransform())
return;
if (!m_path.hasCurrentPoint())
m_path.moveTo(FloatPoint(cpx, cpy));
FloatPoint p1 = FloatPoint(x, y);
FloatPoint cp = FloatPoint(cpx, cpy);
if (p1 != m_path.currentPoint() || p1 != cp)
m_path.addQuadCurveTo(cp, p1);
}
void CanvasPath::bezierCurveTo(float cp1x, float cp1y, float cp2x, float cp2y, float x, float y)
{
if (!std::isfinite(cp1x) || !std::isfinite(cp1y) || !std::isfinite(cp2x) || !std::isfinite(cp2y) || !std::isfinite(x) || !std::isfinite(y))
return;
if (!hasInvertibleTransform())
return;
if (!m_path.hasCurrentPoint())
m_path.moveTo(FloatPoint(cp1x, cp1y));
FloatPoint p1 = FloatPoint(x, y);
FloatPoint cp1 = FloatPoint(cp1x, cp1y);
FloatPoint cp2 = FloatPoint(cp2x, cp2y);
if (p1 != m_path.currentPoint() || p1 != cp1 || p1 != cp2)
m_path.addBezierCurveTo(cp1, cp2, p1);
}
ExceptionOr<void> CanvasPath::arcTo(float x1, float y1, float x2, float y2, float r)
{
if (!std::isfinite(x1) || !std::isfinite(y1) || !std::isfinite(x2) || !std::isfinite(y2) || !std::isfinite(r))
return { };
if (r < 0)
return Exception { IndexSizeError };
if (!hasInvertibleTransform())
return { };
FloatPoint p1 = FloatPoint(x1, y1);
FloatPoint p2 = FloatPoint(x2, y2);
if (!m_path.hasCurrentPoint())
m_path.moveTo(p1);
else if (p1 == m_path.currentPoint() || p1 == p2 || !r)
lineTo(x1, y1);
else
m_path.addArcTo(p1, p2, r);
return { };
}
static void normalizeAngles(float& startAngle, float& endAngle, bool anticlockwise)
{
float newStartAngle = startAngle;
if (newStartAngle < 0)
newStartAngle = (2 * piFloat) + fmodf(newStartAngle, -(2 * piFloat));
else
newStartAngle = fmodf(newStartAngle, 2 * piFloat);
float delta = newStartAngle - startAngle;
startAngle = newStartAngle;
endAngle = endAngle + delta;
ASSERT(newStartAngle >= 0 && newStartAngle < 2 * piFloat);
if (anticlockwise && startAngle - endAngle >= 2 * piFloat)
endAngle = startAngle - 2 * piFloat;
else if (!anticlockwise && endAngle - startAngle >= 2 * piFloat)
endAngle = startAngle + 2 * piFloat;
}
ExceptionOr<void> CanvasPath::arc(float x, float y, float radius, float startAngle, float endAngle, bool anticlockwise)
{
if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(radius) || !std::isfinite(startAngle) || !std::isfinite(endAngle))
return { };
if (radius < 0)
return Exception { IndexSizeError };
if (!hasInvertibleTransform())
return { };
normalizeAngles(startAngle, endAngle, anticlockwise);
if (!radius || startAngle == endAngle) {
// The arc is empty but we still need to draw the connecting line.
lineTo(x + radius * cosf(startAngle), y + radius * sinf(startAngle));
return { };
}
m_path.addArc(FloatPoint(x, y), radius, startAngle, endAngle, anticlockwise);
return { };
}
ExceptionOr<void> CanvasPath::ellipse(float x, float y, float radiusX, float radiusY, float rotation, float startAngle, float endAngle, bool anticlockwise)
{
if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(radiusX) || !std::isfinite(radiusY) || !std::isfinite(rotation) || !std::isfinite(startAngle) || !std::isfinite(endAngle))
return { };
if (radiusX < 0 || radiusY < 0)
return Exception { IndexSizeError };
if (!hasInvertibleTransform())
return { };
normalizeAngles(startAngle, endAngle, anticlockwise);
if ((!radiusX && !radiusY) || startAngle == endAngle) {
AffineTransform transform;
transform.translate(x, y).rotate(rad2deg(rotation));
lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(startAngle), radiusY * sinf(startAngle))));
return { };
}
if (!radiusX || !radiusY) {
AffineTransform transform;
transform.translate(x, y).rotate(rad2deg(rotation));
lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(startAngle), radiusY * sinf(startAngle))));
if (!anticlockwise) {
for (float angle = startAngle - fmodf(startAngle, piOverTwoFloat) + piOverTwoFloat; angle < endAngle; angle += piOverTwoFloat)
lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(angle), radiusY * sinf(angle))));
} else {
for (float angle = startAngle - fmodf(startAngle, piOverTwoFloat); angle > endAngle; angle -= piOverTwoFloat)
lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(angle), radiusY * sinf(angle))));
}
lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(endAngle), radiusY * sinf(endAngle))));
return { };
}
m_path.addEllipse(FloatPoint(x, y), radiusX, radiusY, rotation, startAngle, endAngle, anticlockwise);
return { };
}
void CanvasPath::rect(float x, float y, float width, float height)
{
if (!hasInvertibleTransform())
return;
if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(width) || !std::isfinite(height))
return;
if (!width && !height) {
m_path.moveTo(FloatPoint(x, y));
return;
}
m_path.addRect(FloatRect(x, y, width, height));
}
float CanvasPath::currentX() const
{
return m_path.currentPoint().x();
}
float CanvasPath::currentY() const
{
return m_path.currentPoint().y();
}
}