blob: ce730f3bf965847c48d941b56cdbc2e5fbfbc7f3 [file] [log] [blame]
/*
* Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
* Copyright (C) 2002-2020 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#pragma once
#include "CallFrame.h"
#include "ExceptionHelpers.h"
#include "JSBigInt.h"
#include "JSCJSValueInlines.h"
namespace JSC {
#define InvalidPrototypeChain (std::numeric_limits<size_t>::max())
NEVER_INLINE JSValue jsAddSlowCase(JSGlobalObject*, JSValue, JSValue);
JSString* jsTypeStringForValueWithConcurrency(VM&, JSGlobalObject*, JSValue, Concurrency);
size_t normalizePrototypeChain(JSGlobalObject*, JSCell*, bool& sawPolyProto);
template<Concurrency concurrency>
ALWAYS_INLINE TriState jsTypeofIsObjectWithConcurrency(JSGlobalObject* globalObject, JSValue value)
{
VM& vm = globalObject->vm();
if (!value.isObject())
return triState(value.isNull());
JSObject* object = asObject(value);
if (object->structure(vm)->masqueradesAsUndefined(globalObject))
return TriState::False;
return invert(object->isCallableWithConcurrency<concurrency>(vm));
}
template<Concurrency concurrency>
ALWAYS_INLINE TriState jsTypeofIsFunctionWithConcurrency(JSGlobalObject* globalObject, JSValue value)
{
VM& vm = globalObject->vm();
if (!value.isObject())
return TriState::False;
JSObject* object = asObject(value);
if (object->structure(vm)->masqueradesAsUndefined(globalObject))
return TriState::False;
return object->isCallableWithConcurrency<concurrency>(vm);
}
inline JSString* jsTypeStringForValue(JSGlobalObject* globalObject, JSValue value)
{
return jsTypeStringForValueWithConcurrency(getVM(globalObject), globalObject, value, Concurrency::MainThread);
}
ALWAYS_INLINE bool jsTypeofIsObject(JSGlobalObject* globalObject, JSValue value)
{
auto result = jsTypeofIsObjectWithConcurrency<Concurrency::MainThread>(globalObject, value);
ASSERT(result != TriState::Indeterminate);
return result == TriState::True;
}
ALWAYS_INLINE bool jsTypeofIsFunction(JSGlobalObject* globalObject, JSValue value)
{
auto result = jsTypeofIsFunctionWithConcurrency<Concurrency::MainThread>(globalObject, value);
ASSERT(result != TriState::Indeterminate);
return result == TriState::True;
}
ALWAYS_INLINE JSString* jsString(JSGlobalObject* globalObject, const String& u1, JSString* s2)
{
VM& vm = getVM(globalObject);
auto scope = DECLARE_THROW_SCOPE(vm);
unsigned length1 = u1.length();
if (!length1)
return s2;
unsigned length2 = s2->length();
if (!length2)
return jsString(vm, u1);
static_assert(JSString::MaxLength == std::numeric_limits<int32_t>::max(), "");
if (sumOverflows<int32_t>(length1, length2)) {
throwOutOfMemoryError(globalObject, scope);
return nullptr;
}
// (1) Cost of making JSString : sizeof(JSString) (for new string) + sizeof(StringImpl header) + length1 + length2
// (2) Cost of making JSRopeString: sizeof(JSString) (for u1) + sizeof(JSRopeString)
// We do not account u1 cost in (2) since u1 may be shared StringImpl, and it may not introduce additional cost.
// We conservatively consider the cost of u1. Currently, we are not considering about is8Bit() case because 16-bit
// strings are relatively rare. But we can do that if we need to consider it.
if (s2->isRope() || (StringImpl::headerSize<LChar>() + length1 + length2) >= sizeof(JSRopeString))
return JSRopeString::create(vm, jsString(vm, u1), s2);
ASSERT(!s2->isRope());
const String& u2 = s2->value(globalObject);
scope.assertNoException();
String newString = tryMakeString(u1, u2);
if (!newString) {
throwOutOfMemoryError(globalObject, scope);
return nullptr;
}
return JSString::create(vm, newString.releaseImpl().releaseNonNull());
}
ALWAYS_INLINE JSString* jsString(JSGlobalObject* globalObject, JSString* s1, const String& u2)
{
VM& vm = getVM(globalObject);
auto scope = DECLARE_THROW_SCOPE(vm);
unsigned length1 = s1->length();
if (!length1)
return jsString(vm, u2);
unsigned length2 = u2.length();
if (!length2)
return s1;
static_assert(JSString::MaxLength == std::numeric_limits<int32_t>::max(), "");
if (sumOverflows<int32_t>(length1, length2)) {
throwOutOfMemoryError(globalObject, scope);
return nullptr;
}
// (1) Cost of making JSString : sizeof(JSString) (for new string) + sizeof(StringImpl header) + length1 + length2
// (2) Cost of making JSRopeString: sizeof(JSString) (for u2) + sizeof(JSRopeString)
if (s1->isRope() || (StringImpl::headerSize<LChar>() + length1 + length2) >= sizeof(JSRopeString))
return JSRopeString::create(vm, s1, jsString(vm, u2));
ASSERT(!s1->isRope());
const String& u1 = s1->value(globalObject);
scope.assertNoException();
String newString = tryMakeString(u1, u2);
if (!newString) {
throwOutOfMemoryError(globalObject, scope);
return nullptr;
}
return JSString::create(vm, newString.releaseImpl().releaseNonNull());
}
ALWAYS_INLINE JSString* jsString(JSGlobalObject* globalObject, JSString* s1, JSString* s2)
{
VM& vm = getVM(globalObject);
auto scope = DECLARE_THROW_SCOPE(vm);
unsigned length1 = s1->length();
if (!length1)
return s2;
unsigned length2 = s2->length();
if (!length2)
return s1;
static_assert(JSString::MaxLength == std::numeric_limits<int32_t>::max(), "");
if (sumOverflows<int32_t>(length1, length2)) {
throwOutOfMemoryError(globalObject, scope);
return nullptr;
}
return JSRopeString::create(vm, s1, s2);
}
ALWAYS_INLINE JSString* jsString(JSGlobalObject* globalObject, JSString* s1, JSString* s2, JSString* s3)
{
VM& vm = getVM(globalObject);
auto scope = DECLARE_THROW_SCOPE(vm);
unsigned length1 = s1->length();
if (!length1)
RELEASE_AND_RETURN(scope, jsString(globalObject, s2, s3));
unsigned length2 = s2->length();
if (!length2)
RELEASE_AND_RETURN(scope, jsString(globalObject, s1, s3));
unsigned length3 = s3->length();
if (!length3)
RELEASE_AND_RETURN(scope, jsString(globalObject, s1, s2));
static_assert(JSString::MaxLength == std::numeric_limits<int32_t>::max(), "");
if (sumOverflows<int32_t>(length1, length2, length3)) {
throwOutOfMemoryError(globalObject, scope);
return nullptr;
}
return JSRopeString::create(vm, s1, s2, s3);
}
ALWAYS_INLINE JSString* jsString(JSGlobalObject* globalObject, const String& u1, const String& u2)
{
VM& vm = getVM(globalObject);
auto scope = DECLARE_THROW_SCOPE(vm);
unsigned length1 = u1.length();
if (!length1)
return jsString(vm, u2);
unsigned length2 = u2.length();
if (!length2)
return jsString(vm, u1);
static_assert(JSString::MaxLength == std::numeric_limits<int32_t>::max(), "");
if (sumOverflows<int32_t>(length1, length2)) {
throwOutOfMemoryError(globalObject, scope);
return nullptr;
}
// (1) Cost of making JSString : sizeof(JSString) (for new string) + sizeof(StringImpl header) + length1 + length2
// (2) Cost of making JSRopeString: sizeof(JSString) (for u1) + sizeof(JSString) (for u2) + sizeof(JSRopeString)
if ((StringImpl::headerSize<LChar>() + length1 + length2) >= (sizeof(JSRopeString) + sizeof(JSString)))
return JSRopeString::create(vm, jsString(vm, u1), jsString(vm, u2));
String newString = tryMakeString(u1, u2);
if (!newString) {
throwOutOfMemoryError(globalObject, scope);
return nullptr;
}
return JSString::create(vm, newString.releaseImpl().releaseNonNull());
}
ALWAYS_INLINE JSString* jsString(JSGlobalObject* globalObject, const String& u1, const String& u2, const String& u3)
{
VM& vm = getVM(globalObject);
auto scope = DECLARE_THROW_SCOPE(vm);
unsigned length1 = u1.length();
unsigned length2 = u2.length();
unsigned length3 = u3.length();
ASSERT(length1 <= JSString::MaxLength);
ASSERT(length2 <= JSString::MaxLength);
ASSERT(length3 <= JSString::MaxLength);
if (!length1)
RELEASE_AND_RETURN(scope, jsString(globalObject, u2, u3));
if (!length2)
RELEASE_AND_RETURN(scope, jsString(globalObject, u1, u3));
if (!length3)
RELEASE_AND_RETURN(scope, jsString(globalObject, u1, u2));
static_assert(JSString::MaxLength == std::numeric_limits<int32_t>::max(), "");
if (sumOverflows<int32_t>(length1, length2, length3)) {
throwOutOfMemoryError(globalObject, scope);
return nullptr;
}
// (1) Cost of making JSString : sizeof(JSString) (for new string) + sizeof(StringImpl header) + length1 + length2 + length3
// (2) Cost of making JSRopeString: sizeof(JSString) (for u1) + sizeof(JSString) (for u2) + sizeof(JSString) (for u3) + sizeof(JSRopeString)
if ((StringImpl::headerSize<LChar>() + length1 + length2 + length3) >= (sizeof(JSRopeString) + sizeof(JSString) * 2))
return JSRopeString::create(vm, jsString(vm, u1), jsString(vm, u2), jsString(vm, u3));
String newString = tryMakeString(u1, u2, u3);
if (!newString) {
throwOutOfMemoryError(globalObject, scope);
return nullptr;
}
return JSString::create(vm, newString.releaseImpl().releaseNonNull());
}
ALWAYS_INLINE JSValue jsStringFromRegisterArray(JSGlobalObject* globalObject, Register* strings, unsigned count)
{
VM& vm = getVM(globalObject);
auto scope = DECLARE_THROW_SCOPE(vm);
JSRopeString::RopeBuilder<RecordOverflow> ropeBuilder(vm);
for (unsigned i = 0; i < count; ++i) {
JSValue v = strings[-static_cast<int>(i)].jsValue();
JSString* string = v.toString(globalObject);
RETURN_IF_EXCEPTION(scope, { });
if (!ropeBuilder.append(string))
return throwOutOfMemoryError(globalObject, scope);
}
return ropeBuilder.release();
}
ALWAYS_INLINE JSBigInt::ComparisonResult compareBigInt(JSValue left, JSValue right)
{
ASSERT(left.isBigInt());
ASSERT(right.isBigInt());
#if USE(BIGINT32)
if (left.isBigInt32()) {
if (right.isBigInt32())
return JSBigInt::compare(left.bigInt32AsInt32(), right.bigInt32AsInt32());
ASSERT(right.isHeapBigInt());
return JSBigInt::compare(left.bigInt32AsInt32(), right.asHeapBigInt());
}
if (right.isBigInt32()) {
ASSERT(left.isHeapBigInt());
return JSBigInt::compare(left.asHeapBigInt(), right.bigInt32AsInt32());
}
#endif
return JSBigInt::compare(left.asHeapBigInt(), right.asHeapBigInt());
}
ALWAYS_INLINE JSBigInt::ComparisonResult compareBigIntToOtherPrimitive(JSGlobalObject* globalObject, JSBigInt* v1, JSValue primValue)
{
VM& vm = globalObject->vm();
auto scope = DECLARE_THROW_SCOPE(vm);
ASSERT(primValue.isPrimitive());
ASSERT(!primValue.isBigInt());
if (primValue.isString()) {
String string = asString(primValue)->value(globalObject);
RETURN_IF_EXCEPTION(scope, JSBigInt::ComparisonResult::Undefined);
JSValue bigIntValue = JSBigInt::stringToBigInt(globalObject, string);
RETURN_IF_EXCEPTION(scope, JSBigInt::ComparisonResult::Undefined);
if (!bigIntValue)
return JSBigInt::ComparisonResult::Undefined;
if (bigIntValue.isHeapBigInt())
return JSBigInt::compare(v1, bigIntValue.asHeapBigInt());
ASSERT(bigIntValue.isBigInt32());
#if USE(BIGINT32)
// FIXME: use something less hacky, e.g. some kind of JSBigInt::compareToInt32
return JSBigInt::compareToDouble(v1, static_cast<double>(bigIntValue.bigInt32AsInt32()));
#endif
}
double numberValue = primValue.toNumber(globalObject);
RETURN_IF_EXCEPTION(scope, JSBigInt::ComparisonResult::Undefined);
return JSBigInt::compareToDouble(v1, numberValue);
}
ALWAYS_INLINE JSBigInt::ComparisonResult compareBigInt32ToOtherPrimitive(JSGlobalObject* globalObject, int32_t v1, JSValue primValue)
{
VM& vm = globalObject->vm();
auto scope = DECLARE_THROW_SCOPE(vm);
ASSERT(primValue.isPrimitive());
ASSERT(!primValue.isBigInt());
auto compare = [&] (auto v1, auto v2) {
static_assert(std::is_same_v<decltype(v1), decltype(v2)>);
if (v1 == v2)
return JSBigInt::ComparisonResult::Equal;
if (v1 < v2)
return JSBigInt::ComparisonResult::LessThan;
return JSBigInt::ComparisonResult::GreaterThan;
};
if (primValue.isString()) {
String string = asString(primValue)->value(globalObject);
RETURN_IF_EXCEPTION(scope, JSBigInt::ComparisonResult::Undefined);
JSValue bigIntValue = JSBigInt::stringToBigInt(globalObject, string);
RETURN_IF_EXCEPTION(scope, JSBigInt::ComparisonResult::Undefined);
if (!bigIntValue)
return JSBigInt::ComparisonResult::Undefined;
if (bigIntValue.isHeapBigInt())
return JSBigInt::compare(v1, bigIntValue.asHeapBigInt());
ASSERT(bigIntValue.isBigInt32());
#if USE(BIGINT32)
return compare(v1, bigIntValue.bigInt32AsInt32());
#endif
}
// Note that 0n <=> -0.0 is handling -0.0 as +0.
double numberValue = primValue.toNumber(globalObject);
RETURN_IF_EXCEPTION(scope, JSBigInt::ComparisonResult::Undefined);
if (std::isnan(numberValue))
return JSBigInt::ComparisonResult::Undefined;
return compare(static_cast<double>(v1), numberValue);
}
ALWAYS_INLINE bool bigIntCompareResult(JSBigInt::ComparisonResult comparisonResult, JSBigInt::ComparisonMode comparisonMode)
{
if (comparisonMode == JSBigInt::ComparisonMode::LessThan)
return comparisonResult == JSBigInt::ComparisonResult::LessThan;
ASSERT(comparisonMode == JSBigInt::ComparisonMode::LessThanOrEqual);
return comparisonResult == JSBigInt::ComparisonResult::LessThan || comparisonResult == JSBigInt::ComparisonResult::Equal;
}
ALWAYS_INLINE bool bigIntCompare(JSGlobalObject* globalObject, JSValue v1, JSValue v2, JSBigInt::ComparisonMode comparisonMode)
{
ASSERT(v1.isBigInt() || v2.isBigInt());
ASSERT(v1.isPrimitive() && v2.isPrimitive());
VM& vm = globalObject->vm();
auto scope = DECLARE_THROW_SCOPE(vm);
if (v1.isBigInt() && v2.isBigInt())
return bigIntCompareResult(compareBigInt(v1, v2), comparisonMode);
#if USE(BIGINT32)
if (v1.isBigInt32()) {
ASSERT(!v2.isBigInt());
auto comparisonResult = compareBigInt32ToOtherPrimitive(globalObject, v1.bigInt32AsInt32(), v2);
RETURN_IF_EXCEPTION(scope, false);
return bigIntCompareResult(comparisonResult, comparisonMode);
}
if (v2.isBigInt32()) {
ASSERT(!v1.isBigInt());
auto comparisonResult = compareBigInt32ToOtherPrimitive(globalObject, v2.bigInt32AsInt32(), v1);
RETURN_IF_EXCEPTION(scope, false);
return bigIntCompareResult(invertBigIntCompareResult(comparisonResult), comparisonMode);
}
ASSERT(!v1.isBigInt32() && !v2.isBigInt32());
#endif
if (v1.isHeapBigInt()) {
ASSERT(!v2.isBigInt());
auto comparisonResult = compareBigIntToOtherPrimitive(globalObject, v1.asHeapBigInt(), v2);
RETURN_IF_EXCEPTION(scope, false);
return bigIntCompareResult(comparisonResult, comparisonMode);
}
// Here we check inverted because BigInt is the v2
ASSERT(!v1.isBigInt());
ASSERT(v2.isHeapBigInt());
auto comparisonResult = compareBigIntToOtherPrimitive(globalObject, v2.asHeapBigInt(), v1);
RETURN_IF_EXCEPTION(scope, false);
return bigIntCompareResult(invertBigIntCompareResult(comparisonResult), comparisonMode);
}
ALWAYS_INLINE bool toPrimitiveNumeric(JSGlobalObject* globalObject, JSValue v, JSValue& p, double& n)
{
VM& vm = globalObject->vm();
auto scope = DECLARE_THROW_SCOPE(vm);
p = v.toPrimitive(globalObject, PreferNumber);
RETURN_IF_EXCEPTION(scope, false);
if (p.isBigInt())
return true;
n = p.toNumber(globalObject);
RETURN_IF_EXCEPTION(scope, false);
return !p.isString();
}
// See ES5 11.8.1/11.8.2/11.8.5 for definition of leftFirst, this value ensures correct
// evaluation ordering for argument conversions for '<' and '>'. For '<' pass the value
// true, for leftFirst, for '>' pass the value false (and reverse operand order).
template<bool leftFirst>
ALWAYS_INLINE bool jsLess(JSGlobalObject* globalObject, JSValue v1, JSValue v2)
{
VM& vm = globalObject->vm();
auto scope = DECLARE_THROW_SCOPE(vm);
if (v1.isInt32() && v2.isInt32())
return v1.asInt32() < v2.asInt32();
if (v1.isNumber() && v2.isNumber())
return v1.asNumber() < v2.asNumber();
if (isJSString(v1) && isJSString(v2)) {
String s1 = asString(v1)->value(globalObject);
RETURN_IF_EXCEPTION(scope, false);
String s2 = asString(v2)->value(globalObject);
RETURN_IF_EXCEPTION(scope, false);
return codePointCompareLessThan(s1, s2);
}
double n1;
double n2;
JSValue p1;
JSValue p2;
bool wasNotString1;
bool wasNotString2;
if (leftFirst) {
wasNotString1 = toPrimitiveNumeric(globalObject, v1, p1, n1);
RETURN_IF_EXCEPTION(scope, false);
wasNotString2 = toPrimitiveNumeric(globalObject, v2, p2, n2);
} else {
wasNotString2 = toPrimitiveNumeric(globalObject, v2, p2, n2);
RETURN_IF_EXCEPTION(scope, false);
wasNotString1 = toPrimitiveNumeric(globalObject, v1, p1, n1);
}
RETURN_IF_EXCEPTION(scope, false);
if (wasNotString1 || wasNotString2) {
if (p1.isBigInt() || p2.isBigInt())
RELEASE_AND_RETURN(scope, bigIntCompare(globalObject, p1, p2, JSBigInt::ComparisonMode::LessThan));
return n1 < n2;
}
return codePointCompareLessThan(asString(p1)->value(globalObject), asString(p2)->value(globalObject));
}
// See ES5 11.8.3/11.8.4/11.8.5 for definition of leftFirst, this value ensures correct
// evaluation ordering for argument conversions for '<=' and '=>'. For '<=' pass the
// value true, for leftFirst, for '=>' pass the value false (and reverse operand order).
template<bool leftFirst>
ALWAYS_INLINE bool jsLessEq(JSGlobalObject* globalObject, JSValue v1, JSValue v2)
{
VM& vm = globalObject->vm();
auto scope = DECLARE_THROW_SCOPE(vm);
if (v1.isInt32() && v2.isInt32())
return v1.asInt32() <= v2.asInt32();
if (v1.isNumber() && v2.isNumber())
return v1.asNumber() <= v2.asNumber();
if (isJSString(v1) && isJSString(v2)) {
String s1 = asString(v1)->value(globalObject);
RETURN_IF_EXCEPTION(scope, false);
String s2 = asString(v2)->value(globalObject);
RETURN_IF_EXCEPTION(scope, false);
return !codePointCompareLessThan(s2, s1);
}
double n1;
double n2;
JSValue p1;
JSValue p2;
bool wasNotString1;
bool wasNotString2;
if (leftFirst) {
wasNotString1 = toPrimitiveNumeric(globalObject, v1, p1, n1);
RETURN_IF_EXCEPTION(scope, false);
wasNotString2 = toPrimitiveNumeric(globalObject, v2, p2, n2);
} else {
wasNotString2 = toPrimitiveNumeric(globalObject, v2, p2, n2);
RETURN_IF_EXCEPTION(scope, false);
wasNotString1 = toPrimitiveNumeric(globalObject, v1, p1, n1);
}
RETURN_IF_EXCEPTION(scope, false);
if (wasNotString1 || wasNotString2) {
if (p1.isBigInt() || p2.isBigInt())
RELEASE_AND_RETURN(scope, bigIntCompare(globalObject, p1, p2, JSBigInt::ComparisonMode::LessThanOrEqual));
return n1 <= n2;
}
return !codePointCompareLessThan(asString(p2)->value(globalObject), asString(p1)->value(globalObject));
}
// Fast-path choices here are based on frequency data from SunSpider:
// <times> Add case: <t1> <t2>
// ---------------------------
// 5626160 Add case: 3 3 (of these, 3637690 are for immediate values)
// 247412 Add case: 5 5
// 20900 Add case: 5 6
// 13962 Add case: 5 3
// 4000 Add case: 3 5
ALWAYS_INLINE JSValue jsAddNonNumber(JSGlobalObject* globalObject, JSValue v1, JSValue v2)
{
VM& vm = globalObject->vm();
auto scope = DECLARE_THROW_SCOPE(vm);
ASSERT(!v1.isNumber() || !v2.isNumber());
if (LIKELY(v1.isString() && !v2.isObject())) {
if (v2.isString())
RELEASE_AND_RETURN(scope, jsString(globalObject, asString(v1), asString(v2)));
String s2 = v2.toWTFString(globalObject);
RETURN_IF_EXCEPTION(scope, { });
RELEASE_AND_RETURN(scope, jsString(globalObject, asString(v1), s2));
}
// All other cases are pretty uncommon
RELEASE_AND_RETURN(scope, jsAddSlowCase(globalObject, v1, v2));
}
ALWAYS_INLINE JSValue jsAdd(JSGlobalObject* globalObject, JSValue v1, JSValue v2)
{
if (v1.isNumber() && v2.isNumber())
return jsNumber(v1.asNumber() + v2.asNumber());
return jsAddNonNumber(globalObject, v1, v2);
}
template<typename DoubleOperation, typename BigIntOp>
ALWAYS_INLINE JSValue arithmeticBinaryOp(JSGlobalObject* globalObject, JSValue v1, JSValue v2, DoubleOperation&& doubleOp, BigIntOp&& bigIntOp, const char* errorMessage)
{
VM& vm = globalObject->vm();
auto scope = DECLARE_THROW_SCOPE(vm);
JSValue leftNumeric = v1.toNumeric(globalObject);
RETURN_IF_EXCEPTION(scope, { });
JSValue rightNumeric = v2.toNumeric(globalObject);
RETURN_IF_EXCEPTION(scope, { });
if (leftNumeric.isNumber() && rightNumeric.isNumber())
return jsNumber(doubleOp(leftNumeric.asNumber(), rightNumeric.asNumber()));
#if USE(BIGINT32)
if (leftNumeric.isBigInt32()) {
if (rightNumeric.isBigInt32())
RELEASE_AND_RETURN(scope, bigIntOp(globalObject, leftNumeric.bigInt32AsInt32(), rightNumeric.bigInt32AsInt32()));
if (rightNumeric.isHeapBigInt())
RELEASE_AND_RETURN(scope, bigIntOp(globalObject, leftNumeric.bigInt32AsInt32(), rightNumeric.asHeapBigInt()));
} else if (leftNumeric.isHeapBigInt()) {
if (rightNumeric.isBigInt32())
RELEASE_AND_RETURN(scope, bigIntOp(globalObject, leftNumeric.asHeapBigInt(), rightNumeric.bigInt32AsInt32()));
else if (rightNumeric.isHeapBigInt())
RELEASE_AND_RETURN(scope, bigIntOp(globalObject, leftNumeric.asHeapBigInt(), rightNumeric.asHeapBigInt()));
}
#else
if (leftNumeric.isHeapBigInt() && rightNumeric.isHeapBigInt())
RELEASE_AND_RETURN(scope, bigIntOp(globalObject, leftNumeric.asHeapBigInt(), rightNumeric.asHeapBigInt()));
#endif
return throwTypeError(globalObject, scope, errorMessage);
}
ALWAYS_INLINE JSValue jsSub(JSGlobalObject* globalObject, JSValue v1, JSValue v2)
{
auto doubleOp = [] (double left, double right) -> double {
return left - right;
};
auto bigIntOp = [] (JSGlobalObject* globalObject, auto left, auto right) {
return JSBigInt::sub(globalObject, left, right);
};
return arithmeticBinaryOp(globalObject, v1, v2, doubleOp, bigIntOp, "Invalid mix of BigInt and other type in subtraction."_s);
}
ALWAYS_INLINE JSValue jsMul(JSGlobalObject* globalObject, JSValue v1, JSValue v2)
{
auto doubleOp = [] (double left, double right) -> double {
return left * right;
};
auto bigIntOp = [] (JSGlobalObject* globalObject, auto left, auto right) {
return JSBigInt::multiply(globalObject, left, right);
};
return arithmeticBinaryOp(globalObject, v1, v2, doubleOp, bigIntOp, "Invalid mix of BigInt and other type in multiplication."_s);
}
ALWAYS_INLINE JSValue jsDiv(JSGlobalObject* globalObject, JSValue v1, JSValue v2)
{
auto doubleOp = [] (double left, double right) -> double {
return left / right;
};
auto bigIntOp = [] (JSGlobalObject* globalObject, auto left, auto right) {
return JSBigInt::divide(globalObject, left, right);
};
return arithmeticBinaryOp(globalObject, v1, v2, doubleOp, bigIntOp, "Invalid mix of BigInt and other type in division."_s);
}
ALWAYS_INLINE JSValue jsRemainder(JSGlobalObject* globalObject, JSValue v1, JSValue v2)
{
auto doubleOp = [] (double left, double right) -> double {
return Math::fmodDouble(left, right);
};
auto bigIntOp = [] (JSGlobalObject* globalObject, auto left, auto right) {
return JSBigInt::remainder(globalObject, left, right);
};
return arithmeticBinaryOp(globalObject, v1, v2, doubleOp, bigIntOp, "Invalid mix of BigInt and other type in remainder."_s);
}
ALWAYS_INLINE JSValue jsPow(JSGlobalObject* globalObject, JSValue v1, JSValue v2)
{
auto doubleOp = [] (double left, double right) -> double {
return operationMathPow(left, right);
};
auto bigIntOp = [] (JSGlobalObject* globalObject, auto left, auto right) {
return JSBigInt::exponentiate(globalObject, left, right);
};
return arithmeticBinaryOp(globalObject, v1, v2, doubleOp, bigIntOp, "Invalid mix of BigInt and other type in exponentiation."_s);
}
ALWAYS_INLINE JSValue jsInc(JSGlobalObject* globalObject, JSValue v)
{
VM& vm = globalObject->vm();
auto scope = DECLARE_THROW_SCOPE(vm);
auto operandNumeric = v.toNumeric(globalObject);
RETURN_IF_EXCEPTION(scope, { });
if (operandNumeric.isNumber())
return jsNumber(operandNumeric.asNumber() + 1);
#if USE(BIGINT32)
if (operandNumeric.isBigInt32())
RELEASE_AND_RETURN(scope, JSBigInt::inc(globalObject, operandNumeric.bigInt32AsInt32()));
#endif
ASSERT(operandNumeric.isHeapBigInt());
RELEASE_AND_RETURN(scope, JSBigInt::inc(globalObject, operandNumeric.asHeapBigInt()));
}
ALWAYS_INLINE JSValue jsDec(JSGlobalObject* globalObject, JSValue v)
{
VM& vm = globalObject->vm();
auto scope = DECLARE_THROW_SCOPE(vm);
auto operandNumeric = v.toNumeric(globalObject);
RETURN_IF_EXCEPTION(scope, { });
if (operandNumeric.isNumber())
return jsNumber(operandNumeric.asNumber() - 1);
#if USE(BIGINT32)
if (operandNumeric.isBigInt32())
RELEASE_AND_RETURN(scope, JSBigInt::dec(globalObject, operandNumeric.bigInt32AsInt32()));
#endif
ASSERT(operandNumeric.isHeapBigInt());
RELEASE_AND_RETURN(scope, JSBigInt::dec(globalObject, operandNumeric.asHeapBigInt()));
}
ALWAYS_INLINE JSValue jsBitwiseNot(JSGlobalObject* globalObject, JSValue v)
{
VM& vm = globalObject->vm();
auto scope = DECLARE_THROW_SCOPE(vm);
auto operandNumeric = v.toBigIntOrInt32(globalObject);
RETURN_IF_EXCEPTION(scope, { });
if (operandNumeric.isInt32())
return jsNumber(~operandNumeric.asInt32());
#if USE(BIGINT32)
if (operandNumeric.isBigInt32())
RELEASE_AND_RETURN(scope, JSBigInt::bitwiseNot(globalObject, operandNumeric.bigInt32AsInt32()));
#endif
ASSERT(operandNumeric.isHeapBigInt());
RELEASE_AND_RETURN(scope, JSBigInt::bitwiseNot(globalObject, operandNumeric.asHeapBigInt()));
}
template <bool isLeft>
ALWAYS_INLINE JSValue shift(JSGlobalObject* globalObject, JSValue v1, JSValue v2)
{
VM& vm = globalObject->vm();
auto scope = DECLARE_THROW_SCOPE(vm);
auto leftNumeric = v1.toBigIntOrInt32(globalObject);
RETURN_IF_EXCEPTION(scope, { });
auto rightNumeric = v2.toBigIntOrInt32(globalObject);
RETURN_IF_EXCEPTION(scope, { });
if (leftNumeric.isInt32() && rightNumeric.isInt32()) {
int32_t leftInt32 = leftNumeric.asInt32();
int32_t rightInt32 = rightNumeric.asInt32() & 31;
int32_t result = isLeft ? (leftInt32 << rightInt32) : (leftInt32 >> rightInt32);
return jsNumber(result);
}
#if USE(BIGINT32)
if (leftNumeric.isBigInt32()) {
if (rightNumeric.isBigInt32()) {
if (isLeft)
RELEASE_AND_RETURN(scope, JSBigInt::leftShift(globalObject, leftNumeric.bigInt32AsInt32(), rightNumeric.bigInt32AsInt32()));
RELEASE_AND_RETURN(scope, JSBigInt::signedRightShift(globalObject, leftNumeric.bigInt32AsInt32(), rightNumeric.bigInt32AsInt32()));
}
if (rightNumeric.isHeapBigInt()) {
if (isLeft)
RELEASE_AND_RETURN(scope, JSBigInt::leftShift(globalObject, leftNumeric.bigInt32AsInt32(), rightNumeric.asHeapBigInt()));
RELEASE_AND_RETURN(scope, JSBigInt::signedRightShift(globalObject, leftNumeric.bigInt32AsInt32(), rightNumeric.asHeapBigInt()));
}
} else if (leftNumeric.isHeapBigInt()) {
if (rightNumeric.isBigInt32()) {
if (isLeft)
RELEASE_AND_RETURN(scope, JSBigInt::leftShift(globalObject, leftNumeric.asHeapBigInt(), rightNumeric.bigInt32AsInt32()));
RELEASE_AND_RETURN(scope, JSBigInt::signedRightShift(globalObject, leftNumeric.asHeapBigInt(), rightNumeric.bigInt32AsInt32()));
} else if (rightNumeric.isHeapBigInt()) {
if (isLeft)
RELEASE_AND_RETURN(scope, JSBigInt::leftShift(globalObject, leftNumeric.asHeapBigInt(), rightNumeric.asHeapBigInt()));
RELEASE_AND_RETURN(scope, JSBigInt::signedRightShift(globalObject, leftNumeric.asHeapBigInt(), rightNumeric.asHeapBigInt()));
}
}
#else
if (leftNumeric.isHeapBigInt() && rightNumeric.isHeapBigInt()) {
if (isLeft)
RELEASE_AND_RETURN(scope, JSBigInt::leftShift(globalObject, leftNumeric.asHeapBigInt(), rightNumeric.asHeapBigInt()));
RELEASE_AND_RETURN(scope, JSBigInt::signedRightShift(globalObject, leftNumeric.asHeapBigInt(), rightNumeric.asHeapBigInt()));
}
#endif
auto errorMessage = isLeft ? "Invalid mix of BigInt and other type in left shift operation." : "Invalid mix of BigInt and other type in signed right shift operation.";
return throwTypeError(globalObject, scope, errorMessage);
}
ALWAYS_INLINE JSValue jsLShift(JSGlobalObject* globalObject, JSValue v1, JSValue v2)
{
constexpr bool isLeft = true;
return shift<isLeft>(globalObject, v1, v2);
}
ALWAYS_INLINE JSValue jsRShift(JSGlobalObject* globalObject, JSValue v1, JSValue v2)
{
constexpr bool isLeft = false;
return shift<isLeft>(globalObject, v1, v2);
}
ALWAYS_INLINE JSValue jsURShift(JSGlobalObject* globalObject, JSValue left, JSValue right)
{
VM& vm = globalObject->vm();
auto scope = DECLARE_THROW_SCOPE(vm);
std::optional<uint32_t> leftUint32 = left.toUInt32AfterToNumeric(globalObject);
RETURN_IF_EXCEPTION(scope, { });
std::optional<uint32_t> rightUint32 = right.toUInt32AfterToNumeric(globalObject);
RETURN_IF_EXCEPTION(scope, { });
if (UNLIKELY(!leftUint32 || !rightUint32)) {
throwTypeError(globalObject, scope, "BigInt does not support >>> operator"_s);
return { };
}
return jsNumber(static_cast<int32_t>(leftUint32.value() >> (rightUint32.value() & 31)));
}
template<typename Int32Operation, typename BigIntOp>
ALWAYS_INLINE JSValue bitwiseBinaryOp(JSGlobalObject* globalObject, JSValue v1, JSValue v2, Int32Operation&& int32Op, BigIntOp&& bigIntOp, const char* errorMessage)
{
VM& vm = globalObject->vm();
auto scope = DECLARE_THROW_SCOPE(vm);
auto leftNumeric = v1.toBigIntOrInt32(globalObject);
RETURN_IF_EXCEPTION(scope, { });
auto rightNumeric = v2.toBigIntOrInt32(globalObject);
RETURN_IF_EXCEPTION(scope, { });
if (leftNumeric.isInt32() && rightNumeric.isInt32())
return jsNumber(int32Op(leftNumeric.asInt32(), rightNumeric.asInt32()));
#if USE(BIGINT32)
if (leftNumeric.isBigInt32()) {
if (rightNumeric.isBigInt32())
RELEASE_AND_RETURN(scope, bigIntOp(globalObject, leftNumeric.bigInt32AsInt32(), rightNumeric.bigInt32AsInt32()));
if (rightNumeric.isHeapBigInt())
RELEASE_AND_RETURN(scope, bigIntOp(globalObject, leftNumeric.bigInt32AsInt32(), rightNumeric.asHeapBigInt()));
} else if (leftNumeric.isHeapBigInt()) {
if (rightNumeric.isBigInt32())
RELEASE_AND_RETURN(scope, bigIntOp(globalObject, leftNumeric.asHeapBigInt(), rightNumeric.bigInt32AsInt32()));
else if (rightNumeric.isHeapBigInt())
RELEASE_AND_RETURN(scope, bigIntOp(globalObject, leftNumeric.asHeapBigInt(), rightNumeric.asHeapBigInt()));
}
#else
if (leftNumeric.isHeapBigInt() && rightNumeric.isHeapBigInt())
RELEASE_AND_RETURN(scope, bigIntOp(globalObject, leftNumeric.asHeapBigInt(), rightNumeric.asHeapBigInt()));
#endif
return throwTypeError(globalObject, scope, errorMessage);
}
ALWAYS_INLINE JSValue jsBitwiseAnd(JSGlobalObject* globalObject, JSValue v1, JSValue v2)
{
auto int32Op = [] (int32_t left, int32_t right) -> int32_t {
return left & right;
};
auto bigIntOp = [] (JSGlobalObject* globalObject, auto left, auto right) {
return JSBigInt::bitwiseAnd(globalObject, left, right);
};
// FIXME: currently, for pairs of BigInt32, we unbox them, do the "and" and re-box them.
// We could do it directly on the JSValue.
return bitwiseBinaryOp(globalObject, v1, v2, int32Op, bigIntOp, "Invalid mix of BigInt and other type in bitwise 'and' operation."_s);
}
ALWAYS_INLINE JSValue jsBitwiseOr(JSGlobalObject* globalObject, JSValue v1, JSValue v2)
{
auto int32Op = [] (int32_t left, int32_t right) -> int32_t {
return left | right;
};
// FIXME: currently, for pairs of BigInt32, we unbox them, do the "or" and re-box them.
// We could do it directly on the JSValue.
auto bigIntOp = [] (JSGlobalObject* globalObject, auto left, auto right) {
return JSBigInt::bitwiseOr(globalObject, left, right);
};
return bitwiseBinaryOp(globalObject, v1, v2, int32Op, bigIntOp, "Invalid mix of BigInt and other type in bitwise 'or' operation."_s);
}
ALWAYS_INLINE JSValue jsBitwiseXor(JSGlobalObject* globalObject, JSValue v1, JSValue v2)
{
auto int32Op = [] (int32_t left, int32_t right) -> int32_t {
return left ^ right;
};
// FIXME: currently, for pairs of BigInt32, we unbox them, do the "xor" and re-box them.
// We could do it directly on the JSValue, and just remember to do an or with 0x12 at the end to restore the tag
auto bigIntOp = [] (JSGlobalObject* globalObject, auto left, auto right) {
return JSBigInt::bitwiseXor(globalObject, left, right);
};
return bitwiseBinaryOp(globalObject, v1, v2, int32Op, bigIntOp, "Invalid mix of BigInt and other type in bitwise 'xor' operation."_s);
}
ALWAYS_INLINE EncodedJSValue getByValWithIndex(JSGlobalObject* globalObject, JSCell* base, uint32_t index)
{
if (base->isObject()) {
JSObject* object = asObject(base);
if (object->canGetIndexQuickly(index))
return JSValue::encode(object->getIndexQuickly(index));
}
if (isJSString(base) && asString(base)->canGetIndex(index))
return JSValue::encode(asString(base)->getIndex(globalObject, index));
return JSValue::encode(JSValue(base).get(globalObject, index));
}
} // namespace JSC