| /* |
| * Copyright (C) 2003, 2006 Apple Inc. All rights reserved. |
| * 2006 Rob Buis <buis@kde.org> |
| * Copyright (C) 2007 Eric Seidel <eric@webkit.org> |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| |
| #include "config.h" |
| #include "Path.h" |
| |
| #include "FloatPoint.h" |
| #include "FloatRect.h" |
| #include "FloatRoundedRect.h" |
| #include "PathTraversalState.h" |
| #include "RoundedRect.h" |
| #include <math.h> |
| #include <wtf/MathExtras.h> |
| #include <wtf/text/TextStream.h> |
| |
| namespace WebCore { |
| |
| #if !USE(DIRECT2D) |
| float Path::length() const |
| { |
| PathTraversalState traversalState(PathTraversalState::Action::TotalLength); |
| |
| apply([&traversalState](const PathElement& element) { |
| traversalState.processPathElement(element); |
| }); |
| |
| return traversalState.totalLength(); |
| } |
| #endif |
| |
| #if !HAVE(CGPATH_GET_NUMBER_OF_ELEMENTS) |
| |
| size_t Path::elementCountSlowCase() const |
| { |
| size_t numPoints = 0; |
| apply([&numPoints](auto&) { |
| ++numPoints; |
| }); |
| return numPoints; |
| } |
| |
| #endif // !HAVE(CGPATH_GET_NUMBER_OF_ELEMENTS) |
| |
| PathTraversalState Path::traversalStateAtLength(float length) const |
| { |
| PathTraversalState traversalState(PathTraversalState::Action::VectorAtLength, length); |
| |
| apply([&traversalState](const PathElement& element) { |
| traversalState.processPathElement(element); |
| }); |
| |
| return traversalState; |
| } |
| |
| FloatPoint Path::pointAtLength(float length) const |
| { |
| return traversalStateAtLength(length).current(); |
| } |
| |
| void Path::addRoundedRect(const FloatRect& rect, const FloatSize& roundingRadii, RoundedRectStrategy strategy) |
| { |
| if (rect.isEmpty()) |
| return; |
| |
| FloatSize radius(roundingRadii); |
| FloatSize halfSize = rect.size() / 2; |
| |
| // Apply the SVG corner radius constraints, per the rect section of the SVG shapes spec: if |
| // one of rx,ry is negative, then the other corner radius value is used. If both values are |
| // negative then rx = ry = 0. If rx is greater than half of the width of the rectangle |
| // then set rx to half of the width; ry is handled similarly. |
| |
| if (radius.width() < 0) |
| radius.setWidth((radius.height() < 0) ? 0 : radius.height()); |
| |
| if (radius.height() < 0) |
| radius.setHeight(radius.width()); |
| |
| if (radius.width() > halfSize.width()) |
| radius.setWidth(halfSize.width()); |
| |
| if (radius.height() > halfSize.height()) |
| radius.setHeight(halfSize.height()); |
| |
| addRoundedRect(FloatRoundedRect(rect, radius, radius, radius, radius), strategy); |
| } |
| |
| void Path::addRoundedRect(const FloatRoundedRect& r, RoundedRectStrategy strategy) |
| { |
| if (r.isEmpty()) |
| return; |
| |
| const FloatRoundedRect::Radii& radii = r.radii(); |
| const FloatRect& rect = r.rect(); |
| |
| if (!r.isRenderable()) { |
| // If all the radii cannot be accommodated, return a rect. |
| addRect(rect); |
| return; |
| } |
| |
| if (strategy == RoundedRectStrategy::PreferNative) { |
| #if USE(CG) || USE(DIRECT2D) |
| platformAddPathForRoundedRect(rect, radii.topLeft(), radii.topRight(), radii.bottomLeft(), radii.bottomRight()); |
| return; |
| #endif |
| } |
| |
| addBeziersForRoundedRect(rect, radii.topLeft(), radii.topRight(), radii.bottomLeft(), radii.bottomRight()); |
| } |
| |
| void Path::addRoundedRect(const RoundedRect& r) |
| { |
| addRoundedRect(FloatRoundedRect(r)); |
| } |
| |
| void Path::addBeziersForRoundedRect(const FloatRect& rect, const FloatSize& topLeftRadius, const FloatSize& topRightRadius, const FloatSize& bottomLeftRadius, const FloatSize& bottomRightRadius) |
| { |
| moveTo(FloatPoint(rect.x() + topLeftRadius.width(), rect.y())); |
| |
| addLineTo(FloatPoint(rect.maxX() - topRightRadius.width(), rect.y())); |
| if (topRightRadius.width() > 0 || topRightRadius.height() > 0) |
| addBezierCurveTo(FloatPoint(rect.maxX() - topRightRadius.width() * circleControlPoint(), rect.y()), |
| FloatPoint(rect.maxX(), rect.y() + topRightRadius.height() * circleControlPoint()), |
| FloatPoint(rect.maxX(), rect.y() + topRightRadius.height())); |
| addLineTo(FloatPoint(rect.maxX(), rect.maxY() - bottomRightRadius.height())); |
| if (bottomRightRadius.width() > 0 || bottomRightRadius.height() > 0) |
| addBezierCurveTo(FloatPoint(rect.maxX(), rect.maxY() - bottomRightRadius.height() * circleControlPoint()), |
| FloatPoint(rect.maxX() - bottomRightRadius.width() * circleControlPoint(), rect.maxY()), |
| FloatPoint(rect.maxX() - bottomRightRadius.width(), rect.maxY())); |
| addLineTo(FloatPoint(rect.x() + bottomLeftRadius.width(), rect.maxY())); |
| if (bottomLeftRadius.width() > 0 || bottomLeftRadius.height() > 0) |
| addBezierCurveTo(FloatPoint(rect.x() + bottomLeftRadius.width() * circleControlPoint(), rect.maxY()), |
| FloatPoint(rect.x(), rect.maxY() - bottomLeftRadius.height() * circleControlPoint()), |
| FloatPoint(rect.x(), rect.maxY() - bottomLeftRadius.height())); |
| addLineTo(FloatPoint(rect.x(), rect.y() + topLeftRadius.height())); |
| if (topLeftRadius.width() > 0 || topLeftRadius.height() > 0) |
| addBezierCurveTo(FloatPoint(rect.x(), rect.y() + topLeftRadius.height() * circleControlPoint()), |
| FloatPoint(rect.x() + topLeftRadius.width() * circleControlPoint(), rect.y()), |
| FloatPoint(rect.x() + topLeftRadius.width(), rect.y())); |
| |
| closeSubpath(); |
| } |
| |
| void Path::apply(const PathApplierFunction& function) const |
| { |
| if (isNull()) |
| return; |
| |
| #if ENABLE(INLINE_PATH_DATA) |
| if (hasInlineData<MoveData>()) { |
| PathElement element; |
| element.type = PathElement::Type::MoveToPoint; |
| element.points[0] = std::get<MoveData>(m_inlineData).location; |
| function(element); |
| return; |
| } |
| |
| if (hasInlineData<LineData>()) { |
| auto& line = std::get<LineData>(m_inlineData); |
| PathElement element; |
| element.type = PathElement::Type::MoveToPoint; |
| element.points[0] = line.start; |
| function(element); |
| element.type = PathElement::Type::AddLineToPoint; |
| element.points[0] = line.end; |
| function(element); |
| return; |
| } |
| |
| if (hasInlineData<BezierCurveData>()) { |
| auto& curve = std::get<BezierCurveData>(m_inlineData); |
| PathElement element; |
| element.type = PathElement::Type::MoveToPoint; |
| element.points[0] = curve.startPoint; |
| function(element); |
| element.type = PathElement::Type::AddCurveToPoint; |
| element.points[0] = curve.controlPoint1; |
| element.points[1] = curve.controlPoint2; |
| element.points[2] = curve.endPoint; |
| function(element); |
| return; |
| } |
| |
| if (hasInlineData<QuadCurveData>()) { |
| auto& curve = std::get<QuadCurveData>(m_inlineData); |
| PathElement element; |
| element.type = PathElement::Type::MoveToPoint; |
| element.points[0] = curve.startPoint; |
| function(element); |
| element.type = PathElement::Type::AddQuadCurveToPoint; |
| element.points[0] = curve.controlPoint; |
| element.points[1] = curve.endPoint; |
| function(element); |
| return; |
| } |
| #endif |
| |
| applySlowCase(function); |
| } |
| |
| bool Path::isEmpty() const |
| { |
| if (isNull()) |
| return true; |
| |
| #if ENABLE(INLINE_PATH_DATA) |
| if (hasInlineData()) |
| return false; |
| #endif |
| |
| return isEmptySlowCase(); |
| } |
| |
| bool Path::hasCurrentPoint() const |
| { |
| return !isEmpty(); |
| } |
| |
| FloatPoint Path::currentPoint() const |
| { |
| if (isNull()) |
| return { }; |
| |
| #if ENABLE(INLINE_PATH_DATA) |
| if (hasInlineData<MoveData>()) |
| return inlineData<MoveData>().location; |
| |
| if (hasInlineData<LineData>()) |
| return inlineData<LineData>().end; |
| |
| if (hasInlineData<BezierCurveData>()) |
| return inlineData<BezierCurveData>().endPoint; |
| |
| if (hasInlineData<QuadCurveData>()) |
| return inlineData<QuadCurveData>().endPoint; |
| |
| if (hasInlineData<ArcData>()) { |
| auto& arc = inlineData<ArcData>(); |
| if (arc.type == ArcData::Type::ClosedLineAndArc) |
| return arc.start; |
| |
| return { |
| arc.center.x() + arc.radius * std::acos(arc.endAngle), |
| arc.center.y() + arc.radius * std::asin(arc.endAngle) |
| }; |
| } |
| #endif |
| |
| return currentPointSlowCase(); |
| } |
| |
| bool Path::isClosed() const |
| { |
| bool lastElementIsClosed = false; |
| |
| // The path is closed if the type of the last PathElement is CloseSubpath. Unfortunately, |
| // the only way to access PathElements is sequentially through apply(), there's no random |
| // access as if they're in a vector. |
| // The lambda below sets lastElementIsClosed if the last PathElement is CloseSubpath. |
| // Because lastElementIsClosed is overridden if there are any remaining PathElements |
| // to be iterated, its final value is the value of the last iteration. |
| // (i.e the last PathElement). |
| // FIXME: find a more efficient way to implement this, that does not require iterating |
| // through all PathElements. |
| apply([&lastElementIsClosed](const WebCore::PathElement& element) { |
| lastElementIsClosed = (element.type == PathElement::Type::CloseSubpath); |
| }); |
| |
| return lastElementIsClosed; |
| } |
| |
| size_t Path::elementCount() const |
| { |
| #if ENABLE(INLINE_PATH_DATA) |
| if (hasInlineData<MoveData>()) |
| return 1; |
| |
| if (hasInlineData<LineData>() || hasInlineData<BezierCurveData>() || hasInlineData<QuadCurveData>()) |
| return 2; |
| #endif |
| |
| return elementCountSlowCase(); |
| } |
| |
| void Path::addArc(const FloatPoint& point, float radius, float startAngle, float endAngle, bool anticlockwise) |
| { |
| // Workaround for <rdar://problem/5189233> CGPathAddArc hangs or crashes when passed inf as start or end angle, |
| // as well as http://bugs.webkit.org/show_bug.cgi?id=16449, since cairo_arc() functions hang or crash when |
| // passed inf as radius or start/end angle. |
| if (!std::isfinite(radius) || !std::isfinite(startAngle) || !std::isfinite(endAngle)) |
| return; |
| |
| #if ENABLE(INLINE_PATH_DATA) |
| bool hasMoveData = hasInlineData<MoveData>(); |
| if (isNull() || hasMoveData) { |
| ArcData arc; |
| if (hasMoveData) { |
| arc.type = ArcData::Type::LineAndArc; |
| arc.start = inlineData<MoveData>().location; |
| } |
| arc.center = point; |
| arc.radius = radius; |
| arc.startAngle = startAngle; |
| arc.endAngle = endAngle; |
| // FIXME: Either ArcData::clockwise needs to be renamed to anticlockwise, or the last argument to |
| // Path::addArc needs to be renamed to clockwise. |
| arc.clockwise = anticlockwise; |
| m_inlineData = { WTFMove(arc) }; |
| return; |
| } |
| #endif |
| |
| addArcSlowCase(point, radius, startAngle, endAngle, anticlockwise); |
| } |
| |
| void Path::addLineTo(const FloatPoint& point) |
| { |
| #if ENABLE(INLINE_PATH_DATA) |
| bool hasMoveData = hasInlineData<MoveData>(); |
| if (isNull() || hasMoveData) { |
| LineData line; |
| line.start = hasMoveData ? inlineData<MoveData>().location : FloatPoint(); |
| line.end = point; |
| m_inlineData = { WTFMove(line) }; |
| return; |
| } |
| |
| if (hasInlineData<ArcData>()) { |
| auto& arc = inlineData<ArcData>(); |
| if (arc.type == ArcData::Type::LineAndArc && arc.start == point) { |
| arc.type = ArcData::Type::ClosedLineAndArc; |
| return; |
| } |
| } |
| #endif |
| |
| addLineToSlowCase(point); |
| } |
| |
| void Path::addQuadCurveTo(const FloatPoint& controlPoint, const FloatPoint& endPoint) |
| { |
| #if ENABLE(INLINE_PATH_DATA) |
| if (isNull() || hasInlineData<MoveData>()) { |
| QuadCurveData curve; |
| curve.startPoint = hasInlineData() ? std::get<MoveData>(m_inlineData).location : FloatPoint(); |
| curve.controlPoint = controlPoint; |
| curve.endPoint = endPoint; |
| m_inlineData = { WTFMove(curve) }; |
| return; |
| } |
| #endif |
| |
| addQuadCurveToSlowCase(controlPoint, endPoint); |
| } |
| |
| void Path::addBezierCurveTo(const FloatPoint& controlPoint1, const FloatPoint& controlPoint2, const FloatPoint& endPoint) |
| { |
| #if ENABLE(INLINE_PATH_DATA) |
| if (isNull() || hasInlineData<MoveData>()) { |
| BezierCurveData curve; |
| curve.startPoint = hasInlineData() ? std::get<MoveData>(m_inlineData).location : FloatPoint(); |
| curve.controlPoint1 = controlPoint1; |
| curve.controlPoint2 = controlPoint2; |
| curve.endPoint = endPoint; |
| m_inlineData = { WTFMove(curve) }; |
| return; |
| } |
| #endif |
| |
| addBezierCurveToSlowCase(controlPoint1, controlPoint2, endPoint); |
| } |
| |
| void Path::moveTo(const FloatPoint& point) |
| { |
| #if ENABLE(INLINE_PATH_DATA) |
| if (isNull() || hasInlineData<MoveData>()) { |
| m_inlineData = MoveData { point }; |
| return; |
| } |
| #endif |
| |
| moveToSlowCase(point); |
| } |
| |
| FloatRect Path::boundingRect() const |
| { |
| if (isNull()) |
| return { }; |
| |
| #if ENABLE(INLINE_PATH_DATA) |
| if (auto rect = boundingRectFromInlineData()) |
| return *rect; |
| #endif |
| |
| return boundingRectSlowCase(); |
| } |
| |
| FloatRect Path::fastBoundingRect() const |
| { |
| if (isNull()) |
| return { }; |
| |
| #if ENABLE(INLINE_PATH_DATA) |
| if (auto rect = fastBoundingRectFromInlineData()) |
| return *rect; |
| #endif |
| |
| return fastBoundingRectSlowCase(); |
| } |
| |
| #if ENABLE(INLINE_PATH_DATA) |
| |
| std::optional<FloatRect> Path::fastBoundingRectFromInlineData() const |
| { |
| if (hasInlineData<ArcData>()) { |
| auto& arc = inlineData<ArcData>(); |
| auto diameter = 2 * arc.radius; |
| FloatRect approximateBounds { arc.center, FloatSize(diameter, diameter) }; |
| approximateBounds.move(-arc.radius, -arc.radius); |
| if (arc.type == ArcData::Type::LineAndArc || arc.type == ArcData::Type::ClosedLineAndArc) |
| approximateBounds.extend(arc.start); |
| return approximateBounds; |
| } |
| |
| return boundingRectFromInlineData(); |
| } |
| |
| static FloatRect computeArcBounds(const FloatPoint& center, float radius, float start, float end, bool clockwise) |
| { |
| if (clockwise) |
| std::swap(start, end); |
| |
| constexpr float fullCircle = 2 * piFloat; |
| if (end - start >= fullCircle) { |
| auto diameter = radius * 2; |
| return { center.x() - radius, center.y() - radius, diameter, diameter }; |
| } |
| |
| auto normalize = [&] (float radians) { |
| double circles = radians / fullCircle; |
| return fullCircle * (circles - floor(circles)); |
| }; |
| |
| start = normalize(start); |
| end = normalize(end); |
| |
| auto lengthInRadians = end - start; |
| if (start > end) |
| lengthInRadians += fullCircle; |
| |
| FloatPoint startPoint { center.x() + radius * cos(start), center.y() + radius * sin(start) }; |
| FloatPoint endPoint { center.x() + radius * cos(end), center.y() + radius * sin(end) }; |
| FloatRect result; |
| result.fitToPoints(startPoint, endPoint); |
| |
| auto contains = [&] (float angleToCheck) { |
| return (start < angleToCheck && start + lengthInRadians > angleToCheck) |
| || (start > angleToCheck && start + lengthInRadians > angleToCheck + fullCircle); |
| }; |
| |
| if (contains(0)) |
| result.shiftMaxXEdgeTo(center.x() + radius); |
| |
| if (contains(piOverTwoFloat)) |
| result.shiftMaxYEdgeTo(center.y() + radius); |
| |
| if (contains(piFloat)) |
| result.shiftXEdgeTo(center.x() - radius); |
| |
| if (contains(3 * piOverTwoFloat)) |
| result.shiftYEdgeTo(center.y() - radius); |
| |
| return result; |
| } |
| |
| std::optional<FloatRect> Path::boundingRectFromInlineData() const |
| { |
| if (hasInlineData<ArcData>()) { |
| auto& arc = inlineData<ArcData>(); |
| auto bounds = computeArcBounds(arc.center, arc.radius, arc.startAngle, arc.endAngle, arc.clockwise); |
| if (arc.type == ArcData::Type::LineAndArc || arc.type == ArcData::Type::ClosedLineAndArc) |
| bounds.extend(arc.start); |
| return bounds; |
| } |
| |
| if (hasInlineData<MoveData>()) |
| return {{ inlineData<MoveData>().location, FloatSize { } }}; |
| |
| if (hasInlineData<LineData>()) { |
| FloatRect result; |
| auto& line = inlineData<LineData>(); |
| result.fitToPoints(line.start, line.end); |
| return result; |
| } |
| |
| return std::nullopt; |
| } |
| |
| #endif |
| |
| #if !USE(CG) && !USE(DIRECT2D) |
| Path Path::polygonPathFromPoints(const Vector<FloatPoint>& points) |
| { |
| Path path; |
| if (points.size() < 2) |
| return path; |
| |
| path.moveTo(points[0]); |
| for (size_t i = 1; i < points.size(); ++i) |
| path.addLineTo(points[i]); |
| |
| path.closeSubpath(); |
| return path; |
| } |
| #endif |
| |
| #ifndef NDEBUG |
| void Path::dump() const |
| { |
| TextStream stream; |
| stream << *this; |
| WTFLogAlways("%s", stream.release().utf8().data()); |
| } |
| #endif |
| |
| TextStream& operator<<(TextStream& stream, const Path& path) |
| { |
| bool isFirst = true; |
| path.apply([&stream, &isFirst](const PathElement& element) { |
| if (!isFirst) |
| stream << ", "; |
| isFirst = false; |
| switch (element.type) { |
| case PathElement::Type::MoveToPoint: // The points member will contain 1 value. |
| stream << "move to " << element.points[0]; |
| break; |
| case PathElement::Type::AddLineToPoint: // The points member will contain 1 value. |
| stream << "add line to " << element.points[0]; |
| break; |
| case PathElement::Type::AddQuadCurveToPoint: // The points member will contain 2 values. |
| stream << "add quad curve to " << element.points[0] << " " << element.points[1]; |
| break; |
| case PathElement::Type::AddCurveToPoint: // The points member will contain 3 values. |
| stream << "add curve to " << element.points[0] << " " << element.points[1] << " " << element.points[2]; |
| break; |
| case PathElement::Type::CloseSubpath: // The points member will contain no values. |
| stream << "close subpath"; |
| break; |
| } |
| }); |
| |
| return stream; |
| } |
| |
| } |